forked from OSchip/llvm-project
237 lines
9.0 KiB
C++
237 lines
9.0 KiB
C++
//===- Traits.cpp - Common op traits shared by dialects -------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Traits.h"
|
|
#include "mlir/IR/StandardTypes.h"
|
|
#include "mlir/IR/TypeUtilities.h"
|
|
#include "llvm/Support/FormatVariadic.h"
|
|
|
|
using namespace mlir;
|
|
|
|
bool OpTrait::util::staticallyKnownBroadcastable(ArrayRef<int64_t> shape1,
|
|
ArrayRef<int64_t> shape2) {
|
|
// Two dimensions are compatible when
|
|
// 1. they are defined and equal, or
|
|
// 2. one of them is 1
|
|
return llvm::all_of(llvm::zip(llvm::reverse(shape1), llvm::reverse(shape2)),
|
|
[](auto dimensions) {
|
|
auto dim1 = std::get<0>(dimensions);
|
|
auto dim2 = std::get<1>(dimensions);
|
|
if (dim1 == 1 || dim2 == 1)
|
|
return true;
|
|
if (dim1 == dim2 && !ShapedType::isDynamic(dim1))
|
|
return true;
|
|
return false;
|
|
});
|
|
}
|
|
|
|
bool OpTrait::util::getBroadcastedShape(ArrayRef<int64_t> shape1,
|
|
ArrayRef<int64_t> shape2,
|
|
SmallVectorImpl<int64_t> &resultShape) {
|
|
// To compute the result broadcasted shape, we compare operand shapes
|
|
// element-wise: starting with the trailing dimensions, and working the
|
|
// way backward. Two dimensions are compatible when
|
|
// 1. they are equal, or
|
|
// 2. one of them is 1
|
|
// The result shape has the maximum among the two inputs at every
|
|
// dimension index.
|
|
|
|
resultShape.clear();
|
|
if (shape1.size() > shape2.size()) {
|
|
std::copy(shape1.begin(), shape1.end(), std::back_inserter(resultShape));
|
|
} else {
|
|
std::copy(shape2.begin(), shape2.end(), std::back_inserter(resultShape));
|
|
}
|
|
|
|
auto i1 = shape1.rbegin(), e1 = shape1.rend();
|
|
auto i2 = shape2.rbegin(), e2 = shape2.rend();
|
|
auto iR = resultShape.rbegin();
|
|
|
|
// Check each dimension is consistent.
|
|
for (; i1 != e1 && i2 != e2; ++i1, ++i2, ++iR) {
|
|
if (*i1 == -1 || *i2 == -1) {
|
|
// One or both dimensions is unknown. Follow TensorFlow behavior:
|
|
// - If either dimension is greater than 1, we assume that the program is
|
|
// correct, and the other dimension will be broadcast to match it.
|
|
// - If either dimension is 1, the other dimension is the output.
|
|
if (*i1 > 1) {
|
|
*iR = *i1;
|
|
} else if (*i2 > 1) {
|
|
*iR = *i2;
|
|
} else if (*i1 == 1) {
|
|
*iR = *i2;
|
|
} else if (*i2 == 1) {
|
|
*iR = *i1;
|
|
} else {
|
|
*iR = -1;
|
|
}
|
|
} else {
|
|
if (*i1 == *i2 || *i2 == 1) {
|
|
*iR = *i1;
|
|
} else if (*i1 == 1) {
|
|
*iR = *i2;
|
|
} else {
|
|
// This dimension of the two operand types is incompatible.
|
|
resultShape.clear();
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Returns the shape of the given type. Scalars will be considered as having a
|
|
/// shape with zero dimensions.
|
|
static ArrayRef<int64_t> getShape(Type type) {
|
|
if (auto sType = type.dyn_cast<ShapedType>())
|
|
return sType.getShape();
|
|
return {};
|
|
}
|
|
|
|
/// Returns the result broadcast composition type from the two given types by
|
|
/// following NumPy broadcast semantics. Returned type may have dynamic shape if
|
|
/// either of the input types has dynamic shape. Returns null type if the two
|
|
/// given types are not broadcast-compatible.
|
|
///
|
|
/// elementType, if specified, will be used as the element type of the
|
|
/// broadcasted result type. Otherwise it is required that the element type of
|
|
/// type1 and type2 is the same and this element type will be used as the
|
|
/// resultant element type.
|
|
Type OpTrait::util::getBroadcastedType(Type type1, Type type2,
|
|
Type elementType) {
|
|
// If the elementType is not specified, then the use the common element type
|
|
// of the inputs or fail if there is no common element type.
|
|
if (!elementType) {
|
|
elementType = getElementTypeOrSelf(type1);
|
|
if (elementType != getElementTypeOrSelf(type2))
|
|
return {};
|
|
}
|
|
|
|
// If one of the types is unranked tensor, then the other type shouldn't be
|
|
// vector and the result should have unranked tensor type.
|
|
if (type1.isa<UnrankedTensorType>() || type2.isa<UnrankedTensorType>()) {
|
|
if (type1.isa<VectorType>() || type2.isa<VectorType>())
|
|
return {};
|
|
return UnrankedTensorType::get(elementType);
|
|
}
|
|
|
|
// Returns the type kind if the given type is a vector or ranked tensor type.
|
|
// Returns llvm::None otherwise.
|
|
auto getCompositeTypeKind = [](Type type) -> Optional<TypeID> {
|
|
if (type.isa<VectorType, RankedTensorType>())
|
|
return type.getTypeID();
|
|
return llvm::None;
|
|
};
|
|
|
|
// Make sure the composite type, if has, is consistent.
|
|
Optional<TypeID> compositeKind1 = getCompositeTypeKind(type1);
|
|
Optional<TypeID> compositeKind2 = getCompositeTypeKind(type2);
|
|
Optional<TypeID> resultCompositeKind;
|
|
|
|
if (compositeKind1 && compositeKind2) {
|
|
// Disallow mixing vector and tensor.
|
|
if (compositeKind1 != compositeKind2)
|
|
return {};
|
|
resultCompositeKind = compositeKind1;
|
|
} else if (compositeKind1) {
|
|
resultCompositeKind = compositeKind1;
|
|
} else if (compositeKind2) {
|
|
resultCompositeKind = compositeKind2;
|
|
}
|
|
|
|
// Get the shape of each type.
|
|
SmallVector<int64_t, 4> resultShape;
|
|
if (!getBroadcastedShape(getShape(type1), getShape(type2), resultShape))
|
|
return {};
|
|
|
|
// Compose the final broadcasted type
|
|
if (resultCompositeKind == VectorType::getTypeID())
|
|
return VectorType::get(resultShape, elementType);
|
|
if (resultCompositeKind == RankedTensorType::getTypeID())
|
|
return RankedTensorType::get(resultShape, elementType);
|
|
return elementType;
|
|
}
|
|
|
|
/// Returns a tuple corresponding to whether range has tensor or vector type.
|
|
template <typename iterator_range>
|
|
static std::tuple<bool, bool> hasTensorOrVectorType(iterator_range types) {
|
|
return std::make_tuple(
|
|
llvm::any_of(types, [](Type t) { return t.isa<TensorType>(); }),
|
|
llvm::any_of(types, [](Type t) { return t.isa<VectorType>(); }));
|
|
}
|
|
|
|
static bool areCompatibleShapes(ArrayRef<int64_t> shape1,
|
|
ArrayRef<int64_t> shape2) {
|
|
auto isCompatible = [](int64_t dim1, int64_t dim2) {
|
|
return dim1 == dim2 || dim1 == -1 || dim2 == -1;
|
|
};
|
|
if (shape1.size() != shape2.size())
|
|
return false;
|
|
for (auto p : llvm::zip(shape1, shape2))
|
|
if (!isCompatible(std::get<0>(p), std::get<1>(p)))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static std::string getShapeString(ArrayRef<int64_t> shape) {
|
|
// TODO: should replace with printing shape more uniformly across here and
|
|
// when in type.
|
|
return std::string(
|
|
formatv("'{0:$[x]}'", llvm::make_range(shape.begin(), shape.end())));
|
|
}
|
|
|
|
LogicalResult OpTrait::impl::verifyCompatibleOperandBroadcast(Operation *op) {
|
|
// Ensure broadcasting only tensor or only vector types.
|
|
auto operandsHasTensorVectorType =
|
|
hasTensorOrVectorType(op->getOperandTypes());
|
|
auto resultsHasTensorVectorType = hasTensorOrVectorType(op->getResultTypes());
|
|
if ((std::get<0>(operandsHasTensorVectorType) ||
|
|
std::get<0>(resultsHasTensorVectorType)) &&
|
|
(std::get<1>(operandsHasTensorVectorType) ||
|
|
std::get<1>(resultsHasTensorVectorType)))
|
|
return op->emitError("cannot broadcast vector with tensor");
|
|
|
|
auto rankedOperands = make_filter_range(
|
|
op->getOperandTypes(), [](Type t) { return t.isa<RankedTensorType>(); });
|
|
|
|
// If all operands are unranked, then all result shapes are possible.
|
|
if (rankedOperands.empty())
|
|
return success();
|
|
|
|
// Compute broadcasted shape of operands (which requires that operands are
|
|
// broadcast compatible). The results need to be broadcast compatible with
|
|
// this result shape.
|
|
SmallVector<int64_t, 4> resultShape;
|
|
(void)util::getBroadcastedShape(getShape(*rankedOperands.begin()), {},
|
|
resultShape);
|
|
for (auto other : make_early_inc_range(rankedOperands)) {
|
|
SmallVector<int64_t, 4> temp = resultShape;
|
|
if (!util::getBroadcastedShape(temp, getShape(other), resultShape))
|
|
return op->emitOpError("operands don't have broadcast-compatible shapes");
|
|
}
|
|
|
|
auto rankedResults = make_filter_range(
|
|
op->getResultTypes(), [](Type t) { return t.isa<RankedTensorType>(); });
|
|
|
|
// If all of the results are unranked then no further verification.
|
|
if (rankedResults.empty())
|
|
return success();
|
|
|
|
for (auto type : rankedResults) {
|
|
ArrayRef<int64_t> actualSuffix =
|
|
getShape(type).take_back(resultShape.size());
|
|
if (!areCompatibleShapes(actualSuffix, resultShape))
|
|
return op->emitOpError()
|
|
<< "result type " << getShapeString(getShape(type))
|
|
<< " not broadcast compatible with broadcasted operands's shapes "
|
|
<< getShapeString(resultShape);
|
|
}
|
|
return success();
|
|
}
|