forked from OSchip/llvm-project
3753 lines
142 KiB
C++
3753 lines
142 KiB
C++
//===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the generic RegisterCoalescer interface which
|
|
// is used as the common interface used by all clients and
|
|
// implementations of register coalescing.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "RegisterCoalescer.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/CodeGen/LiveInterval.h"
|
|
#include "llvm/CodeGen/LiveIntervals.h"
|
|
#include "llvm/CodeGen/LiveRangeEdit.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/RegisterClassInfo.h"
|
|
#include "llvm/CodeGen/SlotIndexes.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/CodeGen/TargetOpcodes.h"
|
|
#include "llvm/CodeGen/TargetRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/MC/LaneBitmask.h"
|
|
#include "llvm/MC/MCInstrDesc.h"
|
|
#include "llvm/MC/MCRegisterInfo.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <iterator>
|
|
#include <limits>
|
|
#include <tuple>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "regalloc"
|
|
|
|
STATISTIC(numJoins , "Number of interval joins performed");
|
|
STATISTIC(numCrossRCs , "Number of cross class joins performed");
|
|
STATISTIC(numCommutes , "Number of instruction commuting performed");
|
|
STATISTIC(numExtends , "Number of copies extended");
|
|
STATISTIC(NumReMats , "Number of instructions re-materialized");
|
|
STATISTIC(NumInflated , "Number of register classes inflated");
|
|
STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
|
|
STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved");
|
|
STATISTIC(NumShrinkToUses, "Number of shrinkToUses called");
|
|
|
|
static cl::opt<bool> EnableJoining("join-liveintervals",
|
|
cl::desc("Coalesce copies (default=true)"),
|
|
cl::init(true), cl::Hidden);
|
|
|
|
static cl::opt<bool> UseTerminalRule("terminal-rule",
|
|
cl::desc("Apply the terminal rule"),
|
|
cl::init(false), cl::Hidden);
|
|
|
|
/// Temporary flag to test critical edge unsplitting.
|
|
static cl::opt<bool>
|
|
EnableJoinSplits("join-splitedges",
|
|
cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
|
|
|
|
/// Temporary flag to test global copy optimization.
|
|
static cl::opt<cl::boolOrDefault>
|
|
EnableGlobalCopies("join-globalcopies",
|
|
cl::desc("Coalesce copies that span blocks (default=subtarget)"),
|
|
cl::init(cl::BOU_UNSET), cl::Hidden);
|
|
|
|
static cl::opt<bool>
|
|
VerifyCoalescing("verify-coalescing",
|
|
cl::desc("Verify machine instrs before and after register coalescing"),
|
|
cl::Hidden);
|
|
|
|
static cl::opt<unsigned> LateRematUpdateThreshold(
|
|
"late-remat-update-threshold", cl::Hidden,
|
|
cl::desc("During rematerialization for a copy, if the def instruction has "
|
|
"many other copy uses to be rematerialized, delay the multiple "
|
|
"separate live interval update work and do them all at once after "
|
|
"all those rematerialization are done. It will save a lot of "
|
|
"repeated work. "),
|
|
cl::init(100));
|
|
|
|
static cl::opt<unsigned> LargeIntervalSizeThreshold(
|
|
"large-interval-size-threshold", cl::Hidden,
|
|
cl::desc("If the valnos size of an interval is larger than the threshold, "
|
|
"it is regarded as a large interval. "),
|
|
cl::init(100));
|
|
|
|
static cl::opt<unsigned> LargeIntervalFreqThreshold(
|
|
"large-interval-freq-threshold", cl::Hidden,
|
|
cl::desc("For a large interval, if it is coalesed with other live "
|
|
"intervals many times more than the threshold, stop its "
|
|
"coalescing to control the compile time. "),
|
|
cl::init(100));
|
|
|
|
namespace {
|
|
|
|
class RegisterCoalescer : public MachineFunctionPass,
|
|
private LiveRangeEdit::Delegate {
|
|
MachineFunction* MF;
|
|
MachineRegisterInfo* MRI;
|
|
const TargetRegisterInfo* TRI;
|
|
const TargetInstrInfo* TII;
|
|
LiveIntervals *LIS;
|
|
const MachineLoopInfo* Loops;
|
|
AliasAnalysis *AA;
|
|
RegisterClassInfo RegClassInfo;
|
|
|
|
/// A LaneMask to remember on which subregister live ranges we need to call
|
|
/// shrinkToUses() later.
|
|
LaneBitmask ShrinkMask;
|
|
|
|
/// True if the main range of the currently coalesced intervals should be
|
|
/// checked for smaller live intervals.
|
|
bool ShrinkMainRange;
|
|
|
|
/// True if the coalescer should aggressively coalesce global copies
|
|
/// in favor of keeping local copies.
|
|
bool JoinGlobalCopies;
|
|
|
|
/// True if the coalescer should aggressively coalesce fall-thru
|
|
/// blocks exclusively containing copies.
|
|
bool JoinSplitEdges;
|
|
|
|
/// Copy instructions yet to be coalesced.
|
|
SmallVector<MachineInstr*, 8> WorkList;
|
|
SmallVector<MachineInstr*, 8> LocalWorkList;
|
|
|
|
/// Set of instruction pointers that have been erased, and
|
|
/// that may be present in WorkList.
|
|
SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
|
|
|
|
/// Dead instructions that are about to be deleted.
|
|
SmallVector<MachineInstr*, 8> DeadDefs;
|
|
|
|
/// Virtual registers to be considered for register class inflation.
|
|
SmallVector<unsigned, 8> InflateRegs;
|
|
|
|
/// The collection of live intervals which should have been updated
|
|
/// immediately after rematerialiation but delayed until
|
|
/// lateLiveIntervalUpdate is called.
|
|
DenseSet<unsigned> ToBeUpdated;
|
|
|
|
/// Record how many times the large live interval with many valnos
|
|
/// has been tried to join with other live interval.
|
|
DenseMap<unsigned, unsigned long> LargeLIVisitCounter;
|
|
|
|
/// Recursively eliminate dead defs in DeadDefs.
|
|
void eliminateDeadDefs();
|
|
|
|
/// LiveRangeEdit callback for eliminateDeadDefs().
|
|
void LRE_WillEraseInstruction(MachineInstr *MI) override;
|
|
|
|
/// Coalesce the LocalWorkList.
|
|
void coalesceLocals();
|
|
|
|
/// Join compatible live intervals
|
|
void joinAllIntervals();
|
|
|
|
/// Coalesce copies in the specified MBB, putting
|
|
/// copies that cannot yet be coalesced into WorkList.
|
|
void copyCoalesceInMBB(MachineBasicBlock *MBB);
|
|
|
|
/// Tries to coalesce all copies in CurrList. Returns true if any progress
|
|
/// was made.
|
|
bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
|
|
|
|
/// If one def has many copy like uses, and those copy uses are all
|
|
/// rematerialized, the live interval update needed for those
|
|
/// rematerializations will be delayed and done all at once instead
|
|
/// of being done multiple times. This is to save compile cost because
|
|
/// live interval update is costly.
|
|
void lateLiveIntervalUpdate();
|
|
|
|
/// Attempt to join intervals corresponding to SrcReg/DstReg, which are the
|
|
/// src/dst of the copy instruction CopyMI. This returns true if the copy
|
|
/// was successfully coalesced away. If it is not currently possible to
|
|
/// coalesce this interval, but it may be possible if other things get
|
|
/// coalesced, then it returns true by reference in 'Again'.
|
|
bool joinCopy(MachineInstr *CopyMI, bool &Again);
|
|
|
|
/// Attempt to join these two intervals. On failure, this
|
|
/// returns false. The output "SrcInt" will not have been modified, so we
|
|
/// can use this information below to update aliases.
|
|
bool joinIntervals(CoalescerPair &CP);
|
|
|
|
/// Attempt joining two virtual registers. Return true on success.
|
|
bool joinVirtRegs(CoalescerPair &CP);
|
|
|
|
/// If a live interval has many valnos and is coalesced with other
|
|
/// live intervals many times, we regard such live interval as having
|
|
/// high compile time cost.
|
|
bool isHighCostLiveInterval(LiveInterval &LI);
|
|
|
|
/// Attempt joining with a reserved physreg.
|
|
bool joinReservedPhysReg(CoalescerPair &CP);
|
|
|
|
/// Add the LiveRange @p ToMerge as a subregister liverange of @p LI.
|
|
/// Subranges in @p LI which only partially interfere with the desired
|
|
/// LaneMask are split as necessary. @p LaneMask are the lanes that
|
|
/// @p ToMerge will occupy in the coalescer register. @p LI has its subrange
|
|
/// lanemasks already adjusted to the coalesced register.
|
|
void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge,
|
|
LaneBitmask LaneMask, CoalescerPair &CP);
|
|
|
|
/// Join the liveranges of two subregisters. Joins @p RRange into
|
|
/// @p LRange, @p RRange may be invalid afterwards.
|
|
void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
|
|
LaneBitmask LaneMask, const CoalescerPair &CP);
|
|
|
|
/// We found a non-trivially-coalescable copy. If the source value number is
|
|
/// defined by a copy from the destination reg see if we can merge these two
|
|
/// destination reg valno# into a single value number, eliminating a copy.
|
|
/// This returns true if an interval was modified.
|
|
bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
|
|
|
|
/// Return true if there are definitions of IntB
|
|
/// other than BValNo val# that can reach uses of AValno val# of IntA.
|
|
bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
|
|
VNInfo *AValNo, VNInfo *BValNo);
|
|
|
|
/// We found a non-trivially-coalescable copy.
|
|
/// If the source value number is defined by a commutable instruction and
|
|
/// its other operand is coalesced to the copy dest register, see if we
|
|
/// can transform the copy into a noop by commuting the definition.
|
|
/// This returns a pair of two flags:
|
|
/// - the first element is true if an interval was modified,
|
|
/// - the second element is true if the destination interval needs
|
|
/// to be shrunk after deleting the copy.
|
|
std::pair<bool,bool> removeCopyByCommutingDef(const CoalescerPair &CP,
|
|
MachineInstr *CopyMI);
|
|
|
|
/// We found a copy which can be moved to its less frequent predecessor.
|
|
bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI);
|
|
|
|
/// If the source of a copy is defined by a
|
|
/// trivial computation, replace the copy by rematerialize the definition.
|
|
bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI,
|
|
bool &IsDefCopy);
|
|
|
|
/// Return true if a copy involving a physreg should be joined.
|
|
bool canJoinPhys(const CoalescerPair &CP);
|
|
|
|
/// Replace all defs and uses of SrcReg to DstReg and update the subregister
|
|
/// number if it is not zero. If DstReg is a physical register and the
|
|
/// existing subregister number of the def / use being updated is not zero,
|
|
/// make sure to set it to the correct physical subregister.
|
|
void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx);
|
|
|
|
/// If the given machine operand reads only undefined lanes add an undef
|
|
/// flag.
|
|
/// This can happen when undef uses were previously concealed by a copy
|
|
/// which we coalesced. Example:
|
|
/// %0:sub0<def,read-undef> = ...
|
|
/// %1 = COPY %0 <-- Coalescing COPY reveals undef
|
|
/// = use %1:sub1 <-- hidden undef use
|
|
void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
|
|
MachineOperand &MO, unsigned SubRegIdx);
|
|
|
|
/// Handle copies of undef values. If the undef value is an incoming
|
|
/// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF.
|
|
/// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise,
|
|
/// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point).
|
|
MachineInstr *eliminateUndefCopy(MachineInstr *CopyMI);
|
|
|
|
/// Check whether or not we should apply the terminal rule on the
|
|
/// destination (Dst) of \p Copy.
|
|
/// When the terminal rule applies, Copy is not profitable to
|
|
/// coalesce.
|
|
/// Dst is terminal if it has exactly one affinity (Dst, Src) and
|
|
/// at least one interference (Dst, Dst2). If Dst is terminal, the
|
|
/// terminal rule consists in checking that at least one of
|
|
/// interfering node, say Dst2, has an affinity of equal or greater
|
|
/// weight with Src.
|
|
/// In that case, Dst2 and Dst will not be able to be both coalesced
|
|
/// with Src. Since Dst2 exposes more coalescing opportunities than
|
|
/// Dst, we can drop \p Copy.
|
|
bool applyTerminalRule(const MachineInstr &Copy) const;
|
|
|
|
/// Wrapper method for \see LiveIntervals::shrinkToUses.
|
|
/// This method does the proper fixing of the live-ranges when the afore
|
|
/// mentioned method returns true.
|
|
void shrinkToUses(LiveInterval *LI,
|
|
SmallVectorImpl<MachineInstr * > *Dead = nullptr) {
|
|
NumShrinkToUses++;
|
|
if (LIS->shrinkToUses(LI, Dead)) {
|
|
/// Check whether or not \p LI is composed by multiple connected
|
|
/// components and if that is the case, fix that.
|
|
SmallVector<LiveInterval*, 8> SplitLIs;
|
|
LIS->splitSeparateComponents(*LI, SplitLIs);
|
|
}
|
|
}
|
|
|
|
/// Wrapper Method to do all the necessary work when an Instruction is
|
|
/// deleted.
|
|
/// Optimizations should use this to make sure that deleted instructions
|
|
/// are always accounted for.
|
|
void deleteInstr(MachineInstr* MI) {
|
|
ErasedInstrs.insert(MI);
|
|
LIS->RemoveMachineInstrFromMaps(*MI);
|
|
MI->eraseFromParent();
|
|
}
|
|
|
|
public:
|
|
static char ID; ///< Class identification, replacement for typeinfo
|
|
|
|
RegisterCoalescer() : MachineFunctionPass(ID) {
|
|
initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override;
|
|
|
|
void releaseMemory() override;
|
|
|
|
/// This is the pass entry point.
|
|
bool runOnMachineFunction(MachineFunction&) override;
|
|
|
|
/// Implement the dump method.
|
|
void print(raw_ostream &O, const Module* = nullptr) const override;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char RegisterCoalescer::ID = 0;
|
|
|
|
char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
|
|
|
|
INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
|
|
"Simple Register Coalescing", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
|
|
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
|
|
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
|
|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
|
|
INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
|
|
"Simple Register Coalescing", false, false)
|
|
|
|
LLVM_NODISCARD static bool isMoveInstr(const TargetRegisterInfo &tri,
|
|
const MachineInstr *MI, unsigned &Src,
|
|
unsigned &Dst, unsigned &SrcSub,
|
|
unsigned &DstSub) {
|
|
if (MI->isCopy()) {
|
|
Dst = MI->getOperand(0).getReg();
|
|
DstSub = MI->getOperand(0).getSubReg();
|
|
Src = MI->getOperand(1).getReg();
|
|
SrcSub = MI->getOperand(1).getSubReg();
|
|
} else if (MI->isSubregToReg()) {
|
|
Dst = MI->getOperand(0).getReg();
|
|
DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
|
|
MI->getOperand(3).getImm());
|
|
Src = MI->getOperand(2).getReg();
|
|
SrcSub = MI->getOperand(2).getSubReg();
|
|
} else
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// Return true if this block should be vacated by the coalescer to eliminate
|
|
/// branches. The important cases to handle in the coalescer are critical edges
|
|
/// split during phi elimination which contain only copies. Simple blocks that
|
|
/// contain non-branches should also be vacated, but this can be handled by an
|
|
/// earlier pass similar to early if-conversion.
|
|
static bool isSplitEdge(const MachineBasicBlock *MBB) {
|
|
if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
|
|
return false;
|
|
|
|
for (const auto &MI : *MBB) {
|
|
if (!MI.isCopyLike() && !MI.isUnconditionalBranch())
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool CoalescerPair::setRegisters(const MachineInstr *MI) {
|
|
SrcReg = DstReg = 0;
|
|
SrcIdx = DstIdx = 0;
|
|
NewRC = nullptr;
|
|
Flipped = CrossClass = false;
|
|
|
|
unsigned Src, Dst, SrcSub, DstSub;
|
|
if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
|
|
return false;
|
|
Partial = SrcSub || DstSub;
|
|
|
|
// If one register is a physreg, it must be Dst.
|
|
if (Register::isPhysicalRegister(Src)) {
|
|
if (Register::isPhysicalRegister(Dst))
|
|
return false;
|
|
std::swap(Src, Dst);
|
|
std::swap(SrcSub, DstSub);
|
|
Flipped = true;
|
|
}
|
|
|
|
const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
|
|
|
|
if (Register::isPhysicalRegister(Dst)) {
|
|
// Eliminate DstSub on a physreg.
|
|
if (DstSub) {
|
|
Dst = TRI.getSubReg(Dst, DstSub);
|
|
if (!Dst) return false;
|
|
DstSub = 0;
|
|
}
|
|
|
|
// Eliminate SrcSub by picking a corresponding Dst superregister.
|
|
if (SrcSub) {
|
|
Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
|
|
if (!Dst) return false;
|
|
} else if (!MRI.getRegClass(Src)->contains(Dst)) {
|
|
return false;
|
|
}
|
|
} else {
|
|
// Both registers are virtual.
|
|
const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
|
|
const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
|
|
|
|
// Both registers have subreg indices.
|
|
if (SrcSub && DstSub) {
|
|
// Copies between different sub-registers are never coalescable.
|
|
if (Src == Dst && SrcSub != DstSub)
|
|
return false;
|
|
|
|
NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
|
|
SrcIdx, DstIdx);
|
|
if (!NewRC)
|
|
return false;
|
|
} else if (DstSub) {
|
|
// SrcReg will be merged with a sub-register of DstReg.
|
|
SrcIdx = DstSub;
|
|
NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
|
|
} else if (SrcSub) {
|
|
// DstReg will be merged with a sub-register of SrcReg.
|
|
DstIdx = SrcSub;
|
|
NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
|
|
} else {
|
|
// This is a straight copy without sub-registers.
|
|
NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
|
|
}
|
|
|
|
// The combined constraint may be impossible to satisfy.
|
|
if (!NewRC)
|
|
return false;
|
|
|
|
// Prefer SrcReg to be a sub-register of DstReg.
|
|
// FIXME: Coalescer should support subregs symmetrically.
|
|
if (DstIdx && !SrcIdx) {
|
|
std::swap(Src, Dst);
|
|
std::swap(SrcIdx, DstIdx);
|
|
Flipped = !Flipped;
|
|
}
|
|
|
|
CrossClass = NewRC != DstRC || NewRC != SrcRC;
|
|
}
|
|
// Check our invariants
|
|
assert(Register::isVirtualRegister(Src) && "Src must be virtual");
|
|
assert(!(Register::isPhysicalRegister(Dst) && DstSub) &&
|
|
"Cannot have a physical SubIdx");
|
|
SrcReg = Src;
|
|
DstReg = Dst;
|
|
return true;
|
|
}
|
|
|
|
bool CoalescerPair::flip() {
|
|
if (Register::isPhysicalRegister(DstReg))
|
|
return false;
|
|
std::swap(SrcReg, DstReg);
|
|
std::swap(SrcIdx, DstIdx);
|
|
Flipped = !Flipped;
|
|
return true;
|
|
}
|
|
|
|
bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
|
|
if (!MI)
|
|
return false;
|
|
unsigned Src, Dst, SrcSub, DstSub;
|
|
if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
|
|
return false;
|
|
|
|
// Find the virtual register that is SrcReg.
|
|
if (Dst == SrcReg) {
|
|
std::swap(Src, Dst);
|
|
std::swap(SrcSub, DstSub);
|
|
} else if (Src != SrcReg) {
|
|
return false;
|
|
}
|
|
|
|
// Now check that Dst matches DstReg.
|
|
if (Register::isPhysicalRegister(DstReg)) {
|
|
if (!Register::isPhysicalRegister(Dst))
|
|
return false;
|
|
assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
|
|
// DstSub could be set for a physreg from INSERT_SUBREG.
|
|
if (DstSub)
|
|
Dst = TRI.getSubReg(Dst, DstSub);
|
|
// Full copy of Src.
|
|
if (!SrcSub)
|
|
return DstReg == Dst;
|
|
// This is a partial register copy. Check that the parts match.
|
|
return TRI.getSubReg(DstReg, SrcSub) == Dst;
|
|
} else {
|
|
// DstReg is virtual.
|
|
if (DstReg != Dst)
|
|
return false;
|
|
// Registers match, do the subregisters line up?
|
|
return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
|
|
TRI.composeSubRegIndices(DstIdx, DstSub);
|
|
}
|
|
}
|
|
|
|
void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesCFG();
|
|
AU.addRequired<AAResultsWrapperPass>();
|
|
AU.addRequired<LiveIntervals>();
|
|
AU.addPreserved<LiveIntervals>();
|
|
AU.addPreserved<SlotIndexes>();
|
|
AU.addRequired<MachineLoopInfo>();
|
|
AU.addPreserved<MachineLoopInfo>();
|
|
AU.addPreservedID(MachineDominatorsID);
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
void RegisterCoalescer::eliminateDeadDefs() {
|
|
SmallVector<unsigned, 8> NewRegs;
|
|
LiveRangeEdit(nullptr, NewRegs, *MF, *LIS,
|
|
nullptr, this).eliminateDeadDefs(DeadDefs);
|
|
}
|
|
|
|
void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
|
|
// MI may be in WorkList. Make sure we don't visit it.
|
|
ErasedInstrs.insert(MI);
|
|
}
|
|
|
|
bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
|
|
MachineInstr *CopyMI) {
|
|
assert(!CP.isPartial() && "This doesn't work for partial copies.");
|
|
assert(!CP.isPhys() && "This doesn't work for physreg copies.");
|
|
|
|
LiveInterval &IntA =
|
|
LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
|
|
LiveInterval &IntB =
|
|
LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
|
|
SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
|
|
|
|
// We have a non-trivially-coalescable copy with IntA being the source and
|
|
// IntB being the dest, thus this defines a value number in IntB. If the
|
|
// source value number (in IntA) is defined by a copy from B, see if we can
|
|
// merge these two pieces of B into a single value number, eliminating a copy.
|
|
// For example:
|
|
//
|
|
// A3 = B0
|
|
// ...
|
|
// B1 = A3 <- this copy
|
|
//
|
|
// In this case, B0 can be extended to where the B1 copy lives, allowing the
|
|
// B1 value number to be replaced with B0 (which simplifies the B
|
|
// liveinterval).
|
|
|
|
// BValNo is a value number in B that is defined by a copy from A. 'B1' in
|
|
// the example above.
|
|
LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx);
|
|
if (BS == IntB.end()) return false;
|
|
VNInfo *BValNo = BS->valno;
|
|
|
|
// Get the location that B is defined at. Two options: either this value has
|
|
// an unknown definition point or it is defined at CopyIdx. If unknown, we
|
|
// can't process it.
|
|
if (BValNo->def != CopyIdx) return false;
|
|
|
|
// AValNo is the value number in A that defines the copy, A3 in the example.
|
|
SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
|
|
LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx);
|
|
// The live segment might not exist after fun with physreg coalescing.
|
|
if (AS == IntA.end()) return false;
|
|
VNInfo *AValNo = AS->valno;
|
|
|
|
// If AValNo is defined as a copy from IntB, we can potentially process this.
|
|
// Get the instruction that defines this value number.
|
|
MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
|
|
// Don't allow any partial copies, even if isCoalescable() allows them.
|
|
if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
|
|
return false;
|
|
|
|
// Get the Segment in IntB that this value number starts with.
|
|
LiveInterval::iterator ValS =
|
|
IntB.FindSegmentContaining(AValNo->def.getPrevSlot());
|
|
if (ValS == IntB.end())
|
|
return false;
|
|
|
|
// Make sure that the end of the live segment is inside the same block as
|
|
// CopyMI.
|
|
MachineInstr *ValSEndInst =
|
|
LIS->getInstructionFromIndex(ValS->end.getPrevSlot());
|
|
if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent())
|
|
return false;
|
|
|
|
// Okay, we now know that ValS ends in the same block that the CopyMI
|
|
// live-range starts. If there are no intervening live segments between them
|
|
// in IntB, we can merge them.
|
|
if (ValS+1 != BS) return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB.reg, TRI));
|
|
|
|
SlotIndex FillerStart = ValS->end, FillerEnd = BS->start;
|
|
// We are about to delete CopyMI, so need to remove it as the 'instruction
|
|
// that defines this value #'. Update the valnum with the new defining
|
|
// instruction #.
|
|
BValNo->def = FillerStart;
|
|
|
|
// Okay, we can merge them. We need to insert a new liverange:
|
|
// [ValS.end, BS.begin) of either value number, then we merge the
|
|
// two value numbers.
|
|
IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo));
|
|
|
|
// Okay, merge "B1" into the same value number as "B0".
|
|
if (BValNo != ValS->valno)
|
|
IntB.MergeValueNumberInto(BValNo, ValS->valno);
|
|
|
|
// Do the same for the subregister segments.
|
|
for (LiveInterval::SubRange &S : IntB.subranges()) {
|
|
// Check for SubRange Segments of the form [1234r,1234d:0) which can be
|
|
// removed to prevent creating bogus SubRange Segments.
|
|
LiveInterval::iterator SS = S.FindSegmentContaining(CopyIdx);
|
|
if (SS != S.end() && SlotIndex::isSameInstr(SS->start, SS->end)) {
|
|
S.removeSegment(*SS, true);
|
|
continue;
|
|
}
|
|
VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
|
|
S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo));
|
|
VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot());
|
|
if (SubBValNo != SubValSNo)
|
|
S.MergeValueNumberInto(SubBValNo, SubValSNo);
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << " result = " << IntB << '\n');
|
|
|
|
// If the source instruction was killing the source register before the
|
|
// merge, unset the isKill marker given the live range has been extended.
|
|
int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true);
|
|
if (UIdx != -1) {
|
|
ValSEndInst->getOperand(UIdx).setIsKill(false);
|
|
}
|
|
|
|
// Rewrite the copy.
|
|
CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI);
|
|
// If the copy instruction was killing the destination register or any
|
|
// subrange before the merge trim the live range.
|
|
bool RecomputeLiveRange = AS->end == CopyIdx;
|
|
if (!RecomputeLiveRange) {
|
|
for (LiveInterval::SubRange &S : IntA.subranges()) {
|
|
LiveInterval::iterator SS = S.FindSegmentContaining(CopyUseIdx);
|
|
if (SS != S.end() && SS->end == CopyIdx) {
|
|
RecomputeLiveRange = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (RecomputeLiveRange)
|
|
shrinkToUses(&IntA);
|
|
|
|
++numExtends;
|
|
return true;
|
|
}
|
|
|
|
bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
|
|
LiveInterval &IntB,
|
|
VNInfo *AValNo,
|
|
VNInfo *BValNo) {
|
|
// If AValNo has PHI kills, conservatively assume that IntB defs can reach
|
|
// the PHI values.
|
|
if (LIS->hasPHIKill(IntA, AValNo))
|
|
return true;
|
|
|
|
for (LiveRange::Segment &ASeg : IntA.segments) {
|
|
if (ASeg.valno != AValNo) continue;
|
|
LiveInterval::iterator BI = llvm::upper_bound(IntB, ASeg.start);
|
|
if (BI != IntB.begin())
|
|
--BI;
|
|
for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) {
|
|
if (BI->valno == BValNo)
|
|
continue;
|
|
if (BI->start <= ASeg.start && BI->end > ASeg.start)
|
|
return true;
|
|
if (BI->start > ASeg.start && BI->start < ASeg.end)
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Copy segments with value number @p SrcValNo from liverange @p Src to live
|
|
/// range @Dst and use value number @p DstValNo there.
|
|
static std::pair<bool,bool>
|
|
addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, const LiveRange &Src,
|
|
const VNInfo *SrcValNo) {
|
|
bool Changed = false;
|
|
bool MergedWithDead = false;
|
|
for (const LiveRange::Segment &S : Src.segments) {
|
|
if (S.valno != SrcValNo)
|
|
continue;
|
|
// This is adding a segment from Src that ends in a copy that is about
|
|
// to be removed. This segment is going to be merged with a pre-existing
|
|
// segment in Dst. This works, except in cases when the corresponding
|
|
// segment in Dst is dead. For example: adding [192r,208r:1) from Src
|
|
// to [208r,208d:1) in Dst would create [192r,208d:1) in Dst.
|
|
// Recognized such cases, so that the segments can be shrunk.
|
|
LiveRange::Segment Added = LiveRange::Segment(S.start, S.end, DstValNo);
|
|
LiveRange::Segment &Merged = *Dst.addSegment(Added);
|
|
if (Merged.end.isDead())
|
|
MergedWithDead = true;
|
|
Changed = true;
|
|
}
|
|
return std::make_pair(Changed, MergedWithDead);
|
|
}
|
|
|
|
std::pair<bool,bool>
|
|
RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
|
|
MachineInstr *CopyMI) {
|
|
assert(!CP.isPhys());
|
|
|
|
LiveInterval &IntA =
|
|
LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
|
|
LiveInterval &IntB =
|
|
LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
|
|
|
|
// We found a non-trivially-coalescable copy with IntA being the source and
|
|
// IntB being the dest, thus this defines a value number in IntB. If the
|
|
// source value number (in IntA) is defined by a commutable instruction and
|
|
// its other operand is coalesced to the copy dest register, see if we can
|
|
// transform the copy into a noop by commuting the definition. For example,
|
|
//
|
|
// A3 = op A2 killed B0
|
|
// ...
|
|
// B1 = A3 <- this copy
|
|
// ...
|
|
// = op A3 <- more uses
|
|
//
|
|
// ==>
|
|
//
|
|
// B2 = op B0 killed A2
|
|
// ...
|
|
// B1 = B2 <- now an identity copy
|
|
// ...
|
|
// = op B2 <- more uses
|
|
|
|
// BValNo is a value number in B that is defined by a copy from A. 'B1' in
|
|
// the example above.
|
|
SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
|
|
VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
|
|
assert(BValNo != nullptr && BValNo->def == CopyIdx);
|
|
|
|
// AValNo is the value number in A that defines the copy, A3 in the example.
|
|
VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
|
|
assert(AValNo && !AValNo->isUnused() && "COPY source not live");
|
|
if (AValNo->isPHIDef())
|
|
return { false, false };
|
|
MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
|
|
if (!DefMI)
|
|
return { false, false };
|
|
if (!DefMI->isCommutable())
|
|
return { false, false };
|
|
// If DefMI is a two-address instruction then commuting it will change the
|
|
// destination register.
|
|
int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
|
|
assert(DefIdx != -1);
|
|
unsigned UseOpIdx;
|
|
if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
|
|
return { false, false };
|
|
|
|
// FIXME: The code below tries to commute 'UseOpIdx' operand with some other
|
|
// commutable operand which is expressed by 'CommuteAnyOperandIndex'value
|
|
// passed to the method. That _other_ operand is chosen by
|
|
// the findCommutedOpIndices() method.
|
|
//
|
|
// That is obviously an area for improvement in case of instructions having
|
|
// more than 2 operands. For example, if some instruction has 3 commutable
|
|
// operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3,
|
|
// op#2<->op#3) of commute transformation should be considered/tried here.
|
|
unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex;
|
|
if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx))
|
|
return { false, false };
|
|
|
|
MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
|
|
unsigned NewReg = NewDstMO.getReg();
|
|
if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill())
|
|
return { false, false };
|
|
|
|
// Make sure there are no other definitions of IntB that would reach the
|
|
// uses which the new definition can reach.
|
|
if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
|
|
return { false, false };
|
|
|
|
// If some of the uses of IntA.reg is already coalesced away, return false.
|
|
// It's not possible to determine whether it's safe to perform the coalescing.
|
|
for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) {
|
|
MachineInstr *UseMI = MO.getParent();
|
|
unsigned OpNo = &MO - &UseMI->getOperand(0);
|
|
SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI);
|
|
LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
|
|
if (US == IntA.end() || US->valno != AValNo)
|
|
continue;
|
|
// If this use is tied to a def, we can't rewrite the register.
|
|
if (UseMI->isRegTiedToDefOperand(OpNo))
|
|
return { false, false };
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
|
|
<< *DefMI);
|
|
|
|
// At this point we have decided that it is legal to do this
|
|
// transformation. Start by commuting the instruction.
|
|
MachineBasicBlock *MBB = DefMI->getParent();
|
|
MachineInstr *NewMI =
|
|
TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx);
|
|
if (!NewMI)
|
|
return { false, false };
|
|
if (Register::isVirtualRegister(IntA.reg) &&
|
|
Register::isVirtualRegister(IntB.reg) &&
|
|
!MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
|
|
return { false, false };
|
|
if (NewMI != DefMI) {
|
|
LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI);
|
|
MachineBasicBlock::iterator Pos = DefMI;
|
|
MBB->insert(Pos, NewMI);
|
|
MBB->erase(DefMI);
|
|
}
|
|
|
|
// If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
|
|
// A = or A, B
|
|
// ...
|
|
// B = A
|
|
// ...
|
|
// C = killed A
|
|
// ...
|
|
// = B
|
|
|
|
// Update uses of IntA of the specific Val# with IntB.
|
|
for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
|
|
UE = MRI->use_end();
|
|
UI != UE; /* ++UI is below because of possible MI removal */) {
|
|
MachineOperand &UseMO = *UI;
|
|
++UI;
|
|
if (UseMO.isUndef())
|
|
continue;
|
|
MachineInstr *UseMI = UseMO.getParent();
|
|
if (UseMI->isDebugValue()) {
|
|
// FIXME These don't have an instruction index. Not clear we have enough
|
|
// info to decide whether to do this replacement or not. For now do it.
|
|
UseMO.setReg(NewReg);
|
|
continue;
|
|
}
|
|
SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true);
|
|
LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
|
|
assert(US != IntA.end() && "Use must be live");
|
|
if (US->valno != AValNo)
|
|
continue;
|
|
// Kill flags are no longer accurate. They are recomputed after RA.
|
|
UseMO.setIsKill(false);
|
|
if (Register::isPhysicalRegister(NewReg))
|
|
UseMO.substPhysReg(NewReg, *TRI);
|
|
else
|
|
UseMO.setReg(NewReg);
|
|
if (UseMI == CopyMI)
|
|
continue;
|
|
if (!UseMI->isCopy())
|
|
continue;
|
|
if (UseMI->getOperand(0).getReg() != IntB.reg ||
|
|
UseMI->getOperand(0).getSubReg())
|
|
continue;
|
|
|
|
// This copy will become a noop. If it's defining a new val#, merge it into
|
|
// BValNo.
|
|
SlotIndex DefIdx = UseIdx.getRegSlot();
|
|
VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
|
|
if (!DVNI)
|
|
continue;
|
|
LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
|
|
assert(DVNI->def == DefIdx);
|
|
BValNo = IntB.MergeValueNumberInto(DVNI, BValNo);
|
|
for (LiveInterval::SubRange &S : IntB.subranges()) {
|
|
VNInfo *SubDVNI = S.getVNInfoAt(DefIdx);
|
|
if (!SubDVNI)
|
|
continue;
|
|
VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
|
|
assert(SubBValNo->def == CopyIdx);
|
|
S.MergeValueNumberInto(SubDVNI, SubBValNo);
|
|
}
|
|
|
|
deleteInstr(UseMI);
|
|
}
|
|
|
|
// Extend BValNo by merging in IntA live segments of AValNo. Val# definition
|
|
// is updated.
|
|
bool ShrinkB = false;
|
|
BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
|
|
if (IntA.hasSubRanges() || IntB.hasSubRanges()) {
|
|
if (!IntA.hasSubRanges()) {
|
|
LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg);
|
|
IntA.createSubRangeFrom(Allocator, Mask, IntA);
|
|
} else if (!IntB.hasSubRanges()) {
|
|
LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntB.reg);
|
|
IntB.createSubRangeFrom(Allocator, Mask, IntB);
|
|
}
|
|
SlotIndex AIdx = CopyIdx.getRegSlot(true);
|
|
LaneBitmask MaskA;
|
|
const SlotIndexes &Indexes = *LIS->getSlotIndexes();
|
|
for (LiveInterval::SubRange &SA : IntA.subranges()) {
|
|
VNInfo *ASubValNo = SA.getVNInfoAt(AIdx);
|
|
// Even if we are dealing with a full copy, some lanes can
|
|
// still be undefined.
|
|
// E.g.,
|
|
// undef A.subLow = ...
|
|
// B = COPY A <== A.subHigh is undefined here and does
|
|
// not have a value number.
|
|
if (!ASubValNo)
|
|
continue;
|
|
MaskA |= SA.LaneMask;
|
|
|
|
IntB.refineSubRanges(
|
|
Allocator, SA.LaneMask,
|
|
[&Allocator, &SA, CopyIdx, ASubValNo,
|
|
&ShrinkB](LiveInterval::SubRange &SR) {
|
|
VNInfo *BSubValNo = SR.empty() ? SR.getNextValue(CopyIdx, Allocator)
|
|
: SR.getVNInfoAt(CopyIdx);
|
|
assert(BSubValNo != nullptr);
|
|
auto P = addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo);
|
|
ShrinkB |= P.second;
|
|
if (P.first)
|
|
BSubValNo->def = ASubValNo->def;
|
|
},
|
|
Indexes, *TRI);
|
|
}
|
|
// Go over all subranges of IntB that have not been covered by IntA,
|
|
// and delete the segments starting at CopyIdx. This can happen if
|
|
// IntA has undef lanes that are defined in IntB.
|
|
for (LiveInterval::SubRange &SB : IntB.subranges()) {
|
|
if ((SB.LaneMask & MaskA).any())
|
|
continue;
|
|
if (LiveRange::Segment *S = SB.getSegmentContaining(CopyIdx))
|
|
if (S->start.getBaseIndex() == CopyIdx.getBaseIndex())
|
|
SB.removeSegment(*S, true);
|
|
}
|
|
}
|
|
|
|
BValNo->def = AValNo->def;
|
|
auto P = addSegmentsWithValNo(IntB, BValNo, IntA, AValNo);
|
|
ShrinkB |= P.second;
|
|
LLVM_DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
|
|
|
|
LIS->removeVRegDefAt(IntA, AValNo->def);
|
|
|
|
LLVM_DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n');
|
|
++numCommutes;
|
|
return { true, ShrinkB };
|
|
}
|
|
|
|
/// For copy B = A in BB2, if A is defined by A = B in BB0 which is a
|
|
/// predecessor of BB2, and if B is not redefined on the way from A = B
|
|
/// in BB0 to B = A in BB2, B = A in BB2 is partially redundant if the
|
|
/// execution goes through the path from BB0 to BB2. We may move B = A
|
|
/// to the predecessor without such reversed copy.
|
|
/// So we will transform the program from:
|
|
/// BB0:
|
|
/// A = B; BB1:
|
|
/// ... ...
|
|
/// / \ /
|
|
/// BB2:
|
|
/// ...
|
|
/// B = A;
|
|
///
|
|
/// to:
|
|
///
|
|
/// BB0: BB1:
|
|
/// A = B; ...
|
|
/// ... B = A;
|
|
/// / \ /
|
|
/// BB2:
|
|
/// ...
|
|
///
|
|
/// A special case is when BB0 and BB2 are the same BB which is the only
|
|
/// BB in a loop:
|
|
/// BB1:
|
|
/// ...
|
|
/// BB0/BB2: ----
|
|
/// B = A; |
|
|
/// ... |
|
|
/// A = B; |
|
|
/// |-------
|
|
/// |
|
|
/// We may hoist B = A from BB0/BB2 to BB1.
|
|
///
|
|
/// The major preconditions for correctness to remove such partial
|
|
/// redundancy include:
|
|
/// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of
|
|
/// the PHI is defined by the reversed copy A = B in BB0.
|
|
/// 2. No B is referenced from the start of BB2 to B = A.
|
|
/// 3. No B is defined from A = B to the end of BB0.
|
|
/// 4. BB1 has only one successor.
|
|
///
|
|
/// 2 and 4 implicitly ensure B is not live at the end of BB1.
|
|
/// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a
|
|
/// colder place, which not only prevent endless loop, but also make sure
|
|
/// the movement of copy is beneficial.
|
|
bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP,
|
|
MachineInstr &CopyMI) {
|
|
assert(!CP.isPhys());
|
|
if (!CopyMI.isFullCopy())
|
|
return false;
|
|
|
|
MachineBasicBlock &MBB = *CopyMI.getParent();
|
|
if (MBB.isEHPad())
|
|
return false;
|
|
|
|
if (MBB.pred_size() != 2)
|
|
return false;
|
|
|
|
LiveInterval &IntA =
|
|
LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
|
|
LiveInterval &IntB =
|
|
LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
|
|
|
|
// A is defined by PHI at the entry of MBB.
|
|
SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true);
|
|
VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx);
|
|
assert(AValNo && !AValNo->isUnused() && "COPY source not live");
|
|
if (!AValNo->isPHIDef())
|
|
return false;
|
|
|
|
// No B is referenced before CopyMI in MBB.
|
|
if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx))
|
|
return false;
|
|
|
|
// MBB has two predecessors: one contains A = B so no copy will be inserted
|
|
// for it. The other one will have a copy moved from MBB.
|
|
bool FoundReverseCopy = false;
|
|
MachineBasicBlock *CopyLeftBB = nullptr;
|
|
for (MachineBasicBlock *Pred : MBB.predecessors()) {
|
|
VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred));
|
|
MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def);
|
|
if (!DefMI || !DefMI->isFullCopy()) {
|
|
CopyLeftBB = Pred;
|
|
continue;
|
|
}
|
|
// Check DefMI is a reverse copy and it is in BB Pred.
|
|
if (DefMI->getOperand(0).getReg() != IntA.reg ||
|
|
DefMI->getOperand(1).getReg() != IntB.reg ||
|
|
DefMI->getParent() != Pred) {
|
|
CopyLeftBB = Pred;
|
|
continue;
|
|
}
|
|
// If there is any other def of B after DefMI and before the end of Pred,
|
|
// we need to keep the copy of B = A at the end of Pred if we remove
|
|
// B = A from MBB.
|
|
bool ValB_Changed = false;
|
|
for (auto VNI : IntB.valnos) {
|
|
if (VNI->isUnused())
|
|
continue;
|
|
if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) {
|
|
ValB_Changed = true;
|
|
break;
|
|
}
|
|
}
|
|
if (ValB_Changed) {
|
|
CopyLeftBB = Pred;
|
|
continue;
|
|
}
|
|
FoundReverseCopy = true;
|
|
}
|
|
|
|
// If no reverse copy is found in predecessors, nothing to do.
|
|
if (!FoundReverseCopy)
|
|
return false;
|
|
|
|
// If CopyLeftBB is nullptr, it means every predecessor of MBB contains
|
|
// reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated.
|
|
// If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and
|
|
// update IntA/IntB.
|
|
//
|
|
// If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so
|
|
// MBB is hotter than CopyLeftBB.
|
|
if (CopyLeftBB && CopyLeftBB->succ_size() > 1)
|
|
return false;
|
|
|
|
// Now (almost sure it's) ok to move copy.
|
|
if (CopyLeftBB) {
|
|
// Position in CopyLeftBB where we should insert new copy.
|
|
auto InsPos = CopyLeftBB->getFirstTerminator();
|
|
|
|
// Make sure that B isn't referenced in the terminators (if any) at the end
|
|
// of the predecessor since we're about to insert a new definition of B
|
|
// before them.
|
|
if (InsPos != CopyLeftBB->end()) {
|
|
SlotIndex InsPosIdx = LIS->getInstructionIndex(*InsPos).getRegSlot(true);
|
|
if (IntB.overlaps(InsPosIdx, LIS->getMBBEndIdx(CopyLeftBB)))
|
|
return false;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to "
|
|
<< printMBBReference(*CopyLeftBB) << '\t' << CopyMI);
|
|
|
|
// Insert new copy to CopyLeftBB.
|
|
MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(),
|
|
TII->get(TargetOpcode::COPY), IntB.reg)
|
|
.addReg(IntA.reg);
|
|
SlotIndex NewCopyIdx =
|
|
LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot();
|
|
IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
|
|
for (LiveInterval::SubRange &SR : IntB.subranges())
|
|
SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
|
|
|
|
// If the newly created Instruction has an address of an instruction that was
|
|
// deleted before (object recycled by the allocator) it needs to be removed from
|
|
// the deleted list.
|
|
ErasedInstrs.erase(NewCopyMI);
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from "
|
|
<< printMBBReference(MBB) << '\t' << CopyMI);
|
|
}
|
|
|
|
// Remove CopyMI.
|
|
// Note: This is fine to remove the copy before updating the live-ranges.
|
|
// While updating the live-ranges, we only look at slot indices and
|
|
// never go back to the instruction.
|
|
// Mark instructions as deleted.
|
|
deleteInstr(&CopyMI);
|
|
|
|
// Update the liveness.
|
|
SmallVector<SlotIndex, 8> EndPoints;
|
|
VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead();
|
|
LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(),
|
|
&EndPoints);
|
|
BValNo->markUnused();
|
|
// Extend IntB to the EndPoints of its original live interval.
|
|
LIS->extendToIndices(IntB, EndPoints);
|
|
|
|
// Now, do the same for its subranges.
|
|
for (LiveInterval::SubRange &SR : IntB.subranges()) {
|
|
EndPoints.clear();
|
|
VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead();
|
|
assert(BValNo && "All sublanes should be live");
|
|
LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints);
|
|
BValNo->markUnused();
|
|
// We can have a situation where the result of the original copy is live,
|
|
// but is immediately dead in this subrange, e.g. [336r,336d:0). That makes
|
|
// the copy appear as an endpoint from pruneValue(), but we don't want it
|
|
// to because the copy has been removed. We can go ahead and remove that
|
|
// endpoint; there is no other situation here that there could be a use at
|
|
// the same place as we know that the copy is a full copy.
|
|
for (unsigned I = 0; I != EndPoints.size(); ) {
|
|
if (SlotIndex::isSameInstr(EndPoints[I], CopyIdx)) {
|
|
EndPoints[I] = EndPoints.back();
|
|
EndPoints.pop_back();
|
|
continue;
|
|
}
|
|
++I;
|
|
}
|
|
LIS->extendToIndices(SR, EndPoints);
|
|
}
|
|
// If any dead defs were extended, truncate them.
|
|
shrinkToUses(&IntB);
|
|
|
|
// Finally, update the live-range of IntA.
|
|
shrinkToUses(&IntA);
|
|
return true;
|
|
}
|
|
|
|
/// Returns true if @p MI defines the full vreg @p Reg, as opposed to just
|
|
/// defining a subregister.
|
|
static bool definesFullReg(const MachineInstr &MI, unsigned Reg) {
|
|
assert(!Register::isPhysicalRegister(Reg) &&
|
|
"This code cannot handle physreg aliasing");
|
|
for (const MachineOperand &Op : MI.operands()) {
|
|
if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
|
|
continue;
|
|
// Return true if we define the full register or don't care about the value
|
|
// inside other subregisters.
|
|
if (Op.getSubReg() == 0 || Op.isUndef())
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP,
|
|
MachineInstr *CopyMI,
|
|
bool &IsDefCopy) {
|
|
IsDefCopy = false;
|
|
unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
|
|
unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx();
|
|
unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
|
|
unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx();
|
|
if (Register::isPhysicalRegister(SrcReg))
|
|
return false;
|
|
|
|
LiveInterval &SrcInt = LIS->getInterval(SrcReg);
|
|
SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
|
|
VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn();
|
|
if (!ValNo)
|
|
return false;
|
|
if (ValNo->isPHIDef() || ValNo->isUnused())
|
|
return false;
|
|
MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
|
|
if (!DefMI)
|
|
return false;
|
|
if (DefMI->isCopyLike()) {
|
|
IsDefCopy = true;
|
|
return false;
|
|
}
|
|
if (!TII->isAsCheapAsAMove(*DefMI))
|
|
return false;
|
|
if (!TII->isTriviallyReMaterializable(*DefMI, AA))
|
|
return false;
|
|
if (!definesFullReg(*DefMI, SrcReg))
|
|
return false;
|
|
bool SawStore = false;
|
|
if (!DefMI->isSafeToMove(AA, SawStore))
|
|
return false;
|
|
const MCInstrDesc &MCID = DefMI->getDesc();
|
|
if (MCID.getNumDefs() != 1)
|
|
return false;
|
|
// Only support subregister destinations when the def is read-undef.
|
|
MachineOperand &DstOperand = CopyMI->getOperand(0);
|
|
unsigned CopyDstReg = DstOperand.getReg();
|
|
if (DstOperand.getSubReg() && !DstOperand.isUndef())
|
|
return false;
|
|
|
|
// If both SrcIdx and DstIdx are set, correct rematerialization would widen
|
|
// the register substantially (beyond both source and dest size). This is bad
|
|
// for performance since it can cascade through a function, introducing many
|
|
// extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers
|
|
// around after a few subreg copies).
|
|
if (SrcIdx && DstIdx)
|
|
return false;
|
|
|
|
const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF);
|
|
if (!DefMI->isImplicitDef()) {
|
|
if (Register::isPhysicalRegister(DstReg)) {
|
|
unsigned NewDstReg = DstReg;
|
|
|
|
unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(),
|
|
DefMI->getOperand(0).getSubReg());
|
|
if (NewDstIdx)
|
|
NewDstReg = TRI->getSubReg(DstReg, NewDstIdx);
|
|
|
|
// Finally, make sure that the physical subregister that will be
|
|
// constructed later is permitted for the instruction.
|
|
if (!DefRC->contains(NewDstReg))
|
|
return false;
|
|
} else {
|
|
// Theoretically, some stack frame reference could exist. Just make sure
|
|
// it hasn't actually happened.
|
|
assert(Register::isVirtualRegister(DstReg) &&
|
|
"Only expect to deal with virtual or physical registers");
|
|
}
|
|
}
|
|
|
|
DebugLoc DL = CopyMI->getDebugLoc();
|
|
MachineBasicBlock *MBB = CopyMI->getParent();
|
|
MachineBasicBlock::iterator MII =
|
|
std::next(MachineBasicBlock::iterator(CopyMI));
|
|
TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI);
|
|
MachineInstr &NewMI = *std::prev(MII);
|
|
NewMI.setDebugLoc(DL);
|
|
|
|
// In a situation like the following:
|
|
// %0:subreg = instr ; DefMI, subreg = DstIdx
|
|
// %1 = copy %0:subreg ; CopyMI, SrcIdx = 0
|
|
// instead of widening %1 to the register class of %0 simply do:
|
|
// %1 = instr
|
|
const TargetRegisterClass *NewRC = CP.getNewRC();
|
|
if (DstIdx != 0) {
|
|
MachineOperand &DefMO = NewMI.getOperand(0);
|
|
if (DefMO.getSubReg() == DstIdx) {
|
|
assert(SrcIdx == 0 && CP.isFlipped()
|
|
&& "Shouldn't have SrcIdx+DstIdx at this point");
|
|
const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
|
|
const TargetRegisterClass *CommonRC =
|
|
TRI->getCommonSubClass(DefRC, DstRC);
|
|
if (CommonRC != nullptr) {
|
|
NewRC = CommonRC;
|
|
DstIdx = 0;
|
|
DefMO.setSubReg(0);
|
|
DefMO.setIsUndef(false); // Only subregs can have def+undef.
|
|
}
|
|
}
|
|
}
|
|
|
|
// CopyMI may have implicit operands, save them so that we can transfer them
|
|
// over to the newly materialized instruction after CopyMI is removed.
|
|
SmallVector<MachineOperand, 4> ImplicitOps;
|
|
ImplicitOps.reserve(CopyMI->getNumOperands() -
|
|
CopyMI->getDesc().getNumOperands());
|
|
for (unsigned I = CopyMI->getDesc().getNumOperands(),
|
|
E = CopyMI->getNumOperands();
|
|
I != E; ++I) {
|
|
MachineOperand &MO = CopyMI->getOperand(I);
|
|
if (MO.isReg()) {
|
|
assert(MO.isImplicit() && "No explicit operands after implicit operands.");
|
|
// Discard VReg implicit defs.
|
|
if (Register::isPhysicalRegister(MO.getReg()))
|
|
ImplicitOps.push_back(MO);
|
|
}
|
|
}
|
|
|
|
LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI);
|
|
CopyMI->eraseFromParent();
|
|
ErasedInstrs.insert(CopyMI);
|
|
|
|
// NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
|
|
// We need to remember these so we can add intervals once we insert
|
|
// NewMI into SlotIndexes.
|
|
SmallVector<unsigned, 4> NewMIImplDefs;
|
|
for (unsigned i = NewMI.getDesc().getNumOperands(),
|
|
e = NewMI.getNumOperands();
|
|
i != e; ++i) {
|
|
MachineOperand &MO = NewMI.getOperand(i);
|
|
if (MO.isReg() && MO.isDef()) {
|
|
assert(MO.isImplicit() && MO.isDead() &&
|
|
Register::isPhysicalRegister(MO.getReg()));
|
|
NewMIImplDefs.push_back(MO.getReg());
|
|
}
|
|
}
|
|
|
|
if (Register::isVirtualRegister(DstReg)) {
|
|
unsigned NewIdx = NewMI.getOperand(0).getSubReg();
|
|
|
|
if (DefRC != nullptr) {
|
|
if (NewIdx)
|
|
NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx);
|
|
else
|
|
NewRC = TRI->getCommonSubClass(NewRC, DefRC);
|
|
assert(NewRC && "subreg chosen for remat incompatible with instruction");
|
|
}
|
|
// Remap subranges to new lanemask and change register class.
|
|
LiveInterval &DstInt = LIS->getInterval(DstReg);
|
|
for (LiveInterval::SubRange &SR : DstInt.subranges()) {
|
|
SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask);
|
|
}
|
|
MRI->setRegClass(DstReg, NewRC);
|
|
|
|
// Update machine operands and add flags.
|
|
updateRegDefsUses(DstReg, DstReg, DstIdx);
|
|
NewMI.getOperand(0).setSubReg(NewIdx);
|
|
// updateRegDefUses can add an "undef" flag to the definition, since
|
|
// it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make
|
|
// sure that "undef" is not set.
|
|
if (NewIdx == 0)
|
|
NewMI.getOperand(0).setIsUndef(false);
|
|
// Add dead subregister definitions if we are defining the whole register
|
|
// but only part of it is live.
|
|
// This could happen if the rematerialization instruction is rematerializing
|
|
// more than actually is used in the register.
|
|
// An example would be:
|
|
// %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs
|
|
// ; Copying only part of the register here, but the rest is undef.
|
|
// %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit
|
|
// ==>
|
|
// ; Materialize all the constants but only using one
|
|
// %2 = LOAD_CONSTANTS 5, 8
|
|
//
|
|
// at this point for the part that wasn't defined before we could have
|
|
// subranges missing the definition.
|
|
if (NewIdx == 0 && DstInt.hasSubRanges()) {
|
|
SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
|
|
SlotIndex DefIndex =
|
|
CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber());
|
|
LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg);
|
|
VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator();
|
|
for (LiveInterval::SubRange &SR : DstInt.subranges()) {
|
|
if (!SR.liveAt(DefIndex))
|
|
SR.createDeadDef(DefIndex, Alloc);
|
|
MaxMask &= ~SR.LaneMask;
|
|
}
|
|
if (MaxMask.any()) {
|
|
LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask);
|
|
SR->createDeadDef(DefIndex, Alloc);
|
|
}
|
|
}
|
|
|
|
// Make sure that the subrange for resultant undef is removed
|
|
// For example:
|
|
// %1:sub1<def,read-undef> = LOAD CONSTANT 1
|
|
// %2 = COPY %1
|
|
// ==>
|
|
// %2:sub1<def, read-undef> = LOAD CONSTANT 1
|
|
// ; Correct but need to remove the subrange for %2:sub0
|
|
// ; as it is now undef
|
|
if (NewIdx != 0 && DstInt.hasSubRanges()) {
|
|
// The affected subregister segments can be removed.
|
|
SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
|
|
LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx);
|
|
bool UpdatedSubRanges = false;
|
|
for (LiveInterval::SubRange &SR : DstInt.subranges()) {
|
|
if ((SR.LaneMask & DstMask).none()) {
|
|
LLVM_DEBUG(dbgs()
|
|
<< "Removing undefined SubRange "
|
|
<< PrintLaneMask(SR.LaneMask) << " : " << SR << "\n");
|
|
// VNI is in ValNo - remove any segments in this SubRange that have this ValNo
|
|
if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) {
|
|
SR.removeValNo(RmValNo);
|
|
UpdatedSubRanges = true;
|
|
}
|
|
}
|
|
}
|
|
if (UpdatedSubRanges)
|
|
DstInt.removeEmptySubRanges();
|
|
}
|
|
} else if (NewMI.getOperand(0).getReg() != CopyDstReg) {
|
|
// The New instruction may be defining a sub-register of what's actually
|
|
// been asked for. If so it must implicitly define the whole thing.
|
|
assert(Register::isPhysicalRegister(DstReg) &&
|
|
"Only expect virtual or physical registers in remat");
|
|
NewMI.getOperand(0).setIsDead(true);
|
|
NewMI.addOperand(MachineOperand::CreateReg(
|
|
CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/));
|
|
// Record small dead def live-ranges for all the subregisters
|
|
// of the destination register.
|
|
// Otherwise, variables that live through may miss some
|
|
// interferences, thus creating invalid allocation.
|
|
// E.g., i386 code:
|
|
// %1 = somedef ; %1 GR8
|
|
// %2 = remat ; %2 GR32
|
|
// CL = COPY %2.sub_8bit
|
|
// = somedef %1 ; %1 GR8
|
|
// =>
|
|
// %1 = somedef ; %1 GR8
|
|
// dead ECX = remat ; implicit-def CL
|
|
// = somedef %1 ; %1 GR8
|
|
// %1 will see the interferences with CL but not with CH since
|
|
// no live-ranges would have been created for ECX.
|
|
// Fix that!
|
|
SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
|
|
for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI);
|
|
Units.isValid(); ++Units)
|
|
if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
|
|
LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
|
|
}
|
|
|
|
if (NewMI.getOperand(0).getSubReg())
|
|
NewMI.getOperand(0).setIsUndef();
|
|
|
|
// Transfer over implicit operands to the rematerialized instruction.
|
|
for (MachineOperand &MO : ImplicitOps)
|
|
NewMI.addOperand(MO);
|
|
|
|
SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
|
|
for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
|
|
unsigned Reg = NewMIImplDefs[i];
|
|
for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
|
|
if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
|
|
LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Remat: " << NewMI);
|
|
++NumReMats;
|
|
|
|
// If the virtual SrcReg is completely eliminated, update all DBG_VALUEs
|
|
// to describe DstReg instead.
|
|
if (MRI->use_nodbg_empty(SrcReg)) {
|
|
for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) {
|
|
MachineInstr *UseMI = UseMO.getParent();
|
|
if (UseMI->isDebugValue()) {
|
|
if (Register::isPhysicalRegister(DstReg))
|
|
UseMO.substPhysReg(DstReg, *TRI);
|
|
else
|
|
UseMO.setReg(DstReg);
|
|
// Move the debug value directly after the def of the rematerialized
|
|
// value in DstReg.
|
|
MBB->splice(std::next(NewMI.getIterator()), UseMI->getParent(), UseMI);
|
|
LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ToBeUpdated.count(SrcReg))
|
|
return true;
|
|
|
|
unsigned NumCopyUses = 0;
|
|
for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
|
|
if (UseMO.getParent()->isCopyLike())
|
|
NumCopyUses++;
|
|
}
|
|
if (NumCopyUses < LateRematUpdateThreshold) {
|
|
// The source interval can become smaller because we removed a use.
|
|
shrinkToUses(&SrcInt, &DeadDefs);
|
|
if (!DeadDefs.empty())
|
|
eliminateDeadDefs();
|
|
} else {
|
|
ToBeUpdated.insert(SrcReg);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
MachineInstr *RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) {
|
|
// ProcessImplicitDefs may leave some copies of <undef> values, it only
|
|
// removes local variables. When we have a copy like:
|
|
//
|
|
// %1 = COPY undef %2
|
|
//
|
|
// We delete the copy and remove the corresponding value number from %1.
|
|
// Any uses of that value number are marked as <undef>.
|
|
|
|
// Note that we do not query CoalescerPair here but redo isMoveInstr as the
|
|
// CoalescerPair may have a new register class with adjusted subreg indices
|
|
// at this point.
|
|
unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
|
|
if(!isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
|
|
return nullptr;
|
|
|
|
SlotIndex Idx = LIS->getInstructionIndex(*CopyMI);
|
|
const LiveInterval &SrcLI = LIS->getInterval(SrcReg);
|
|
// CopyMI is undef iff SrcReg is not live before the instruction.
|
|
if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) {
|
|
LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx);
|
|
for (const LiveInterval::SubRange &SR : SrcLI.subranges()) {
|
|
if ((SR.LaneMask & SrcMask).none())
|
|
continue;
|
|
if (SR.liveAt(Idx))
|
|
return nullptr;
|
|
}
|
|
} else if (SrcLI.liveAt(Idx))
|
|
return nullptr;
|
|
|
|
// If the undef copy defines a live-out value (i.e. an input to a PHI def),
|
|
// then replace it with an IMPLICIT_DEF.
|
|
LiveInterval &DstLI = LIS->getInterval(DstReg);
|
|
SlotIndex RegIndex = Idx.getRegSlot();
|
|
LiveRange::Segment *Seg = DstLI.getSegmentContaining(RegIndex);
|
|
assert(Seg != nullptr && "No segment for defining instruction");
|
|
if (VNInfo *V = DstLI.getVNInfoAt(Seg->end)) {
|
|
if (V->isPHIDef()) {
|
|
CopyMI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
|
|
for (unsigned i = CopyMI->getNumOperands(); i != 0; --i) {
|
|
MachineOperand &MO = CopyMI->getOperand(i-1);
|
|
if (MO.isReg() && MO.isUse())
|
|
CopyMI->RemoveOperand(i-1);
|
|
}
|
|
LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an "
|
|
"implicit def\n");
|
|
return CopyMI;
|
|
}
|
|
}
|
|
|
|
// Remove any DstReg segments starting at the instruction.
|
|
LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n");
|
|
|
|
// Remove value or merge with previous one in case of a subregister def.
|
|
if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) {
|
|
VNInfo *VNI = DstLI.getVNInfoAt(RegIndex);
|
|
DstLI.MergeValueNumberInto(VNI, PrevVNI);
|
|
|
|
// The affected subregister segments can be removed.
|
|
LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx);
|
|
for (LiveInterval::SubRange &SR : DstLI.subranges()) {
|
|
if ((SR.LaneMask & DstMask).none())
|
|
continue;
|
|
|
|
VNInfo *SVNI = SR.getVNInfoAt(RegIndex);
|
|
assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex));
|
|
SR.removeValNo(SVNI);
|
|
}
|
|
DstLI.removeEmptySubRanges();
|
|
} else
|
|
LIS->removeVRegDefAt(DstLI, RegIndex);
|
|
|
|
// Mark uses as undef.
|
|
for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) {
|
|
if (MO.isDef() /*|| MO.isUndef()*/)
|
|
continue;
|
|
const MachineInstr &MI = *MO.getParent();
|
|
SlotIndex UseIdx = LIS->getInstructionIndex(MI);
|
|
LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
|
|
bool isLive;
|
|
if (!UseMask.all() && DstLI.hasSubRanges()) {
|
|
isLive = false;
|
|
for (const LiveInterval::SubRange &SR : DstLI.subranges()) {
|
|
if ((SR.LaneMask & UseMask).none())
|
|
continue;
|
|
if (SR.liveAt(UseIdx)) {
|
|
isLive = true;
|
|
break;
|
|
}
|
|
}
|
|
} else
|
|
isLive = DstLI.liveAt(UseIdx);
|
|
if (isLive)
|
|
continue;
|
|
MO.setIsUndef(true);
|
|
LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI);
|
|
}
|
|
|
|
// A def of a subregister may be a use of the other subregisters, so
|
|
// deleting a def of a subregister may also remove uses. Since CopyMI
|
|
// is still part of the function (but about to be erased), mark all
|
|
// defs of DstReg in it as <undef>, so that shrinkToUses would
|
|
// ignore them.
|
|
for (MachineOperand &MO : CopyMI->operands())
|
|
if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg)
|
|
MO.setIsUndef(true);
|
|
LIS->shrinkToUses(&DstLI);
|
|
|
|
return CopyMI;
|
|
}
|
|
|
|
void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
|
|
MachineOperand &MO, unsigned SubRegIdx) {
|
|
LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx);
|
|
if (MO.isDef())
|
|
Mask = ~Mask;
|
|
bool IsUndef = true;
|
|
for (const LiveInterval::SubRange &S : Int.subranges()) {
|
|
if ((S.LaneMask & Mask).none())
|
|
continue;
|
|
if (S.liveAt(UseIdx)) {
|
|
IsUndef = false;
|
|
break;
|
|
}
|
|
}
|
|
if (IsUndef) {
|
|
MO.setIsUndef(true);
|
|
// We found out some subregister use is actually reading an undefined
|
|
// value. In some cases the whole vreg has become undefined at this
|
|
// point so we have to potentially shrink the main range if the
|
|
// use was ending a live segment there.
|
|
LiveQueryResult Q = Int.Query(UseIdx);
|
|
if (Q.valueOut() == nullptr)
|
|
ShrinkMainRange = true;
|
|
}
|
|
}
|
|
|
|
void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg,
|
|
unsigned DstReg,
|
|
unsigned SubIdx) {
|
|
bool DstIsPhys = Register::isPhysicalRegister(DstReg);
|
|
LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg);
|
|
|
|
if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) {
|
|
for (MachineOperand &MO : MRI->reg_operands(DstReg)) {
|
|
unsigned SubReg = MO.getSubReg();
|
|
if (SubReg == 0 || MO.isUndef())
|
|
continue;
|
|
MachineInstr &MI = *MO.getParent();
|
|
if (MI.isDebugValue())
|
|
continue;
|
|
SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true);
|
|
addUndefFlag(*DstInt, UseIdx, MO, SubReg);
|
|
}
|
|
}
|
|
|
|
SmallPtrSet<MachineInstr*, 8> Visited;
|
|
for (MachineRegisterInfo::reg_instr_iterator
|
|
I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end();
|
|
I != E; ) {
|
|
MachineInstr *UseMI = &*(I++);
|
|
|
|
// Each instruction can only be rewritten once because sub-register
|
|
// composition is not always idempotent. When SrcReg != DstReg, rewriting
|
|
// the UseMI operands removes them from the SrcReg use-def chain, but when
|
|
// SrcReg is DstReg we could encounter UseMI twice if it has multiple
|
|
// operands mentioning the virtual register.
|
|
if (SrcReg == DstReg && !Visited.insert(UseMI).second)
|
|
continue;
|
|
|
|
SmallVector<unsigned,8> Ops;
|
|
bool Reads, Writes;
|
|
std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
|
|
|
|
// If SrcReg wasn't read, it may still be the case that DstReg is live-in
|
|
// because SrcReg is a sub-register.
|
|
if (DstInt && !Reads && SubIdx && !UseMI->isDebugValue())
|
|
Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI));
|
|
|
|
// Replace SrcReg with DstReg in all UseMI operands.
|
|
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
|
|
MachineOperand &MO = UseMI->getOperand(Ops[i]);
|
|
|
|
// Adjust <undef> flags in case of sub-register joins. We don't want to
|
|
// turn a full def into a read-modify-write sub-register def and vice
|
|
// versa.
|
|
if (SubIdx && MO.isDef())
|
|
MO.setIsUndef(!Reads);
|
|
|
|
// A subreg use of a partially undef (super) register may be a complete
|
|
// undef use now and then has to be marked that way.
|
|
if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) {
|
|
if (!DstInt->hasSubRanges()) {
|
|
BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
|
|
LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(DstInt->reg);
|
|
DstInt->createSubRangeFrom(Allocator, Mask, *DstInt);
|
|
}
|
|
SlotIndex MIIdx = UseMI->isDebugValue()
|
|
? LIS->getSlotIndexes()->getIndexBefore(*UseMI)
|
|
: LIS->getInstructionIndex(*UseMI);
|
|
SlotIndex UseIdx = MIIdx.getRegSlot(true);
|
|
addUndefFlag(*DstInt, UseIdx, MO, SubIdx);
|
|
}
|
|
|
|
if (DstIsPhys)
|
|
MO.substPhysReg(DstReg, *TRI);
|
|
else
|
|
MO.substVirtReg(DstReg, SubIdx, *TRI);
|
|
}
|
|
|
|
LLVM_DEBUG({
|
|
dbgs() << "\t\tupdated: ";
|
|
if (!UseMI->isDebugValue())
|
|
dbgs() << LIS->getInstructionIndex(*UseMI) << "\t";
|
|
dbgs() << *UseMI;
|
|
});
|
|
}
|
|
}
|
|
|
|
bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
|
|
// Always join simple intervals that are defined by a single copy from a
|
|
// reserved register. This doesn't increase register pressure, so it is
|
|
// always beneficial.
|
|
if (!MRI->isReserved(CP.getDstReg())) {
|
|
LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
|
|
return false;
|
|
}
|
|
|
|
LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
|
|
if (JoinVInt.containsOneValue())
|
|
return true;
|
|
|
|
LLVM_DEBUG(
|
|
dbgs() << "\tCannot join complex intervals into reserved register.\n");
|
|
return false;
|
|
}
|
|
|
|
bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
|
|
Again = false;
|
|
LLVM_DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI);
|
|
|
|
CoalescerPair CP(*TRI);
|
|
if (!CP.setRegisters(CopyMI)) {
|
|
LLVM_DEBUG(dbgs() << "\tNot coalescable.\n");
|
|
return false;
|
|
}
|
|
|
|
if (CP.getNewRC()) {
|
|
auto SrcRC = MRI->getRegClass(CP.getSrcReg());
|
|
auto DstRC = MRI->getRegClass(CP.getDstReg());
|
|
unsigned SrcIdx = CP.getSrcIdx();
|
|
unsigned DstIdx = CP.getDstIdx();
|
|
if (CP.isFlipped()) {
|
|
std::swap(SrcIdx, DstIdx);
|
|
std::swap(SrcRC, DstRC);
|
|
}
|
|
if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx,
|
|
CP.getNewRC(), *LIS)) {
|
|
LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Dead code elimination. This really should be handled by MachineDCE, but
|
|
// sometimes dead copies slip through, and we can't generate invalid live
|
|
// ranges.
|
|
if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
|
|
LLVM_DEBUG(dbgs() << "\tCopy is dead.\n");
|
|
DeadDefs.push_back(CopyMI);
|
|
eliminateDeadDefs();
|
|
return true;
|
|
}
|
|
|
|
// Eliminate undefs.
|
|
if (!CP.isPhys()) {
|
|
// If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce.
|
|
if (MachineInstr *UndefMI = eliminateUndefCopy(CopyMI)) {
|
|
if (UndefMI->isImplicitDef())
|
|
return false;
|
|
deleteInstr(CopyMI);
|
|
return false; // Not coalescable.
|
|
}
|
|
}
|
|
|
|
// Coalesced copies are normally removed immediately, but transformations
|
|
// like removeCopyByCommutingDef() can inadvertently create identity copies.
|
|
// When that happens, just join the values and remove the copy.
|
|
if (CP.getSrcReg() == CP.getDstReg()) {
|
|
LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
|
|
LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
|
|
const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
|
|
LiveQueryResult LRQ = LI.Query(CopyIdx);
|
|
if (VNInfo *DefVNI = LRQ.valueDefined()) {
|
|
VNInfo *ReadVNI = LRQ.valueIn();
|
|
assert(ReadVNI && "No value before copy and no <undef> flag.");
|
|
assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
|
|
LI.MergeValueNumberInto(DefVNI, ReadVNI);
|
|
|
|
// Process subregister liveranges.
|
|
for (LiveInterval::SubRange &S : LI.subranges()) {
|
|
LiveQueryResult SLRQ = S.Query(CopyIdx);
|
|
if (VNInfo *SDefVNI = SLRQ.valueDefined()) {
|
|
VNInfo *SReadVNI = SLRQ.valueIn();
|
|
S.MergeValueNumberInto(SDefVNI, SReadVNI);
|
|
}
|
|
}
|
|
LLVM_DEBUG(dbgs() << "\tMerged values: " << LI << '\n');
|
|
}
|
|
deleteInstr(CopyMI);
|
|
return true;
|
|
}
|
|
|
|
// Enforce policies.
|
|
if (CP.isPhys()) {
|
|
LLVM_DEBUG(dbgs() << "\tConsidering merging "
|
|
<< printReg(CP.getSrcReg(), TRI) << " with "
|
|
<< printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n');
|
|
if (!canJoinPhys(CP)) {
|
|
// Before giving up coalescing, if definition of source is defined by
|
|
// trivial computation, try rematerializing it.
|
|
bool IsDefCopy;
|
|
if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
|
|
return true;
|
|
if (IsDefCopy)
|
|
Again = true; // May be possible to coalesce later.
|
|
return false;
|
|
}
|
|
} else {
|
|
// When possible, let DstReg be the larger interval.
|
|
if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() >
|
|
LIS->getInterval(CP.getDstReg()).size())
|
|
CP.flip();
|
|
|
|
LLVM_DEBUG({
|
|
dbgs() << "\tConsidering merging to "
|
|
<< TRI->getRegClassName(CP.getNewRC()) << " with ";
|
|
if (CP.getDstIdx() && CP.getSrcIdx())
|
|
dbgs() << printReg(CP.getDstReg()) << " in "
|
|
<< TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
|
|
<< printReg(CP.getSrcReg()) << " in "
|
|
<< TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
|
|
else
|
|
dbgs() << printReg(CP.getSrcReg(), TRI) << " in "
|
|
<< printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
|
|
});
|
|
}
|
|
|
|
ShrinkMask = LaneBitmask::getNone();
|
|
ShrinkMainRange = false;
|
|
|
|
// Okay, attempt to join these two intervals. On failure, this returns false.
|
|
// Otherwise, if one of the intervals being joined is a physreg, this method
|
|
// always canonicalizes DstInt to be it. The output "SrcInt" will not have
|
|
// been modified, so we can use this information below to update aliases.
|
|
if (!joinIntervals(CP)) {
|
|
// Coalescing failed.
|
|
|
|
// If definition of source is defined by trivial computation, try
|
|
// rematerializing it.
|
|
bool IsDefCopy;
|
|
if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
|
|
return true;
|
|
|
|
// If we can eliminate the copy without merging the live segments, do so
|
|
// now.
|
|
if (!CP.isPartial() && !CP.isPhys()) {
|
|
bool Changed = adjustCopiesBackFrom(CP, CopyMI);
|
|
bool Shrink = false;
|
|
if (!Changed)
|
|
std::tie(Changed, Shrink) = removeCopyByCommutingDef(CP, CopyMI);
|
|
if (Changed) {
|
|
deleteInstr(CopyMI);
|
|
if (Shrink) {
|
|
unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
|
|
LiveInterval &DstLI = LIS->getInterval(DstReg);
|
|
shrinkToUses(&DstLI);
|
|
LLVM_DEBUG(dbgs() << "\t\tshrunk: " << DstLI << '\n');
|
|
}
|
|
LLVM_DEBUG(dbgs() << "\tTrivial!\n");
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Try and see if we can partially eliminate the copy by moving the copy to
|
|
// its predecessor.
|
|
if (!CP.isPartial() && !CP.isPhys())
|
|
if (removePartialRedundancy(CP, *CopyMI))
|
|
return true;
|
|
|
|
// Otherwise, we are unable to join the intervals.
|
|
LLVM_DEBUG(dbgs() << "\tInterference!\n");
|
|
Again = true; // May be possible to coalesce later.
|
|
return false;
|
|
}
|
|
|
|
// Coalescing to a virtual register that is of a sub-register class of the
|
|
// other. Make sure the resulting register is set to the right register class.
|
|
if (CP.isCrossClass()) {
|
|
++numCrossRCs;
|
|
MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
|
|
}
|
|
|
|
// Removing sub-register copies can ease the register class constraints.
|
|
// Make sure we attempt to inflate the register class of DstReg.
|
|
if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
|
|
InflateRegs.push_back(CP.getDstReg());
|
|
|
|
// CopyMI has been erased by joinIntervals at this point. Remove it from
|
|
// ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
|
|
// to the work list. This keeps ErasedInstrs from growing needlessly.
|
|
ErasedInstrs.erase(CopyMI);
|
|
|
|
// Rewrite all SrcReg operands to DstReg.
|
|
// Also update DstReg operands to include DstIdx if it is set.
|
|
if (CP.getDstIdx())
|
|
updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
|
|
updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
|
|
|
|
// Shrink subregister ranges if necessary.
|
|
if (ShrinkMask.any()) {
|
|
LiveInterval &LI = LIS->getInterval(CP.getDstReg());
|
|
for (LiveInterval::SubRange &S : LI.subranges()) {
|
|
if ((S.LaneMask & ShrinkMask).none())
|
|
continue;
|
|
LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask)
|
|
<< ")\n");
|
|
LIS->shrinkToUses(S, LI.reg);
|
|
}
|
|
LI.removeEmptySubRanges();
|
|
}
|
|
|
|
// CP.getSrcReg()'s live interval has been merged into CP.getDstReg's live
|
|
// interval. Since CP.getSrcReg() is in ToBeUpdated set and its live interval
|
|
// is not up-to-date, need to update the merged live interval here.
|
|
if (ToBeUpdated.count(CP.getSrcReg()))
|
|
ShrinkMainRange = true;
|
|
|
|
if (ShrinkMainRange) {
|
|
LiveInterval &LI = LIS->getInterval(CP.getDstReg());
|
|
shrinkToUses(&LI);
|
|
}
|
|
|
|
// SrcReg is guaranteed to be the register whose live interval that is
|
|
// being merged.
|
|
LIS->removeInterval(CP.getSrcReg());
|
|
|
|
// Update regalloc hint.
|
|
TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
|
|
|
|
LLVM_DEBUG({
|
|
dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx())
|
|
<< " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
|
|
dbgs() << "\tResult = ";
|
|
if (CP.isPhys())
|
|
dbgs() << printReg(CP.getDstReg(), TRI);
|
|
else
|
|
dbgs() << LIS->getInterval(CP.getDstReg());
|
|
dbgs() << '\n';
|
|
});
|
|
|
|
++numJoins;
|
|
return true;
|
|
}
|
|
|
|
bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
|
|
unsigned DstReg = CP.getDstReg();
|
|
unsigned SrcReg = CP.getSrcReg();
|
|
assert(CP.isPhys() && "Must be a physreg copy");
|
|
assert(MRI->isReserved(DstReg) && "Not a reserved register");
|
|
LiveInterval &RHS = LIS->getInterval(SrcReg);
|
|
LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n');
|
|
|
|
assert(RHS.containsOneValue() && "Invalid join with reserved register");
|
|
|
|
// Optimization for reserved registers like ESP. We can only merge with a
|
|
// reserved physreg if RHS has a single value that is a copy of DstReg.
|
|
// The live range of the reserved register will look like a set of dead defs
|
|
// - we don't properly track the live range of reserved registers.
|
|
|
|
// Deny any overlapping intervals. This depends on all the reserved
|
|
// register live ranges to look like dead defs.
|
|
if (!MRI->isConstantPhysReg(DstReg)) {
|
|
for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
|
|
// Abort if not all the regunits are reserved.
|
|
for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) {
|
|
if (!MRI->isReserved(*RI))
|
|
return false;
|
|
}
|
|
if (RHS.overlaps(LIS->getRegUnit(*UI))) {
|
|
LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI, TRI)
|
|
<< '\n');
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// We must also check for overlaps with regmask clobbers.
|
|
BitVector RegMaskUsable;
|
|
if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) &&
|
|
!RegMaskUsable.test(DstReg)) {
|
|
LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Skip any value computations, we are not adding new values to the
|
|
// reserved register. Also skip merging the live ranges, the reserved
|
|
// register live range doesn't need to be accurate as long as all the
|
|
// defs are there.
|
|
|
|
// Delete the identity copy.
|
|
MachineInstr *CopyMI;
|
|
if (CP.isFlipped()) {
|
|
// Physreg is copied into vreg
|
|
// %y = COPY %physreg_x
|
|
// ... //< no other def of %physreg_x here
|
|
// use %y
|
|
// =>
|
|
// ...
|
|
// use %physreg_x
|
|
CopyMI = MRI->getVRegDef(SrcReg);
|
|
} else {
|
|
// VReg is copied into physreg:
|
|
// %y = def
|
|
// ... //< no other def or use of %physreg_x here
|
|
// %physreg_x = COPY %y
|
|
// =>
|
|
// %physreg_x = def
|
|
// ...
|
|
if (!MRI->hasOneNonDBGUse(SrcReg)) {
|
|
LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n");
|
|
return false;
|
|
}
|
|
|
|
if (!LIS->intervalIsInOneMBB(RHS)) {
|
|
LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n");
|
|
return false;
|
|
}
|
|
|
|
MachineInstr &DestMI = *MRI->getVRegDef(SrcReg);
|
|
CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg);
|
|
SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
|
|
SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot();
|
|
|
|
if (!MRI->isConstantPhysReg(DstReg)) {
|
|
// We checked above that there are no interfering defs of the physical
|
|
// register. However, for this case, where we intend to move up the def of
|
|
// the physical register, we also need to check for interfering uses.
|
|
SlotIndexes *Indexes = LIS->getSlotIndexes();
|
|
for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx);
|
|
SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) {
|
|
MachineInstr *MI = LIS->getInstructionFromIndex(SI);
|
|
if (MI->readsRegister(DstReg, TRI)) {
|
|
LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// We're going to remove the copy which defines a physical reserved
|
|
// register, so remove its valno, etc.
|
|
LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of "
|
|
<< printReg(DstReg, TRI) << " at " << CopyRegIdx << "\n");
|
|
|
|
LIS->removePhysRegDefAt(DstReg, CopyRegIdx);
|
|
// Create a new dead def at the new def location.
|
|
for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
|
|
LiveRange &LR = LIS->getRegUnit(*UI);
|
|
LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator());
|
|
}
|
|
}
|
|
|
|
deleteInstr(CopyMI);
|
|
|
|
// We don't track kills for reserved registers.
|
|
MRI->clearKillFlags(CP.getSrcReg());
|
|
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Interference checking and interval joining
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// In the easiest case, the two live ranges being joined are disjoint, and
|
|
// there is no interference to consider. It is quite common, though, to have
|
|
// overlapping live ranges, and we need to check if the interference can be
|
|
// resolved.
|
|
//
|
|
// The live range of a single SSA value forms a sub-tree of the dominator tree.
|
|
// This means that two SSA values overlap if and only if the def of one value
|
|
// is contained in the live range of the other value. As a special case, the
|
|
// overlapping values can be defined at the same index.
|
|
//
|
|
// The interference from an overlapping def can be resolved in these cases:
|
|
//
|
|
// 1. Coalescable copies. The value is defined by a copy that would become an
|
|
// identity copy after joining SrcReg and DstReg. The copy instruction will
|
|
// be removed, and the value will be merged with the source value.
|
|
//
|
|
// There can be several copies back and forth, causing many values to be
|
|
// merged into one. We compute a list of ultimate values in the joined live
|
|
// range as well as a mappings from the old value numbers.
|
|
//
|
|
// 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
|
|
// predecessors have a live out value. It doesn't cause real interference,
|
|
// and can be merged into the value it overlaps. Like a coalescable copy, it
|
|
// can be erased after joining.
|
|
//
|
|
// 3. Copy of external value. The overlapping def may be a copy of a value that
|
|
// is already in the other register. This is like a coalescable copy, but
|
|
// the live range of the source register must be trimmed after erasing the
|
|
// copy instruction:
|
|
//
|
|
// %src = COPY %ext
|
|
// %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext.
|
|
//
|
|
// 4. Clobbering undefined lanes. Vector registers are sometimes built by
|
|
// defining one lane at a time:
|
|
//
|
|
// %dst:ssub0<def,read-undef> = FOO
|
|
// %src = BAR
|
|
// %dst:ssub1 = COPY %src
|
|
//
|
|
// The live range of %src overlaps the %dst value defined by FOO, but
|
|
// merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
|
|
// which was undef anyway.
|
|
//
|
|
// The value mapping is more complicated in this case. The final live range
|
|
// will have different value numbers for both FOO and BAR, but there is no
|
|
// simple mapping from old to new values. It may even be necessary to add
|
|
// new PHI values.
|
|
//
|
|
// 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
|
|
// is live, but never read. This can happen because we don't compute
|
|
// individual live ranges per lane.
|
|
//
|
|
// %dst = FOO
|
|
// %src = BAR
|
|
// %dst:ssub1 = COPY %src
|
|
//
|
|
// This kind of interference is only resolved locally. If the clobbered
|
|
// lane value escapes the block, the join is aborted.
|
|
|
|
namespace {
|
|
|
|
/// Track information about values in a single virtual register about to be
|
|
/// joined. Objects of this class are always created in pairs - one for each
|
|
/// side of the CoalescerPair (or one for each lane of a side of the coalescer
|
|
/// pair)
|
|
class JoinVals {
|
|
/// Live range we work on.
|
|
LiveRange &LR;
|
|
|
|
/// (Main) register we work on.
|
|
const unsigned Reg;
|
|
|
|
/// Reg (and therefore the values in this liverange) will end up as
|
|
/// subregister SubIdx in the coalesced register. Either CP.DstIdx or
|
|
/// CP.SrcIdx.
|
|
const unsigned SubIdx;
|
|
|
|
/// The LaneMask that this liverange will occupy the coalesced register. May
|
|
/// be smaller than the lanemask produced by SubIdx when merging subranges.
|
|
const LaneBitmask LaneMask;
|
|
|
|
/// This is true when joining sub register ranges, false when joining main
|
|
/// ranges.
|
|
const bool SubRangeJoin;
|
|
|
|
/// Whether the current LiveInterval tracks subregister liveness.
|
|
const bool TrackSubRegLiveness;
|
|
|
|
/// Values that will be present in the final live range.
|
|
SmallVectorImpl<VNInfo*> &NewVNInfo;
|
|
|
|
const CoalescerPair &CP;
|
|
LiveIntervals *LIS;
|
|
SlotIndexes *Indexes;
|
|
const TargetRegisterInfo *TRI;
|
|
|
|
/// Value number assignments. Maps value numbers in LI to entries in
|
|
/// NewVNInfo. This is suitable for passing to LiveInterval::join().
|
|
SmallVector<int, 8> Assignments;
|
|
|
|
/// Conflict resolution for overlapping values.
|
|
enum ConflictResolution {
|
|
/// No overlap, simply keep this value.
|
|
CR_Keep,
|
|
|
|
/// Merge this value into OtherVNI and erase the defining instruction.
|
|
/// Used for IMPLICIT_DEF, coalescable copies, and copies from external
|
|
/// values.
|
|
CR_Erase,
|
|
|
|
/// Merge this value into OtherVNI but keep the defining instruction.
|
|
/// This is for the special case where OtherVNI is defined by the same
|
|
/// instruction.
|
|
CR_Merge,
|
|
|
|
/// Keep this value, and have it replace OtherVNI where possible. This
|
|
/// complicates value mapping since OtherVNI maps to two different values
|
|
/// before and after this def.
|
|
/// Used when clobbering undefined or dead lanes.
|
|
CR_Replace,
|
|
|
|
/// Unresolved conflict. Visit later when all values have been mapped.
|
|
CR_Unresolved,
|
|
|
|
/// Unresolvable conflict. Abort the join.
|
|
CR_Impossible
|
|
};
|
|
|
|
/// Per-value info for LI. The lane bit masks are all relative to the final
|
|
/// joined register, so they can be compared directly between SrcReg and
|
|
/// DstReg.
|
|
struct Val {
|
|
ConflictResolution Resolution = CR_Keep;
|
|
|
|
/// Lanes written by this def, 0 for unanalyzed values.
|
|
LaneBitmask WriteLanes;
|
|
|
|
/// Lanes with defined values in this register. Other lanes are undef and
|
|
/// safe to clobber.
|
|
LaneBitmask ValidLanes;
|
|
|
|
/// Value in LI being redefined by this def.
|
|
VNInfo *RedefVNI = nullptr;
|
|
|
|
/// Value in the other live range that overlaps this def, if any.
|
|
VNInfo *OtherVNI = nullptr;
|
|
|
|
/// Is this value an IMPLICIT_DEF that can be erased?
|
|
///
|
|
/// IMPLICIT_DEF values should only exist at the end of a basic block that
|
|
/// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
|
|
/// safely erased if they are overlapping a live value in the other live
|
|
/// interval.
|
|
///
|
|
/// Weird control flow graphs and incomplete PHI handling in
|
|
/// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
|
|
/// longer live ranges. Such IMPLICIT_DEF values should be treated like
|
|
/// normal values.
|
|
bool ErasableImplicitDef = false;
|
|
|
|
/// True when the live range of this value will be pruned because of an
|
|
/// overlapping CR_Replace value in the other live range.
|
|
bool Pruned = false;
|
|
|
|
/// True once Pruned above has been computed.
|
|
bool PrunedComputed = false;
|
|
|
|
/// True if this value is determined to be identical to OtherVNI
|
|
/// (in valuesIdentical). This is used with CR_Erase where the erased
|
|
/// copy is redundant, i.e. the source value is already the same as
|
|
/// the destination. In such cases the subranges need to be updated
|
|
/// properly. See comment at pruneSubRegValues for more info.
|
|
bool Identical = false;
|
|
|
|
Val() = default;
|
|
|
|
bool isAnalyzed() const { return WriteLanes.any(); }
|
|
};
|
|
|
|
/// One entry per value number in LI.
|
|
SmallVector<Val, 8> Vals;
|
|
|
|
/// Compute the bitmask of lanes actually written by DefMI.
|
|
/// Set Redef if there are any partial register definitions that depend on the
|
|
/// previous value of the register.
|
|
LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const;
|
|
|
|
/// Find the ultimate value that VNI was copied from.
|
|
std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const;
|
|
|
|
bool valuesIdentical(VNInfo *Value0, VNInfo *Value1, const JoinVals &Other) const;
|
|
|
|
/// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
|
|
/// Return a conflict resolution when possible, but leave the hard cases as
|
|
/// CR_Unresolved.
|
|
/// Recursively calls computeAssignment() on this and Other, guaranteeing that
|
|
/// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
|
|
/// The recursion always goes upwards in the dominator tree, making loops
|
|
/// impossible.
|
|
ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
|
|
|
|
/// Compute the value assignment for ValNo in RI.
|
|
/// This may be called recursively by analyzeValue(), but never for a ValNo on
|
|
/// the stack.
|
|
void computeAssignment(unsigned ValNo, JoinVals &Other);
|
|
|
|
/// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute
|
|
/// the extent of the tainted lanes in the block.
|
|
///
|
|
/// Multiple values in Other.LR can be affected since partial redefinitions
|
|
/// can preserve previously tainted lanes.
|
|
///
|
|
/// 1 %dst = VLOAD <-- Define all lanes in %dst
|
|
/// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0
|
|
/// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0
|
|
/// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
|
|
///
|
|
/// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
|
|
/// entry to TaintedVals.
|
|
///
|
|
/// Returns false if the tainted lanes extend beyond the basic block.
|
|
bool
|
|
taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
|
|
SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent);
|
|
|
|
/// Return true if MI uses any of the given Lanes from Reg.
|
|
/// This does not include partial redefinitions of Reg.
|
|
bool usesLanes(const MachineInstr &MI, unsigned, unsigned, LaneBitmask) const;
|
|
|
|
/// Determine if ValNo is a copy of a value number in LR or Other.LR that will
|
|
/// be pruned:
|
|
///
|
|
/// %dst = COPY %src
|
|
/// %src = COPY %dst <-- This value to be pruned.
|
|
/// %dst = COPY %src <-- This value is a copy of a pruned value.
|
|
bool isPrunedValue(unsigned ValNo, JoinVals &Other);
|
|
|
|
public:
|
|
JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, LaneBitmask LaneMask,
|
|
SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp,
|
|
LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin,
|
|
bool TrackSubRegLiveness)
|
|
: LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask),
|
|
SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness),
|
|
NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()),
|
|
TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums()) {}
|
|
|
|
/// Analyze defs in LR and compute a value mapping in NewVNInfo.
|
|
/// Returns false if any conflicts were impossible to resolve.
|
|
bool mapValues(JoinVals &Other);
|
|
|
|
/// Try to resolve conflicts that require all values to be mapped.
|
|
/// Returns false if any conflicts were impossible to resolve.
|
|
bool resolveConflicts(JoinVals &Other);
|
|
|
|
/// Prune the live range of values in Other.LR where they would conflict with
|
|
/// CR_Replace values in LR. Collect end points for restoring the live range
|
|
/// after joining.
|
|
void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints,
|
|
bool changeInstrs);
|
|
|
|
/// Removes subranges starting at copies that get removed. This sometimes
|
|
/// happens when undefined subranges are copied around. These ranges contain
|
|
/// no useful information and can be removed.
|
|
void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask);
|
|
|
|
/// Pruning values in subranges can lead to removing segments in these
|
|
/// subranges started by IMPLICIT_DEFs. The corresponding segments in
|
|
/// the main range also need to be removed. This function will mark
|
|
/// the corresponding values in the main range as pruned, so that
|
|
/// eraseInstrs can do the final cleanup.
|
|
/// The parameter @p LI must be the interval whose main range is the
|
|
/// live range LR.
|
|
void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange);
|
|
|
|
/// Erase any machine instructions that have been coalesced away.
|
|
/// Add erased instructions to ErasedInstrs.
|
|
/// Add foreign virtual registers to ShrinkRegs if their live range ended at
|
|
/// the erased instrs.
|
|
void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
|
|
SmallVectorImpl<unsigned> &ShrinkRegs,
|
|
LiveInterval *LI = nullptr);
|
|
|
|
/// Remove liverange defs at places where implicit defs will be removed.
|
|
void removeImplicitDefs();
|
|
|
|
/// Get the value assignments suitable for passing to LiveInterval::join.
|
|
const int *getAssignments() const { return Assignments.data(); }
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef)
|
|
const {
|
|
LaneBitmask L;
|
|
for (const MachineOperand &MO : DefMI->operands()) {
|
|
if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef())
|
|
continue;
|
|
L |= TRI->getSubRegIndexLaneMask(
|
|
TRI->composeSubRegIndices(SubIdx, MO.getSubReg()));
|
|
if (MO.readsReg())
|
|
Redef = true;
|
|
}
|
|
return L;
|
|
}
|
|
|
|
std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain(
|
|
const VNInfo *VNI) const {
|
|
unsigned TrackReg = Reg;
|
|
|
|
while (!VNI->isPHIDef()) {
|
|
SlotIndex Def = VNI->def;
|
|
MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
|
|
assert(MI && "No defining instruction");
|
|
if (!MI->isFullCopy())
|
|
return std::make_pair(VNI, TrackReg);
|
|
unsigned SrcReg = MI->getOperand(1).getReg();
|
|
if (!Register::isVirtualRegister(SrcReg))
|
|
return std::make_pair(VNI, TrackReg);
|
|
|
|
const LiveInterval &LI = LIS->getInterval(SrcReg);
|
|
const VNInfo *ValueIn;
|
|
// No subrange involved.
|
|
if (!SubRangeJoin || !LI.hasSubRanges()) {
|
|
LiveQueryResult LRQ = LI.Query(Def);
|
|
ValueIn = LRQ.valueIn();
|
|
} else {
|
|
// Query subranges. Ensure that all matching ones take us to the same def
|
|
// (allowing some of them to be undef).
|
|
ValueIn = nullptr;
|
|
for (const LiveInterval::SubRange &S : LI.subranges()) {
|
|
// Transform lanemask to a mask in the joined live interval.
|
|
LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask);
|
|
if ((SMask & LaneMask).none())
|
|
continue;
|
|
LiveQueryResult LRQ = S.Query(Def);
|
|
if (!ValueIn) {
|
|
ValueIn = LRQ.valueIn();
|
|
continue;
|
|
}
|
|
if (LRQ.valueIn() && ValueIn != LRQ.valueIn())
|
|
return std::make_pair(VNI, TrackReg);
|
|
}
|
|
}
|
|
if (ValueIn == nullptr) {
|
|
// Reaching an undefined value is legitimate, for example:
|
|
//
|
|
// 1 undef %0.sub1 = ... ;; %0.sub0 == undef
|
|
// 2 %1 = COPY %0 ;; %1 is defined here.
|
|
// 3 %0 = COPY %1 ;; Now %0.sub0 has a definition,
|
|
// ;; but it's equivalent to "undef".
|
|
return std::make_pair(nullptr, SrcReg);
|
|
}
|
|
VNI = ValueIn;
|
|
TrackReg = SrcReg;
|
|
}
|
|
return std::make_pair(VNI, TrackReg);
|
|
}
|
|
|
|
bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1,
|
|
const JoinVals &Other) const {
|
|
const VNInfo *Orig0;
|
|
unsigned Reg0;
|
|
std::tie(Orig0, Reg0) = followCopyChain(Value0);
|
|
if (Orig0 == Value1 && Reg0 == Other.Reg)
|
|
return true;
|
|
|
|
const VNInfo *Orig1;
|
|
unsigned Reg1;
|
|
std::tie(Orig1, Reg1) = Other.followCopyChain(Value1);
|
|
// If both values are undefined, and the source registers are the same
|
|
// register, the values are identical. Filter out cases where only one
|
|
// value is defined.
|
|
if (Orig0 == nullptr || Orig1 == nullptr)
|
|
return Orig0 == Orig1 && Reg0 == Reg1;
|
|
|
|
// The values are equal if they are defined at the same place and use the
|
|
// same register. Note that we cannot compare VNInfos directly as some of
|
|
// them might be from a copy created in mergeSubRangeInto() while the other
|
|
// is from the original LiveInterval.
|
|
return Orig0->def == Orig1->def && Reg0 == Reg1;
|
|
}
|
|
|
|
JoinVals::ConflictResolution
|
|
JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
|
|
Val &V = Vals[ValNo];
|
|
assert(!V.isAnalyzed() && "Value has already been analyzed!");
|
|
VNInfo *VNI = LR.getValNumInfo(ValNo);
|
|
if (VNI->isUnused()) {
|
|
V.WriteLanes = LaneBitmask::getAll();
|
|
return CR_Keep;
|
|
}
|
|
|
|
// Get the instruction defining this value, compute the lanes written.
|
|
const MachineInstr *DefMI = nullptr;
|
|
if (VNI->isPHIDef()) {
|
|
// Conservatively assume that all lanes in a PHI are valid.
|
|
LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0)
|
|
: TRI->getSubRegIndexLaneMask(SubIdx);
|
|
V.ValidLanes = V.WriteLanes = Lanes;
|
|
} else {
|
|
DefMI = Indexes->getInstructionFromIndex(VNI->def);
|
|
assert(DefMI != nullptr);
|
|
if (SubRangeJoin) {
|
|
// We don't care about the lanes when joining subregister ranges.
|
|
V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0);
|
|
if (DefMI->isImplicitDef()) {
|
|
V.ValidLanes = LaneBitmask::getNone();
|
|
V.ErasableImplicitDef = true;
|
|
}
|
|
} else {
|
|
bool Redef = false;
|
|
V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
|
|
|
|
// If this is a read-modify-write instruction, there may be more valid
|
|
// lanes than the ones written by this instruction.
|
|
// This only covers partial redef operands. DefMI may have normal use
|
|
// operands reading the register. They don't contribute valid lanes.
|
|
//
|
|
// This adds ssub1 to the set of valid lanes in %src:
|
|
//
|
|
// %src:ssub1 = FOO
|
|
//
|
|
// This leaves only ssub1 valid, making any other lanes undef:
|
|
//
|
|
// %src:ssub1<def,read-undef> = FOO %src:ssub2
|
|
//
|
|
// The <read-undef> flag on the def operand means that old lane values are
|
|
// not important.
|
|
if (Redef) {
|
|
V.RedefVNI = LR.Query(VNI->def).valueIn();
|
|
assert((TrackSubRegLiveness || V.RedefVNI) &&
|
|
"Instruction is reading nonexistent value");
|
|
if (V.RedefVNI != nullptr) {
|
|
computeAssignment(V.RedefVNI->id, Other);
|
|
V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
|
|
}
|
|
}
|
|
|
|
// An IMPLICIT_DEF writes undef values.
|
|
if (DefMI->isImplicitDef()) {
|
|
// We normally expect IMPLICIT_DEF values to be live only until the end
|
|
// of their block. If the value is really live longer and gets pruned in
|
|
// another block, this flag is cleared again.
|
|
//
|
|
// Clearing the valid lanes is deferred until it is sure this can be
|
|
// erased.
|
|
V.ErasableImplicitDef = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Find the value in Other that overlaps VNI->def, if any.
|
|
LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def);
|
|
|
|
// It is possible that both values are defined by the same instruction, or
|
|
// the values are PHIs defined in the same block. When that happens, the two
|
|
// values should be merged into one, but not into any preceding value.
|
|
// The first value defined or visited gets CR_Keep, the other gets CR_Merge.
|
|
if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
|
|
assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
|
|
|
|
// One value stays, the other is merged. Keep the earlier one, or the first
|
|
// one we see.
|
|
if (OtherVNI->def < VNI->def)
|
|
Other.computeAssignment(OtherVNI->id, *this);
|
|
else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
|
|
// This is an early-clobber def overlapping a live-in value in the other
|
|
// register. Not mergeable.
|
|
V.OtherVNI = OtherLRQ.valueIn();
|
|
return CR_Impossible;
|
|
}
|
|
V.OtherVNI = OtherVNI;
|
|
Val &OtherV = Other.Vals[OtherVNI->id];
|
|
// Keep this value, check for conflicts when analyzing OtherVNI.
|
|
if (!OtherV.isAnalyzed())
|
|
return CR_Keep;
|
|
// Both sides have been analyzed now.
|
|
// Allow overlapping PHI values. Any real interference would show up in a
|
|
// predecessor, the PHI itself can't introduce any conflicts.
|
|
if (VNI->isPHIDef())
|
|
return CR_Merge;
|
|
if ((V.ValidLanes & OtherV.ValidLanes).any())
|
|
// Overlapping lanes can't be resolved.
|
|
return CR_Impossible;
|
|
else
|
|
return CR_Merge;
|
|
}
|
|
|
|
// No simultaneous def. Is Other live at the def?
|
|
V.OtherVNI = OtherLRQ.valueIn();
|
|
if (!V.OtherVNI)
|
|
// No overlap, no conflict.
|
|
return CR_Keep;
|
|
|
|
assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
|
|
|
|
// We have overlapping values, or possibly a kill of Other.
|
|
// Recursively compute assignments up the dominator tree.
|
|
Other.computeAssignment(V.OtherVNI->id, *this);
|
|
Val &OtherV = Other.Vals[V.OtherVNI->id];
|
|
|
|
if (OtherV.ErasableImplicitDef) {
|
|
// Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
|
|
// This shouldn't normally happen, but ProcessImplicitDefs can leave such
|
|
// IMPLICIT_DEF instructions behind, and there is nothing wrong with it
|
|
// technically.
|
|
//
|
|
// When it happens, treat that IMPLICIT_DEF as a normal value, and don't try
|
|
// to erase the IMPLICIT_DEF instruction.
|
|
if (DefMI &&
|
|
DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) {
|
|
LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
|
|
<< " extends into "
|
|
<< printMBBReference(*DefMI->getParent())
|
|
<< ", keeping it.\n");
|
|
OtherV.ErasableImplicitDef = false;
|
|
} else {
|
|
// We deferred clearing these lanes in case we needed to save them
|
|
OtherV.ValidLanes &= ~OtherV.WriteLanes;
|
|
}
|
|
}
|
|
|
|
// Allow overlapping PHI values. Any real interference would show up in a
|
|
// predecessor, the PHI itself can't introduce any conflicts.
|
|
if (VNI->isPHIDef())
|
|
return CR_Replace;
|
|
|
|
// Check for simple erasable conflicts.
|
|
if (DefMI->isImplicitDef()) {
|
|
// We need the def for the subregister if there is nothing else live at the
|
|
// subrange at this point.
|
|
if (TrackSubRegLiveness
|
|
&& (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)).none())
|
|
return CR_Replace;
|
|
return CR_Erase;
|
|
}
|
|
|
|
// Include the non-conflict where DefMI is a coalescable copy that kills
|
|
// OtherVNI. We still want the copy erased and value numbers merged.
|
|
if (CP.isCoalescable(DefMI)) {
|
|
// Some of the lanes copied from OtherVNI may be undef, making them undef
|
|
// here too.
|
|
V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
|
|
return CR_Erase;
|
|
}
|
|
|
|
// This may not be a real conflict if DefMI simply kills Other and defines
|
|
// VNI.
|
|
if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
|
|
return CR_Keep;
|
|
|
|
// Handle the case where VNI and OtherVNI can be proven to be identical:
|
|
//
|
|
// %other = COPY %ext
|
|
// %this = COPY %ext <-- Erase this copy
|
|
//
|
|
if (DefMI->isFullCopy() && !CP.isPartial() &&
|
|
valuesIdentical(VNI, V.OtherVNI, Other)) {
|
|
V.Identical = true;
|
|
return CR_Erase;
|
|
}
|
|
|
|
// The remaining checks apply to the lanes, which aren't tracked here. This
|
|
// was already decided to be OK via the following CR_Replace condition.
|
|
// CR_Replace.
|
|
if (SubRangeJoin)
|
|
return CR_Replace;
|
|
|
|
// If the lanes written by this instruction were all undef in OtherVNI, it is
|
|
// still safe to join the live ranges. This can't be done with a simple value
|
|
// mapping, though - OtherVNI will map to multiple values:
|
|
//
|
|
// 1 %dst:ssub0 = FOO <-- OtherVNI
|
|
// 2 %src = BAR <-- VNI
|
|
// 3 %dst:ssub1 = COPY killed %src <-- Eliminate this copy.
|
|
// 4 BAZ killed %dst
|
|
// 5 QUUX killed %src
|
|
//
|
|
// Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
|
|
// handles this complex value mapping.
|
|
if ((V.WriteLanes & OtherV.ValidLanes).none())
|
|
return CR_Replace;
|
|
|
|
// If the other live range is killed by DefMI and the live ranges are still
|
|
// overlapping, it must be because we're looking at an early clobber def:
|
|
//
|
|
// %dst<def,early-clobber> = ASM killed %src
|
|
//
|
|
// In this case, it is illegal to merge the two live ranges since the early
|
|
// clobber def would clobber %src before it was read.
|
|
if (OtherLRQ.isKill()) {
|
|
// This case where the def doesn't overlap the kill is handled above.
|
|
assert(VNI->def.isEarlyClobber() &&
|
|
"Only early clobber defs can overlap a kill");
|
|
return CR_Impossible;
|
|
}
|
|
|
|
// VNI is clobbering live lanes in OtherVNI, but there is still the
|
|
// possibility that no instructions actually read the clobbered lanes.
|
|
// If we're clobbering all the lanes in OtherVNI, at least one must be read.
|
|
// Otherwise Other.RI wouldn't be live here.
|
|
if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none())
|
|
return CR_Impossible;
|
|
|
|
// We need to verify that no instructions are reading the clobbered lanes. To
|
|
// save compile time, we'll only check that locally. Don't allow the tainted
|
|
// value to escape the basic block.
|
|
MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
|
|
if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
|
|
return CR_Impossible;
|
|
|
|
// There are still some things that could go wrong besides clobbered lanes
|
|
// being read, for example OtherVNI may be only partially redefined in MBB,
|
|
// and some clobbered lanes could escape the block. Save this analysis for
|
|
// resolveConflicts() when all values have been mapped. We need to know
|
|
// RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
|
|
// that now - the recursive analyzeValue() calls must go upwards in the
|
|
// dominator tree.
|
|
return CR_Unresolved;
|
|
}
|
|
|
|
void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
|
|
Val &V = Vals[ValNo];
|
|
if (V.isAnalyzed()) {
|
|
// Recursion should always move up the dominator tree, so ValNo is not
|
|
// supposed to reappear before it has been assigned.
|
|
assert(Assignments[ValNo] != -1 && "Bad recursion?");
|
|
return;
|
|
}
|
|
switch ((V.Resolution = analyzeValue(ValNo, Other))) {
|
|
case CR_Erase:
|
|
case CR_Merge:
|
|
// Merge this ValNo into OtherVNI.
|
|
assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
|
|
assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
|
|
Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
|
|
LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@'
|
|
<< LR.getValNumInfo(ValNo)->def << " into "
|
|
<< printReg(Other.Reg) << ':' << V.OtherVNI->id << '@'
|
|
<< V.OtherVNI->def << " --> @"
|
|
<< NewVNInfo[Assignments[ValNo]]->def << '\n');
|
|
break;
|
|
case CR_Replace:
|
|
case CR_Unresolved: {
|
|
// The other value is going to be pruned if this join is successful.
|
|
assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
|
|
Val &OtherV = Other.Vals[V.OtherVNI->id];
|
|
// We cannot erase an IMPLICIT_DEF if we don't have valid values for all
|
|
// its lanes.
|
|
if (OtherV.ErasableImplicitDef &&
|
|
TrackSubRegLiveness &&
|
|
(OtherV.WriteLanes & ~V.ValidLanes).any()) {
|
|
LLVM_DEBUG(dbgs() << "Cannot erase implicit_def with missing values\n");
|
|
|
|
OtherV.ErasableImplicitDef = false;
|
|
// The valid lanes written by the implicit_def were speculatively cleared
|
|
// before, so make this more conservative. It may be better to track this,
|
|
// I haven't found a testcase where it matters.
|
|
OtherV.ValidLanes = LaneBitmask::getAll();
|
|
}
|
|
|
|
OtherV.Pruned = true;
|
|
LLVM_FALLTHROUGH;
|
|
}
|
|
default:
|
|
// This value number needs to go in the final joined live range.
|
|
Assignments[ValNo] = NewVNInfo.size();
|
|
NewVNInfo.push_back(LR.getValNumInfo(ValNo));
|
|
break;
|
|
}
|
|
}
|
|
|
|
bool JoinVals::mapValues(JoinVals &Other) {
|
|
for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
|
|
computeAssignment(i, Other);
|
|
if (Vals[i].Resolution == CR_Impossible) {
|
|
LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << i
|
|
<< '@' << LR.getValNumInfo(i)->def << '\n');
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool JoinVals::
|
|
taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
|
|
SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) {
|
|
VNInfo *VNI = LR.getValNumInfo(ValNo);
|
|
MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
|
|
SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
|
|
|
|
// Scan Other.LR from VNI.def to MBBEnd.
|
|
LiveInterval::iterator OtherI = Other.LR.find(VNI->def);
|
|
assert(OtherI != Other.LR.end() && "No conflict?");
|
|
do {
|
|
// OtherI is pointing to a tainted value. Abort the join if the tainted
|
|
// lanes escape the block.
|
|
SlotIndex End = OtherI->end;
|
|
if (End >= MBBEnd) {
|
|
LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':'
|
|
<< OtherI->valno->id << '@' << OtherI->start << '\n');
|
|
return false;
|
|
}
|
|
LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':'
|
|
<< OtherI->valno->id << '@' << OtherI->start << " to "
|
|
<< End << '\n');
|
|
// A dead def is not a problem.
|
|
if (End.isDead())
|
|
break;
|
|
TaintExtent.push_back(std::make_pair(End, TaintedLanes));
|
|
|
|
// Check for another def in the MBB.
|
|
if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd)
|
|
break;
|
|
|
|
// Lanes written by the new def are no longer tainted.
|
|
const Val &OV = Other.Vals[OtherI->valno->id];
|
|
TaintedLanes &= ~OV.WriteLanes;
|
|
if (!OV.RedefVNI)
|
|
break;
|
|
} while (TaintedLanes.any());
|
|
return true;
|
|
}
|
|
|
|
bool JoinVals::usesLanes(const MachineInstr &MI, unsigned Reg, unsigned SubIdx,
|
|
LaneBitmask Lanes) const {
|
|
if (MI.isDebugInstr())
|
|
return false;
|
|
for (const MachineOperand &MO : MI.operands()) {
|
|
if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg)
|
|
continue;
|
|
if (!MO.readsReg())
|
|
continue;
|
|
unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg());
|
|
if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any())
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool JoinVals::resolveConflicts(JoinVals &Other) {
|
|
for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
|
|
Val &V = Vals[i];
|
|
assert(V.Resolution != CR_Impossible && "Unresolvable conflict");
|
|
if (V.Resolution != CR_Unresolved)
|
|
continue;
|
|
LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << i << '@'
|
|
<< LR.getValNumInfo(i)->def << '\n');
|
|
if (SubRangeJoin)
|
|
return false;
|
|
|
|
++NumLaneConflicts;
|
|
assert(V.OtherVNI && "Inconsistent conflict resolution.");
|
|
VNInfo *VNI = LR.getValNumInfo(i);
|
|
const Val &OtherV = Other.Vals[V.OtherVNI->id];
|
|
|
|
// VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
|
|
// join, those lanes will be tainted with a wrong value. Get the extent of
|
|
// the tainted lanes.
|
|
LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
|
|
SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent;
|
|
if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
|
|
// Tainted lanes would extend beyond the basic block.
|
|
return false;
|
|
|
|
assert(!TaintExtent.empty() && "There should be at least one conflict.");
|
|
|
|
// Now look at the instructions from VNI->def to TaintExtent (inclusive).
|
|
MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
|
|
MachineBasicBlock::iterator MI = MBB->begin();
|
|
if (!VNI->isPHIDef()) {
|
|
MI = Indexes->getInstructionFromIndex(VNI->def);
|
|
// No need to check the instruction defining VNI for reads.
|
|
++MI;
|
|
}
|
|
assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
|
|
"Interference ends on VNI->def. Should have been handled earlier");
|
|
MachineInstr *LastMI =
|
|
Indexes->getInstructionFromIndex(TaintExtent.front().first);
|
|
assert(LastMI && "Range must end at a proper instruction");
|
|
unsigned TaintNum = 0;
|
|
while (true) {
|
|
assert(MI != MBB->end() && "Bad LastMI");
|
|
if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) {
|
|
LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
|
|
return false;
|
|
}
|
|
// LastMI is the last instruction to use the current value.
|
|
if (&*MI == LastMI) {
|
|
if (++TaintNum == TaintExtent.size())
|
|
break;
|
|
LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
|
|
assert(LastMI && "Range must end at a proper instruction");
|
|
TaintedLanes = TaintExtent[TaintNum].second;
|
|
}
|
|
++MI;
|
|
}
|
|
|
|
// The tainted lanes are unused.
|
|
V.Resolution = CR_Replace;
|
|
++NumLaneResolves;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
|
|
Val &V = Vals[ValNo];
|
|
if (V.Pruned || V.PrunedComputed)
|
|
return V.Pruned;
|
|
|
|
if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
|
|
return V.Pruned;
|
|
|
|
// Follow copies up the dominator tree and check if any intermediate value
|
|
// has been pruned.
|
|
V.PrunedComputed = true;
|
|
V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
|
|
return V.Pruned;
|
|
}
|
|
|
|
void JoinVals::pruneValues(JoinVals &Other,
|
|
SmallVectorImpl<SlotIndex> &EndPoints,
|
|
bool changeInstrs) {
|
|
for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
|
|
SlotIndex Def = LR.getValNumInfo(i)->def;
|
|
switch (Vals[i].Resolution) {
|
|
case CR_Keep:
|
|
break;
|
|
case CR_Replace: {
|
|
// This value takes precedence over the value in Other.LR.
|
|
LIS->pruneValue(Other.LR, Def, &EndPoints);
|
|
// Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
|
|
// instructions are only inserted to provide a live-out value for PHI
|
|
// predecessors, so the instruction should simply go away once its value
|
|
// has been replaced.
|
|
Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
|
|
bool EraseImpDef = OtherV.ErasableImplicitDef &&
|
|
OtherV.Resolution == CR_Keep;
|
|
if (!Def.isBlock()) {
|
|
if (changeInstrs) {
|
|
// Remove <def,read-undef> flags. This def is now a partial redef.
|
|
// Also remove dead flags since the joined live range will
|
|
// continue past this instruction.
|
|
for (MachineOperand &MO :
|
|
Indexes->getInstructionFromIndex(Def)->operands()) {
|
|
if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) {
|
|
if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef)
|
|
MO.setIsUndef(false);
|
|
MO.setIsDead(false);
|
|
}
|
|
}
|
|
}
|
|
// This value will reach instructions below, but we need to make sure
|
|
// the live range also reaches the instruction at Def.
|
|
if (!EraseImpDef)
|
|
EndPoints.push_back(Def);
|
|
}
|
|
LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Def
|
|
<< ": " << Other.LR << '\n');
|
|
break;
|
|
}
|
|
case CR_Erase:
|
|
case CR_Merge:
|
|
if (isPrunedValue(i, Other)) {
|
|
// This value is ultimately a copy of a pruned value in LR or Other.LR.
|
|
// We can no longer trust the value mapping computed by
|
|
// computeAssignment(), the value that was originally copied could have
|
|
// been replaced.
|
|
LIS->pruneValue(LR, Def, &EndPoints);
|
|
LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at "
|
|
<< Def << ": " << LR << '\n');
|
|
}
|
|
break;
|
|
case CR_Unresolved:
|
|
case CR_Impossible:
|
|
llvm_unreachable("Unresolved conflicts");
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Consider the following situation when coalescing the copy between
|
|
/// %31 and %45 at 800. (The vertical lines represent live range segments.)
|
|
///
|
|
/// Main range Subrange 0004 (sub2)
|
|
/// %31 %45 %31 %45
|
|
/// 544 %45 = COPY %28 + +
|
|
/// | v1 | v1
|
|
/// 560B bb.1: + +
|
|
/// 624 = %45.sub2 | v2 | v2
|
|
/// 800 %31 = COPY %45 + + + +
|
|
/// | v0 | v0
|
|
/// 816 %31.sub1 = ... + |
|
|
/// 880 %30 = COPY %31 | v1 +
|
|
/// 928 %45 = COPY %30 | + +
|
|
/// | | v0 | v0 <--+
|
|
/// 992B ; backedge -> bb.1 | + + |
|
|
/// 1040 = %31.sub0 + |
|
|
/// This value must remain
|
|
/// live-out!
|
|
///
|
|
/// Assuming that %31 is coalesced into %45, the copy at 928 becomes
|
|
/// redundant, since it copies the value from %45 back into it. The
|
|
/// conflict resolution for the main range determines that %45.v0 is
|
|
/// to be erased, which is ok since %31.v1 is identical to it.
|
|
/// The problem happens with the subrange for sub2: it has to be live
|
|
/// on exit from the block, but since 928 was actually a point of
|
|
/// definition of %45.sub2, %45.sub2 was not live immediately prior
|
|
/// to that definition. As a result, when 928 was erased, the value v0
|
|
/// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an
|
|
/// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2,
|
|
/// providing an incorrect value to the use at 624.
|
|
///
|
|
/// Since the main-range values %31.v1 and %45.v0 were proved to be
|
|
/// identical, the corresponding values in subranges must also be the
|
|
/// same. A redundant copy is removed because it's not needed, and not
|
|
/// because it copied an undefined value, so any liveness that originated
|
|
/// from that copy cannot disappear. When pruning a value that started
|
|
/// at the removed copy, the corresponding identical value must be
|
|
/// extended to replace it.
|
|
void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) {
|
|
// Look for values being erased.
|
|
bool DidPrune = false;
|
|
for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
|
|
Val &V = Vals[i];
|
|
// We should trigger in all cases in which eraseInstrs() does something.
|
|
// match what eraseInstrs() is doing, print a message so
|
|
if (V.Resolution != CR_Erase &&
|
|
(V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned))
|
|
continue;
|
|
|
|
// Check subranges at the point where the copy will be removed.
|
|
SlotIndex Def = LR.getValNumInfo(i)->def;
|
|
SlotIndex OtherDef;
|
|
if (V.Identical)
|
|
OtherDef = V.OtherVNI->def;
|
|
|
|
// Print message so mismatches with eraseInstrs() can be diagnosed.
|
|
LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def
|
|
<< '\n');
|
|
for (LiveInterval::SubRange &S : LI.subranges()) {
|
|
LiveQueryResult Q = S.Query(Def);
|
|
|
|
// If a subrange starts at the copy then an undefined value has been
|
|
// copied and we must remove that subrange value as well.
|
|
VNInfo *ValueOut = Q.valueOutOrDead();
|
|
if (ValueOut != nullptr && (Q.valueIn() == nullptr ||
|
|
(V.Identical && V.Resolution == CR_Erase &&
|
|
ValueOut->def == Def))) {
|
|
LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask)
|
|
<< " at " << Def << "\n");
|
|
SmallVector<SlotIndex,8> EndPoints;
|
|
LIS->pruneValue(S, Def, &EndPoints);
|
|
DidPrune = true;
|
|
// Mark value number as unused.
|
|
ValueOut->markUnused();
|
|
|
|
if (V.Identical && S.Query(OtherDef).valueOutOrDead()) {
|
|
// If V is identical to V.OtherVNI (and S was live at OtherDef),
|
|
// then we can't simply prune V from S. V needs to be replaced
|
|
// with V.OtherVNI.
|
|
LIS->extendToIndices(S, EndPoints);
|
|
}
|
|
continue;
|
|
}
|
|
// If a subrange ends at the copy, then a value was copied but only
|
|
// partially used later. Shrink the subregister range appropriately.
|
|
if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) {
|
|
LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane "
|
|
<< PrintLaneMask(S.LaneMask) << " at " << Def
|
|
<< "\n");
|
|
ShrinkMask |= S.LaneMask;
|
|
}
|
|
}
|
|
}
|
|
if (DidPrune)
|
|
LI.removeEmptySubRanges();
|
|
}
|
|
|
|
/// Check if any of the subranges of @p LI contain a definition at @p Def.
|
|
static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) {
|
|
for (LiveInterval::SubRange &SR : LI.subranges()) {
|
|
if (VNInfo *VNI = SR.Query(Def).valueOutOrDead())
|
|
if (VNI->def == Def)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) {
|
|
assert(&static_cast<LiveRange&>(LI) == &LR);
|
|
|
|
for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
|
|
if (Vals[i].Resolution != CR_Keep)
|
|
continue;
|
|
VNInfo *VNI = LR.getValNumInfo(i);
|
|
if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def))
|
|
continue;
|
|
Vals[i].Pruned = true;
|
|
ShrinkMainRange = true;
|
|
}
|
|
}
|
|
|
|
void JoinVals::removeImplicitDefs() {
|
|
for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
|
|
Val &V = Vals[i];
|
|
if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)
|
|
continue;
|
|
|
|
VNInfo *VNI = LR.getValNumInfo(i);
|
|
VNI->markUnused();
|
|
LR.removeValNo(VNI);
|
|
}
|
|
}
|
|
|
|
void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
|
|
SmallVectorImpl<unsigned> &ShrinkRegs,
|
|
LiveInterval *LI) {
|
|
for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
|
|
// Get the def location before markUnused() below invalidates it.
|
|
SlotIndex Def = LR.getValNumInfo(i)->def;
|
|
switch (Vals[i].Resolution) {
|
|
case CR_Keep: {
|
|
// If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
|
|
// longer. The IMPLICIT_DEF instructions are only inserted by
|
|
// PHIElimination to guarantee that all PHI predecessors have a value.
|
|
if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
|
|
break;
|
|
// Remove value number i from LR.
|
|
// For intervals with subranges, removing a segment from the main range
|
|
// may require extending the previous segment: for each definition of
|
|
// a subregister, there will be a corresponding def in the main range.
|
|
// That def may fall in the middle of a segment from another subrange.
|
|
// In such cases, removing this def from the main range must be
|
|
// complemented by extending the main range to account for the liveness
|
|
// of the other subrange.
|
|
VNInfo *VNI = LR.getValNumInfo(i);
|
|
SlotIndex Def = VNI->def;
|
|
// The new end point of the main range segment to be extended.
|
|
SlotIndex NewEnd;
|
|
if (LI != nullptr) {
|
|
LiveRange::iterator I = LR.FindSegmentContaining(Def);
|
|
assert(I != LR.end());
|
|
// Do not extend beyond the end of the segment being removed.
|
|
// The segment may have been pruned in preparation for joining
|
|
// live ranges.
|
|
NewEnd = I->end;
|
|
}
|
|
|
|
LR.removeValNo(VNI);
|
|
// Note that this VNInfo is reused and still referenced in NewVNInfo,
|
|
// make it appear like an unused value number.
|
|
VNI->markUnused();
|
|
|
|
if (LI != nullptr && LI->hasSubRanges()) {
|
|
assert(static_cast<LiveRange*>(LI) == &LR);
|
|
// Determine the end point based on the subrange information:
|
|
// minimum of (earliest def of next segment,
|
|
// latest end point of containing segment)
|
|
SlotIndex ED, LE;
|
|
for (LiveInterval::SubRange &SR : LI->subranges()) {
|
|
LiveRange::iterator I = SR.find(Def);
|
|
if (I == SR.end())
|
|
continue;
|
|
if (I->start > Def)
|
|
ED = ED.isValid() ? std::min(ED, I->start) : I->start;
|
|
else
|
|
LE = LE.isValid() ? std::max(LE, I->end) : I->end;
|
|
}
|
|
if (LE.isValid())
|
|
NewEnd = std::min(NewEnd, LE);
|
|
if (ED.isValid())
|
|
NewEnd = std::min(NewEnd, ED);
|
|
|
|
// We only want to do the extension if there was a subrange that
|
|
// was live across Def.
|
|
if (LE.isValid()) {
|
|
LiveRange::iterator S = LR.find(Def);
|
|
if (S != LR.begin())
|
|
std::prev(S)->end = NewEnd;
|
|
}
|
|
}
|
|
LLVM_DEBUG({
|
|
dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n';
|
|
if (LI != nullptr)
|
|
dbgs() << "\t\t LHS = " << *LI << '\n';
|
|
});
|
|
LLVM_FALLTHROUGH;
|
|
}
|
|
|
|
case CR_Erase: {
|
|
MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
|
|
assert(MI && "No instruction to erase");
|
|
if (MI->isCopy()) {
|
|
unsigned Reg = MI->getOperand(1).getReg();
|
|
if (Register::isVirtualRegister(Reg) && Reg != CP.getSrcReg() &&
|
|
Reg != CP.getDstReg())
|
|
ShrinkRegs.push_back(Reg);
|
|
}
|
|
ErasedInstrs.insert(MI);
|
|
LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
|
|
LIS->RemoveMachineInstrFromMaps(*MI);
|
|
MI->eraseFromParent();
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
|
|
LaneBitmask LaneMask,
|
|
const CoalescerPair &CP) {
|
|
SmallVector<VNInfo*, 16> NewVNInfo;
|
|
JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask,
|
|
NewVNInfo, CP, LIS, TRI, true, true);
|
|
JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask,
|
|
NewVNInfo, CP, LIS, TRI, true, true);
|
|
|
|
// Compute NewVNInfo and resolve conflicts (see also joinVirtRegs())
|
|
// We should be able to resolve all conflicts here as we could successfully do
|
|
// it on the mainrange already. There is however a problem when multiple
|
|
// ranges get mapped to the "overflow" lane mask bit which creates unexpected
|
|
// interferences.
|
|
if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) {
|
|
// We already determined that it is legal to merge the intervals, so this
|
|
// should never fail.
|
|
llvm_unreachable("*** Couldn't join subrange!\n");
|
|
}
|
|
if (!LHSVals.resolveConflicts(RHSVals) ||
|
|
!RHSVals.resolveConflicts(LHSVals)) {
|
|
// We already determined that it is legal to merge the intervals, so this
|
|
// should never fail.
|
|
llvm_unreachable("*** Couldn't join subrange!\n");
|
|
}
|
|
|
|
// The merging algorithm in LiveInterval::join() can't handle conflicting
|
|
// value mappings, so we need to remove any live ranges that overlap a
|
|
// CR_Replace resolution. Collect a set of end points that can be used to
|
|
// restore the live range after joining.
|
|
SmallVector<SlotIndex, 8> EndPoints;
|
|
LHSVals.pruneValues(RHSVals, EndPoints, false);
|
|
RHSVals.pruneValues(LHSVals, EndPoints, false);
|
|
|
|
LHSVals.removeImplicitDefs();
|
|
RHSVals.removeImplicitDefs();
|
|
|
|
LRange.verify();
|
|
RRange.verify();
|
|
|
|
// Join RRange into LHS.
|
|
LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(),
|
|
NewVNInfo);
|
|
|
|
LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask)
|
|
<< ' ' << LRange << "\n");
|
|
if (EndPoints.empty())
|
|
return;
|
|
|
|
// Recompute the parts of the live range we had to remove because of
|
|
// CR_Replace conflicts.
|
|
LLVM_DEBUG({
|
|
dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
|
|
for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
|
|
dbgs() << EndPoints[i];
|
|
if (i != n-1)
|
|
dbgs() << ',';
|
|
}
|
|
dbgs() << ": " << LRange << '\n';
|
|
});
|
|
LIS->extendToIndices(LRange, EndPoints);
|
|
}
|
|
|
|
void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI,
|
|
const LiveRange &ToMerge,
|
|
LaneBitmask LaneMask,
|
|
CoalescerPair &CP) {
|
|
BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
|
|
LI.refineSubRanges(
|
|
Allocator, LaneMask,
|
|
[this, &Allocator, &ToMerge, &CP](LiveInterval::SubRange &SR) {
|
|
if (SR.empty()) {
|
|
SR.assign(ToMerge, Allocator);
|
|
} else {
|
|
// joinSubRegRange() destroys the merged range, so we need a copy.
|
|
LiveRange RangeCopy(ToMerge, Allocator);
|
|
joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP);
|
|
}
|
|
},
|
|
*LIS->getSlotIndexes(), *TRI);
|
|
}
|
|
|
|
bool RegisterCoalescer::isHighCostLiveInterval(LiveInterval &LI) {
|
|
if (LI.valnos.size() < LargeIntervalSizeThreshold)
|
|
return false;
|
|
auto &Counter = LargeLIVisitCounter[LI.reg];
|
|
if (Counter < LargeIntervalFreqThreshold) {
|
|
Counter++;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
|
|
SmallVector<VNInfo*, 16> NewVNInfo;
|
|
LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
|
|
LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
|
|
bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC());
|
|
JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(),
|
|
NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
|
|
JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(),
|
|
NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
|
|
|
|
LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << "\n\t\tLHS = " << LHS << '\n');
|
|
|
|
if (isHighCostLiveInterval(LHS) || isHighCostLiveInterval(RHS))
|
|
return false;
|
|
|
|
// First compute NewVNInfo and the simple value mappings.
|
|
// Detect impossible conflicts early.
|
|
if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
|
|
return false;
|
|
|
|
// Some conflicts can only be resolved after all values have been mapped.
|
|
if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
|
|
return false;
|
|
|
|
// All clear, the live ranges can be merged.
|
|
if (RHS.hasSubRanges() || LHS.hasSubRanges()) {
|
|
BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
|
|
|
|
// Transform lanemasks from the LHS to masks in the coalesced register and
|
|
// create initial subranges if necessary.
|
|
unsigned DstIdx = CP.getDstIdx();
|
|
if (!LHS.hasSubRanges()) {
|
|
LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask()
|
|
: TRI->getSubRegIndexLaneMask(DstIdx);
|
|
// LHS must support subregs or we wouldn't be in this codepath.
|
|
assert(Mask.any());
|
|
LHS.createSubRangeFrom(Allocator, Mask, LHS);
|
|
} else if (DstIdx != 0) {
|
|
// Transform LHS lanemasks to new register class if necessary.
|
|
for (LiveInterval::SubRange &R : LHS.subranges()) {
|
|
LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask);
|
|
R.LaneMask = Mask;
|
|
}
|
|
}
|
|
LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg()) << ' ' << LHS
|
|
<< '\n');
|
|
|
|
// Determine lanemasks of RHS in the coalesced register and merge subranges.
|
|
unsigned SrcIdx = CP.getSrcIdx();
|
|
if (!RHS.hasSubRanges()) {
|
|
LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask()
|
|
: TRI->getSubRegIndexLaneMask(SrcIdx);
|
|
mergeSubRangeInto(LHS, RHS, Mask, CP);
|
|
} else {
|
|
// Pair up subranges and merge.
|
|
for (LiveInterval::SubRange &R : RHS.subranges()) {
|
|
LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask);
|
|
mergeSubRangeInto(LHS, R, Mask, CP);
|
|
}
|
|
}
|
|
LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n");
|
|
|
|
// Pruning implicit defs from subranges may result in the main range
|
|
// having stale segments.
|
|
LHSVals.pruneMainSegments(LHS, ShrinkMainRange);
|
|
|
|
LHSVals.pruneSubRegValues(LHS, ShrinkMask);
|
|
RHSVals.pruneSubRegValues(LHS, ShrinkMask);
|
|
}
|
|
|
|
// The merging algorithm in LiveInterval::join() can't handle conflicting
|
|
// value mappings, so we need to remove any live ranges that overlap a
|
|
// CR_Replace resolution. Collect a set of end points that can be used to
|
|
// restore the live range after joining.
|
|
SmallVector<SlotIndex, 8> EndPoints;
|
|
LHSVals.pruneValues(RHSVals, EndPoints, true);
|
|
RHSVals.pruneValues(LHSVals, EndPoints, true);
|
|
|
|
// Erase COPY and IMPLICIT_DEF instructions. This may cause some external
|
|
// registers to require trimming.
|
|
SmallVector<unsigned, 8> ShrinkRegs;
|
|
LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS);
|
|
RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
|
|
while (!ShrinkRegs.empty())
|
|
shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
|
|
|
|
// Join RHS into LHS.
|
|
LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo);
|
|
|
|
// Kill flags are going to be wrong if the live ranges were overlapping.
|
|
// Eventually, we should simply clear all kill flags when computing live
|
|
// ranges. They are reinserted after register allocation.
|
|
MRI->clearKillFlags(LHS.reg);
|
|
MRI->clearKillFlags(RHS.reg);
|
|
|
|
if (!EndPoints.empty()) {
|
|
// Recompute the parts of the live range we had to remove because of
|
|
// CR_Replace conflicts.
|
|
LLVM_DEBUG({
|
|
dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
|
|
for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
|
|
dbgs() << EndPoints[i];
|
|
if (i != n-1)
|
|
dbgs() << ',';
|
|
}
|
|
dbgs() << ": " << LHS << '\n';
|
|
});
|
|
LIS->extendToIndices((LiveRange&)LHS, EndPoints);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
|
|
return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Information concerning MBB coalescing priority.
|
|
struct MBBPriorityInfo {
|
|
MachineBasicBlock *MBB;
|
|
unsigned Depth;
|
|
bool IsSplit;
|
|
|
|
MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
|
|
: MBB(mbb), Depth(depth), IsSplit(issplit) {}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// C-style comparator that sorts first based on the loop depth of the basic
|
|
/// block (the unsigned), and then on the MBB number.
|
|
///
|
|
/// EnableGlobalCopies assumes that the primary sort key is loop depth.
|
|
static int compareMBBPriority(const MBBPriorityInfo *LHS,
|
|
const MBBPriorityInfo *RHS) {
|
|
// Deeper loops first
|
|
if (LHS->Depth != RHS->Depth)
|
|
return LHS->Depth > RHS->Depth ? -1 : 1;
|
|
|
|
// Try to unsplit critical edges next.
|
|
if (LHS->IsSplit != RHS->IsSplit)
|
|
return LHS->IsSplit ? -1 : 1;
|
|
|
|
// Prefer blocks that are more connected in the CFG. This takes care of
|
|
// the most difficult copies first while intervals are short.
|
|
unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
|
|
unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
|
|
if (cl != cr)
|
|
return cl > cr ? -1 : 1;
|
|
|
|
// As a last resort, sort by block number.
|
|
return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
|
|
}
|
|
|
|
/// \returns true if the given copy uses or defines a local live range.
|
|
static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
|
|
if (!Copy->isCopy())
|
|
return false;
|
|
|
|
if (Copy->getOperand(1).isUndef())
|
|
return false;
|
|
|
|
unsigned SrcReg = Copy->getOperand(1).getReg();
|
|
unsigned DstReg = Copy->getOperand(0).getReg();
|
|
if (Register::isPhysicalRegister(SrcReg) ||
|
|
Register::isPhysicalRegister(DstReg))
|
|
return false;
|
|
|
|
return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg))
|
|
|| LIS->intervalIsInOneMBB(LIS->getInterval(DstReg));
|
|
}
|
|
|
|
void RegisterCoalescer::lateLiveIntervalUpdate() {
|
|
for (unsigned reg : ToBeUpdated) {
|
|
if (!LIS->hasInterval(reg))
|
|
continue;
|
|
LiveInterval &LI = LIS->getInterval(reg);
|
|
shrinkToUses(&LI, &DeadDefs);
|
|
if (!DeadDefs.empty())
|
|
eliminateDeadDefs();
|
|
}
|
|
ToBeUpdated.clear();
|
|
}
|
|
|
|
bool RegisterCoalescer::
|
|
copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
|
|
bool Progress = false;
|
|
for (unsigned i = 0, e = CurrList.size(); i != e; ++i) {
|
|
if (!CurrList[i])
|
|
continue;
|
|
// Skip instruction pointers that have already been erased, for example by
|
|
// dead code elimination.
|
|
if (ErasedInstrs.count(CurrList[i])) {
|
|
CurrList[i] = nullptr;
|
|
continue;
|
|
}
|
|
bool Again = false;
|
|
bool Success = joinCopy(CurrList[i], Again);
|
|
Progress |= Success;
|
|
if (Success || !Again)
|
|
CurrList[i] = nullptr;
|
|
}
|
|
return Progress;
|
|
}
|
|
|
|
/// Check if DstReg is a terminal node.
|
|
/// I.e., it does not have any affinity other than \p Copy.
|
|
static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy,
|
|
const MachineRegisterInfo *MRI) {
|
|
assert(Copy.isCopyLike());
|
|
// Check if the destination of this copy as any other affinity.
|
|
for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg))
|
|
if (&MI != &Copy && MI.isCopyLike())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const {
|
|
assert(Copy.isCopyLike());
|
|
if (!UseTerminalRule)
|
|
return false;
|
|
unsigned DstReg, DstSubReg, SrcReg, SrcSubReg;
|
|
if (!isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg))
|
|
return false;
|
|
// Check if the destination of this copy has any other affinity.
|
|
if (Register::isPhysicalRegister(DstReg) ||
|
|
// If SrcReg is a physical register, the copy won't be coalesced.
|
|
// Ignoring it may have other side effect (like missing
|
|
// rematerialization). So keep it.
|
|
Register::isPhysicalRegister(SrcReg) || !isTerminalReg(DstReg, Copy, MRI))
|
|
return false;
|
|
|
|
// DstReg is a terminal node. Check if it interferes with any other
|
|
// copy involving SrcReg.
|
|
const MachineBasicBlock *OrigBB = Copy.getParent();
|
|
const LiveInterval &DstLI = LIS->getInterval(DstReg);
|
|
for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) {
|
|
// Technically we should check if the weight of the new copy is
|
|
// interesting compared to the other one and update the weight
|
|
// of the copies accordingly. However, this would only work if
|
|
// we would gather all the copies first then coalesce, whereas
|
|
// right now we interleave both actions.
|
|
// For now, just consider the copies that are in the same block.
|
|
if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB)
|
|
continue;
|
|
unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg;
|
|
if (!isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg,
|
|
OtherSubReg))
|
|
return false;
|
|
if (OtherReg == SrcReg)
|
|
OtherReg = OtherSrcReg;
|
|
// Check if OtherReg is a non-terminal.
|
|
if (Register::isPhysicalRegister(OtherReg) ||
|
|
isTerminalReg(OtherReg, MI, MRI))
|
|
continue;
|
|
// Check that OtherReg interfere with DstReg.
|
|
if (LIS->getInterval(OtherReg).overlaps(DstLI)) {
|
|
LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg)
|
|
<< '\n');
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void
|
|
RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
|
|
LLVM_DEBUG(dbgs() << MBB->getName() << ":\n");
|
|
|
|
// Collect all copy-like instructions in MBB. Don't start coalescing anything
|
|
// yet, it might invalidate the iterator.
|
|
const unsigned PrevSize = WorkList.size();
|
|
if (JoinGlobalCopies) {
|
|
SmallVector<MachineInstr*, 2> LocalTerminals;
|
|
SmallVector<MachineInstr*, 2> GlobalTerminals;
|
|
// Coalesce copies bottom-up to coalesce local defs before local uses. They
|
|
// are not inherently easier to resolve, but slightly preferable until we
|
|
// have local live range splitting. In particular this is required by
|
|
// cmp+jmp macro fusion.
|
|
for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
|
|
MII != E; ++MII) {
|
|
if (!MII->isCopyLike())
|
|
continue;
|
|
bool ApplyTerminalRule = applyTerminalRule(*MII);
|
|
if (isLocalCopy(&(*MII), LIS)) {
|
|
if (ApplyTerminalRule)
|
|
LocalTerminals.push_back(&(*MII));
|
|
else
|
|
LocalWorkList.push_back(&(*MII));
|
|
} else {
|
|
if (ApplyTerminalRule)
|
|
GlobalTerminals.push_back(&(*MII));
|
|
else
|
|
WorkList.push_back(&(*MII));
|
|
}
|
|
}
|
|
// Append the copies evicted by the terminal rule at the end of the list.
|
|
LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end());
|
|
WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end());
|
|
}
|
|
else {
|
|
SmallVector<MachineInstr*, 2> Terminals;
|
|
for (MachineInstr &MII : *MBB)
|
|
if (MII.isCopyLike()) {
|
|
if (applyTerminalRule(MII))
|
|
Terminals.push_back(&MII);
|
|
else
|
|
WorkList.push_back(&MII);
|
|
}
|
|
// Append the copies evicted by the terminal rule at the end of the list.
|
|
WorkList.append(Terminals.begin(), Terminals.end());
|
|
}
|
|
// Try coalescing the collected copies immediately, and remove the nulls.
|
|
// This prevents the WorkList from getting too large since most copies are
|
|
// joinable on the first attempt.
|
|
MutableArrayRef<MachineInstr*>
|
|
CurrList(WorkList.begin() + PrevSize, WorkList.end());
|
|
if (copyCoalesceWorkList(CurrList))
|
|
WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
|
|
nullptr), WorkList.end());
|
|
}
|
|
|
|
void RegisterCoalescer::coalesceLocals() {
|
|
copyCoalesceWorkList(LocalWorkList);
|
|
for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
|
|
if (LocalWorkList[j])
|
|
WorkList.push_back(LocalWorkList[j]);
|
|
}
|
|
LocalWorkList.clear();
|
|
}
|
|
|
|
void RegisterCoalescer::joinAllIntervals() {
|
|
LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
|
|
assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.");
|
|
|
|
std::vector<MBBPriorityInfo> MBBs;
|
|
MBBs.reserve(MF->size());
|
|
for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) {
|
|
MachineBasicBlock *MBB = &*I;
|
|
MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB),
|
|
JoinSplitEdges && isSplitEdge(MBB)));
|
|
}
|
|
array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority);
|
|
|
|
// Coalesce intervals in MBB priority order.
|
|
unsigned CurrDepth = std::numeric_limits<unsigned>::max();
|
|
for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
|
|
// Try coalescing the collected local copies for deeper loops.
|
|
if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) {
|
|
coalesceLocals();
|
|
CurrDepth = MBBs[i].Depth;
|
|
}
|
|
copyCoalesceInMBB(MBBs[i].MBB);
|
|
}
|
|
lateLiveIntervalUpdate();
|
|
coalesceLocals();
|
|
|
|
// Joining intervals can allow other intervals to be joined. Iteratively join
|
|
// until we make no progress.
|
|
while (copyCoalesceWorkList(WorkList))
|
|
/* empty */ ;
|
|
lateLiveIntervalUpdate();
|
|
}
|
|
|
|
void RegisterCoalescer::releaseMemory() {
|
|
ErasedInstrs.clear();
|
|
WorkList.clear();
|
|
DeadDefs.clear();
|
|
InflateRegs.clear();
|
|
LargeLIVisitCounter.clear();
|
|
}
|
|
|
|
bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
|
|
MF = &fn;
|
|
MRI = &fn.getRegInfo();
|
|
const TargetSubtargetInfo &STI = fn.getSubtarget();
|
|
TRI = STI.getRegisterInfo();
|
|
TII = STI.getInstrInfo();
|
|
LIS = &getAnalysis<LiveIntervals>();
|
|
AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
|
|
Loops = &getAnalysis<MachineLoopInfo>();
|
|
if (EnableGlobalCopies == cl::BOU_UNSET)
|
|
JoinGlobalCopies = STI.enableJoinGlobalCopies();
|
|
else
|
|
JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
|
|
|
|
// The MachineScheduler does not currently require JoinSplitEdges. This will
|
|
// either be enabled unconditionally or replaced by a more general live range
|
|
// splitting optimization.
|
|
JoinSplitEdges = EnableJoinSplits;
|
|
|
|
LLVM_DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
|
|
<< "********** Function: " << MF->getName() << '\n');
|
|
|
|
if (VerifyCoalescing)
|
|
MF->verify(this, "Before register coalescing");
|
|
|
|
RegClassInfo.runOnMachineFunction(fn);
|
|
|
|
// Join (coalesce) intervals if requested.
|
|
if (EnableJoining)
|
|
joinAllIntervals();
|
|
|
|
// After deleting a lot of copies, register classes may be less constrained.
|
|
// Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
|
|
// DPR inflation.
|
|
array_pod_sort(InflateRegs.begin(), InflateRegs.end());
|
|
InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
|
|
InflateRegs.end());
|
|
LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size()
|
|
<< " regs.\n");
|
|
for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
|
|
unsigned Reg = InflateRegs[i];
|
|
if (MRI->reg_nodbg_empty(Reg))
|
|
continue;
|
|
if (MRI->recomputeRegClass(Reg)) {
|
|
LLVM_DEBUG(dbgs() << printReg(Reg) << " inflated to "
|
|
<< TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n');
|
|
++NumInflated;
|
|
|
|
LiveInterval &LI = LIS->getInterval(Reg);
|
|
if (LI.hasSubRanges()) {
|
|
// If the inflated register class does not support subregisters anymore
|
|
// remove the subranges.
|
|
if (!MRI->shouldTrackSubRegLiveness(Reg)) {
|
|
LI.clearSubRanges();
|
|
} else {
|
|
#ifndef NDEBUG
|
|
LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
|
|
// If subranges are still supported, then the same subregs
|
|
// should still be supported.
|
|
for (LiveInterval::SubRange &S : LI.subranges()) {
|
|
assert((S.LaneMask & ~MaxMask).none());
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(dump());
|
|
if (VerifyCoalescing)
|
|
MF->verify(this, "After register coalescing");
|
|
return true;
|
|
}
|
|
|
|
void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
|
|
LIS->print(O, m);
|
|
}
|