forked from OSchip/llvm-project
1180 lines
38 KiB
C++
1180 lines
38 KiB
C++
//===-- LanaiAsmParser.cpp - Parse Lanai assembly to MCInst instructions --===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Lanai.h"
|
|
#include "MCTargetDesc/LanaiMCExpr.h"
|
|
#include "MCTargetDesc/LanaiMCTargetDesc.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCExpr.h"
|
|
#include "llvm/MC/MCInst.h"
|
|
#include "llvm/MC/MCParser/MCAsmLexer.h"
|
|
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
|
|
#include "llvm/MC/MCParser/MCTargetAsmParser.h"
|
|
#include "llvm/MC/MCStreamer.h"
|
|
#include "llvm/MC/MCSubtargetInfo.h"
|
|
#include "llvm/MC/MCSymbol.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/TargetRegistry.h"
|
|
|
|
namespace llvm {
|
|
namespace {
|
|
struct LanaiOperand;
|
|
|
|
class LanaiAsmParser : public MCTargetAsmParser {
|
|
// Parse operands
|
|
std::unique_ptr<LanaiOperand> parseRegister();
|
|
|
|
std::unique_ptr<LanaiOperand> parseImmediate();
|
|
|
|
std::unique_ptr<LanaiOperand> parseIdentifier();
|
|
|
|
unsigned parseAluOperator(bool PreOp, bool PostOp);
|
|
|
|
// Split the mnemonic stripping conditional code and quantifiers
|
|
StringRef splitMnemonic(StringRef Name, SMLoc NameLoc,
|
|
OperandVector *Operands);
|
|
|
|
bool parsePrePost(StringRef Type, int *OffsetValue);
|
|
|
|
bool ParseDirective(AsmToken DirectiveID) override;
|
|
|
|
bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
|
|
SMLoc NameLoc, OperandVector &Operands) override;
|
|
|
|
bool ParseRegister(unsigned &RegNum, SMLoc &StartLoc, SMLoc &EndLoc) override;
|
|
|
|
bool MatchAndEmitInstruction(SMLoc IdLoc, unsigned &Opcode,
|
|
OperandVector &Operands, MCStreamer &Out,
|
|
uint64_t &ErrorInfo,
|
|
bool MatchingInlineAsm) override;
|
|
|
|
// Auto-generated instruction matching functions
|
|
#define GET_ASSEMBLER_HEADER
|
|
#include "LanaiGenAsmMatcher.inc"
|
|
|
|
OperandMatchResultTy parseOperand(OperandVector *Operands,
|
|
StringRef Mnemonic);
|
|
|
|
OperandMatchResultTy parseMemoryOperand(OperandVector &Operands);
|
|
|
|
public:
|
|
LanaiAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser,
|
|
const MCInstrInfo &MII, const MCTargetOptions &Options)
|
|
: MCTargetAsmParser(Options, STI), Parser(Parser),
|
|
Lexer(Parser.getLexer()), SubtargetInfo(STI) {
|
|
setAvailableFeatures(
|
|
ComputeAvailableFeatures(SubtargetInfo.getFeatureBits()));
|
|
}
|
|
|
|
private:
|
|
MCAsmParser &Parser;
|
|
MCAsmLexer &Lexer;
|
|
|
|
const MCSubtargetInfo &SubtargetInfo;
|
|
};
|
|
|
|
// Auto-generated by TableGen
|
|
static unsigned MatchRegisterName(llvm::StringRef Name);
|
|
|
|
// LanaiOperand - Instances of this class represented a parsed machine
|
|
// instruction
|
|
struct LanaiOperand : public MCParsedAsmOperand {
|
|
enum KindTy {
|
|
TOKEN,
|
|
REGISTER,
|
|
IMMEDIATE,
|
|
MEMORY_IMM,
|
|
MEMORY_REG_IMM,
|
|
MEMORY_REG_REG,
|
|
} Kind;
|
|
|
|
SMLoc StartLoc, EndLoc;
|
|
|
|
struct Token {
|
|
const char *Data;
|
|
unsigned Length;
|
|
};
|
|
|
|
struct RegOp {
|
|
unsigned RegNum;
|
|
};
|
|
|
|
struct ImmOp {
|
|
const MCExpr *Value;
|
|
};
|
|
|
|
struct MemOp {
|
|
unsigned BaseReg;
|
|
unsigned OffsetReg;
|
|
unsigned AluOp;
|
|
const MCExpr *Offset;
|
|
};
|
|
|
|
union {
|
|
struct Token Tok;
|
|
struct RegOp Reg;
|
|
struct ImmOp Imm;
|
|
struct MemOp Mem;
|
|
};
|
|
|
|
explicit LanaiOperand(KindTy Kind) : MCParsedAsmOperand(), Kind(Kind) {}
|
|
|
|
public:
|
|
// The functions below are used by the autogenerated ASM matcher and hence to
|
|
// be of the form expected.
|
|
|
|
// getStartLoc - Gets location of the first token of this operand
|
|
SMLoc getStartLoc() const override { return StartLoc; }
|
|
|
|
// getEndLoc - Gets location of the last token of this operand
|
|
SMLoc getEndLoc() const override { return EndLoc; }
|
|
|
|
unsigned getReg() const override {
|
|
assert(isReg() && "Invalid type access!");
|
|
return Reg.RegNum;
|
|
}
|
|
|
|
const MCExpr *getImm() const {
|
|
assert(isImm() && "Invalid type access!");
|
|
return Imm.Value;
|
|
}
|
|
|
|
StringRef getToken() const {
|
|
assert(isToken() && "Invalid type access!");
|
|
return StringRef(Tok.Data, Tok.Length);
|
|
}
|
|
|
|
unsigned getMemBaseReg() const {
|
|
assert(isMem() && "Invalid type access!");
|
|
return Mem.BaseReg;
|
|
}
|
|
|
|
unsigned getMemOffsetReg() const {
|
|
assert(isMem() && "Invalid type access!");
|
|
return Mem.OffsetReg;
|
|
}
|
|
|
|
const MCExpr *getMemOffset() const {
|
|
assert(isMem() && "Invalid type access!");
|
|
return Mem.Offset;
|
|
}
|
|
|
|
unsigned getMemOp() const {
|
|
assert(isMem() && "Invalid type access!");
|
|
return Mem.AluOp;
|
|
}
|
|
|
|
// Functions for testing operand type
|
|
bool isReg() const override { return Kind == REGISTER; }
|
|
|
|
bool isImm() const override { return Kind == IMMEDIATE; }
|
|
|
|
bool isMem() const override {
|
|
return isMemImm() || isMemRegImm() || isMemRegReg();
|
|
}
|
|
|
|
bool isMemImm() const { return Kind == MEMORY_IMM; }
|
|
|
|
bool isMemRegImm() const { return Kind == MEMORY_REG_IMM; }
|
|
|
|
bool isMemRegReg() const { return Kind == MEMORY_REG_REG; }
|
|
|
|
bool isMemSpls() const { return isMemRegImm() || isMemRegReg(); }
|
|
|
|
bool isToken() const override { return Kind == TOKEN; }
|
|
|
|
bool isBrImm() {
|
|
if (!isImm())
|
|
return false;
|
|
|
|
// Constant case
|
|
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Imm.Value);
|
|
if (!MCE)
|
|
return true;
|
|
int64_t Value = MCE->getValue();
|
|
// Check if value fits in 25 bits with 2 least significant bits 0.
|
|
return isShiftedUInt<23, 2>(static_cast<int32_t>(Value));
|
|
}
|
|
|
|
bool isBrTarget() { return isBrImm() || isToken(); }
|
|
|
|
bool isCallTarget() { return isImm() || isToken(); }
|
|
|
|
bool isHiImm16() {
|
|
if (!isImm())
|
|
return false;
|
|
|
|
// Constant case
|
|
if (const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(Imm.Value)) {
|
|
int64_t Value = ConstExpr->getValue();
|
|
return Value != 0 && isShiftedUInt<16, 16>(Value);
|
|
}
|
|
|
|
// Symbolic reference expression
|
|
if (const LanaiMCExpr *SymbolRefExpr = dyn_cast<LanaiMCExpr>(Imm.Value))
|
|
return SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_ABS_HI;
|
|
|
|
// Binary expression
|
|
if (const MCBinaryExpr *BinaryExpr = dyn_cast<MCBinaryExpr>(Imm.Value))
|
|
if (const LanaiMCExpr *SymbolRefExpr =
|
|
dyn_cast<LanaiMCExpr>(BinaryExpr->getLHS()))
|
|
return SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_ABS_HI;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool isHiImm16And() {
|
|
if (!isImm())
|
|
return false;
|
|
|
|
const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(Imm.Value);
|
|
if (ConstExpr) {
|
|
int64_t Value = ConstExpr->getValue();
|
|
// Check if in the form 0xXYZWffff
|
|
return (Value != 0) && ((Value & ~0xffff0000) == 0xffff);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool isLoImm16() {
|
|
if (!isImm())
|
|
return false;
|
|
|
|
// Constant case
|
|
if (const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(Imm.Value)) {
|
|
int64_t Value = ConstExpr->getValue();
|
|
// Check if value fits in 16 bits
|
|
return isUInt<16>(static_cast<int32_t>(Value));
|
|
}
|
|
|
|
// Symbolic reference expression
|
|
if (const LanaiMCExpr *SymbolRefExpr = dyn_cast<LanaiMCExpr>(Imm.Value))
|
|
return SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_ABS_LO;
|
|
|
|
// Binary expression
|
|
if (const MCBinaryExpr *BinaryExpr = dyn_cast<MCBinaryExpr>(Imm.Value))
|
|
if (const LanaiMCExpr *SymbolRefExpr =
|
|
dyn_cast<LanaiMCExpr>(BinaryExpr->getLHS()))
|
|
return SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_ABS_LO;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool isLoImm16Signed() {
|
|
if (!isImm())
|
|
return false;
|
|
|
|
// Constant case
|
|
if (const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(Imm.Value)) {
|
|
int64_t Value = ConstExpr->getValue();
|
|
// Check if value fits in 16 bits or value of the form 0xffffxyzw
|
|
return isInt<16>(static_cast<int32_t>(Value));
|
|
}
|
|
|
|
// Symbolic reference expression
|
|
if (const LanaiMCExpr *SymbolRefExpr = dyn_cast<LanaiMCExpr>(Imm.Value))
|
|
return SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_ABS_LO;
|
|
|
|
// Binary expression
|
|
if (const MCBinaryExpr *BinaryExpr = dyn_cast<MCBinaryExpr>(Imm.Value))
|
|
if (const LanaiMCExpr *SymbolRefExpr =
|
|
dyn_cast<LanaiMCExpr>(BinaryExpr->getLHS()))
|
|
return SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_ABS_LO;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool isLoImm16And() {
|
|
if (!isImm())
|
|
return false;
|
|
|
|
const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(Imm.Value);
|
|
if (ConstExpr) {
|
|
int64_t Value = ConstExpr->getValue();
|
|
// Check if in the form 0xffffXYZW
|
|
return ((Value & ~0xffff) == 0xffff0000);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool isImmShift() {
|
|
if (!isImm())
|
|
return false;
|
|
|
|
const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(Imm.Value);
|
|
if (!ConstExpr)
|
|
return false;
|
|
int64_t Value = ConstExpr->getValue();
|
|
return (Value >= -31) && (Value <= 31);
|
|
}
|
|
|
|
bool isLoImm21() {
|
|
if (!isImm())
|
|
return false;
|
|
|
|
// Constant case
|
|
if (const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(Imm.Value)) {
|
|
int64_t Value = ConstExpr->getValue();
|
|
return isUInt<21>(Value);
|
|
}
|
|
|
|
// Symbolic reference expression
|
|
if (const LanaiMCExpr *SymbolRefExpr = dyn_cast<LanaiMCExpr>(Imm.Value))
|
|
return SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_None;
|
|
if (const MCSymbolRefExpr *SymbolRefExpr =
|
|
dyn_cast<MCSymbolRefExpr>(Imm.Value)) {
|
|
return SymbolRefExpr->getKind() == MCSymbolRefExpr::VK_None;
|
|
}
|
|
|
|
// Binary expression
|
|
if (const MCBinaryExpr *BinaryExpr = dyn_cast<MCBinaryExpr>(Imm.Value)) {
|
|
if (const LanaiMCExpr *SymbolRefExpr =
|
|
dyn_cast<LanaiMCExpr>(BinaryExpr->getLHS()))
|
|
return SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_None;
|
|
if (const MCSymbolRefExpr *SymbolRefExpr =
|
|
dyn_cast<MCSymbolRefExpr>(BinaryExpr->getLHS()))
|
|
return SymbolRefExpr->getKind() == MCSymbolRefExpr::VK_None;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool isImm10() {
|
|
if (!isImm())
|
|
return false;
|
|
|
|
const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(Imm.Value);
|
|
if (!ConstExpr)
|
|
return false;
|
|
int64_t Value = ConstExpr->getValue();
|
|
return isInt<10>(Value);
|
|
}
|
|
|
|
bool isCondCode() {
|
|
if (!isImm())
|
|
return false;
|
|
|
|
const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(Imm.Value);
|
|
if (!ConstExpr)
|
|
return false;
|
|
uint64_t Value = ConstExpr->getValue();
|
|
// The condition codes are between 0 (ICC_T) and 15 (ICC_LE). If the
|
|
// unsigned value of the immediate is less than LPCC::UNKNOWN (16) then
|
|
// value corresponds to a valid condition code.
|
|
return Value < LPCC::UNKNOWN;
|
|
}
|
|
|
|
void addExpr(MCInst &Inst, const MCExpr *Expr) const {
|
|
// Add as immediates where possible. Null MCExpr = 0
|
|
if (Expr == nullptr)
|
|
Inst.addOperand(MCOperand::createImm(0));
|
|
else if (const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(Expr))
|
|
Inst.addOperand(
|
|
MCOperand::createImm(static_cast<int32_t>(ConstExpr->getValue())));
|
|
else
|
|
Inst.addOperand(MCOperand::createExpr(Expr));
|
|
}
|
|
|
|
void addRegOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
Inst.addOperand(MCOperand::createReg(getReg()));
|
|
}
|
|
|
|
void addImmOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
addExpr(Inst, getImm());
|
|
}
|
|
|
|
void addBrTargetOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
addExpr(Inst, getImm());
|
|
}
|
|
|
|
void addCallTargetOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
addExpr(Inst, getImm());
|
|
}
|
|
|
|
void addCondCodeOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
addExpr(Inst, getImm());
|
|
}
|
|
|
|
void addMemImmOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
const MCExpr *Expr = getMemOffset();
|
|
addExpr(Inst, Expr);
|
|
}
|
|
|
|
void addMemRegImmOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 3 && "Invalid number of operands!");
|
|
Inst.addOperand(MCOperand::createReg(getMemBaseReg()));
|
|
const MCExpr *Expr = getMemOffset();
|
|
addExpr(Inst, Expr);
|
|
Inst.addOperand(MCOperand::createImm(getMemOp()));
|
|
}
|
|
|
|
void addMemRegRegOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 3 && "Invalid number of operands!");
|
|
Inst.addOperand(MCOperand::createReg(getMemBaseReg()));
|
|
assert(getMemOffsetReg() != 0 && "Invalid offset");
|
|
Inst.addOperand(MCOperand::createReg(getMemOffsetReg()));
|
|
Inst.addOperand(MCOperand::createImm(getMemOp()));
|
|
}
|
|
|
|
void addMemSplsOperands(MCInst &Inst, unsigned N) const {
|
|
if (isMemRegImm())
|
|
addMemRegImmOperands(Inst, N);
|
|
if (isMemRegReg())
|
|
addMemRegRegOperands(Inst, N);
|
|
}
|
|
|
|
void addImmShiftOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
addExpr(Inst, getImm());
|
|
}
|
|
|
|
void addImm10Operands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
addExpr(Inst, getImm());
|
|
}
|
|
|
|
void addLoImm16Operands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
if (const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(getImm()))
|
|
Inst.addOperand(
|
|
MCOperand::createImm(static_cast<int32_t>(ConstExpr->getValue())));
|
|
else if (isa<LanaiMCExpr>(getImm())) {
|
|
#ifndef NDEBUG
|
|
const LanaiMCExpr *SymbolRefExpr = dyn_cast<LanaiMCExpr>(getImm());
|
|
assert(SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_ABS_LO);
|
|
#endif
|
|
Inst.addOperand(MCOperand::createExpr(getImm()));
|
|
} else if (isa<MCBinaryExpr>(getImm())) {
|
|
#ifndef NDEBUG
|
|
const MCBinaryExpr *BinaryExpr = dyn_cast<MCBinaryExpr>(getImm());
|
|
assert(dyn_cast<LanaiMCExpr>(BinaryExpr->getLHS()) &&
|
|
dyn_cast<LanaiMCExpr>(BinaryExpr->getLHS())->getKind() ==
|
|
LanaiMCExpr::VK_Lanai_ABS_LO);
|
|
#endif
|
|
Inst.addOperand(MCOperand::createExpr(getImm()));
|
|
} else
|
|
assert(false && "Operand type not supported.");
|
|
}
|
|
|
|
void addLoImm16AndOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
if (const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(getImm()))
|
|
Inst.addOperand(MCOperand::createImm(ConstExpr->getValue() & 0xffff));
|
|
else
|
|
assert(false && "Operand type not supported.");
|
|
}
|
|
|
|
void addHiImm16Operands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
if (const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(getImm()))
|
|
Inst.addOperand(MCOperand::createImm(ConstExpr->getValue() >> 16));
|
|
else if (isa<LanaiMCExpr>(getImm())) {
|
|
#ifndef NDEBUG
|
|
const LanaiMCExpr *SymbolRefExpr = dyn_cast<LanaiMCExpr>(getImm());
|
|
assert(SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_ABS_HI);
|
|
#endif
|
|
Inst.addOperand(MCOperand::createExpr(getImm()));
|
|
} else if (isa<MCBinaryExpr>(getImm())) {
|
|
#ifndef NDEBUG
|
|
const MCBinaryExpr *BinaryExpr = dyn_cast<MCBinaryExpr>(getImm());
|
|
assert(dyn_cast<LanaiMCExpr>(BinaryExpr->getLHS()) &&
|
|
dyn_cast<LanaiMCExpr>(BinaryExpr->getLHS())->getKind() ==
|
|
LanaiMCExpr::VK_Lanai_ABS_HI);
|
|
#endif
|
|
Inst.addOperand(MCOperand::createExpr(getImm()));
|
|
} else
|
|
assert(false && "Operand type not supported.");
|
|
}
|
|
|
|
void addHiImm16AndOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
if (const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(getImm()))
|
|
Inst.addOperand(MCOperand::createImm(ConstExpr->getValue() >> 16));
|
|
else
|
|
assert(false && "Operand type not supported.");
|
|
}
|
|
|
|
void addLoImm21Operands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
if (const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(getImm()))
|
|
Inst.addOperand(MCOperand::createImm(ConstExpr->getValue() & 0x1fffff));
|
|
else if (isa<LanaiMCExpr>(getImm())) {
|
|
#ifndef NDEBUG
|
|
const LanaiMCExpr *SymbolRefExpr = dyn_cast<LanaiMCExpr>(getImm());
|
|
assert(SymbolRefExpr &&
|
|
SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_None);
|
|
#endif
|
|
Inst.addOperand(MCOperand::createExpr(getImm()));
|
|
} else if (isa<MCSymbolRefExpr>(getImm())) {
|
|
#ifndef NDEBUG
|
|
const MCSymbolRefExpr *SymbolRefExpr =
|
|
dyn_cast<MCSymbolRefExpr>(getImm());
|
|
assert(SymbolRefExpr &&
|
|
SymbolRefExpr->getKind() == MCSymbolRefExpr::VK_None);
|
|
#endif
|
|
Inst.addOperand(MCOperand::createExpr(getImm()));
|
|
} else if (isa<MCBinaryExpr>(getImm())) {
|
|
#ifndef NDEBUG
|
|
const MCBinaryExpr *BinaryExpr = dyn_cast<MCBinaryExpr>(getImm());
|
|
const LanaiMCExpr *SymbolRefExpr =
|
|
dyn_cast<LanaiMCExpr>(BinaryExpr->getLHS());
|
|
assert(SymbolRefExpr &&
|
|
SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_None);
|
|
#endif
|
|
Inst.addOperand(MCOperand::createExpr(getImm()));
|
|
} else
|
|
assert(false && "Operand type not supported.");
|
|
}
|
|
|
|
void print(raw_ostream &OS) const override {
|
|
switch (Kind) {
|
|
case IMMEDIATE:
|
|
OS << "Imm: " << getImm() << "\n";
|
|
break;
|
|
case TOKEN:
|
|
OS << "Token: " << getToken() << "\n";
|
|
break;
|
|
case REGISTER:
|
|
OS << "Reg: %r" << getReg() << "\n";
|
|
break;
|
|
case MEMORY_IMM:
|
|
OS << "MemImm: " << *getMemOffset() << "\n";
|
|
break;
|
|
case MEMORY_REG_IMM:
|
|
OS << "MemRegImm: " << getMemBaseReg() << "+" << *getMemOffset() << "\n";
|
|
break;
|
|
case MEMORY_REG_REG:
|
|
assert(getMemOffset() == nullptr);
|
|
OS << "MemRegReg: " << getMemBaseReg() << "+"
|
|
<< "%r" << getMemOffsetReg() << "\n";
|
|
break;
|
|
}
|
|
}
|
|
|
|
static std::unique_ptr<LanaiOperand> CreateToken(StringRef Str, SMLoc Start) {
|
|
auto Op = make_unique<LanaiOperand>(TOKEN);
|
|
Op->Tok.Data = Str.data();
|
|
Op->Tok.Length = Str.size();
|
|
Op->StartLoc = Start;
|
|
Op->EndLoc = Start;
|
|
return Op;
|
|
}
|
|
|
|
static std::unique_ptr<LanaiOperand> createReg(unsigned RegNum, SMLoc Start,
|
|
SMLoc End) {
|
|
auto Op = make_unique<LanaiOperand>(REGISTER);
|
|
Op->Reg.RegNum = RegNum;
|
|
Op->StartLoc = Start;
|
|
Op->EndLoc = End;
|
|
return Op;
|
|
}
|
|
|
|
static std::unique_ptr<LanaiOperand> createImm(const MCExpr *Value,
|
|
SMLoc Start, SMLoc End) {
|
|
auto Op = make_unique<LanaiOperand>(IMMEDIATE);
|
|
Op->Imm.Value = Value;
|
|
Op->StartLoc = Start;
|
|
Op->EndLoc = End;
|
|
return Op;
|
|
}
|
|
|
|
static std::unique_ptr<LanaiOperand>
|
|
MorphToMemImm(std::unique_ptr<LanaiOperand> Op) {
|
|
const MCExpr *Imm = Op->getImm();
|
|
Op->Kind = MEMORY_IMM;
|
|
Op->Mem.BaseReg = 0;
|
|
Op->Mem.AluOp = LPAC::ADD;
|
|
Op->Mem.OffsetReg = 0;
|
|
Op->Mem.Offset = Imm;
|
|
return Op;
|
|
}
|
|
|
|
static std::unique_ptr<LanaiOperand>
|
|
MorphToMemRegReg(unsigned BaseReg, std::unique_ptr<LanaiOperand> Op,
|
|
unsigned AluOp) {
|
|
unsigned OffsetReg = Op->getReg();
|
|
Op->Kind = MEMORY_REG_REG;
|
|
Op->Mem.BaseReg = BaseReg;
|
|
Op->Mem.AluOp = AluOp;
|
|
Op->Mem.OffsetReg = OffsetReg;
|
|
Op->Mem.Offset = nullptr;
|
|
return Op;
|
|
}
|
|
|
|
static std::unique_ptr<LanaiOperand>
|
|
MorphToMemRegImm(unsigned BaseReg, std::unique_ptr<LanaiOperand> Op,
|
|
unsigned AluOp) {
|
|
const MCExpr *Imm = Op->getImm();
|
|
Op->Kind = MEMORY_REG_IMM;
|
|
Op->Mem.BaseReg = BaseReg;
|
|
Op->Mem.AluOp = AluOp;
|
|
Op->Mem.OffsetReg = 0;
|
|
Op->Mem.Offset = Imm;
|
|
return Op;
|
|
}
|
|
};
|
|
|
|
bool LanaiAsmParser::ParseDirective(AsmToken DirectiveId) { return true; }
|
|
|
|
bool LanaiAsmParser::MatchAndEmitInstruction(SMLoc IdLoc, unsigned &Opcode,
|
|
OperandVector &Operands,
|
|
MCStreamer &Out,
|
|
uint64_t &ErrorInfo,
|
|
bool MatchingInlineAsm) {
|
|
MCInst Inst;
|
|
SMLoc ErrorLoc;
|
|
|
|
switch (MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm)) {
|
|
case Match_Success:
|
|
Out.EmitInstruction(Inst, SubtargetInfo);
|
|
return false;
|
|
case Match_MissingFeature:
|
|
return Error(IdLoc, "Instruction use requires option to be enabled");
|
|
case Match_MnemonicFail:
|
|
return Error(IdLoc, "Unrecognized instruction mnemonic");
|
|
case Match_InvalidOperand: {
|
|
ErrorLoc = IdLoc;
|
|
if (ErrorInfo != ~0U) {
|
|
if (ErrorInfo >= Operands.size())
|
|
return Error(IdLoc, "Too few operands for instruction");
|
|
|
|
ErrorLoc = ((LanaiOperand &)*Operands[ErrorInfo]).getStartLoc();
|
|
if (ErrorLoc == SMLoc())
|
|
ErrorLoc = IdLoc;
|
|
}
|
|
return Error(ErrorLoc, "Invalid operand for instruction");
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
llvm_unreachable("Unknown match type detected!");
|
|
}
|
|
|
|
// Both '%rN' and 'rN' are parsed as valid registers. This was done to remain
|
|
// backwards compatible with GCC and the different ways inline assembly is
|
|
// handled.
|
|
// TODO: see if there isn't a better way to do this.
|
|
std::unique_ptr<LanaiOperand> LanaiAsmParser::parseRegister() {
|
|
SMLoc Start = Parser.getTok().getLoc();
|
|
SMLoc End = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
|
|
|
|
unsigned RegNum;
|
|
// Eat the '%'.
|
|
if (Lexer.getKind() == AsmToken::Percent)
|
|
Parser.Lex();
|
|
if (Lexer.getKind() == AsmToken::Identifier) {
|
|
RegNum = MatchRegisterName(Lexer.getTok().getIdentifier());
|
|
if (RegNum == 0)
|
|
return 0;
|
|
Parser.Lex(); // Eat identifier token
|
|
return LanaiOperand::createReg(RegNum, Start, End);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
bool LanaiAsmParser::ParseRegister(unsigned &RegNum, SMLoc &StartLoc,
|
|
SMLoc &EndLoc) {
|
|
std::unique_ptr<LanaiOperand> Op = parseRegister();
|
|
if (Op != 0)
|
|
RegNum = Op->getReg();
|
|
return (Op == 0);
|
|
}
|
|
|
|
std::unique_ptr<LanaiOperand> LanaiAsmParser::parseIdentifier() {
|
|
SMLoc Start = Parser.getTok().getLoc();
|
|
SMLoc End = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
|
|
const MCExpr *Res, *RHS = 0;
|
|
LanaiMCExpr::VariantKind Kind = LanaiMCExpr::VK_Lanai_None;
|
|
|
|
if (Lexer.getKind() != AsmToken::Identifier)
|
|
return 0;
|
|
|
|
StringRef Identifier;
|
|
if (Parser.parseIdentifier(Identifier))
|
|
return 0;
|
|
|
|
// Check if identifier has a modifier
|
|
if (Identifier.equals_lower("hi"))
|
|
Kind = LanaiMCExpr::VK_Lanai_ABS_HI;
|
|
else if (Identifier.equals_lower("lo"))
|
|
Kind = LanaiMCExpr::VK_Lanai_ABS_LO;
|
|
|
|
// If the identifier corresponds to a variant then extract the real
|
|
// identifier.
|
|
if (Kind != LanaiMCExpr::VK_Lanai_None) {
|
|
if (Lexer.getKind() != AsmToken::LParen) {
|
|
Error(Lexer.getLoc(), "Expected '('");
|
|
return 0;
|
|
}
|
|
Lexer.Lex(); // lex '('
|
|
|
|
// Parse identifier
|
|
if (Parser.parseIdentifier(Identifier))
|
|
return 0;
|
|
}
|
|
|
|
// If addition parse the RHS.
|
|
if (Lexer.getKind() == AsmToken::Plus && Parser.parseExpression(RHS))
|
|
return 0;
|
|
|
|
// For variants parse the final ')'
|
|
if (Kind != LanaiMCExpr::VK_Lanai_None) {
|
|
if (Lexer.getKind() != AsmToken::RParen) {
|
|
Error(Lexer.getLoc(), "Expected ')'");
|
|
return 0;
|
|
}
|
|
Lexer.Lex(); // lex ')'
|
|
}
|
|
|
|
End = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
|
|
MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier);
|
|
const MCExpr *Expr = MCSymbolRefExpr::create(Sym, getContext());
|
|
Res = LanaiMCExpr::create(Kind, Expr, getContext());
|
|
|
|
// Nest if this was an addition
|
|
if (RHS)
|
|
Res = MCBinaryExpr::createAdd(Res, RHS, getContext());
|
|
|
|
return LanaiOperand::createImm(Res, Start, End);
|
|
}
|
|
|
|
std::unique_ptr<LanaiOperand> LanaiAsmParser::parseImmediate() {
|
|
SMLoc Start = Parser.getTok().getLoc();
|
|
SMLoc End = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
|
|
|
|
const MCExpr *ExprVal;
|
|
switch (Lexer.getKind()) {
|
|
case AsmToken::Identifier:
|
|
return parseIdentifier();
|
|
case AsmToken::Plus:
|
|
case AsmToken::Minus:
|
|
case AsmToken::Integer:
|
|
case AsmToken::Dot:
|
|
if (!Parser.parseExpression(ExprVal))
|
|
return LanaiOperand::createImm(ExprVal, Start, End);
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static unsigned AluWithPrePost(unsigned AluCode, bool PreOp, bool PostOp) {
|
|
if (PreOp)
|
|
return LPAC::makePreOp(AluCode);
|
|
if (PostOp)
|
|
return LPAC::makePostOp(AluCode);
|
|
return AluCode;
|
|
}
|
|
|
|
unsigned LanaiAsmParser::parseAluOperator(bool PreOp, bool PostOp) {
|
|
StringRef IdString;
|
|
Parser.parseIdentifier(IdString);
|
|
unsigned AluCode = LPAC::stringToLanaiAluCode(IdString);
|
|
if (AluCode == LPAC::UNKNOWN) {
|
|
Error(Parser.getTok().getLoc(), "Can't parse ALU operator");
|
|
return 0;
|
|
}
|
|
return AluCode;
|
|
}
|
|
|
|
static int SizeForSuffix(StringRef T) {
|
|
return StringSwitch<int>(T).EndsWith(".h", 2).EndsWith(".b", 1).Default(4);
|
|
}
|
|
|
|
bool LanaiAsmParser::parsePrePost(StringRef Type, int *OffsetValue) {
|
|
bool PreOrPost = false;
|
|
if (Lexer.getKind() == Lexer.peekTok(true).getKind()) {
|
|
PreOrPost = true;
|
|
if (Lexer.is(AsmToken::Minus))
|
|
*OffsetValue = -SizeForSuffix(Type);
|
|
else if (Lexer.is(AsmToken::Plus))
|
|
*OffsetValue = SizeForSuffix(Type);
|
|
else
|
|
return false;
|
|
|
|
// Eat the '-' '-' or '+' '+'
|
|
Parser.Lex();
|
|
Parser.Lex();
|
|
} else if (Lexer.is(AsmToken::Star)) {
|
|
Parser.Lex(); // Eat the '*'
|
|
PreOrPost = true;
|
|
}
|
|
|
|
return PreOrPost;
|
|
}
|
|
|
|
bool shouldBeSls(const LanaiOperand &Op) {
|
|
// The instruction should be encoded as an SLS if the constant is word
|
|
// aligned and will fit in 21 bits
|
|
if (const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(Op.getImm())) {
|
|
int64_t Value = ConstExpr->getValue();
|
|
return (Value % 4 == 0) && (Value >= 0) && (Value <= 0x1fffff);
|
|
}
|
|
// The instruction should be encoded as an SLS if the operand is a symbolic
|
|
// reference with no variant.
|
|
if (const LanaiMCExpr *SymbolRefExpr = dyn_cast<LanaiMCExpr>(Op.getImm()))
|
|
return SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_None;
|
|
// The instruction should be encoded as an SLS if the operand is a binary
|
|
// expression with the left-hand side being a symbolic reference with no
|
|
// variant.
|
|
if (const MCBinaryExpr *BinaryExpr = dyn_cast<MCBinaryExpr>(Op.getImm())) {
|
|
const LanaiMCExpr *LHSSymbolRefExpr =
|
|
dyn_cast<LanaiMCExpr>(BinaryExpr->getLHS());
|
|
return (LHSSymbolRefExpr &&
|
|
LHSSymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_None);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Matches memory operand. Returns true if error encountered.
|
|
LanaiAsmParser::OperandMatchResultTy
|
|
LanaiAsmParser::parseMemoryOperand(OperandVector &Operands) {
|
|
// Try to match a memory operand.
|
|
// The memory operands are of the form:
|
|
// (1) Register|Immediate|'' '[' '*'? Register '*'? ']' or
|
|
// ^
|
|
// (2) '[' '*'? Register '*'? AluOperator Register ']'
|
|
// ^
|
|
// (3) '[' '--'|'++' Register '--'|'++' ']'
|
|
//
|
|
// (4) '[' Immediate ']' (for SLS)
|
|
|
|
// Store the type for use in parsing pre/post increment/decrement operators
|
|
StringRef Type;
|
|
if (Operands[0]->isToken())
|
|
Type = static_cast<LanaiOperand *>(Operands[0].get())->getToken();
|
|
|
|
// Use 0 if no offset given
|
|
int OffsetValue = 0;
|
|
unsigned BaseReg = 0;
|
|
unsigned AluOp = LPAC::ADD;
|
|
bool PostOp = false, PreOp = false;
|
|
|
|
// Try to parse the offset
|
|
std::unique_ptr<LanaiOperand> Op = parseRegister();
|
|
if (!Op)
|
|
Op = parseImmediate();
|
|
|
|
// Only continue if next token is '['
|
|
if (Lexer.isNot(AsmToken::LBrac)) {
|
|
if (!Op)
|
|
return MatchOperand_NoMatch;
|
|
|
|
// The start of this custom parsing overlaps with register/immediate so
|
|
// consider this as a successful match of an operand of that type as the
|
|
// token stream can't be rewound to allow them to match separately.
|
|
Operands.push_back(std::move(Op));
|
|
return MatchOperand_Success;
|
|
}
|
|
|
|
Parser.Lex(); // Eat the '['.
|
|
std::unique_ptr<LanaiOperand> Offset = nullptr;
|
|
if (Op)
|
|
Offset.swap(Op);
|
|
|
|
// Determine if a pre operation
|
|
PreOp = parsePrePost(Type, &OffsetValue);
|
|
|
|
Op = parseRegister();
|
|
if (!Op) {
|
|
if (!Offset) {
|
|
if ((Op = parseImmediate()) && Lexer.is(AsmToken::RBrac)) {
|
|
Parser.Lex(); // Eat the ']'
|
|
|
|
// Memory address operations aligned to word boundary are encoded as
|
|
// SLS, the rest as RM.
|
|
if (shouldBeSls(*Op)) {
|
|
Operands.push_back(LanaiOperand::MorphToMemImm(std::move(Op)));
|
|
} else {
|
|
if (!Op->isLoImm16Signed()) {
|
|
Error(Parser.getTok().getLoc(),
|
|
"Memory address is not word "
|
|
"aligned and larger than class RM can handle");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
Operands.push_back(LanaiOperand::MorphToMemRegImm(
|
|
Lanai::R0, std::move(Op), LPAC::ADD));
|
|
}
|
|
return MatchOperand_Success;
|
|
}
|
|
}
|
|
|
|
Error(Parser.getTok().getLoc(),
|
|
"Unknown operand, expected register or immediate");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
BaseReg = Op->getReg();
|
|
|
|
// Determine if a post operation
|
|
if (!PreOp)
|
|
PostOp = parsePrePost(Type, &OffsetValue);
|
|
|
|
// If ] match form (1) else match form (2)
|
|
if (Lexer.is(AsmToken::RBrac)) {
|
|
Parser.Lex(); // Eat the ']'.
|
|
if (!Offset) {
|
|
SMLoc Start = Parser.getTok().getLoc();
|
|
SMLoc End =
|
|
SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
|
|
const MCConstantExpr *OffsetConstExpr =
|
|
MCConstantExpr::create(OffsetValue, getContext());
|
|
Offset = LanaiOperand::createImm(OffsetConstExpr, Start, End);
|
|
}
|
|
} else {
|
|
if (Offset || OffsetValue != 0) {
|
|
Error(Parser.getTok().getLoc(), "Expected ']'");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
|
|
// Parse operator
|
|
AluOp = parseAluOperator(PreOp, PostOp);
|
|
|
|
// Second form requires offset register
|
|
Offset = parseRegister();
|
|
if (!BaseReg || Lexer.isNot(AsmToken::RBrac)) {
|
|
Error(Parser.getTok().getLoc(), "Expected ']'");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
Parser.Lex(); // Eat the ']'.
|
|
}
|
|
|
|
// First form has addition as operator. Add pre- or post-op indicator as
|
|
// needed.
|
|
AluOp = AluWithPrePost(AluOp, PreOp, PostOp);
|
|
|
|
// Ensure immediate offset is not too large
|
|
if (Offset->isImm() && !Offset->isLoImm16Signed()) {
|
|
Error(Parser.getTok().getLoc(),
|
|
"Memory address is not word "
|
|
"aligned and larger than class RM can handle");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
|
|
Operands.push_back(
|
|
Offset->isImm()
|
|
? LanaiOperand::MorphToMemRegImm(BaseReg, std::move(Offset), AluOp)
|
|
: LanaiOperand::MorphToMemRegReg(BaseReg, std::move(Offset), AluOp));
|
|
|
|
return MatchOperand_Success;
|
|
}
|
|
|
|
// Looks at a token type and creates the relevant operand from this
|
|
// information, adding to operands.
|
|
// If operand was parsed, returns false, else true.
|
|
LanaiAsmParser::OperandMatchResultTy
|
|
LanaiAsmParser::parseOperand(OperandVector *Operands, StringRef Mnemonic) {
|
|
// Check if the current operand has a custom associated parser, if so, try to
|
|
// custom parse the operand, or fallback to the general approach.
|
|
OperandMatchResultTy Result = MatchOperandParserImpl(*Operands, Mnemonic);
|
|
|
|
if (Result == MatchOperand_Success)
|
|
return Result;
|
|
if (Result == MatchOperand_ParseFail) {
|
|
Parser.eatToEndOfStatement();
|
|
return Result;
|
|
}
|
|
|
|
// Attempt to parse token as register
|
|
std::unique_ptr<LanaiOperand> Op = parseRegister();
|
|
|
|
// Attempt to parse token as immediate
|
|
if (!Op)
|
|
Op = parseImmediate();
|
|
|
|
// If the token could not be parsed then fail
|
|
if (!Op) {
|
|
Error(Parser.getTok().getLoc(), "Unknown operand");
|
|
Parser.eatToEndOfStatement();
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
|
|
// Push back parsed operand into list of operands
|
|
Operands->push_back(std::move(Op));
|
|
|
|
return MatchOperand_Success;
|
|
}
|
|
|
|
// Split the mnemonic into ASM operand, conditional code and instruction
|
|
// qualifier (half-word, byte).
|
|
StringRef LanaiAsmParser::splitMnemonic(StringRef Name, SMLoc NameLoc,
|
|
OperandVector *Operands) {
|
|
size_t Next = Name.find('.');
|
|
|
|
StringRef Mnemonic = Name;
|
|
|
|
bool IsBRR = false;
|
|
if (Name.endswith(".r")) {
|
|
Mnemonic = Name.substr(0, Name.size() - 2);
|
|
IsBRR = true;
|
|
}
|
|
|
|
// Match b?? and s?? (BR, BRR, and SCC instruction classes).
|
|
if (Mnemonic[0] == 'b' ||
|
|
(Mnemonic[0] == 's' && !Mnemonic.startswith("sel") &&
|
|
!Mnemonic.startswith("st"))) {
|
|
// Parse instructions with a conditional code. For example, 'bne' is
|
|
// converted into two operands 'b' and 'ne'.
|
|
LPCC::CondCode CondCode =
|
|
LPCC::suffixToLanaiCondCode(Mnemonic.substr(1, Next));
|
|
if (CondCode != LPCC::UNKNOWN) {
|
|
Mnemonic = Mnemonic.slice(0, 1);
|
|
Operands->push_back(LanaiOperand::CreateToken(Mnemonic, NameLoc));
|
|
Operands->push_back(LanaiOperand::createImm(
|
|
MCConstantExpr::create(CondCode, getContext()), NameLoc, NameLoc));
|
|
if (IsBRR) {
|
|
Operands->push_back(LanaiOperand::CreateToken(".r", NameLoc));
|
|
}
|
|
return Mnemonic;
|
|
}
|
|
}
|
|
|
|
// Parse other instructions with condition codes (RR instructions).
|
|
// We ignore .f here and assume they are flag-setting operations, not
|
|
// conditional codes (except for select instructions where flag-setting
|
|
// variants are not yet implemented).
|
|
if (Mnemonic.startswith("sel") ||
|
|
(!Mnemonic.endswith(".f") && !Mnemonic.startswith("st"))) {
|
|
LPCC::CondCode CondCode = LPCC::suffixToLanaiCondCode(Mnemonic);
|
|
if (CondCode != LPCC::UNKNOWN) {
|
|
size_t Next = Mnemonic.rfind('.', Name.size());
|
|
// 'sel' doesn't use a predicate operand whose printer adds the period,
|
|
// but instead has the period as part of the identifier (i.e., 'sel.' is
|
|
// expected by the generated matcher). If the mnemonic starts with 'sel'
|
|
// then include the period as part of the mnemonic, else don't include it
|
|
// as part of the mnemonic.
|
|
if (Mnemonic.startswith("sel")) {
|
|
Mnemonic = Mnemonic.substr(0, Next + 1);
|
|
} else {
|
|
Mnemonic = Mnemonic.substr(0, Next);
|
|
}
|
|
Operands->push_back(LanaiOperand::CreateToken(Mnemonic, NameLoc));
|
|
Operands->push_back(LanaiOperand::createImm(
|
|
MCConstantExpr::create(CondCode, getContext()), NameLoc, NameLoc));
|
|
return Mnemonic;
|
|
}
|
|
}
|
|
|
|
Operands->push_back(LanaiOperand::CreateToken(Mnemonic, NameLoc));
|
|
if (IsBRR) {
|
|
Operands->push_back(LanaiOperand::CreateToken(".r", NameLoc));
|
|
}
|
|
|
|
return Mnemonic;
|
|
}
|
|
|
|
bool IsMemoryAssignmentError(const OperandVector &Operands) {
|
|
// Detects if a memory operation has an erroneous base register modification.
|
|
// Memory operations are detected by matching the types of operands.
|
|
//
|
|
// TODO: This test is focussed on one specific instance (ld/st).
|
|
// Extend it to handle more cases or be more robust.
|
|
bool Modifies = false;
|
|
|
|
int Offset = 0;
|
|
|
|
if (Operands.size() < 5)
|
|
return false;
|
|
else if (Operands[0]->isToken() && Operands[1]->isReg() &&
|
|
Operands[2]->isImm() && Operands[3]->isImm() && Operands[4]->isReg())
|
|
Offset = 0;
|
|
else if (Operands[0]->isToken() && Operands[1]->isToken() &&
|
|
Operands[2]->isReg() && Operands[3]->isImm() &&
|
|
Operands[4]->isImm() && Operands[5]->isReg())
|
|
Offset = 1;
|
|
else
|
|
return false;
|
|
|
|
int PossibleAluOpIdx = Offset + 3;
|
|
int PossibleBaseIdx = Offset + 1;
|
|
int PossibleDestIdx = Offset + 4;
|
|
if (LanaiOperand *PossibleAluOp =
|
|
static_cast<LanaiOperand *>(Operands[PossibleAluOpIdx].get()))
|
|
if (PossibleAluOp->isImm())
|
|
if (const MCConstantExpr *ConstExpr =
|
|
dyn_cast<MCConstantExpr>(PossibleAluOp->getImm()))
|
|
Modifies = LPAC::modifiesOp(ConstExpr->getValue());
|
|
return Modifies && Operands[PossibleBaseIdx]->isReg() &&
|
|
Operands[PossibleDestIdx]->isReg() &&
|
|
Operands[PossibleBaseIdx]->getReg() ==
|
|
Operands[PossibleDestIdx]->getReg();
|
|
}
|
|
|
|
bool LanaiAsmParser::ParseInstruction(ParseInstructionInfo &Info,
|
|
StringRef Name, SMLoc NameLoc,
|
|
OperandVector &Operands) {
|
|
// First operand is token for instruction
|
|
StringRef Mnemonic = splitMnemonic(Name, NameLoc, &Operands);
|
|
|
|
// If there are no more operands, then finish
|
|
if (Lexer.is(AsmToken::EndOfStatement))
|
|
return false;
|
|
|
|
// Parse first operand
|
|
if (parseOperand(&Operands, Mnemonic) != MatchOperand_Success)
|
|
return true;
|
|
|
|
// If it is a st instruction with one 1 operand then it is a "store true".
|
|
// Transform <"st"> to <"s">, <LPCC:ICC_T>
|
|
if (Lexer.is(AsmToken::EndOfStatement) && Name == "st" &&
|
|
Operands.size() == 2) {
|
|
Operands.erase(Operands.begin(), Operands.begin() + 1);
|
|
Operands.insert(Operands.begin(), LanaiOperand::CreateToken("s", NameLoc));
|
|
Operands.insert(Operands.begin() + 1,
|
|
LanaiOperand::createImm(
|
|
MCConstantExpr::create(LPCC::ICC_T, getContext()),
|
|
NameLoc, NameLoc));
|
|
}
|
|
|
|
// If the instruction is a bt instruction with 1 operand (in assembly) then it
|
|
// is an unconditional branch instruction and the first two elements of
|
|
// operands need to be merged.
|
|
if (Lexer.is(AsmToken::EndOfStatement) && Name.startswith("bt") &&
|
|
Operands.size() == 3) {
|
|
Operands.erase(Operands.begin(), Operands.begin() + 2);
|
|
Operands.insert(Operands.begin(), LanaiOperand::CreateToken("bt", NameLoc));
|
|
}
|
|
|
|
// Parse until end of statement, consuming commas between operands
|
|
while (Lexer.isNot(AsmToken::EndOfStatement) && Lexer.is(AsmToken::Comma)) {
|
|
// Consume comma token
|
|
Lex();
|
|
|
|
// Parse next operand
|
|
if (parseOperand(&Operands, Mnemonic) != MatchOperand_Success)
|
|
return true;
|
|
}
|
|
|
|
if (IsMemoryAssignmentError(Operands)) {
|
|
Error(Parser.getTok().getLoc(),
|
|
"the destination register can't equal the base register in an "
|
|
"instruction that modifies the base register.");
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
#define GET_REGISTER_MATCHER
|
|
#define GET_MATCHER_IMPLEMENTATION
|
|
#include "LanaiGenAsmMatcher.inc"
|
|
} // namespace
|
|
|
|
extern "C" void LLVMInitializeLanaiAsmParser() {
|
|
RegisterMCAsmParser<LanaiAsmParser> x(TheLanaiTarget);
|
|
}
|
|
|
|
} // namespace llvm
|