forked from OSchip/llvm-project
382 lines
14 KiB
C++
382 lines
14 KiB
C++
//===-- sanitizer_procmaps_mac.cc -----------------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Information about the process mappings (Mac-specific parts).
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "sanitizer_platform.h"
|
|
#if SANITIZER_MAC
|
|
#include "sanitizer_common.h"
|
|
#include "sanitizer_placement_new.h"
|
|
#include "sanitizer_procmaps.h"
|
|
|
|
#include <mach-o/dyld.h>
|
|
#include <mach-o/loader.h>
|
|
#include <mach/mach.h>
|
|
|
|
// These are not available in older macOS SDKs.
|
|
#ifndef CPU_SUBTYPE_X86_64_H
|
|
#define CPU_SUBTYPE_X86_64_H ((cpu_subtype_t)8) /* Haswell */
|
|
#endif
|
|
#ifndef CPU_SUBTYPE_ARM_V7S
|
|
#define CPU_SUBTYPE_ARM_V7S ((cpu_subtype_t)11) /* Swift */
|
|
#endif
|
|
#ifndef CPU_SUBTYPE_ARM_V7K
|
|
#define CPU_SUBTYPE_ARM_V7K ((cpu_subtype_t)12)
|
|
#endif
|
|
#ifndef CPU_TYPE_ARM64
|
|
#define CPU_TYPE_ARM64 (CPU_TYPE_ARM | CPU_ARCH_ABI64)
|
|
#endif
|
|
|
|
namespace __sanitizer {
|
|
|
|
// Contains information used to iterate through sections.
|
|
struct MemoryMappedSegmentData {
|
|
char name[kMaxSegName];
|
|
uptr nsects;
|
|
const char *current_load_cmd_addr;
|
|
u32 lc_type;
|
|
uptr base_virt_addr;
|
|
uptr addr_mask;
|
|
};
|
|
|
|
template <typename Section>
|
|
static void NextSectionLoad(LoadedModule *module, MemoryMappedSegmentData *data,
|
|
bool isWritable) {
|
|
const Section *sc = (const Section *)data->current_load_cmd_addr;
|
|
data->current_load_cmd_addr += sizeof(Section);
|
|
|
|
uptr sec_start = (sc->addr & data->addr_mask) + data->base_virt_addr;
|
|
uptr sec_end = sec_start + sc->size;
|
|
module->addAddressRange(sec_start, sec_end, /*executable=*/false, isWritable,
|
|
sc->sectname);
|
|
}
|
|
|
|
void MemoryMappedSegment::AddAddressRanges(LoadedModule *module) {
|
|
// Don't iterate over sections when the caller hasn't set up the
|
|
// data pointer, when there are no sections, or when the segment
|
|
// is executable. Avoid iterating over executable sections because
|
|
// it will confuse libignore, and because the extra granularity
|
|
// of information is not needed by any sanitizers.
|
|
if (!data_ || !data_->nsects || IsExecutable()) {
|
|
module->addAddressRange(start, end, IsExecutable(), IsWritable(),
|
|
data_ ? data_->name : nullptr);
|
|
return;
|
|
}
|
|
|
|
do {
|
|
if (data_->lc_type == LC_SEGMENT) {
|
|
NextSectionLoad<struct section>(module, data_, IsWritable());
|
|
#ifdef MH_MAGIC_64
|
|
} else if (data_->lc_type == LC_SEGMENT_64) {
|
|
NextSectionLoad<struct section_64>(module, data_, IsWritable());
|
|
#endif
|
|
}
|
|
} while (--data_->nsects);
|
|
}
|
|
|
|
MemoryMappingLayout::MemoryMappingLayout(bool cache_enabled) {
|
|
Reset();
|
|
}
|
|
|
|
MemoryMappingLayout::~MemoryMappingLayout() {
|
|
}
|
|
|
|
// More information about Mach-O headers can be found in mach-o/loader.h
|
|
// Each Mach-O image has a header (mach_header or mach_header_64) starting with
|
|
// a magic number, and a list of linker load commands directly following the
|
|
// header.
|
|
// A load command is at least two 32-bit words: the command type and the
|
|
// command size in bytes. We're interested only in segment load commands
|
|
// (LC_SEGMENT and LC_SEGMENT_64), which tell that a part of the file is mapped
|
|
// into the task's address space.
|
|
// The |vmaddr|, |vmsize| and |fileoff| fields of segment_command or
|
|
// segment_command_64 correspond to the memory address, memory size and the
|
|
// file offset of the current memory segment.
|
|
// Because these fields are taken from the images as is, one needs to add
|
|
// _dyld_get_image_vmaddr_slide() to get the actual addresses at runtime.
|
|
|
|
void MemoryMappingLayout::Reset() {
|
|
// Count down from the top.
|
|
// TODO(glider): as per man 3 dyld, iterating over the headers with
|
|
// _dyld_image_count is thread-unsafe. We need to register callbacks for
|
|
// adding and removing images which will invalidate the MemoryMappingLayout
|
|
// state.
|
|
data_.current_image = _dyld_image_count();
|
|
data_.current_load_cmd_count = -1;
|
|
data_.current_load_cmd_addr = 0;
|
|
data_.current_magic = 0;
|
|
data_.current_filetype = 0;
|
|
data_.current_arch = kModuleArchUnknown;
|
|
internal_memset(data_.current_uuid, 0, kModuleUUIDSize);
|
|
}
|
|
|
|
// The dyld load address should be unchanged throughout process execution,
|
|
// and it is expensive to compute once many libraries have been loaded,
|
|
// so cache it here and do not reset.
|
|
static mach_header *dyld_hdr = 0;
|
|
static const char kDyldPath[] = "/usr/lib/dyld";
|
|
static const int kDyldImageIdx = -1;
|
|
|
|
// static
|
|
void MemoryMappingLayout::CacheMemoryMappings() {
|
|
// No-op on Mac for now.
|
|
}
|
|
|
|
void MemoryMappingLayout::LoadFromCache() {
|
|
// No-op on Mac for now.
|
|
}
|
|
|
|
// _dyld_get_image_header() and related APIs don't report dyld itself.
|
|
// We work around this by manually recursing through the memory map
|
|
// until we hit a Mach header matching dyld instead. These recurse
|
|
// calls are expensive, but the first memory map generation occurs
|
|
// early in the process, when dyld is one of the only images loaded,
|
|
// so it will be hit after only a few iterations.
|
|
static mach_header *get_dyld_image_header() {
|
|
mach_port_name_t port;
|
|
if (task_for_pid(mach_task_self(), internal_getpid(), &port) !=
|
|
KERN_SUCCESS) {
|
|
return nullptr;
|
|
}
|
|
|
|
unsigned depth = 1;
|
|
vm_size_t size = 0;
|
|
vm_address_t address = 0;
|
|
kern_return_t err = KERN_SUCCESS;
|
|
mach_msg_type_number_t count = VM_REGION_SUBMAP_INFO_COUNT_64;
|
|
|
|
while (true) {
|
|
struct vm_region_submap_info_64 info;
|
|
err = vm_region_recurse_64(port, &address, &size, &depth,
|
|
(vm_region_info_t)&info, &count);
|
|
if (err != KERN_SUCCESS) return nullptr;
|
|
|
|
if (size >= sizeof(mach_header) && info.protection & kProtectionRead) {
|
|
mach_header *hdr = (mach_header *)address;
|
|
if ((hdr->magic == MH_MAGIC || hdr->magic == MH_MAGIC_64) &&
|
|
hdr->filetype == MH_DYLINKER) {
|
|
return hdr;
|
|
}
|
|
}
|
|
address += size;
|
|
}
|
|
}
|
|
|
|
const mach_header *get_dyld_hdr() {
|
|
if (!dyld_hdr) dyld_hdr = get_dyld_image_header();
|
|
|
|
return dyld_hdr;
|
|
}
|
|
|
|
// Next and NextSegmentLoad were inspired by base/sysinfo.cc in
|
|
// Google Perftools, https://github.com/gperftools/gperftools.
|
|
|
|
// NextSegmentLoad scans the current image for the next segment load command
|
|
// and returns the start and end addresses and file offset of the corresponding
|
|
// segment.
|
|
// Note that the segment addresses are not necessarily sorted.
|
|
template <u32 kLCSegment, typename SegmentCommand>
|
|
static bool NextSegmentLoad(MemoryMappedSegment *segment,
|
|
MemoryMappedSegmentData *seg_data, MemoryMappingLayoutData &layout_data) {
|
|
const char *lc = layout_data.current_load_cmd_addr;
|
|
layout_data.current_load_cmd_addr += ((const load_command *)lc)->cmdsize;
|
|
if (((const load_command *)lc)->cmd == kLCSegment) {
|
|
const SegmentCommand* sc = (const SegmentCommand *)lc;
|
|
uptr base_virt_addr, addr_mask;
|
|
if (layout_data.current_image == kDyldImageIdx) {
|
|
base_virt_addr = (uptr)get_dyld_hdr();
|
|
// vmaddr is masked with 0xfffff because on macOS versions < 10.12,
|
|
// it contains an absolute address rather than an offset for dyld.
|
|
// To make matters even more complicated, this absolute address
|
|
// isn't actually the absolute segment address, but the offset portion
|
|
// of the address is accurate when combined with the dyld base address,
|
|
// and the mask will give just this offset.
|
|
addr_mask = 0xfffff;
|
|
} else {
|
|
base_virt_addr =
|
|
(uptr)_dyld_get_image_vmaddr_slide(layout_data.current_image);
|
|
addr_mask = ~0;
|
|
}
|
|
|
|
segment->start = (sc->vmaddr & addr_mask) + base_virt_addr;
|
|
segment->end = segment->start + sc->vmsize;
|
|
// Most callers don't need section information, so only fill this struct
|
|
// when required.
|
|
if (seg_data) {
|
|
seg_data->nsects = sc->nsects;
|
|
seg_data->current_load_cmd_addr =
|
|
(const char *)lc + sizeof(SegmentCommand);
|
|
seg_data->lc_type = kLCSegment;
|
|
seg_data->base_virt_addr = base_virt_addr;
|
|
seg_data->addr_mask = addr_mask;
|
|
internal_strncpy(seg_data->name, sc->segname,
|
|
ARRAY_SIZE(seg_data->name));
|
|
}
|
|
|
|
// Return the initial protection.
|
|
segment->protection = sc->initprot;
|
|
segment->offset = (layout_data.current_filetype ==
|
|
/*MH_EXECUTE*/ 0x2)
|
|
? sc->vmaddr
|
|
: sc->fileoff;
|
|
if (segment->filename) {
|
|
const char *src = (layout_data.current_image == kDyldImageIdx)
|
|
? kDyldPath
|
|
: _dyld_get_image_name(layout_data.current_image);
|
|
internal_strncpy(segment->filename, src, segment->filename_size);
|
|
}
|
|
segment->arch = layout_data.current_arch;
|
|
internal_memcpy(segment->uuid, layout_data.current_uuid, kModuleUUIDSize);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
ModuleArch ModuleArchFromCpuType(cpu_type_t cputype, cpu_subtype_t cpusubtype) {
|
|
cpusubtype = cpusubtype & ~CPU_SUBTYPE_MASK;
|
|
switch (cputype) {
|
|
case CPU_TYPE_I386:
|
|
return kModuleArchI386;
|
|
case CPU_TYPE_X86_64:
|
|
if (cpusubtype == CPU_SUBTYPE_X86_64_ALL) return kModuleArchX86_64;
|
|
if (cpusubtype == CPU_SUBTYPE_X86_64_H) return kModuleArchX86_64H;
|
|
CHECK(0 && "Invalid subtype of x86_64");
|
|
return kModuleArchUnknown;
|
|
case CPU_TYPE_ARM:
|
|
if (cpusubtype == CPU_SUBTYPE_ARM_V6) return kModuleArchARMV6;
|
|
if (cpusubtype == CPU_SUBTYPE_ARM_V7) return kModuleArchARMV7;
|
|
if (cpusubtype == CPU_SUBTYPE_ARM_V7S) return kModuleArchARMV7S;
|
|
if (cpusubtype == CPU_SUBTYPE_ARM_V7K) return kModuleArchARMV7K;
|
|
CHECK(0 && "Invalid subtype of ARM");
|
|
return kModuleArchUnknown;
|
|
case CPU_TYPE_ARM64:
|
|
return kModuleArchARM64;
|
|
default:
|
|
CHECK(0 && "Invalid CPU type");
|
|
return kModuleArchUnknown;
|
|
}
|
|
}
|
|
|
|
static const load_command *NextCommand(const load_command *lc) {
|
|
return (const load_command *)((const char *)lc + lc->cmdsize);
|
|
}
|
|
|
|
static void FindUUID(const load_command *first_lc, u8 *uuid_output) {
|
|
for (const load_command *lc = first_lc; lc->cmd != 0; lc = NextCommand(lc)) {
|
|
if (lc->cmd != LC_UUID) continue;
|
|
|
|
const uuid_command *uuid_lc = (const uuid_command *)lc;
|
|
const uint8_t *uuid = &uuid_lc->uuid[0];
|
|
internal_memcpy(uuid_output, uuid, kModuleUUIDSize);
|
|
return;
|
|
}
|
|
}
|
|
|
|
static bool IsModuleInstrumented(const load_command *first_lc) {
|
|
for (const load_command *lc = first_lc; lc->cmd != 0; lc = NextCommand(lc)) {
|
|
if (lc->cmd != LC_LOAD_DYLIB) continue;
|
|
|
|
const dylib_command *dylib_lc = (const dylib_command *)lc;
|
|
uint32_t dylib_name_offset = dylib_lc->dylib.name.offset;
|
|
const char *dylib_name = ((const char *)dylib_lc) + dylib_name_offset;
|
|
dylib_name = StripModuleName(dylib_name);
|
|
if (dylib_name != 0 && (internal_strstr(dylib_name, "libclang_rt."))) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool MemoryMappingLayout::Next(MemoryMappedSegment *segment) {
|
|
for (; data_.current_image >= kDyldImageIdx; data_.current_image--) {
|
|
const mach_header *hdr = (data_.current_image == kDyldImageIdx)
|
|
? get_dyld_hdr()
|
|
: _dyld_get_image_header(data_.current_image);
|
|
if (!hdr) continue;
|
|
if (data_.current_load_cmd_count < 0) {
|
|
// Set up for this image;
|
|
data_.current_load_cmd_count = hdr->ncmds;
|
|
data_.current_magic = hdr->magic;
|
|
data_.current_filetype = hdr->filetype;
|
|
data_.current_arch = ModuleArchFromCpuType(hdr->cputype, hdr->cpusubtype);
|
|
switch (data_.current_magic) {
|
|
#ifdef MH_MAGIC_64
|
|
case MH_MAGIC_64: {
|
|
data_.current_load_cmd_addr =
|
|
(const char *)hdr + sizeof(mach_header_64);
|
|
break;
|
|
}
|
|
#endif
|
|
case MH_MAGIC: {
|
|
data_.current_load_cmd_addr = (const char *)hdr + sizeof(mach_header);
|
|
break;
|
|
}
|
|
default: {
|
|
continue;
|
|
}
|
|
}
|
|
FindUUID((const load_command *)data_.current_load_cmd_addr,
|
|
data_.current_uuid);
|
|
data_.current_instrumented = IsModuleInstrumented(
|
|
(const load_command *)data_.current_load_cmd_addr);
|
|
}
|
|
|
|
for (; data_.current_load_cmd_count >= 0; data_.current_load_cmd_count--) {
|
|
switch (data_.current_magic) {
|
|
// data_.current_magic may be only one of MH_MAGIC, MH_MAGIC_64.
|
|
#ifdef MH_MAGIC_64
|
|
case MH_MAGIC_64: {
|
|
if (NextSegmentLoad<LC_SEGMENT_64, struct segment_command_64>(
|
|
segment, segment->data_, data_))
|
|
return true;
|
|
break;
|
|
}
|
|
#endif
|
|
case MH_MAGIC: {
|
|
if (NextSegmentLoad<LC_SEGMENT, struct segment_command>(
|
|
segment, segment->data_, data_))
|
|
return true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// If we get here, no more load_cmd's in this image talk about
|
|
// segments. Go on to the next image.
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void MemoryMappingLayout::DumpListOfModules(
|
|
InternalMmapVectorNoCtor<LoadedModule> *modules) {
|
|
Reset();
|
|
InternalScopedString module_name(kMaxPathLength);
|
|
MemoryMappedSegment segment(module_name.data(), kMaxPathLength);
|
|
MemoryMappedSegmentData data;
|
|
segment.data_ = &data;
|
|
while (Next(&segment)) {
|
|
if (segment.filename[0] == '\0') continue;
|
|
LoadedModule *cur_module = nullptr;
|
|
if (!modules->empty() &&
|
|
0 == internal_strcmp(segment.filename, modules->back().full_name())) {
|
|
cur_module = &modules->back();
|
|
} else {
|
|
modules->push_back(LoadedModule());
|
|
cur_module = &modules->back();
|
|
cur_module->set(segment.filename, segment.start, segment.arch,
|
|
segment.uuid, data_.current_instrumented);
|
|
}
|
|
segment.AddAddressRanges(cur_module);
|
|
}
|
|
}
|
|
|
|
} // namespace __sanitizer
|
|
|
|
#endif // SANITIZER_MAC
|