forked from OSchip/llvm-project
250 lines
6.8 KiB
C++
250 lines
6.8 KiB
C++
//=== BasicValueFactory.cpp - Basic values for Path Sens analysis --*- C++ -*-//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines BasicValueFactory, a class that manages the lifetime
|
|
// of APSInt objects and symbolic constraints used by GRExprEngine
|
|
// and related classes.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Analysis/PathSensitive/BasicValueFactory.h"
|
|
#include "clang/Analysis/PathSensitive/RValues.h"
|
|
|
|
using namespace clang;
|
|
|
|
typedef std::pair<RVal, uintptr_t> RValData;
|
|
typedef std::pair<RVal, RVal> RValPair;
|
|
|
|
|
|
namespace llvm {
|
|
template<> struct FoldingSetTrait<RValData> {
|
|
static inline void Profile(const RValData& X, llvm::FoldingSetNodeID& ID) {
|
|
X.first.Profile(ID);
|
|
ID.AddPointer( (void*) X.second);
|
|
}
|
|
};
|
|
|
|
template<> struct FoldingSetTrait<RValPair> {
|
|
static inline void Profile(const RValPair& X, llvm::FoldingSetNodeID& ID) {
|
|
X.first.Profile(ID);
|
|
X.second.Profile(ID);
|
|
}
|
|
};
|
|
}
|
|
|
|
typedef llvm::FoldingSet<llvm::FoldingSetNodeWrapper<RValData> >
|
|
PersistentRValsTy;
|
|
|
|
typedef llvm::FoldingSet<llvm::FoldingSetNodeWrapper<RValPair> >
|
|
PersistentRValPairsTy;
|
|
|
|
BasicValueFactory::~BasicValueFactory() {
|
|
// Note that the dstor for the contents of APSIntSet will never be called,
|
|
// so we iterate over the set and invoke the dstor for each APSInt. This
|
|
// frees an aux. memory allocated to represent very large constants.
|
|
for (APSIntSetTy::iterator I=APSIntSet.begin(), E=APSIntSet.end(); I!=E; ++I)
|
|
I->getValue().~APSInt();
|
|
|
|
delete (PersistentRValsTy*) PersistentRVals;
|
|
delete (PersistentRValPairsTy*) PersistentRValPairs;
|
|
}
|
|
|
|
const llvm::APSInt& BasicValueFactory::getValue(const llvm::APSInt& X) {
|
|
llvm::FoldingSetNodeID ID;
|
|
void* InsertPos;
|
|
typedef llvm::FoldingSetNodeWrapper<llvm::APSInt> FoldNodeTy;
|
|
|
|
X.Profile(ID);
|
|
FoldNodeTy* P = APSIntSet.FindNodeOrInsertPos(ID, InsertPos);
|
|
|
|
if (!P) {
|
|
P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>();
|
|
new (P) FoldNodeTy(X);
|
|
APSIntSet.InsertNode(P, InsertPos);
|
|
}
|
|
|
|
return *P;
|
|
}
|
|
|
|
const llvm::APSInt& BasicValueFactory::getValue(uint64_t X, unsigned BitWidth,
|
|
bool isUnsigned) {
|
|
llvm::APSInt V(BitWidth, isUnsigned);
|
|
V = X;
|
|
return getValue(V);
|
|
}
|
|
|
|
const llvm::APSInt& BasicValueFactory::getValue(uint64_t X, QualType T) {
|
|
|
|
unsigned bits = Ctx.getTypeSize(T);
|
|
llvm::APSInt V(bits, T->isUnsignedIntegerType());
|
|
V = X;
|
|
return getValue(V);
|
|
}
|
|
|
|
const SymIntConstraint&
|
|
BasicValueFactory::getConstraint(SymbolID sym, BinaryOperator::Opcode Op,
|
|
const llvm::APSInt& V) {
|
|
|
|
llvm::FoldingSetNodeID ID;
|
|
SymIntConstraint::Profile(ID, sym, Op, V);
|
|
void* InsertPos;
|
|
|
|
SymIntConstraint* C = SymIntCSet.FindNodeOrInsertPos(ID, InsertPos);
|
|
|
|
if (!C) {
|
|
C = (SymIntConstraint*) BPAlloc.Allocate<SymIntConstraint>();
|
|
new (C) SymIntConstraint(sym, Op, V);
|
|
SymIntCSet.InsertNode(C, InsertPos);
|
|
}
|
|
|
|
return *C;
|
|
}
|
|
|
|
const llvm::APSInt*
|
|
BasicValueFactory::EvaluateAPSInt(BinaryOperator::Opcode Op,
|
|
const llvm::APSInt& V1, const llvm::APSInt& V2) {
|
|
|
|
switch (Op) {
|
|
default:
|
|
assert (false && "Invalid Opcode.");
|
|
|
|
case BinaryOperator::Mul:
|
|
return &getValue( V1 * V2 );
|
|
|
|
case BinaryOperator::Div:
|
|
return &getValue( V1 / V2 );
|
|
|
|
case BinaryOperator::Rem:
|
|
return &getValue( V1 % V2 );
|
|
|
|
case BinaryOperator::Add:
|
|
return &getValue( V1 + V2 );
|
|
|
|
case BinaryOperator::Sub:
|
|
return &getValue( V1 - V2 );
|
|
|
|
case BinaryOperator::Shl: {
|
|
|
|
// FIXME: This logic should probably go higher up, where we can
|
|
// test these conditions symbolically.
|
|
|
|
// FIXME: Expand these checks to include all undefined behavior.
|
|
|
|
if (V2.isSigned() && V2.isNegative())
|
|
return NULL;
|
|
|
|
uint64_t Amt = V2.getZExtValue();
|
|
|
|
if (Amt > V1.getBitWidth())
|
|
return NULL;
|
|
|
|
return &getValue( V1.operator<<( (unsigned) Amt ));
|
|
}
|
|
|
|
case BinaryOperator::Shr: {
|
|
|
|
// FIXME: This logic should probably go higher up, where we can
|
|
// test these conditions symbolically.
|
|
|
|
// FIXME: Expand these checks to include all undefined behavior.
|
|
|
|
if (V2.isSigned() && V2.isNegative())
|
|
return NULL;
|
|
|
|
uint64_t Amt = V2.getZExtValue();
|
|
|
|
if (Amt > V1.getBitWidth())
|
|
return NULL;
|
|
|
|
return &getValue( V1.operator>>( (unsigned) Amt ));
|
|
}
|
|
|
|
case BinaryOperator::LT:
|
|
return &getTruthValue( V1 < V2 );
|
|
|
|
case BinaryOperator::GT:
|
|
return &getTruthValue( V1 > V2 );
|
|
|
|
case BinaryOperator::LE:
|
|
return &getTruthValue( V1 <= V2 );
|
|
|
|
case BinaryOperator::GE:
|
|
return &getTruthValue( V1 >= V2 );
|
|
|
|
case BinaryOperator::EQ:
|
|
return &getTruthValue( V1 == V2 );
|
|
|
|
case BinaryOperator::NE:
|
|
return &getTruthValue( V1 != V2 );
|
|
|
|
// Note: LAnd, LOr, Comma are handled specially by higher-level logic.
|
|
|
|
case BinaryOperator::And:
|
|
return &getValue( V1 & V2 );
|
|
|
|
case BinaryOperator::Or:
|
|
return &getValue( V1 | V2 );
|
|
|
|
case BinaryOperator::Xor:
|
|
return &getValue( V1 ^ V2 );
|
|
}
|
|
}
|
|
|
|
|
|
const std::pair<RVal, uintptr_t>&
|
|
BasicValueFactory::getPersistentRValWithData(const RVal& V, uintptr_t Data) {
|
|
|
|
// Lazily create the folding set.
|
|
if (!PersistentRVals) PersistentRVals = new PersistentRValsTy();
|
|
|
|
llvm::FoldingSetNodeID ID;
|
|
void* InsertPos;
|
|
V.Profile(ID);
|
|
ID.AddPointer((void*) Data);
|
|
|
|
PersistentRValsTy& Map = *((PersistentRValsTy*) PersistentRVals);
|
|
|
|
typedef llvm::FoldingSetNodeWrapper<RValData> FoldNodeTy;
|
|
FoldNodeTy* P = Map.FindNodeOrInsertPos(ID, InsertPos);
|
|
|
|
if (!P) {
|
|
P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>();
|
|
new (P) FoldNodeTy(std::make_pair(V, Data));
|
|
Map.InsertNode(P, InsertPos);
|
|
}
|
|
|
|
return P->getValue();
|
|
}
|
|
|
|
const std::pair<RVal, RVal>&
|
|
BasicValueFactory::getPersistentRValPair(const RVal& V1, const RVal& V2) {
|
|
|
|
// Lazily create the folding set.
|
|
if (!PersistentRValPairs) PersistentRValPairs = new PersistentRValPairsTy();
|
|
|
|
llvm::FoldingSetNodeID ID;
|
|
void* InsertPos;
|
|
V1.Profile(ID);
|
|
V2.Profile(ID);
|
|
|
|
PersistentRValPairsTy& Map = *((PersistentRValPairsTy*) PersistentRValPairs);
|
|
|
|
typedef llvm::FoldingSetNodeWrapper<RValPair> FoldNodeTy;
|
|
FoldNodeTy* P = Map.FindNodeOrInsertPos(ID, InsertPos);
|
|
|
|
if (!P) {
|
|
P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>();
|
|
new (P) FoldNodeTy(std::make_pair(V1, V2));
|
|
Map.InsertNode(P, InsertPos);
|
|
}
|
|
|
|
return P->getValue();
|
|
}
|
|
|