llvm-project/mlir/test/Dialect/SparseTensor/sparse_scalars.mlir

84 lines
5.0 KiB
MLIR

// NOTE: Assertions have been autogenerated by utils/generate-test-checks.py
// RUN: mlir-opt %s -sparsification | FileCheck %s
#SparseMatrix = #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>
// A contrived example that demonstrates the many different ways
// in which scalar values can be involved in a sparse kernel
// through the linalg generic op.
#trait = {
indexing_maps = [
affine_map<(i,j) -> (i,j)>, // A (sparse tensor)
affine_map<(i,j) -> ()>, // p (scalar tensor)
affine_map<(i,j) -> ()>, // q (true scalar)
affine_map<(i,j) -> (i,j)> // X (dense tensor out)
],
iterator_types = ["parallel", "parallel"],
doc = "X(i,j) += A(i,j) * p * q * r * s * 2.2"
}
// CHECK-LABEL: func @mul(
// CHECK-SAME: %[[VAL_0:.*0]]: tensor<32x16xf32, #sparse_tensor.encoding<{{.*}}>>,
// CHECK-SAME: %[[VAL_1:.*1]]: tensor<f32>,
// CHECK-SAME: %[[VAL_2:.*2]]: f32,
// CHECK-SAME: %[[VAL_3:.*3]]: f32,
// CHECK-SAME: %[[VAL_4:.*4]]: tensor<32x16xf32> {linalg.inplaceable = true}) -> tensor<32x16xf32> {
// CHECK: %[[VAL_5:.*]] = constant 2.200000e+00 : f32
// CHECK: %[[VAL_6:.*]] = constant 0 : index
// CHECK: %[[VAL_7:.*]] = constant 1 : index
// CHECK: %[[VAL_8:.*]] = addf %[[VAL_2]], %[[VAL_3]] : f32
// CHECK: %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_6]] : tensor<32x16xf32, #sparse_tensor.encoding<{{.*}}>> to memref<?xindex>
// CHECK: %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_6]] : tensor<32x16xf32, #sparse_tensor.encoding<{{.*}}>> to memref<?xindex>
// CHECK: %[[VAL_11:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_7]] : tensor<32x16xf32, #sparse_tensor.encoding<{{.*}}>> to memref<?xindex>
// CHECK: %[[VAL_12:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_7]] : tensor<32x16xf32, #sparse_tensor.encoding<{{.*}}>> to memref<?xindex>
// CHECK: %[[VAL_13:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{{.*}}>> to memref<?xf32>
// CHECK: %[[VAL_14:.*]] = memref.buffer_cast %[[VAL_1]] : memref<f32>
// CHECK: %[[VAL_15:.*]] = memref.buffer_cast %[[VAL_4]] : memref<32x16xf32>
// CHECK: %[[VAL_16:.*]] = memref.load %[[VAL_14]][] : memref<f32>
// CHECK: %[[VAL_17:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_6]]] : memref<?xindex>
// CHECK: %[[VAL_18:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_7]]] : memref<?xindex>
// CHECK: scf.for %[[VAL_19:.*]] = %[[VAL_17]] to %[[VAL_18]] step %[[VAL_7]] {
// CHECK: %[[VAL_20:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_19]]] : memref<?xindex>
// CHECK: %[[VAL_21:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_19]]] : memref<?xindex>
// CHECK: %[[VAL_22:.*]] = addi %[[VAL_19]], %[[VAL_7]] : index
// CHECK: %[[VAL_23:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_22]]] : memref<?xindex>
// CHECK: scf.for %[[VAL_24:.*]] = %[[VAL_21]] to %[[VAL_23]] step %[[VAL_7]] {
// CHECK: %[[VAL_25:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_24]]] : memref<?xindex>
// CHECK: %[[VAL_26:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_24]]] : memref<?xf32>
// CHECK: %[[VAL_27:.*]] = mulf %[[VAL_26]], %[[VAL_16]] : f32
// CHECK: %[[VAL_28:.*]] = mulf %[[VAL_27]], %[[VAL_2]] : f32
// CHECK: %[[VAL_29:.*]] = mulf %[[VAL_28]], %[[VAL_3]] : f32
// CHECK: %[[VAL_30:.*]] = mulf %[[VAL_29]], %[[VAL_8]] : f32
// CHECK: %[[VAL_31:.*]] = mulf %[[VAL_30]], %[[VAL_5]] : f32
// CHECK: %[[VAL_32:.*]] = memref.load %[[VAL_15]]{{\[}}%[[VAL_20]], %[[VAL_25]]] : memref<32x16xf32>
// CHECK: %[[VAL_33:.*]] = addf %[[VAL_31]], %[[VAL_32]] : f32
// CHECK: memref.store %[[VAL_33]], %[[VAL_15]]{{\[}}%[[VAL_20]], %[[VAL_25]]] : memref<32x16xf32>
// CHECK: }
// CHECK: }
// CHECK: %[[VAL_34:.*]] = memref.tensor_load %[[VAL_15]] : memref<32x16xf32>
// CHECK: return %[[VAL_34]] : tensor<32x16xf32>
// CHECK: }
func @mul(%arga: tensor<32x16xf32, #SparseMatrix>,
%argp: tensor<f32>,
%argq: f32,
%argr: f32,
%argx: tensor<32x16xf32> {linalg.inplaceable = true}) -> tensor<32x16xf32> {
%s = addf %argq, %argr : f32
%c = constant 2.2 : f32
%0 = linalg.generic #trait
ins(%arga, %argp, %argq: tensor<32x16xf32, #SparseMatrix>, tensor<f32>, f32)
outs(%argx: tensor<32x16xf32>) {
^bb(%a: f32, %p: f32, %q: f32, %x: f32):
%0 = mulf %a, %p : f32 // scalar tensor argument
%1 = mulf %0, %q : f32 // scalar argument
%2 = mulf %1, %argr : f32 // scalar argument from outside block
%3 = mulf %2, %s : f32 // scalar value from outside block
%4 = mulf %3, %c : f32 // direct constant from outside block
%5 = addf %4, %x : f32
linalg.yield %5 : f32
} -> tensor<32x16xf32>
return %0 : tensor<32x16xf32>
}