llvm-project/compiler-rt/lib/msan/msan.cc

428 lines
12 KiB
C++

//===-- msan.cc -----------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of MemorySanitizer.
//
// MemorySanitizer runtime.
//===----------------------------------------------------------------------===//
#include "msan.h"
#include "sanitizer_common/sanitizer_atomic.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_flags.h"
#include "sanitizer_common/sanitizer_libc.h"
#include "sanitizer_common/sanitizer_mutex.h"
#include "sanitizer_common/sanitizer_procmaps.h"
#include "sanitizer_common/sanitizer_stackdepot.h"
#include "sanitizer_common/sanitizer_stacktrace.h"
#include "sanitizer_common/sanitizer_symbolizer.h"
#include "interception/interception.h"
// ACHTUNG! No system header includes in this file.
using namespace __sanitizer;
// Globals.
static THREADLOCAL int msan_expect_umr = 0;
static THREADLOCAL int msan_expected_umr_found = 0;
static int msan_running_under_dr = 0;
SANITIZER_INTERFACE_ATTRIBUTE
THREADLOCAL u64 __msan_param_tls[kMsanParamTlsSizeInWords];
SANITIZER_INTERFACE_ATTRIBUTE
THREADLOCAL u32 __msan_param_origin_tls[kMsanParamTlsSizeInWords];
SANITIZER_INTERFACE_ATTRIBUTE
THREADLOCAL u64 __msan_retval_tls[kMsanRetvalTlsSizeInWords];
SANITIZER_INTERFACE_ATTRIBUTE
THREADLOCAL u32 __msan_retval_origin_tls;
SANITIZER_INTERFACE_ATTRIBUTE
THREADLOCAL u64 __msan_va_arg_tls[kMsanParamTlsSizeInWords];
SANITIZER_INTERFACE_ATTRIBUTE
THREADLOCAL u64 __msan_va_arg_overflow_size_tls;
SANITIZER_INTERFACE_ATTRIBUTE
THREADLOCAL u32 __msan_origin_tls;
static THREADLOCAL struct {
uptr stack_top, stack_bottom;
} __msan_stack_bounds;
static StaticSpinMutex report_mu;
extern const int __msan_track_origins;
int __msan_get_track_origins() {
return __msan_track_origins;
}
namespace __msan {
static bool IsRunningUnderDr() {
bool result = false;
MemoryMappingLayout proc_maps;
const sptr kBufSize = 4095;
char *filename = (char*)MmapOrDie(kBufSize, __FUNCTION__);
while (proc_maps.Next(/* start */0, /* end */0, /* file_offset */0,
filename, kBufSize)) {
if (internal_strstr(filename, "libdynamorio") != 0) {
result = true;
break;
}
}
UnmapOrDie(filename, kBufSize);
return result;
}
static Flags msan_flags;
Flags *flags() {
return &msan_flags;
}
int msan_inited = 0;
bool msan_init_is_running;
// Array of stack origins.
// FIXME: make it resizable.
static const uptr kNumStackOriginDescrs = 1024 * 1024;
static const char *StackOriginDescr[kNumStackOriginDescrs];
static atomic_uint32_t NumStackOriginDescrs;
static void ParseFlagsFromString(Flags *f, const char *str) {
ParseFlag(str, &f->poison_heap_with_zeroes, "poison_heap_with_zeroes");
ParseFlag(str, &f->poison_stack_with_zeroes, "poison_stack_with_zeroes");
ParseFlag(str, &f->poison_in_malloc, "poison_in_malloc");
ParseFlag(str, &f->exit_code, "exit_code");
if (f->exit_code < 0 || f->exit_code > 127) {
Printf("Exit code not in [0, 128) range: %d\n", f->exit_code);
f->exit_code = 1;
Die();
}
ParseFlag(str, &f->num_callers, "num_callers");
ParseFlag(str, &f->report_umrs, "report_umrs");
ParseFlag(str, &f->verbosity, "verbosity");
}
static void InitializeFlags(Flags *f, const char *options) {
internal_memset(f, 0, sizeof(*f));
f->poison_heap_with_zeroes = false;
f->poison_stack_with_zeroes = false;
f->poison_in_malloc = true;
f->exit_code = 77;
f->num_callers = 20;
f->report_umrs = true;
f->verbosity = 0;
ParseFlagsFromString(f, options);
}
static void GetCurrentStackBounds(uptr *stack_top, uptr *stack_bottom) {
if (__msan_stack_bounds.stack_top == 0) {
// Break recursion (GetStackTrace -> GetThreadStackTopAndBottom ->
// realloc -> GetStackTrace).
__msan_stack_bounds.stack_top = __msan_stack_bounds.stack_bottom = 1;
GetThreadStackTopAndBottom(/* at_initialization */false,
&__msan_stack_bounds.stack_top,
&__msan_stack_bounds.stack_bottom);
}
*stack_top = __msan_stack_bounds.stack_top;
*stack_bottom = __msan_stack_bounds.stack_bottom;
}
void GetStackTrace(StackTrace *stack, uptr max_s, uptr pc, uptr bp) {
uptr stack_top, stack_bottom;
GetCurrentStackBounds(&stack_top, &stack_bottom);
stack->size = 0;
stack->trace[0] = pc;
stack->max_size = max_s;
stack->FastUnwindStack(pc, bp, stack_top, stack_bottom);
}
static void PrintCurrentStackTrace(uptr pc, uptr bp) {
StackTrace stack;
GetStackTrace(&stack, kStackTraceMax, pc, bp);
StackTrace::PrintStack(stack.trace, stack.size, true, "", 0);
}
void PrintWarning(uptr pc, uptr bp) {
PrintWarningWithOrigin(pc, bp, __msan_origin_tls);
}
void PrintWarningWithOrigin(uptr pc, uptr bp, u32 origin) {
if (!__msan::flags()->report_umrs) return;
if (msan_expect_umr) {
// Printf("Expected UMR\n");
__msan_origin_tls = origin;
msan_expected_umr_found = 1;
return;
}
GenericScopedLock<StaticSpinMutex> lock(&report_mu);
Report(" WARNING: MemorySanitizer: UMR (uninitialized-memory-read)\n");
PrintCurrentStackTrace(pc, bp);
if (__msan_track_origins) {
Printf(" raw origin id: %d\n", origin);
if (origin == 0 || origin == (u32)-1) {
Printf(" ORIGIN: invalid (%x). Might be a bug in MemorySanitizer, "
"please report to MemorySanitizer developers.\n",
origin);
} else if (const char *so = __msan_get_origin_descr_if_stack(origin)) {
Printf(" ORIGIN: stack allocation: %s\n", so);
} else if (origin != 0) {
uptr size = 0;
const uptr *trace = StackDepotGet(origin, &size);
Printf(" ORIGIN: heap allocation:\n");
StackTrace::PrintStack(trace, size, true, "", 0);
}
}
}
} // namespace __msan
// Interface.
using namespace __msan;
void __msan_warning() {
GET_CALLER_PC_BP_SP;
(void)sp;
PrintWarning(pc, bp);
}
void __msan_warning_noreturn() {
GET_CALLER_PC_BP_SP;
(void)sp;
PrintWarning(pc, bp);
Printf("Exiting\n");
Die();
}
void __msan_init() {
if (msan_inited) return;
msan_init_is_running = 1;
report_mu.Init();
SetDieCallback(MsanDie);
InitializeInterceptors();
ReplaceOperatorsNewAndDelete();
if (StackSizeIsUnlimited()) {
if (flags()->verbosity)
Printf("Unlimited stack, doing reexec\n");
// A reasonably large stack size. It is bigger than the usual 8Mb, because,
// well, the program could have been run with unlimited stack for a reason.
SetStackSizeLimitInBytes(32 * 1024 * 1024);
ReExec();
}
const char *msan_options = GetEnv("MSAN_OPTIONS");
InitializeFlags(&msan_flags, msan_options);
if (flags()->verbosity)
Printf("MSAN_OPTIONS: %s\n", msan_options ? msan_options : "<empty>");
msan_running_under_dr = IsRunningUnderDr();
__msan_clear_on_return();
if (__msan_track_origins && flags()->verbosity > 0)
Printf("msan_track_origins\n");
if (!InitShadow(/* prot1 */false, /* prot2 */true, /* map_shadow */true,
__msan_track_origins)) {
// FIXME: prot1 = false is only required when running under DR.
Printf("FATAL: MemorySanitizer can not mmap the shadow memory\n");
Printf("FATAL: Make sure to compile with -fPIE and to link with -pie.\n");
DumpProcessMap();
Die();
}
InstallTrapHandler();
const char *external_symbolizer = GetEnv("MSAN_SYMBOLIZER_PATH");
if (external_symbolizer && external_symbolizer[0]) {
CHECK(InitializeExternalSymbolizer(external_symbolizer));
}
GetThreadStackTopAndBottom(/* at_initialization */true,
&__msan_stack_bounds.stack_top,
&__msan_stack_bounds.stack_bottom);
if (flags()->verbosity)
Printf("MemorySanitizer init done\n");
msan_init_is_running = 0;
msan_inited = 1;
}
void __msan_set_exit_code(int exit_code) {
flags()->exit_code = exit_code;
}
void __msan_set_expect_umr(int expect_umr) {
if (expect_umr) {
msan_expected_umr_found = 0;
} else if (!msan_expected_umr_found) {
Printf("Expected UMR not found\n");
GET_CALLER_PC_BP_SP;
(void)sp;
PrintCurrentStackTrace(pc, bp);
Die();
}
msan_expect_umr = expect_umr;
}
void __msan_print_shadow(const void *x, uptr size) {
unsigned char *s = (unsigned char*)MEM_TO_SHADOW(x);
u32 *o = (u32*)MEM_TO_ORIGIN(x);
for (uptr i = 0; i < size; i++) {
Printf("%x%x ", s[i] >> 4, s[i] & 0xf);
}
Printf("\n");
if (__msan_track_origins) {
for (uptr i = 0; i < size / 4; i++) {
Printf(" o: %x ", o[i]);
}
Printf("\n");
}
}
void __msan_print_param_shadow() {
for (int i = 0; i < 16; i++) {
Printf("#%d:%zx ", i, __msan_param_tls[i]);
}
Printf("\n");
}
sptr __msan_test_shadow(const void *x, uptr size) {
unsigned char *s = (unsigned char*)MEM_TO_SHADOW((uptr)x);
for (uptr i = 0; i < size; ++i)
if (s[i])
return i;
return -1;
}
int __msan_set_poison_in_malloc(int do_poison) {
int old = flags()->poison_in_malloc;
flags()->poison_in_malloc = do_poison;
return old;
}
void __msan_break_optimization(void *x) { }
int __msan_has_dynamic_component() {
return msan_running_under_dr;
}
NOINLINE
void __msan_clear_on_return() {
__msan_param_tls[0] = 0;
}
static void* get_tls_base() {
u64 p;
asm("mov %%fs:0, %0"
: "=r"(p) ::);
return (void*)p;
}
int __msan_get_retval_tls_offset() {
// volatile here is needed to avoid UB, because the compiler thinks that we
// are doing address arithmetics on unrelated pointers, and takes some
// shortcuts
volatile sptr retval_tls_p = (sptr)&__msan_retval_tls;
volatile sptr tls_base_p = (sptr)get_tls_base();
return retval_tls_p - tls_base_p;
}
int __msan_get_param_tls_offset() {
// volatile here is needed to avoid UB, because the compiler thinks that we
// are doing address arithmetics on unrelated pointers, and takes some
// shortcuts
volatile sptr param_tls_p = (sptr)&__msan_param_tls;
volatile sptr tls_base_p = (sptr)get_tls_base();
return param_tls_p - tls_base_p;
}
void __msan_partial_poison(void* data, void* shadow, uptr size) {
internal_memcpy((void*)MEM_TO_SHADOW((uptr)data), shadow, size);
}
void __msan_load_unpoisoned(void *src, uptr size, void *dst) {
internal_memcpy(dst, src, size);
__msan_unpoison(dst, size);
}
void __msan_set_origin(void *a, uptr size, u32 origin) {
// Origin mapping is 4 bytes per 4 bytes of application memory.
// Here we extend the range such that its left and right bounds are both
// 4 byte aligned.
if (!__msan_track_origins) return;
uptr x = MEM_TO_ORIGIN((uptr)a);
uptr beg = x & ~3UL; // align down.
uptr end = (x + size + 3) & ~3UL; // align up.
u64 origin64 = ((u64)origin << 32) | origin;
// This is like memset, but the value is 32-bit. We unroll by 2 two write
// 64-bits at once. May want to unroll further to get 128-bit stores.
if (beg & 7ULL) {
*(u32*)beg = origin;
beg += 4;
}
for (uptr addr = beg; addr < (end & ~7UL); addr += 8)
*(u64*)addr = origin64;
if (end & 7ULL)
*(u32*)(end - 4) = origin;
}
// 'descr' is created at compile time and contains '----' in the beginning.
// When we see descr for the first time we replace '----' with a uniq id
// and set the origin to (id | (31-th bit)).
void __msan_set_alloca_origin(void *a, uptr size, const char *descr) {
static const u32 dash = '-';
static const u32 first_timer =
dash + (dash << 8) + (dash << 16) + (dash << 24);
u32 *id_ptr = (u32*)descr;
bool print = false; // internal_strstr(descr + 4, "AllocaTOTest") != 0;
u32 id = *id_ptr;
if (id == first_timer) {
id = atomic_fetch_add(&NumStackOriginDescrs,
1, memory_order_relaxed);
*id_ptr = id;
CHECK_LT(id, kNumStackOriginDescrs);
StackOriginDescr[id] = descr + 4;
if (print)
Printf("First time: id=%d %s \n", id, descr + 4);
}
id |= 1U << 31;
if (print)
Printf("__msan_set_alloca_origin: descr=%s id=%x\n", descr + 4, id);
__msan_set_origin(a, size, id);
}
const char *__msan_get_origin_descr_if_stack(u32 id) {
if ((id >> 31) == 0) return 0;
id &= (1U << 31) - 1;
CHECK_LT(id, kNumStackOriginDescrs);
return StackOriginDescr[id];
}
u32 __msan_get_origin(void *a) {
if (!__msan_track_origins) return 0;
uptr x = (uptr)a;
uptr aligned = x & ~3ULL;
uptr origin_ptr = MEM_TO_ORIGIN(aligned);
return *(u32*)origin_ptr;
}
u32 __msan_get_origin_tls() {
return __msan_origin_tls;
}