forked from OSchip/llvm-project
7509 lines
300 KiB
C++
7509 lines
300 KiB
C++
//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file provides Sema routines for C++ overloading.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Sema.h"
|
|
#include "Lookup.h"
|
|
#include "SemaInit.h"
|
|
#include "clang/Basic/Diagnostic.h"
|
|
#include "clang/Lex/Preprocessor.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/CXXInheritance.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/TypeOrdering.h"
|
|
#include "clang/Basic/PartialDiagnostic.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include <algorithm>
|
|
|
|
namespace clang {
|
|
|
|
/// GetConversionCategory - Retrieve the implicit conversion
|
|
/// category corresponding to the given implicit conversion kind.
|
|
ImplicitConversionCategory
|
|
GetConversionCategory(ImplicitConversionKind Kind) {
|
|
static const ImplicitConversionCategory
|
|
Category[(int)ICK_Num_Conversion_Kinds] = {
|
|
ICC_Identity,
|
|
ICC_Lvalue_Transformation,
|
|
ICC_Lvalue_Transformation,
|
|
ICC_Lvalue_Transformation,
|
|
ICC_Identity,
|
|
ICC_Qualification_Adjustment,
|
|
ICC_Promotion,
|
|
ICC_Promotion,
|
|
ICC_Promotion,
|
|
ICC_Conversion,
|
|
ICC_Conversion,
|
|
ICC_Conversion,
|
|
ICC_Conversion,
|
|
ICC_Conversion,
|
|
ICC_Conversion,
|
|
ICC_Conversion,
|
|
ICC_Conversion,
|
|
ICC_Conversion,
|
|
ICC_Conversion,
|
|
ICC_Conversion,
|
|
ICC_Conversion
|
|
};
|
|
return Category[(int)Kind];
|
|
}
|
|
|
|
/// GetConversionRank - Retrieve the implicit conversion rank
|
|
/// corresponding to the given implicit conversion kind.
|
|
ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
|
|
static const ImplicitConversionRank
|
|
Rank[(int)ICK_Num_Conversion_Kinds] = {
|
|
ICR_Exact_Match,
|
|
ICR_Exact_Match,
|
|
ICR_Exact_Match,
|
|
ICR_Exact_Match,
|
|
ICR_Exact_Match,
|
|
ICR_Exact_Match,
|
|
ICR_Promotion,
|
|
ICR_Promotion,
|
|
ICR_Promotion,
|
|
ICR_Conversion,
|
|
ICR_Conversion,
|
|
ICR_Conversion,
|
|
ICR_Conversion,
|
|
ICR_Conversion,
|
|
ICR_Conversion,
|
|
ICR_Conversion,
|
|
ICR_Conversion,
|
|
ICR_Conversion,
|
|
ICR_Conversion,
|
|
ICR_Conversion,
|
|
ICR_Complex_Real_Conversion
|
|
};
|
|
return Rank[(int)Kind];
|
|
}
|
|
|
|
/// GetImplicitConversionName - Return the name of this kind of
|
|
/// implicit conversion.
|
|
const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
|
|
static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
|
|
"No conversion",
|
|
"Lvalue-to-rvalue",
|
|
"Array-to-pointer",
|
|
"Function-to-pointer",
|
|
"Noreturn adjustment",
|
|
"Qualification",
|
|
"Integral promotion",
|
|
"Floating point promotion",
|
|
"Complex promotion",
|
|
"Integral conversion",
|
|
"Floating conversion",
|
|
"Complex conversion",
|
|
"Floating-integral conversion",
|
|
"Pointer conversion",
|
|
"Pointer-to-member conversion",
|
|
"Boolean conversion",
|
|
"Compatible-types conversion",
|
|
"Derived-to-base conversion",
|
|
"Vector conversion",
|
|
"Vector splat",
|
|
"Complex-real conversion"
|
|
};
|
|
return Name[Kind];
|
|
}
|
|
|
|
/// StandardConversionSequence - Set the standard conversion
|
|
/// sequence to the identity conversion.
|
|
void StandardConversionSequence::setAsIdentityConversion() {
|
|
First = ICK_Identity;
|
|
Second = ICK_Identity;
|
|
Third = ICK_Identity;
|
|
DeprecatedStringLiteralToCharPtr = false;
|
|
ReferenceBinding = false;
|
|
DirectBinding = false;
|
|
RRefBinding = false;
|
|
CopyConstructor = 0;
|
|
}
|
|
|
|
/// getRank - Retrieve the rank of this standard conversion sequence
|
|
/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
|
|
/// implicit conversions.
|
|
ImplicitConversionRank StandardConversionSequence::getRank() const {
|
|
ImplicitConversionRank Rank = ICR_Exact_Match;
|
|
if (GetConversionRank(First) > Rank)
|
|
Rank = GetConversionRank(First);
|
|
if (GetConversionRank(Second) > Rank)
|
|
Rank = GetConversionRank(Second);
|
|
if (GetConversionRank(Third) > Rank)
|
|
Rank = GetConversionRank(Third);
|
|
return Rank;
|
|
}
|
|
|
|
/// isPointerConversionToBool - Determines whether this conversion is
|
|
/// a conversion of a pointer or pointer-to-member to bool. This is
|
|
/// used as part of the ranking of standard conversion sequences
|
|
/// (C++ 13.3.3.2p4).
|
|
bool StandardConversionSequence::isPointerConversionToBool() const {
|
|
// Note that FromType has not necessarily been transformed by the
|
|
// array-to-pointer or function-to-pointer implicit conversions, so
|
|
// check for their presence as well as checking whether FromType is
|
|
// a pointer.
|
|
if (getToType(1)->isBooleanType() &&
|
|
(getFromType()->isPointerType() ||
|
|
getFromType()->isObjCObjectPointerType() ||
|
|
getFromType()->isBlockPointerType() ||
|
|
First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// isPointerConversionToVoidPointer - Determines whether this
|
|
/// conversion is a conversion of a pointer to a void pointer. This is
|
|
/// used as part of the ranking of standard conversion sequences (C++
|
|
/// 13.3.3.2p4).
|
|
bool
|
|
StandardConversionSequence::
|
|
isPointerConversionToVoidPointer(ASTContext& Context) const {
|
|
QualType FromType = getFromType();
|
|
QualType ToType = getToType(1);
|
|
|
|
// Note that FromType has not necessarily been transformed by the
|
|
// array-to-pointer implicit conversion, so check for its presence
|
|
// and redo the conversion to get a pointer.
|
|
if (First == ICK_Array_To_Pointer)
|
|
FromType = Context.getArrayDecayedType(FromType);
|
|
|
|
if (Second == ICK_Pointer_Conversion && FromType->isPointerType())
|
|
if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
|
|
return ToPtrType->getPointeeType()->isVoidType();
|
|
|
|
return false;
|
|
}
|
|
|
|
/// DebugPrint - Print this standard conversion sequence to standard
|
|
/// error. Useful for debugging overloading issues.
|
|
void StandardConversionSequence::DebugPrint() const {
|
|
llvm::raw_ostream &OS = llvm::errs();
|
|
bool PrintedSomething = false;
|
|
if (First != ICK_Identity) {
|
|
OS << GetImplicitConversionName(First);
|
|
PrintedSomething = true;
|
|
}
|
|
|
|
if (Second != ICK_Identity) {
|
|
if (PrintedSomething) {
|
|
OS << " -> ";
|
|
}
|
|
OS << GetImplicitConversionName(Second);
|
|
|
|
if (CopyConstructor) {
|
|
OS << " (by copy constructor)";
|
|
} else if (DirectBinding) {
|
|
OS << " (direct reference binding)";
|
|
} else if (ReferenceBinding) {
|
|
OS << " (reference binding)";
|
|
}
|
|
PrintedSomething = true;
|
|
}
|
|
|
|
if (Third != ICK_Identity) {
|
|
if (PrintedSomething) {
|
|
OS << " -> ";
|
|
}
|
|
OS << GetImplicitConversionName(Third);
|
|
PrintedSomething = true;
|
|
}
|
|
|
|
if (!PrintedSomething) {
|
|
OS << "No conversions required";
|
|
}
|
|
}
|
|
|
|
/// DebugPrint - Print this user-defined conversion sequence to standard
|
|
/// error. Useful for debugging overloading issues.
|
|
void UserDefinedConversionSequence::DebugPrint() const {
|
|
llvm::raw_ostream &OS = llvm::errs();
|
|
if (Before.First || Before.Second || Before.Third) {
|
|
Before.DebugPrint();
|
|
OS << " -> ";
|
|
}
|
|
OS << '\'' << ConversionFunction << '\'';
|
|
if (After.First || After.Second || After.Third) {
|
|
OS << " -> ";
|
|
After.DebugPrint();
|
|
}
|
|
}
|
|
|
|
/// DebugPrint - Print this implicit conversion sequence to standard
|
|
/// error. Useful for debugging overloading issues.
|
|
void ImplicitConversionSequence::DebugPrint() const {
|
|
llvm::raw_ostream &OS = llvm::errs();
|
|
switch (ConversionKind) {
|
|
case StandardConversion:
|
|
OS << "Standard conversion: ";
|
|
Standard.DebugPrint();
|
|
break;
|
|
case UserDefinedConversion:
|
|
OS << "User-defined conversion: ";
|
|
UserDefined.DebugPrint();
|
|
break;
|
|
case EllipsisConversion:
|
|
OS << "Ellipsis conversion";
|
|
break;
|
|
case AmbiguousConversion:
|
|
OS << "Ambiguous conversion";
|
|
break;
|
|
case BadConversion:
|
|
OS << "Bad conversion";
|
|
break;
|
|
}
|
|
|
|
OS << "\n";
|
|
}
|
|
|
|
void AmbiguousConversionSequence::construct() {
|
|
new (&conversions()) ConversionSet();
|
|
}
|
|
|
|
void AmbiguousConversionSequence::destruct() {
|
|
conversions().~ConversionSet();
|
|
}
|
|
|
|
void
|
|
AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
|
|
FromTypePtr = O.FromTypePtr;
|
|
ToTypePtr = O.ToTypePtr;
|
|
new (&conversions()) ConversionSet(O.conversions());
|
|
}
|
|
|
|
namespace {
|
|
// Structure used by OverloadCandidate::DeductionFailureInfo to store
|
|
// template parameter and template argument information.
|
|
struct DFIParamWithArguments {
|
|
TemplateParameter Param;
|
|
TemplateArgument FirstArg;
|
|
TemplateArgument SecondArg;
|
|
};
|
|
}
|
|
|
|
/// \brief Convert from Sema's representation of template deduction information
|
|
/// to the form used in overload-candidate information.
|
|
OverloadCandidate::DeductionFailureInfo
|
|
static MakeDeductionFailureInfo(ASTContext &Context,
|
|
Sema::TemplateDeductionResult TDK,
|
|
Sema::TemplateDeductionInfo &Info) {
|
|
OverloadCandidate::DeductionFailureInfo Result;
|
|
Result.Result = static_cast<unsigned>(TDK);
|
|
Result.Data = 0;
|
|
switch (TDK) {
|
|
case Sema::TDK_Success:
|
|
case Sema::TDK_InstantiationDepth:
|
|
case Sema::TDK_TooManyArguments:
|
|
case Sema::TDK_TooFewArguments:
|
|
break;
|
|
|
|
case Sema::TDK_Incomplete:
|
|
case Sema::TDK_InvalidExplicitArguments:
|
|
Result.Data = Info.Param.getOpaqueValue();
|
|
break;
|
|
|
|
case Sema::TDK_Inconsistent:
|
|
case Sema::TDK_InconsistentQuals: {
|
|
// FIXME: Should allocate from normal heap so that we can free this later.
|
|
DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
|
|
Saved->Param = Info.Param;
|
|
Saved->FirstArg = Info.FirstArg;
|
|
Saved->SecondArg = Info.SecondArg;
|
|
Result.Data = Saved;
|
|
break;
|
|
}
|
|
|
|
case Sema::TDK_SubstitutionFailure:
|
|
Result.Data = Info.take();
|
|
break;
|
|
|
|
case Sema::TDK_NonDeducedMismatch:
|
|
case Sema::TDK_FailedOverloadResolution:
|
|
break;
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
void OverloadCandidate::DeductionFailureInfo::Destroy() {
|
|
switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
|
|
case Sema::TDK_Success:
|
|
case Sema::TDK_InstantiationDepth:
|
|
case Sema::TDK_Incomplete:
|
|
case Sema::TDK_TooManyArguments:
|
|
case Sema::TDK_TooFewArguments:
|
|
case Sema::TDK_InvalidExplicitArguments:
|
|
break;
|
|
|
|
case Sema::TDK_Inconsistent:
|
|
case Sema::TDK_InconsistentQuals:
|
|
// FIXME: Destroy the data?
|
|
Data = 0;
|
|
break;
|
|
|
|
case Sema::TDK_SubstitutionFailure:
|
|
// FIXME: Destroy the template arugment list?
|
|
Data = 0;
|
|
break;
|
|
|
|
// Unhandled
|
|
case Sema::TDK_NonDeducedMismatch:
|
|
case Sema::TDK_FailedOverloadResolution:
|
|
break;
|
|
}
|
|
}
|
|
|
|
TemplateParameter
|
|
OverloadCandidate::DeductionFailureInfo::getTemplateParameter() {
|
|
switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
|
|
case Sema::TDK_Success:
|
|
case Sema::TDK_InstantiationDepth:
|
|
case Sema::TDK_TooManyArguments:
|
|
case Sema::TDK_TooFewArguments:
|
|
case Sema::TDK_SubstitutionFailure:
|
|
return TemplateParameter();
|
|
|
|
case Sema::TDK_Incomplete:
|
|
case Sema::TDK_InvalidExplicitArguments:
|
|
return TemplateParameter::getFromOpaqueValue(Data);
|
|
|
|
case Sema::TDK_Inconsistent:
|
|
case Sema::TDK_InconsistentQuals:
|
|
return static_cast<DFIParamWithArguments*>(Data)->Param;
|
|
|
|
// Unhandled
|
|
case Sema::TDK_NonDeducedMismatch:
|
|
case Sema::TDK_FailedOverloadResolution:
|
|
break;
|
|
}
|
|
|
|
return TemplateParameter();
|
|
}
|
|
|
|
TemplateArgumentList *
|
|
OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() {
|
|
switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
|
|
case Sema::TDK_Success:
|
|
case Sema::TDK_InstantiationDepth:
|
|
case Sema::TDK_TooManyArguments:
|
|
case Sema::TDK_TooFewArguments:
|
|
case Sema::TDK_Incomplete:
|
|
case Sema::TDK_InvalidExplicitArguments:
|
|
case Sema::TDK_Inconsistent:
|
|
case Sema::TDK_InconsistentQuals:
|
|
return 0;
|
|
|
|
case Sema::TDK_SubstitutionFailure:
|
|
return static_cast<TemplateArgumentList*>(Data);
|
|
|
|
// Unhandled
|
|
case Sema::TDK_NonDeducedMismatch:
|
|
case Sema::TDK_FailedOverloadResolution:
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() {
|
|
switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
|
|
case Sema::TDK_Success:
|
|
case Sema::TDK_InstantiationDepth:
|
|
case Sema::TDK_Incomplete:
|
|
case Sema::TDK_TooManyArguments:
|
|
case Sema::TDK_TooFewArguments:
|
|
case Sema::TDK_InvalidExplicitArguments:
|
|
case Sema::TDK_SubstitutionFailure:
|
|
return 0;
|
|
|
|
case Sema::TDK_Inconsistent:
|
|
case Sema::TDK_InconsistentQuals:
|
|
return &static_cast<DFIParamWithArguments*>(Data)->FirstArg;
|
|
|
|
// Unhandled
|
|
case Sema::TDK_NonDeducedMismatch:
|
|
case Sema::TDK_FailedOverloadResolution:
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
const TemplateArgument *
|
|
OverloadCandidate::DeductionFailureInfo::getSecondArg() {
|
|
switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
|
|
case Sema::TDK_Success:
|
|
case Sema::TDK_InstantiationDepth:
|
|
case Sema::TDK_Incomplete:
|
|
case Sema::TDK_TooManyArguments:
|
|
case Sema::TDK_TooFewArguments:
|
|
case Sema::TDK_InvalidExplicitArguments:
|
|
case Sema::TDK_SubstitutionFailure:
|
|
return 0;
|
|
|
|
case Sema::TDK_Inconsistent:
|
|
case Sema::TDK_InconsistentQuals:
|
|
return &static_cast<DFIParamWithArguments*>(Data)->SecondArg;
|
|
|
|
// Unhandled
|
|
case Sema::TDK_NonDeducedMismatch:
|
|
case Sema::TDK_FailedOverloadResolution:
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void OverloadCandidateSet::clear() {
|
|
inherited::clear();
|
|
Functions.clear();
|
|
}
|
|
|
|
// IsOverload - Determine whether the given New declaration is an
|
|
// overload of the declarations in Old. This routine returns false if
|
|
// New and Old cannot be overloaded, e.g., if New has the same
|
|
// signature as some function in Old (C++ 1.3.10) or if the Old
|
|
// declarations aren't functions (or function templates) at all. When
|
|
// it does return false, MatchedDecl will point to the decl that New
|
|
// cannot be overloaded with. This decl may be a UsingShadowDecl on
|
|
// top of the underlying declaration.
|
|
//
|
|
// Example: Given the following input:
|
|
//
|
|
// void f(int, float); // #1
|
|
// void f(int, int); // #2
|
|
// int f(int, int); // #3
|
|
//
|
|
// When we process #1, there is no previous declaration of "f",
|
|
// so IsOverload will not be used.
|
|
//
|
|
// When we process #2, Old contains only the FunctionDecl for #1. By
|
|
// comparing the parameter types, we see that #1 and #2 are overloaded
|
|
// (since they have different signatures), so this routine returns
|
|
// false; MatchedDecl is unchanged.
|
|
//
|
|
// When we process #3, Old is an overload set containing #1 and #2. We
|
|
// compare the signatures of #3 to #1 (they're overloaded, so we do
|
|
// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
|
|
// identical (return types of functions are not part of the
|
|
// signature), IsOverload returns false and MatchedDecl will be set to
|
|
// point to the FunctionDecl for #2.
|
|
//
|
|
// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced
|
|
// into a class by a using declaration. The rules for whether to hide
|
|
// shadow declarations ignore some properties which otherwise figure
|
|
// into a function template's signature.
|
|
Sema::OverloadKind
|
|
Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
|
|
NamedDecl *&Match, bool NewIsUsingDecl) {
|
|
for (LookupResult::iterator I = Old.begin(), E = Old.end();
|
|
I != E; ++I) {
|
|
NamedDecl *OldD = *I;
|
|
|
|
bool OldIsUsingDecl = false;
|
|
if (isa<UsingShadowDecl>(OldD)) {
|
|
OldIsUsingDecl = true;
|
|
|
|
// We can always introduce two using declarations into the same
|
|
// context, even if they have identical signatures.
|
|
if (NewIsUsingDecl) continue;
|
|
|
|
OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
|
|
}
|
|
|
|
// If either declaration was introduced by a using declaration,
|
|
// we'll need to use slightly different rules for matching.
|
|
// Essentially, these rules are the normal rules, except that
|
|
// function templates hide function templates with different
|
|
// return types or template parameter lists.
|
|
bool UseMemberUsingDeclRules =
|
|
(OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord();
|
|
|
|
if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
|
|
if (!IsOverload(New, OldT->getTemplatedDecl(), UseMemberUsingDeclRules)) {
|
|
if (UseMemberUsingDeclRules && OldIsUsingDecl) {
|
|
HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
|
|
continue;
|
|
}
|
|
|
|
Match = *I;
|
|
return Ovl_Match;
|
|
}
|
|
} else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
|
|
if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
|
|
if (UseMemberUsingDeclRules && OldIsUsingDecl) {
|
|
HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
|
|
continue;
|
|
}
|
|
|
|
Match = *I;
|
|
return Ovl_Match;
|
|
}
|
|
} else if (isa<UsingDecl>(OldD) || isa<TagDecl>(OldD)) {
|
|
// We can overload with these, which can show up when doing
|
|
// redeclaration checks for UsingDecls.
|
|
assert(Old.getLookupKind() == LookupUsingDeclName);
|
|
} else if (isa<UnresolvedUsingValueDecl>(OldD)) {
|
|
// Optimistically assume that an unresolved using decl will
|
|
// overload; if it doesn't, we'll have to diagnose during
|
|
// template instantiation.
|
|
} else {
|
|
// (C++ 13p1):
|
|
// Only function declarations can be overloaded; object and type
|
|
// declarations cannot be overloaded.
|
|
Match = *I;
|
|
return Ovl_NonFunction;
|
|
}
|
|
}
|
|
|
|
return Ovl_Overload;
|
|
}
|
|
|
|
bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
|
|
bool UseUsingDeclRules) {
|
|
FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
|
|
FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
|
|
|
|
// C++ [temp.fct]p2:
|
|
// A function template can be overloaded with other function templates
|
|
// and with normal (non-template) functions.
|
|
if ((OldTemplate == 0) != (NewTemplate == 0))
|
|
return true;
|
|
|
|
// Is the function New an overload of the function Old?
|
|
QualType OldQType = Context.getCanonicalType(Old->getType());
|
|
QualType NewQType = Context.getCanonicalType(New->getType());
|
|
|
|
// Compare the signatures (C++ 1.3.10) of the two functions to
|
|
// determine whether they are overloads. If we find any mismatch
|
|
// in the signature, they are overloads.
|
|
|
|
// If either of these functions is a K&R-style function (no
|
|
// prototype), then we consider them to have matching signatures.
|
|
if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
|
|
isa<FunctionNoProtoType>(NewQType.getTypePtr()))
|
|
return false;
|
|
|
|
FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
|
|
FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
|
|
|
|
// The signature of a function includes the types of its
|
|
// parameters (C++ 1.3.10), which includes the presence or absence
|
|
// of the ellipsis; see C++ DR 357).
|
|
if (OldQType != NewQType &&
|
|
(OldType->getNumArgs() != NewType->getNumArgs() ||
|
|
OldType->isVariadic() != NewType->isVariadic() ||
|
|
!FunctionArgTypesAreEqual(OldType, NewType)))
|
|
return true;
|
|
|
|
// C++ [temp.over.link]p4:
|
|
// The signature of a function template consists of its function
|
|
// signature, its return type and its template parameter list. The names
|
|
// of the template parameters are significant only for establishing the
|
|
// relationship between the template parameters and the rest of the
|
|
// signature.
|
|
//
|
|
// We check the return type and template parameter lists for function
|
|
// templates first; the remaining checks follow.
|
|
//
|
|
// However, we don't consider either of these when deciding whether
|
|
// a member introduced by a shadow declaration is hidden.
|
|
if (!UseUsingDeclRules && NewTemplate &&
|
|
(!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
|
|
OldTemplate->getTemplateParameters(),
|
|
false, TPL_TemplateMatch) ||
|
|
OldType->getResultType() != NewType->getResultType()))
|
|
return true;
|
|
|
|
// If the function is a class member, its signature includes the
|
|
// cv-qualifiers (if any) on the function itself.
|
|
//
|
|
// As part of this, also check whether one of the member functions
|
|
// is static, in which case they are not overloads (C++
|
|
// 13.1p2). While not part of the definition of the signature,
|
|
// this check is important to determine whether these functions
|
|
// can be overloaded.
|
|
CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
|
|
CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
|
|
if (OldMethod && NewMethod &&
|
|
!OldMethod->isStatic() && !NewMethod->isStatic() &&
|
|
OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
|
|
return true;
|
|
|
|
// The signatures match; this is not an overload.
|
|
return false;
|
|
}
|
|
|
|
/// TryImplicitConversion - Attempt to perform an implicit conversion
|
|
/// from the given expression (Expr) to the given type (ToType). This
|
|
/// function returns an implicit conversion sequence that can be used
|
|
/// to perform the initialization. Given
|
|
///
|
|
/// void f(float f);
|
|
/// void g(int i) { f(i); }
|
|
///
|
|
/// this routine would produce an implicit conversion sequence to
|
|
/// describe the initialization of f from i, which will be a standard
|
|
/// conversion sequence containing an lvalue-to-rvalue conversion (C++
|
|
/// 4.1) followed by a floating-integral conversion (C++ 4.9).
|
|
//
|
|
/// Note that this routine only determines how the conversion can be
|
|
/// performed; it does not actually perform the conversion. As such,
|
|
/// it will not produce any diagnostics if no conversion is available,
|
|
/// but will instead return an implicit conversion sequence of kind
|
|
/// "BadConversion".
|
|
///
|
|
/// If @p SuppressUserConversions, then user-defined conversions are
|
|
/// not permitted.
|
|
/// If @p AllowExplicit, then explicit user-defined conversions are
|
|
/// permitted.
|
|
ImplicitConversionSequence
|
|
Sema::TryImplicitConversion(Expr* From, QualType ToType,
|
|
bool SuppressUserConversions,
|
|
bool AllowExplicit,
|
|
bool InOverloadResolution) {
|
|
ImplicitConversionSequence ICS;
|
|
if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard)) {
|
|
ICS.setStandard();
|
|
return ICS;
|
|
}
|
|
|
|
if (!getLangOptions().CPlusPlus) {
|
|
ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
|
|
return ICS;
|
|
}
|
|
|
|
if (SuppressUserConversions) {
|
|
// C++ [over.ics.user]p4:
|
|
// A conversion of an expression of class type to the same class
|
|
// type is given Exact Match rank, and a conversion of an
|
|
// expression of class type to a base class of that type is
|
|
// given Conversion rank, in spite of the fact that a copy/move
|
|
// constructor (i.e., a user-defined conversion function) is
|
|
// called for those cases.
|
|
QualType FromType = From->getType();
|
|
if (!ToType->getAs<RecordType>() || !FromType->getAs<RecordType>() ||
|
|
!(Context.hasSameUnqualifiedType(FromType, ToType) ||
|
|
IsDerivedFrom(FromType, ToType))) {
|
|
// We're not in the case above, so there is no conversion that
|
|
// we can perform.
|
|
ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
|
|
return ICS;
|
|
}
|
|
|
|
ICS.setStandard();
|
|
ICS.Standard.setAsIdentityConversion();
|
|
ICS.Standard.setFromType(FromType);
|
|
ICS.Standard.setAllToTypes(ToType);
|
|
|
|
// We don't actually check at this point whether there is a valid
|
|
// copy/move constructor, since overloading just assumes that it
|
|
// exists. When we actually perform initialization, we'll find the
|
|
// appropriate constructor to copy the returned object, if needed.
|
|
ICS.Standard.CopyConstructor = 0;
|
|
|
|
// Determine whether this is considered a derived-to-base conversion.
|
|
if (!Context.hasSameUnqualifiedType(FromType, ToType))
|
|
ICS.Standard.Second = ICK_Derived_To_Base;
|
|
|
|
return ICS;
|
|
}
|
|
|
|
// Attempt user-defined conversion.
|
|
OverloadCandidateSet Conversions(From->getExprLoc());
|
|
OverloadingResult UserDefResult
|
|
= IsUserDefinedConversion(From, ToType, ICS.UserDefined, Conversions,
|
|
AllowExplicit);
|
|
|
|
if (UserDefResult == OR_Success) {
|
|
ICS.setUserDefined();
|
|
// C++ [over.ics.user]p4:
|
|
// A conversion of an expression of class type to the same class
|
|
// type is given Exact Match rank, and a conversion of an
|
|
// expression of class type to a base class of that type is
|
|
// given Conversion rank, in spite of the fact that a copy
|
|
// constructor (i.e., a user-defined conversion function) is
|
|
// called for those cases.
|
|
if (CXXConstructorDecl *Constructor
|
|
= dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
|
|
QualType FromCanon
|
|
= Context.getCanonicalType(From->getType().getUnqualifiedType());
|
|
QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
|
|
if (Constructor->isCopyConstructor() &&
|
|
(FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon))) {
|
|
// Turn this into a "standard" conversion sequence, so that it
|
|
// gets ranked with standard conversion sequences.
|
|
ICS.setStandard();
|
|
ICS.Standard.setAsIdentityConversion();
|
|
ICS.Standard.setFromType(From->getType());
|
|
ICS.Standard.setAllToTypes(ToType);
|
|
ICS.Standard.CopyConstructor = Constructor;
|
|
if (ToCanon != FromCanon)
|
|
ICS.Standard.Second = ICK_Derived_To_Base;
|
|
}
|
|
}
|
|
|
|
// C++ [over.best.ics]p4:
|
|
// However, when considering the argument of a user-defined
|
|
// conversion function that is a candidate by 13.3.1.3 when
|
|
// invoked for the copying of the temporary in the second step
|
|
// of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
|
|
// 13.3.1.6 in all cases, only standard conversion sequences and
|
|
// ellipsis conversion sequences are allowed.
|
|
if (SuppressUserConversions && ICS.isUserDefined()) {
|
|
ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
|
|
}
|
|
} else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
|
|
ICS.setAmbiguous();
|
|
ICS.Ambiguous.setFromType(From->getType());
|
|
ICS.Ambiguous.setToType(ToType);
|
|
for (OverloadCandidateSet::iterator Cand = Conversions.begin();
|
|
Cand != Conversions.end(); ++Cand)
|
|
if (Cand->Viable)
|
|
ICS.Ambiguous.addConversion(Cand->Function);
|
|
} else {
|
|
ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
|
|
}
|
|
|
|
return ICS;
|
|
}
|
|
|
|
/// PerformImplicitConversion - Perform an implicit conversion of the
|
|
/// expression From to the type ToType. Returns true if there was an
|
|
/// error, false otherwise. The expression From is replaced with the
|
|
/// converted expression. Flavor is the kind of conversion we're
|
|
/// performing, used in the error message. If @p AllowExplicit,
|
|
/// explicit user-defined conversions are permitted.
|
|
bool
|
|
Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
|
|
AssignmentAction Action, bool AllowExplicit) {
|
|
ImplicitConversionSequence ICS;
|
|
return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
|
|
}
|
|
|
|
bool
|
|
Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
|
|
AssignmentAction Action, bool AllowExplicit,
|
|
ImplicitConversionSequence& ICS) {
|
|
ICS = TryImplicitConversion(From, ToType,
|
|
/*SuppressUserConversions=*/false,
|
|
AllowExplicit,
|
|
/*InOverloadResolution=*/false);
|
|
return PerformImplicitConversion(From, ToType, ICS, Action);
|
|
}
|
|
|
|
/// \brief Determine whether the conversion from FromType to ToType is a valid
|
|
/// conversion that strips "noreturn" off the nested function type.
|
|
static bool IsNoReturnConversion(ASTContext &Context, QualType FromType,
|
|
QualType ToType, QualType &ResultTy) {
|
|
if (Context.hasSameUnqualifiedType(FromType, ToType))
|
|
return false;
|
|
|
|
// Strip the noreturn off the type we're converting from; noreturn can
|
|
// safely be removed.
|
|
FromType = Context.getNoReturnType(FromType, false);
|
|
if (!Context.hasSameUnqualifiedType(FromType, ToType))
|
|
return false;
|
|
|
|
ResultTy = FromType;
|
|
return true;
|
|
}
|
|
|
|
/// \brief Determine whether the conversion from FromType to ToType is a valid
|
|
/// vector conversion.
|
|
///
|
|
/// \param ICK Will be set to the vector conversion kind, if this is a vector
|
|
/// conversion.
|
|
static bool IsVectorConversion(ASTContext &Context, QualType FromType,
|
|
QualType ToType, ImplicitConversionKind &ICK) {
|
|
// We need at least one of these types to be a vector type to have a vector
|
|
// conversion.
|
|
if (!ToType->isVectorType() && !FromType->isVectorType())
|
|
return false;
|
|
|
|
// Identical types require no conversions.
|
|
if (Context.hasSameUnqualifiedType(FromType, ToType))
|
|
return false;
|
|
|
|
// There are no conversions between extended vector types, only identity.
|
|
if (ToType->isExtVectorType()) {
|
|
// There are no conversions between extended vector types other than the
|
|
// identity conversion.
|
|
if (FromType->isExtVectorType())
|
|
return false;
|
|
|
|
// Vector splat from any arithmetic type to a vector.
|
|
if (!FromType->isVectorType() && FromType->isArithmeticType()) {
|
|
ICK = ICK_Vector_Splat;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// If lax vector conversions are permitted and the vector types are of the
|
|
// same size, we can perform the conversion.
|
|
if (Context.getLangOptions().LaxVectorConversions &&
|
|
FromType->isVectorType() && ToType->isVectorType() &&
|
|
Context.getTypeSize(FromType) == Context.getTypeSize(ToType)) {
|
|
ICK = ICK_Vector_Conversion;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// IsStandardConversion - Determines whether there is a standard
|
|
/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
|
|
/// expression From to the type ToType. Standard conversion sequences
|
|
/// only consider non-class types; for conversions that involve class
|
|
/// types, use TryImplicitConversion. If a conversion exists, SCS will
|
|
/// contain the standard conversion sequence required to perform this
|
|
/// conversion and this routine will return true. Otherwise, this
|
|
/// routine will return false and the value of SCS is unspecified.
|
|
bool
|
|
Sema::IsStandardConversion(Expr* From, QualType ToType,
|
|
bool InOverloadResolution,
|
|
StandardConversionSequence &SCS) {
|
|
QualType FromType = From->getType();
|
|
|
|
// Standard conversions (C++ [conv])
|
|
SCS.setAsIdentityConversion();
|
|
SCS.DeprecatedStringLiteralToCharPtr = false;
|
|
SCS.IncompatibleObjC = false;
|
|
SCS.setFromType(FromType);
|
|
SCS.CopyConstructor = 0;
|
|
|
|
// There are no standard conversions for class types in C++, so
|
|
// abort early. When overloading in C, however, we do permit
|
|
if (FromType->isRecordType() || ToType->isRecordType()) {
|
|
if (getLangOptions().CPlusPlus)
|
|
return false;
|
|
|
|
// When we're overloading in C, we allow, as standard conversions,
|
|
}
|
|
|
|
// The first conversion can be an lvalue-to-rvalue conversion,
|
|
// array-to-pointer conversion, or function-to-pointer conversion
|
|
// (C++ 4p1).
|
|
|
|
if (FromType == Context.OverloadTy) {
|
|
DeclAccessPair AccessPair;
|
|
if (FunctionDecl *Fn
|
|
= ResolveAddressOfOverloadedFunction(From, ToType, false,
|
|
AccessPair)) {
|
|
// We were able to resolve the address of the overloaded function,
|
|
// so we can convert to the type of that function.
|
|
FromType = Fn->getType();
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
|
|
if (!Method->isStatic()) {
|
|
Type *ClassType
|
|
= Context.getTypeDeclType(Method->getParent()).getTypePtr();
|
|
FromType = Context.getMemberPointerType(FromType, ClassType);
|
|
}
|
|
}
|
|
|
|
// If the "from" expression takes the address of the overloaded
|
|
// function, update the type of the resulting expression accordingly.
|
|
if (FromType->getAs<FunctionType>())
|
|
if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(From->IgnoreParens()))
|
|
if (UnOp->getOpcode() == UnaryOperator::AddrOf)
|
|
FromType = Context.getPointerType(FromType);
|
|
|
|
// Check that we've computed the proper type after overload resolution.
|
|
assert(Context.hasSameType(FromType,
|
|
FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
// Lvalue-to-rvalue conversion (C++ 4.1):
|
|
// An lvalue (3.10) of a non-function, non-array type T can be
|
|
// converted to an rvalue.
|
|
Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
|
|
if (argIsLvalue == Expr::LV_Valid &&
|
|
!FromType->isFunctionType() && !FromType->isArrayType() &&
|
|
Context.getCanonicalType(FromType) != Context.OverloadTy) {
|
|
SCS.First = ICK_Lvalue_To_Rvalue;
|
|
|
|
// If T is a non-class type, the type of the rvalue is the
|
|
// cv-unqualified version of T. Otherwise, the type of the rvalue
|
|
// is T (C++ 4.1p1). C++ can't get here with class types; in C, we
|
|
// just strip the qualifiers because they don't matter.
|
|
FromType = FromType.getUnqualifiedType();
|
|
} else if (FromType->isArrayType()) {
|
|
// Array-to-pointer conversion (C++ 4.2)
|
|
SCS.First = ICK_Array_To_Pointer;
|
|
|
|
// An lvalue or rvalue of type "array of N T" or "array of unknown
|
|
// bound of T" can be converted to an rvalue of type "pointer to
|
|
// T" (C++ 4.2p1).
|
|
FromType = Context.getArrayDecayedType(FromType);
|
|
|
|
if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
|
|
// This conversion is deprecated. (C++ D.4).
|
|
SCS.DeprecatedStringLiteralToCharPtr = true;
|
|
|
|
// For the purpose of ranking in overload resolution
|
|
// (13.3.3.1.1), this conversion is considered an
|
|
// array-to-pointer conversion followed by a qualification
|
|
// conversion (4.4). (C++ 4.2p2)
|
|
SCS.Second = ICK_Identity;
|
|
SCS.Third = ICK_Qualification;
|
|
SCS.setAllToTypes(FromType);
|
|
return true;
|
|
}
|
|
} else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
|
|
// Function-to-pointer conversion (C++ 4.3).
|
|
SCS.First = ICK_Function_To_Pointer;
|
|
|
|
// An lvalue of function type T can be converted to an rvalue of
|
|
// type "pointer to T." The result is a pointer to the
|
|
// function. (C++ 4.3p1).
|
|
FromType = Context.getPointerType(FromType);
|
|
} else {
|
|
// We don't require any conversions for the first step.
|
|
SCS.First = ICK_Identity;
|
|
}
|
|
SCS.setToType(0, FromType);
|
|
|
|
// The second conversion can be an integral promotion, floating
|
|
// point promotion, integral conversion, floating point conversion,
|
|
// floating-integral conversion, pointer conversion,
|
|
// pointer-to-member conversion, or boolean conversion (C++ 4p1).
|
|
// For overloading in C, this can also be a "compatible-type"
|
|
// conversion.
|
|
bool IncompatibleObjC = false;
|
|
ImplicitConversionKind SecondICK = ICK_Identity;
|
|
if (Context.hasSameUnqualifiedType(FromType, ToType)) {
|
|
// The unqualified versions of the types are the same: there's no
|
|
// conversion to do.
|
|
SCS.Second = ICK_Identity;
|
|
} else if (IsIntegralPromotion(From, FromType, ToType)) {
|
|
// Integral promotion (C++ 4.5).
|
|
SCS.Second = ICK_Integral_Promotion;
|
|
FromType = ToType.getUnqualifiedType();
|
|
} else if (IsFloatingPointPromotion(FromType, ToType)) {
|
|
// Floating point promotion (C++ 4.6).
|
|
SCS.Second = ICK_Floating_Promotion;
|
|
FromType = ToType.getUnqualifiedType();
|
|
} else if (IsComplexPromotion(FromType, ToType)) {
|
|
// Complex promotion (Clang extension)
|
|
SCS.Second = ICK_Complex_Promotion;
|
|
FromType = ToType.getUnqualifiedType();
|
|
} else if (FromType->isIntegralOrEnumerationType() &&
|
|
ToType->isIntegralType(Context)) {
|
|
// Integral conversions (C++ 4.7).
|
|
SCS.Second = ICK_Integral_Conversion;
|
|
FromType = ToType.getUnqualifiedType();
|
|
} else if (FromType->isComplexType() && ToType->isComplexType()) {
|
|
// Complex conversions (C99 6.3.1.6)
|
|
SCS.Second = ICK_Complex_Conversion;
|
|
FromType = ToType.getUnqualifiedType();
|
|
} else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
|
|
(ToType->isComplexType() && FromType->isArithmeticType())) {
|
|
// Complex-real conversions (C99 6.3.1.7)
|
|
SCS.Second = ICK_Complex_Real;
|
|
FromType = ToType.getUnqualifiedType();
|
|
} else if (FromType->isFloatingType() && ToType->isFloatingType()) {
|
|
// Floating point conversions (C++ 4.8).
|
|
SCS.Second = ICK_Floating_Conversion;
|
|
FromType = ToType.getUnqualifiedType();
|
|
} else if ((FromType->isFloatingType() &&
|
|
ToType->isIntegralType(Context) && !ToType->isBooleanType()) ||
|
|
(FromType->isIntegralOrEnumerationType() &&
|
|
ToType->isFloatingType())) {
|
|
// Floating-integral conversions (C++ 4.9).
|
|
SCS.Second = ICK_Floating_Integral;
|
|
FromType = ToType.getUnqualifiedType();
|
|
} else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution,
|
|
FromType, IncompatibleObjC)) {
|
|
// Pointer conversions (C++ 4.10).
|
|
SCS.Second = ICK_Pointer_Conversion;
|
|
SCS.IncompatibleObjC = IncompatibleObjC;
|
|
} else if (IsMemberPointerConversion(From, FromType, ToType,
|
|
InOverloadResolution, FromType)) {
|
|
// Pointer to member conversions (4.11).
|
|
SCS.Second = ICK_Pointer_Member;
|
|
} else if (ToType->isBooleanType() &&
|
|
(FromType->isArithmeticType() ||
|
|
FromType->isEnumeralType() ||
|
|
FromType->isAnyPointerType() ||
|
|
FromType->isBlockPointerType() ||
|
|
FromType->isMemberPointerType() ||
|
|
FromType->isNullPtrType())) {
|
|
// Boolean conversions (C++ 4.12).
|
|
SCS.Second = ICK_Boolean_Conversion;
|
|
FromType = Context.BoolTy;
|
|
} else if (IsVectorConversion(Context, FromType, ToType, SecondICK)) {
|
|
SCS.Second = SecondICK;
|
|
FromType = ToType.getUnqualifiedType();
|
|
} else if (!getLangOptions().CPlusPlus &&
|
|
Context.typesAreCompatible(ToType, FromType)) {
|
|
// Compatible conversions (Clang extension for C function overloading)
|
|
SCS.Second = ICK_Compatible_Conversion;
|
|
FromType = ToType.getUnqualifiedType();
|
|
} else if (IsNoReturnConversion(Context, FromType, ToType, FromType)) {
|
|
// Treat a conversion that strips "noreturn" as an identity conversion.
|
|
SCS.Second = ICK_NoReturn_Adjustment;
|
|
} else {
|
|
// No second conversion required.
|
|
SCS.Second = ICK_Identity;
|
|
}
|
|
SCS.setToType(1, FromType);
|
|
|
|
QualType CanonFrom;
|
|
QualType CanonTo;
|
|
// The third conversion can be a qualification conversion (C++ 4p1).
|
|
if (IsQualificationConversion(FromType, ToType)) {
|
|
SCS.Third = ICK_Qualification;
|
|
FromType = ToType;
|
|
CanonFrom = Context.getCanonicalType(FromType);
|
|
CanonTo = Context.getCanonicalType(ToType);
|
|
} else {
|
|
// No conversion required
|
|
SCS.Third = ICK_Identity;
|
|
|
|
// C++ [over.best.ics]p6:
|
|
// [...] Any difference in top-level cv-qualification is
|
|
// subsumed by the initialization itself and does not constitute
|
|
// a conversion. [...]
|
|
CanonFrom = Context.getCanonicalType(FromType);
|
|
CanonTo = Context.getCanonicalType(ToType);
|
|
if (CanonFrom.getLocalUnqualifiedType()
|
|
== CanonTo.getLocalUnqualifiedType() &&
|
|
(CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()
|
|
|| CanonFrom.getObjCGCAttr() != CanonTo.getObjCGCAttr())) {
|
|
FromType = ToType;
|
|
CanonFrom = CanonTo;
|
|
}
|
|
}
|
|
SCS.setToType(2, FromType);
|
|
|
|
// If we have not converted the argument type to the parameter type,
|
|
// this is a bad conversion sequence.
|
|
if (CanonFrom != CanonTo)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// IsIntegralPromotion - Determines whether the conversion from the
|
|
/// expression From (whose potentially-adjusted type is FromType) to
|
|
/// ToType is an integral promotion (C++ 4.5). If so, returns true and
|
|
/// sets PromotedType to the promoted type.
|
|
bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
|
|
const BuiltinType *To = ToType->getAs<BuiltinType>();
|
|
// All integers are built-in.
|
|
if (!To) {
|
|
return false;
|
|
}
|
|
|
|
// An rvalue of type char, signed char, unsigned char, short int, or
|
|
// unsigned short int can be converted to an rvalue of type int if
|
|
// int can represent all the values of the source type; otherwise,
|
|
// the source rvalue can be converted to an rvalue of type unsigned
|
|
// int (C++ 4.5p1).
|
|
if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
|
|
!FromType->isEnumeralType()) {
|
|
if (// We can promote any signed, promotable integer type to an int
|
|
(FromType->isSignedIntegerType() ||
|
|
// We can promote any unsigned integer type whose size is
|
|
// less than int to an int.
|
|
(!FromType->isSignedIntegerType() &&
|
|
Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
|
|
return To->getKind() == BuiltinType::Int;
|
|
}
|
|
|
|
return To->getKind() == BuiltinType::UInt;
|
|
}
|
|
|
|
// An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
|
|
// can be converted to an rvalue of the first of the following types
|
|
// that can represent all the values of its underlying type: int,
|
|
// unsigned int, long, or unsigned long (C++ 4.5p2).
|
|
|
|
// We pre-calculate the promotion type for enum types.
|
|
if (const EnumType *FromEnumType = FromType->getAs<EnumType>())
|
|
if (ToType->isIntegerType())
|
|
return Context.hasSameUnqualifiedType(ToType,
|
|
FromEnumType->getDecl()->getPromotionType());
|
|
|
|
if (FromType->isWideCharType() && ToType->isIntegerType()) {
|
|
// Determine whether the type we're converting from is signed or
|
|
// unsigned.
|
|
bool FromIsSigned;
|
|
uint64_t FromSize = Context.getTypeSize(FromType);
|
|
|
|
// FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
|
|
FromIsSigned = true;
|
|
|
|
// The types we'll try to promote to, in the appropriate
|
|
// order. Try each of these types.
|
|
QualType PromoteTypes[6] = {
|
|
Context.IntTy, Context.UnsignedIntTy,
|
|
Context.LongTy, Context.UnsignedLongTy ,
|
|
Context.LongLongTy, Context.UnsignedLongLongTy
|
|
};
|
|
for (int Idx = 0; Idx < 6; ++Idx) {
|
|
uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
|
|
if (FromSize < ToSize ||
|
|
(FromSize == ToSize &&
|
|
FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
|
|
// We found the type that we can promote to. If this is the
|
|
// type we wanted, we have a promotion. Otherwise, no
|
|
// promotion.
|
|
return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// An rvalue for an integral bit-field (9.6) can be converted to an
|
|
// rvalue of type int if int can represent all the values of the
|
|
// bit-field; otherwise, it can be converted to unsigned int if
|
|
// unsigned int can represent all the values of the bit-field. If
|
|
// the bit-field is larger yet, no integral promotion applies to
|
|
// it. If the bit-field has an enumerated type, it is treated as any
|
|
// other value of that type for promotion purposes (C++ 4.5p3).
|
|
// FIXME: We should delay checking of bit-fields until we actually perform the
|
|
// conversion.
|
|
using llvm::APSInt;
|
|
if (From)
|
|
if (FieldDecl *MemberDecl = From->getBitField()) {
|
|
APSInt BitWidth;
|
|
if (FromType->isIntegralType(Context) &&
|
|
MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
|
|
APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
|
|
ToSize = Context.getTypeSize(ToType);
|
|
|
|
// Are we promoting to an int from a bitfield that fits in an int?
|
|
if (BitWidth < ToSize ||
|
|
(FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
|
|
return To->getKind() == BuiltinType::Int;
|
|
}
|
|
|
|
// Are we promoting to an unsigned int from an unsigned bitfield
|
|
// that fits into an unsigned int?
|
|
if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
|
|
return To->getKind() == BuiltinType::UInt;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// An rvalue of type bool can be converted to an rvalue of type int,
|
|
// with false becoming zero and true becoming one (C++ 4.5p4).
|
|
if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// IsFloatingPointPromotion - Determines whether the conversion from
|
|
/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
|
|
/// returns true and sets PromotedType to the promoted type.
|
|
bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
|
|
/// An rvalue of type float can be converted to an rvalue of type
|
|
/// double. (C++ 4.6p1).
|
|
if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
|
|
if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
|
|
if (FromBuiltin->getKind() == BuiltinType::Float &&
|
|
ToBuiltin->getKind() == BuiltinType::Double)
|
|
return true;
|
|
|
|
// C99 6.3.1.5p1:
|
|
// When a float is promoted to double or long double, or a
|
|
// double is promoted to long double [...].
|
|
if (!getLangOptions().CPlusPlus &&
|
|
(FromBuiltin->getKind() == BuiltinType::Float ||
|
|
FromBuiltin->getKind() == BuiltinType::Double) &&
|
|
(ToBuiltin->getKind() == BuiltinType::LongDouble))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// \brief Determine if a conversion is a complex promotion.
|
|
///
|
|
/// A complex promotion is defined as a complex -> complex conversion
|
|
/// where the conversion between the underlying real types is a
|
|
/// floating-point or integral promotion.
|
|
bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
|
|
const ComplexType *FromComplex = FromType->getAs<ComplexType>();
|
|
if (!FromComplex)
|
|
return false;
|
|
|
|
const ComplexType *ToComplex = ToType->getAs<ComplexType>();
|
|
if (!ToComplex)
|
|
return false;
|
|
|
|
return IsFloatingPointPromotion(FromComplex->getElementType(),
|
|
ToComplex->getElementType()) ||
|
|
IsIntegralPromotion(0, FromComplex->getElementType(),
|
|
ToComplex->getElementType());
|
|
}
|
|
|
|
/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
|
|
/// the pointer type FromPtr to a pointer to type ToPointee, with the
|
|
/// same type qualifiers as FromPtr has on its pointee type. ToType,
|
|
/// if non-empty, will be a pointer to ToType that may or may not have
|
|
/// the right set of qualifiers on its pointee.
|
|
static QualType
|
|
BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
|
|
QualType ToPointee, QualType ToType,
|
|
ASTContext &Context) {
|
|
QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
|
|
QualType CanonToPointee = Context.getCanonicalType(ToPointee);
|
|
Qualifiers Quals = CanonFromPointee.getQualifiers();
|
|
|
|
// Exact qualifier match -> return the pointer type we're converting to.
|
|
if (CanonToPointee.getLocalQualifiers() == Quals) {
|
|
// ToType is exactly what we need. Return it.
|
|
if (!ToType.isNull())
|
|
return ToType.getUnqualifiedType();
|
|
|
|
// Build a pointer to ToPointee. It has the right qualifiers
|
|
// already.
|
|
return Context.getPointerType(ToPointee);
|
|
}
|
|
|
|
// Just build a canonical type that has the right qualifiers.
|
|
return Context.getPointerType(
|
|
Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(),
|
|
Quals));
|
|
}
|
|
|
|
/// BuildSimilarlyQualifiedObjCObjectPointerType - In a pointer conversion from
|
|
/// the FromType, which is an objective-c pointer, to ToType, which may or may
|
|
/// not have the right set of qualifiers.
|
|
static QualType
|
|
BuildSimilarlyQualifiedObjCObjectPointerType(QualType FromType,
|
|
QualType ToType,
|
|
ASTContext &Context) {
|
|
QualType CanonFromType = Context.getCanonicalType(FromType);
|
|
QualType CanonToType = Context.getCanonicalType(ToType);
|
|
Qualifiers Quals = CanonFromType.getQualifiers();
|
|
|
|
// Exact qualifier match -> return the pointer type we're converting to.
|
|
if (CanonToType.getLocalQualifiers() == Quals)
|
|
return ToType;
|
|
|
|
// Just build a canonical type that has the right qualifiers.
|
|
return Context.getQualifiedType(CanonToType.getLocalUnqualifiedType(), Quals);
|
|
}
|
|
|
|
static bool isNullPointerConstantForConversion(Expr *Expr,
|
|
bool InOverloadResolution,
|
|
ASTContext &Context) {
|
|
// Handle value-dependent integral null pointer constants correctly.
|
|
// http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
|
|
if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
|
|
Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
|
|
return !InOverloadResolution;
|
|
|
|
return Expr->isNullPointerConstant(Context,
|
|
InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
|
|
: Expr::NPC_ValueDependentIsNull);
|
|
}
|
|
|
|
/// IsPointerConversion - Determines whether the conversion of the
|
|
/// expression From, which has the (possibly adjusted) type FromType,
|
|
/// can be converted to the type ToType via a pointer conversion (C++
|
|
/// 4.10). If so, returns true and places the converted type (that
|
|
/// might differ from ToType in its cv-qualifiers at some level) into
|
|
/// ConvertedType.
|
|
///
|
|
/// This routine also supports conversions to and from block pointers
|
|
/// and conversions with Objective-C's 'id', 'id<protocols...>', and
|
|
/// pointers to interfaces. FIXME: Once we've determined the
|
|
/// appropriate overloading rules for Objective-C, we may want to
|
|
/// split the Objective-C checks into a different routine; however,
|
|
/// GCC seems to consider all of these conversions to be pointer
|
|
/// conversions, so for now they live here. IncompatibleObjC will be
|
|
/// set if the conversion is an allowed Objective-C conversion that
|
|
/// should result in a warning.
|
|
bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
|
|
bool InOverloadResolution,
|
|
QualType& ConvertedType,
|
|
bool &IncompatibleObjC) {
|
|
IncompatibleObjC = false;
|
|
if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
|
|
return true;
|
|
|
|
// Conversion from a null pointer constant to any Objective-C pointer type.
|
|
if (ToType->isObjCObjectPointerType() &&
|
|
isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
|
|
ConvertedType = ToType;
|
|
return true;
|
|
}
|
|
|
|
// Blocks: Block pointers can be converted to void*.
|
|
if (FromType->isBlockPointerType() && ToType->isPointerType() &&
|
|
ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
|
|
ConvertedType = ToType;
|
|
return true;
|
|
}
|
|
// Blocks: A null pointer constant can be converted to a block
|
|
// pointer type.
|
|
if (ToType->isBlockPointerType() &&
|
|
isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
|
|
ConvertedType = ToType;
|
|
return true;
|
|
}
|
|
|
|
// If the left-hand-side is nullptr_t, the right side can be a null
|
|
// pointer constant.
|
|
if (ToType->isNullPtrType() &&
|
|
isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
|
|
ConvertedType = ToType;
|
|
return true;
|
|
}
|
|
|
|
const PointerType* ToTypePtr = ToType->getAs<PointerType>();
|
|
if (!ToTypePtr)
|
|
return false;
|
|
|
|
// A null pointer constant can be converted to a pointer type (C++ 4.10p1).
|
|
if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
|
|
ConvertedType = ToType;
|
|
return true;
|
|
}
|
|
|
|
// Beyond this point, both types need to be pointers
|
|
// , including objective-c pointers.
|
|
QualType ToPointeeType = ToTypePtr->getPointeeType();
|
|
if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) {
|
|
ConvertedType = BuildSimilarlyQualifiedObjCObjectPointerType(FromType,
|
|
ToType, Context);
|
|
return true;
|
|
|
|
}
|
|
const PointerType *FromTypePtr = FromType->getAs<PointerType>();
|
|
if (!FromTypePtr)
|
|
return false;
|
|
|
|
QualType FromPointeeType = FromTypePtr->getPointeeType();
|
|
|
|
// An rvalue of type "pointer to cv T," where T is an object type,
|
|
// can be converted to an rvalue of type "pointer to cv void" (C++
|
|
// 4.10p2).
|
|
if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
|
|
ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
|
|
ToPointeeType,
|
|
ToType, Context);
|
|
return true;
|
|
}
|
|
|
|
// When we're overloading in C, we allow a special kind of pointer
|
|
// conversion for compatible-but-not-identical pointee types.
|
|
if (!getLangOptions().CPlusPlus &&
|
|
Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
|
|
ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
|
|
ToPointeeType,
|
|
ToType, Context);
|
|
return true;
|
|
}
|
|
|
|
// C++ [conv.ptr]p3:
|
|
//
|
|
// An rvalue of type "pointer to cv D," where D is a class type,
|
|
// can be converted to an rvalue of type "pointer to cv B," where
|
|
// B is a base class (clause 10) of D. If B is an inaccessible
|
|
// (clause 11) or ambiguous (10.2) base class of D, a program that
|
|
// necessitates this conversion is ill-formed. The result of the
|
|
// conversion is a pointer to the base class sub-object of the
|
|
// derived class object. The null pointer value is converted to
|
|
// the null pointer value of the destination type.
|
|
//
|
|
// Note that we do not check for ambiguity or inaccessibility
|
|
// here. That is handled by CheckPointerConversion.
|
|
if (getLangOptions().CPlusPlus &&
|
|
FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
|
|
!Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
|
|
!RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
|
|
IsDerivedFrom(FromPointeeType, ToPointeeType)) {
|
|
ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
|
|
ToPointeeType,
|
|
ToType, Context);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// isObjCPointerConversion - Determines whether this is an
|
|
/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
|
|
/// with the same arguments and return values.
|
|
bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
|
|
QualType& ConvertedType,
|
|
bool &IncompatibleObjC) {
|
|
if (!getLangOptions().ObjC1)
|
|
return false;
|
|
|
|
// First, we handle all conversions on ObjC object pointer types.
|
|
const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>();
|
|
const ObjCObjectPointerType *FromObjCPtr =
|
|
FromType->getAs<ObjCObjectPointerType>();
|
|
|
|
if (ToObjCPtr && FromObjCPtr) {
|
|
// Objective C++: We're able to convert between "id" or "Class" and a
|
|
// pointer to any interface (in both directions).
|
|
if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
|
|
ConvertedType = ToType;
|
|
return true;
|
|
}
|
|
// Conversions with Objective-C's id<...>.
|
|
if ((FromObjCPtr->isObjCQualifiedIdType() ||
|
|
ToObjCPtr->isObjCQualifiedIdType()) &&
|
|
Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
|
|
/*compare=*/false)) {
|
|
ConvertedType = ToType;
|
|
return true;
|
|
}
|
|
// Objective C++: We're able to convert from a pointer to an
|
|
// interface to a pointer to a different interface.
|
|
if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
|
|
const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
|
|
const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
|
|
if (getLangOptions().CPlusPlus && LHS && RHS &&
|
|
!ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
|
|
FromObjCPtr->getPointeeType()))
|
|
return false;
|
|
ConvertedType = ToType;
|
|
return true;
|
|
}
|
|
|
|
if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
|
|
// Okay: this is some kind of implicit downcast of Objective-C
|
|
// interfaces, which is permitted. However, we're going to
|
|
// complain about it.
|
|
IncompatibleObjC = true;
|
|
ConvertedType = FromType;
|
|
return true;
|
|
}
|
|
}
|
|
// Beyond this point, both types need to be C pointers or block pointers.
|
|
QualType ToPointeeType;
|
|
if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
|
|
ToPointeeType = ToCPtr->getPointeeType();
|
|
else if (const BlockPointerType *ToBlockPtr =
|
|
ToType->getAs<BlockPointerType>()) {
|
|
// Objective C++: We're able to convert from a pointer to any object
|
|
// to a block pointer type.
|
|
if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
|
|
ConvertedType = ToType;
|
|
return true;
|
|
}
|
|
ToPointeeType = ToBlockPtr->getPointeeType();
|
|
}
|
|
else if (FromType->getAs<BlockPointerType>() &&
|
|
ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
|
|
// Objective C++: We're able to convert from a block pointer type to a
|
|
// pointer to any object.
|
|
ConvertedType = ToType;
|
|
return true;
|
|
}
|
|
else
|
|
return false;
|
|
|
|
QualType FromPointeeType;
|
|
if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
|
|
FromPointeeType = FromCPtr->getPointeeType();
|
|
else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
|
|
FromPointeeType = FromBlockPtr->getPointeeType();
|
|
else
|
|
return false;
|
|
|
|
// If we have pointers to pointers, recursively check whether this
|
|
// is an Objective-C conversion.
|
|
if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
|
|
isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
|
|
IncompatibleObjC)) {
|
|
// We always complain about this conversion.
|
|
IncompatibleObjC = true;
|
|
ConvertedType = ToType;
|
|
return true;
|
|
}
|
|
// Allow conversion of pointee being objective-c pointer to another one;
|
|
// as in I* to id.
|
|
if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
|
|
ToPointeeType->getAs<ObjCObjectPointerType>() &&
|
|
isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
|
|
IncompatibleObjC)) {
|
|
ConvertedType = ToType;
|
|
return true;
|
|
}
|
|
|
|
// If we have pointers to functions or blocks, check whether the only
|
|
// differences in the argument and result types are in Objective-C
|
|
// pointer conversions. If so, we permit the conversion (but
|
|
// complain about it).
|
|
const FunctionProtoType *FromFunctionType
|
|
= FromPointeeType->getAs<FunctionProtoType>();
|
|
const FunctionProtoType *ToFunctionType
|
|
= ToPointeeType->getAs<FunctionProtoType>();
|
|
if (FromFunctionType && ToFunctionType) {
|
|
// If the function types are exactly the same, this isn't an
|
|
// Objective-C pointer conversion.
|
|
if (Context.getCanonicalType(FromPointeeType)
|
|
== Context.getCanonicalType(ToPointeeType))
|
|
return false;
|
|
|
|
// Perform the quick checks that will tell us whether these
|
|
// function types are obviously different.
|
|
if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
|
|
FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
|
|
FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
|
|
return false;
|
|
|
|
bool HasObjCConversion = false;
|
|
if (Context.getCanonicalType(FromFunctionType->getResultType())
|
|
== Context.getCanonicalType(ToFunctionType->getResultType())) {
|
|
// Okay, the types match exactly. Nothing to do.
|
|
} else if (isObjCPointerConversion(FromFunctionType->getResultType(),
|
|
ToFunctionType->getResultType(),
|
|
ConvertedType, IncompatibleObjC)) {
|
|
// Okay, we have an Objective-C pointer conversion.
|
|
HasObjCConversion = true;
|
|
} else {
|
|
// Function types are too different. Abort.
|
|
return false;
|
|
}
|
|
|
|
// Check argument types.
|
|
for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
|
|
ArgIdx != NumArgs; ++ArgIdx) {
|
|
QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
|
|
QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
|
|
if (Context.getCanonicalType(FromArgType)
|
|
== Context.getCanonicalType(ToArgType)) {
|
|
// Okay, the types match exactly. Nothing to do.
|
|
} else if (isObjCPointerConversion(FromArgType, ToArgType,
|
|
ConvertedType, IncompatibleObjC)) {
|
|
// Okay, we have an Objective-C pointer conversion.
|
|
HasObjCConversion = true;
|
|
} else {
|
|
// Argument types are too different. Abort.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (HasObjCConversion) {
|
|
// We had an Objective-C conversion. Allow this pointer
|
|
// conversion, but complain about it.
|
|
ConvertedType = ToType;
|
|
IncompatibleObjC = true;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// FunctionArgTypesAreEqual - This routine checks two function proto types
|
|
/// for equlity of their argument types. Caller has already checked that
|
|
/// they have same number of arguments. This routine assumes that Objective-C
|
|
/// pointer types which only differ in their protocol qualifiers are equal.
|
|
bool Sema::FunctionArgTypesAreEqual(FunctionProtoType* OldType,
|
|
FunctionProtoType* NewType){
|
|
if (!getLangOptions().ObjC1)
|
|
return std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
|
|
NewType->arg_type_begin());
|
|
|
|
for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(),
|
|
N = NewType->arg_type_begin(),
|
|
E = OldType->arg_type_end(); O && (O != E); ++O, ++N) {
|
|
QualType ToType = (*O);
|
|
QualType FromType = (*N);
|
|
if (ToType != FromType) {
|
|
if (const PointerType *PTTo = ToType->getAs<PointerType>()) {
|
|
if (const PointerType *PTFr = FromType->getAs<PointerType>())
|
|
if ((PTTo->getPointeeType()->isObjCQualifiedIdType() &&
|
|
PTFr->getPointeeType()->isObjCQualifiedIdType()) ||
|
|
(PTTo->getPointeeType()->isObjCQualifiedClassType() &&
|
|
PTFr->getPointeeType()->isObjCQualifiedClassType()))
|
|
continue;
|
|
}
|
|
else if (const ObjCObjectPointerType *PTTo =
|
|
ToType->getAs<ObjCObjectPointerType>()) {
|
|
if (const ObjCObjectPointerType *PTFr =
|
|
FromType->getAs<ObjCObjectPointerType>())
|
|
if (PTTo->getInterfaceDecl() == PTFr->getInterfaceDecl())
|
|
continue;
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// CheckPointerConversion - Check the pointer conversion from the
|
|
/// expression From to the type ToType. This routine checks for
|
|
/// ambiguous or inaccessible derived-to-base pointer
|
|
/// conversions for which IsPointerConversion has already returned
|
|
/// true. It returns true and produces a diagnostic if there was an
|
|
/// error, or returns false otherwise.
|
|
bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
|
|
CastExpr::CastKind &Kind,
|
|
CXXBaseSpecifierArray& BasePath,
|
|
bool IgnoreBaseAccess) {
|
|
QualType FromType = From->getType();
|
|
|
|
if (CXXBoolLiteralExpr* LitBool
|
|
= dyn_cast<CXXBoolLiteralExpr>(From->IgnoreParens()))
|
|
if (LitBool->getValue() == false)
|
|
Diag(LitBool->getExprLoc(), diag::warn_init_pointer_from_false)
|
|
<< ToType;
|
|
|
|
if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
|
|
if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
|
|
QualType FromPointeeType = FromPtrType->getPointeeType(),
|
|
ToPointeeType = ToPtrType->getPointeeType();
|
|
|
|
if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
|
|
!Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
|
|
// We must have a derived-to-base conversion. Check an
|
|
// ambiguous or inaccessible conversion.
|
|
if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
|
|
From->getExprLoc(),
|
|
From->getSourceRange(), &BasePath,
|
|
IgnoreBaseAccess))
|
|
return true;
|
|
|
|
// The conversion was successful.
|
|
Kind = CastExpr::CK_DerivedToBase;
|
|
}
|
|
}
|
|
if (const ObjCObjectPointerType *FromPtrType =
|
|
FromType->getAs<ObjCObjectPointerType>())
|
|
if (const ObjCObjectPointerType *ToPtrType =
|
|
ToType->getAs<ObjCObjectPointerType>()) {
|
|
// Objective-C++ conversions are always okay.
|
|
// FIXME: We should have a different class of conversions for the
|
|
// Objective-C++ implicit conversions.
|
|
if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
|
|
return false;
|
|
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// IsMemberPointerConversion - Determines whether the conversion of the
|
|
/// expression From, which has the (possibly adjusted) type FromType, can be
|
|
/// converted to the type ToType via a member pointer conversion (C++ 4.11).
|
|
/// If so, returns true and places the converted type (that might differ from
|
|
/// ToType in its cv-qualifiers at some level) into ConvertedType.
|
|
bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
|
|
QualType ToType,
|
|
bool InOverloadResolution,
|
|
QualType &ConvertedType) {
|
|
const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
|
|
if (!ToTypePtr)
|
|
return false;
|
|
|
|
// A null pointer constant can be converted to a member pointer (C++ 4.11p1)
|
|
if (From->isNullPointerConstant(Context,
|
|
InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
|
|
: Expr::NPC_ValueDependentIsNull)) {
|
|
ConvertedType = ToType;
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, both types have to be member pointers.
|
|
const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
|
|
if (!FromTypePtr)
|
|
return false;
|
|
|
|
// A pointer to member of B can be converted to a pointer to member of D,
|
|
// where D is derived from B (C++ 4.11p2).
|
|
QualType FromClass(FromTypePtr->getClass(), 0);
|
|
QualType ToClass(ToTypePtr->getClass(), 0);
|
|
// FIXME: What happens when these are dependent? Is this function even called?
|
|
|
|
if (IsDerivedFrom(ToClass, FromClass)) {
|
|
ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
|
|
ToClass.getTypePtr());
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// CheckMemberPointerConversion - Check the member pointer conversion from the
|
|
/// expression From to the type ToType. This routine checks for ambiguous or
|
|
/// virtual or inaccessible base-to-derived member pointer conversions
|
|
/// for which IsMemberPointerConversion has already returned true. It returns
|
|
/// true and produces a diagnostic if there was an error, or returns false
|
|
/// otherwise.
|
|
bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
|
|
CastExpr::CastKind &Kind,
|
|
CXXBaseSpecifierArray &BasePath,
|
|
bool IgnoreBaseAccess) {
|
|
QualType FromType = From->getType();
|
|
const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
|
|
if (!FromPtrType) {
|
|
// This must be a null pointer to member pointer conversion
|
|
assert(From->isNullPointerConstant(Context,
|
|
Expr::NPC_ValueDependentIsNull) &&
|
|
"Expr must be null pointer constant!");
|
|
Kind = CastExpr::CK_NullToMemberPointer;
|
|
return false;
|
|
}
|
|
|
|
const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
|
|
assert(ToPtrType && "No member pointer cast has a target type "
|
|
"that is not a member pointer.");
|
|
|
|
QualType FromClass = QualType(FromPtrType->getClass(), 0);
|
|
QualType ToClass = QualType(ToPtrType->getClass(), 0);
|
|
|
|
// FIXME: What about dependent types?
|
|
assert(FromClass->isRecordType() && "Pointer into non-class.");
|
|
assert(ToClass->isRecordType() && "Pointer into non-class.");
|
|
|
|
CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
|
|
/*DetectVirtual=*/true);
|
|
bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
|
|
assert(DerivationOkay &&
|
|
"Should not have been called if derivation isn't OK.");
|
|
(void)DerivationOkay;
|
|
|
|
if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
|
|
getUnqualifiedType())) {
|
|
std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
|
|
Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
|
|
<< 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
if (const RecordType *VBase = Paths.getDetectedVirtual()) {
|
|
Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
|
|
<< FromClass << ToClass << QualType(VBase, 0)
|
|
<< From->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
if (!IgnoreBaseAccess)
|
|
CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
|
|
Paths.front(),
|
|
diag::err_downcast_from_inaccessible_base);
|
|
|
|
// Must be a base to derived member conversion.
|
|
BuildBasePathArray(Paths, BasePath);
|
|
Kind = CastExpr::CK_BaseToDerivedMemberPointer;
|
|
return false;
|
|
}
|
|
|
|
/// IsQualificationConversion - Determines whether the conversion from
|
|
/// an rvalue of type FromType to ToType is a qualification conversion
|
|
/// (C++ 4.4).
|
|
bool
|
|
Sema::IsQualificationConversion(QualType FromType, QualType ToType) {
|
|
FromType = Context.getCanonicalType(FromType);
|
|
ToType = Context.getCanonicalType(ToType);
|
|
|
|
// If FromType and ToType are the same type, this is not a
|
|
// qualification conversion.
|
|
if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
|
|
return false;
|
|
|
|
// (C++ 4.4p4):
|
|
// A conversion can add cv-qualifiers at levels other than the first
|
|
// in multi-level pointers, subject to the following rules: [...]
|
|
bool PreviousToQualsIncludeConst = true;
|
|
bool UnwrappedAnyPointer = false;
|
|
while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) {
|
|
// Within each iteration of the loop, we check the qualifiers to
|
|
// determine if this still looks like a qualification
|
|
// conversion. Then, if all is well, we unwrap one more level of
|
|
// pointers or pointers-to-members and do it all again
|
|
// until there are no more pointers or pointers-to-members left to
|
|
// unwrap.
|
|
UnwrappedAnyPointer = true;
|
|
|
|
// -- for every j > 0, if const is in cv 1,j then const is in cv
|
|
// 2,j, and similarly for volatile.
|
|
if (!ToType.isAtLeastAsQualifiedAs(FromType))
|
|
return false;
|
|
|
|
// -- if the cv 1,j and cv 2,j are different, then const is in
|
|
// every cv for 0 < k < j.
|
|
if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
|
|
&& !PreviousToQualsIncludeConst)
|
|
return false;
|
|
|
|
// Keep track of whether all prior cv-qualifiers in the "to" type
|
|
// include const.
|
|
PreviousToQualsIncludeConst
|
|
= PreviousToQualsIncludeConst && ToType.isConstQualified();
|
|
}
|
|
|
|
// We are left with FromType and ToType being the pointee types
|
|
// after unwrapping the original FromType and ToType the same number
|
|
// of types. If we unwrapped any pointers, and if FromType and
|
|
// ToType have the same unqualified type (since we checked
|
|
// qualifiers above), then this is a qualification conversion.
|
|
return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
|
|
}
|
|
|
|
/// Determines whether there is a user-defined conversion sequence
|
|
/// (C++ [over.ics.user]) that converts expression From to the type
|
|
/// ToType. If such a conversion exists, User will contain the
|
|
/// user-defined conversion sequence that performs such a conversion
|
|
/// and this routine will return true. Otherwise, this routine returns
|
|
/// false and User is unspecified.
|
|
///
|
|
/// \param AllowExplicit true if the conversion should consider C++0x
|
|
/// "explicit" conversion functions as well as non-explicit conversion
|
|
/// functions (C++0x [class.conv.fct]p2).
|
|
OverloadingResult Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
|
|
UserDefinedConversionSequence& User,
|
|
OverloadCandidateSet& CandidateSet,
|
|
bool AllowExplicit) {
|
|
// Whether we will only visit constructors.
|
|
bool ConstructorsOnly = false;
|
|
|
|
// If the type we are conversion to is a class type, enumerate its
|
|
// constructors.
|
|
if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
|
|
// C++ [over.match.ctor]p1:
|
|
// When objects of class type are direct-initialized (8.5), or
|
|
// copy-initialized from an expression of the same or a
|
|
// derived class type (8.5), overload resolution selects the
|
|
// constructor. [...] For copy-initialization, the candidate
|
|
// functions are all the converting constructors (12.3.1) of
|
|
// that class. The argument list is the expression-list within
|
|
// the parentheses of the initializer.
|
|
if (Context.hasSameUnqualifiedType(ToType, From->getType()) ||
|
|
(From->getType()->getAs<RecordType>() &&
|
|
IsDerivedFrom(From->getType(), ToType)))
|
|
ConstructorsOnly = true;
|
|
|
|
if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) {
|
|
// We're not going to find any constructors.
|
|
} else if (CXXRecordDecl *ToRecordDecl
|
|
= dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
|
|
DeclarationName ConstructorName
|
|
= Context.DeclarationNames.getCXXConstructorName(
|
|
Context.getCanonicalType(ToType).getUnqualifiedType());
|
|
DeclContext::lookup_iterator Con, ConEnd;
|
|
for (llvm::tie(Con, ConEnd)
|
|
= ToRecordDecl->lookup(ConstructorName);
|
|
Con != ConEnd; ++Con) {
|
|
NamedDecl *D = *Con;
|
|
DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
|
|
|
|
// Find the constructor (which may be a template).
|
|
CXXConstructorDecl *Constructor = 0;
|
|
FunctionTemplateDecl *ConstructorTmpl
|
|
= dyn_cast<FunctionTemplateDecl>(D);
|
|
if (ConstructorTmpl)
|
|
Constructor
|
|
= cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
|
|
else
|
|
Constructor = cast<CXXConstructorDecl>(D);
|
|
|
|
if (!Constructor->isInvalidDecl() &&
|
|
Constructor->isConvertingConstructor(AllowExplicit)) {
|
|
if (ConstructorTmpl)
|
|
AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
|
|
/*ExplicitArgs*/ 0,
|
|
&From, 1, CandidateSet,
|
|
/*SuppressUserConversions=*/!ConstructorsOnly);
|
|
else
|
|
// Allow one user-defined conversion when user specifies a
|
|
// From->ToType conversion via an static cast (c-style, etc).
|
|
AddOverloadCandidate(Constructor, FoundDecl,
|
|
&From, 1, CandidateSet,
|
|
/*SuppressUserConversions=*/!ConstructorsOnly);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Enumerate conversion functions, if we're allowed to.
|
|
if (ConstructorsOnly) {
|
|
} else if (RequireCompleteType(From->getLocStart(), From->getType(),
|
|
PDiag(0) << From->getSourceRange())) {
|
|
// No conversion functions from incomplete types.
|
|
} else if (const RecordType *FromRecordType
|
|
= From->getType()->getAs<RecordType>()) {
|
|
if (CXXRecordDecl *FromRecordDecl
|
|
= dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
|
|
// Add all of the conversion functions as candidates.
|
|
const UnresolvedSetImpl *Conversions
|
|
= FromRecordDecl->getVisibleConversionFunctions();
|
|
for (UnresolvedSetImpl::iterator I = Conversions->begin(),
|
|
E = Conversions->end(); I != E; ++I) {
|
|
DeclAccessPair FoundDecl = I.getPair();
|
|
NamedDecl *D = FoundDecl.getDecl();
|
|
CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
|
|
if (isa<UsingShadowDecl>(D))
|
|
D = cast<UsingShadowDecl>(D)->getTargetDecl();
|
|
|
|
CXXConversionDecl *Conv;
|
|
FunctionTemplateDecl *ConvTemplate;
|
|
if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
|
|
Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
|
|
else
|
|
Conv = cast<CXXConversionDecl>(D);
|
|
|
|
if (AllowExplicit || !Conv->isExplicit()) {
|
|
if (ConvTemplate)
|
|
AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
|
|
ActingContext, From, ToType,
|
|
CandidateSet);
|
|
else
|
|
AddConversionCandidate(Conv, FoundDecl, ActingContext,
|
|
From, ToType, CandidateSet);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
OverloadCandidateSet::iterator Best;
|
|
switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
|
|
case OR_Success:
|
|
// Record the standard conversion we used and the conversion function.
|
|
if (CXXConstructorDecl *Constructor
|
|
= dyn_cast<CXXConstructorDecl>(Best->Function)) {
|
|
// C++ [over.ics.user]p1:
|
|
// If the user-defined conversion is specified by a
|
|
// constructor (12.3.1), the initial standard conversion
|
|
// sequence converts the source type to the type required by
|
|
// the argument of the constructor.
|
|
//
|
|
QualType ThisType = Constructor->getThisType(Context);
|
|
if (Best->Conversions[0].isEllipsis())
|
|
User.EllipsisConversion = true;
|
|
else {
|
|
User.Before = Best->Conversions[0].Standard;
|
|
User.EllipsisConversion = false;
|
|
}
|
|
User.ConversionFunction = Constructor;
|
|
User.After.setAsIdentityConversion();
|
|
User.After.setFromType(
|
|
ThisType->getAs<PointerType>()->getPointeeType());
|
|
User.After.setAllToTypes(ToType);
|
|
return OR_Success;
|
|
} else if (CXXConversionDecl *Conversion
|
|
= dyn_cast<CXXConversionDecl>(Best->Function)) {
|
|
// C++ [over.ics.user]p1:
|
|
//
|
|
// [...] If the user-defined conversion is specified by a
|
|
// conversion function (12.3.2), the initial standard
|
|
// conversion sequence converts the source type to the
|
|
// implicit object parameter of the conversion function.
|
|
User.Before = Best->Conversions[0].Standard;
|
|
User.ConversionFunction = Conversion;
|
|
User.EllipsisConversion = false;
|
|
|
|
// C++ [over.ics.user]p2:
|
|
// The second standard conversion sequence converts the
|
|
// result of the user-defined conversion to the target type
|
|
// for the sequence. Since an implicit conversion sequence
|
|
// is an initialization, the special rules for
|
|
// initialization by user-defined conversion apply when
|
|
// selecting the best user-defined conversion for a
|
|
// user-defined conversion sequence (see 13.3.3 and
|
|
// 13.3.3.1).
|
|
User.After = Best->FinalConversion;
|
|
return OR_Success;
|
|
} else {
|
|
assert(false && "Not a constructor or conversion function?");
|
|
return OR_No_Viable_Function;
|
|
}
|
|
|
|
case OR_No_Viable_Function:
|
|
return OR_No_Viable_Function;
|
|
case OR_Deleted:
|
|
// No conversion here! We're done.
|
|
return OR_Deleted;
|
|
|
|
case OR_Ambiguous:
|
|
return OR_Ambiguous;
|
|
}
|
|
|
|
return OR_No_Viable_Function;
|
|
}
|
|
|
|
bool
|
|
Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
|
|
ImplicitConversionSequence ICS;
|
|
OverloadCandidateSet CandidateSet(From->getExprLoc());
|
|
OverloadingResult OvResult =
|
|
IsUserDefinedConversion(From, ToType, ICS.UserDefined,
|
|
CandidateSet, false);
|
|
if (OvResult == OR_Ambiguous)
|
|
Diag(From->getSourceRange().getBegin(),
|
|
diag::err_typecheck_ambiguous_condition)
|
|
<< From->getType() << ToType << From->getSourceRange();
|
|
else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
|
|
Diag(From->getSourceRange().getBegin(),
|
|
diag::err_typecheck_nonviable_condition)
|
|
<< From->getType() << ToType << From->getSourceRange();
|
|
else
|
|
return false;
|
|
PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &From, 1);
|
|
return true;
|
|
}
|
|
|
|
/// CompareImplicitConversionSequences - Compare two implicit
|
|
/// conversion sequences to determine whether one is better than the
|
|
/// other or if they are indistinguishable (C++ 13.3.3.2).
|
|
ImplicitConversionSequence::CompareKind
|
|
Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
|
|
const ImplicitConversionSequence& ICS2)
|
|
{
|
|
// (C++ 13.3.3.2p2): When comparing the basic forms of implicit
|
|
// conversion sequences (as defined in 13.3.3.1)
|
|
// -- a standard conversion sequence (13.3.3.1.1) is a better
|
|
// conversion sequence than a user-defined conversion sequence or
|
|
// an ellipsis conversion sequence, and
|
|
// -- a user-defined conversion sequence (13.3.3.1.2) is a better
|
|
// conversion sequence than an ellipsis conversion sequence
|
|
// (13.3.3.1.3).
|
|
//
|
|
// C++0x [over.best.ics]p10:
|
|
// For the purpose of ranking implicit conversion sequences as
|
|
// described in 13.3.3.2, the ambiguous conversion sequence is
|
|
// treated as a user-defined sequence that is indistinguishable
|
|
// from any other user-defined conversion sequence.
|
|
if (ICS1.getKindRank() < ICS2.getKindRank())
|
|
return ImplicitConversionSequence::Better;
|
|
else if (ICS2.getKindRank() < ICS1.getKindRank())
|
|
return ImplicitConversionSequence::Worse;
|
|
|
|
// The following checks require both conversion sequences to be of
|
|
// the same kind.
|
|
if (ICS1.getKind() != ICS2.getKind())
|
|
return ImplicitConversionSequence::Indistinguishable;
|
|
|
|
// Two implicit conversion sequences of the same form are
|
|
// indistinguishable conversion sequences unless one of the
|
|
// following rules apply: (C++ 13.3.3.2p3):
|
|
if (ICS1.isStandard())
|
|
return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
|
|
else if (ICS1.isUserDefined()) {
|
|
// User-defined conversion sequence U1 is a better conversion
|
|
// sequence than another user-defined conversion sequence U2 if
|
|
// they contain the same user-defined conversion function or
|
|
// constructor and if the second standard conversion sequence of
|
|
// U1 is better than the second standard conversion sequence of
|
|
// U2 (C++ 13.3.3.2p3).
|
|
if (ICS1.UserDefined.ConversionFunction ==
|
|
ICS2.UserDefined.ConversionFunction)
|
|
return CompareStandardConversionSequences(ICS1.UserDefined.After,
|
|
ICS2.UserDefined.After);
|
|
}
|
|
|
|
return ImplicitConversionSequence::Indistinguishable;
|
|
}
|
|
|
|
static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) {
|
|
while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
|
|
Qualifiers Quals;
|
|
T1 = Context.getUnqualifiedArrayType(T1, Quals);
|
|
T2 = Context.getUnqualifiedArrayType(T2, Quals);
|
|
}
|
|
|
|
return Context.hasSameUnqualifiedType(T1, T2);
|
|
}
|
|
|
|
// Per 13.3.3.2p3, compare the given standard conversion sequences to
|
|
// determine if one is a proper subset of the other.
|
|
static ImplicitConversionSequence::CompareKind
|
|
compareStandardConversionSubsets(ASTContext &Context,
|
|
const StandardConversionSequence& SCS1,
|
|
const StandardConversionSequence& SCS2) {
|
|
ImplicitConversionSequence::CompareKind Result
|
|
= ImplicitConversionSequence::Indistinguishable;
|
|
|
|
// the identity conversion sequence is considered to be a subsequence of
|
|
// any non-identity conversion sequence
|
|
if (SCS1.ReferenceBinding == SCS2.ReferenceBinding) {
|
|
if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
|
|
return ImplicitConversionSequence::Better;
|
|
else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
|
|
return ImplicitConversionSequence::Worse;
|
|
}
|
|
|
|
if (SCS1.Second != SCS2.Second) {
|
|
if (SCS1.Second == ICK_Identity)
|
|
Result = ImplicitConversionSequence::Better;
|
|
else if (SCS2.Second == ICK_Identity)
|
|
Result = ImplicitConversionSequence::Worse;
|
|
else
|
|
return ImplicitConversionSequence::Indistinguishable;
|
|
} else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1)))
|
|
return ImplicitConversionSequence::Indistinguishable;
|
|
|
|
if (SCS1.Third == SCS2.Third) {
|
|
return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
|
|
: ImplicitConversionSequence::Indistinguishable;
|
|
}
|
|
|
|
if (SCS1.Third == ICK_Identity)
|
|
return Result == ImplicitConversionSequence::Worse
|
|
? ImplicitConversionSequence::Indistinguishable
|
|
: ImplicitConversionSequence::Better;
|
|
|
|
if (SCS2.Third == ICK_Identity)
|
|
return Result == ImplicitConversionSequence::Better
|
|
? ImplicitConversionSequence::Indistinguishable
|
|
: ImplicitConversionSequence::Worse;
|
|
|
|
return ImplicitConversionSequence::Indistinguishable;
|
|
}
|
|
|
|
/// CompareStandardConversionSequences - Compare two standard
|
|
/// conversion sequences to determine whether one is better than the
|
|
/// other or if they are indistinguishable (C++ 13.3.3.2p3).
|
|
ImplicitConversionSequence::CompareKind
|
|
Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
|
|
const StandardConversionSequence& SCS2)
|
|
{
|
|
// Standard conversion sequence S1 is a better conversion sequence
|
|
// than standard conversion sequence S2 if (C++ 13.3.3.2p3):
|
|
|
|
// -- S1 is a proper subsequence of S2 (comparing the conversion
|
|
// sequences in the canonical form defined by 13.3.3.1.1,
|
|
// excluding any Lvalue Transformation; the identity conversion
|
|
// sequence is considered to be a subsequence of any
|
|
// non-identity conversion sequence) or, if not that,
|
|
if (ImplicitConversionSequence::CompareKind CK
|
|
= compareStandardConversionSubsets(Context, SCS1, SCS2))
|
|
return CK;
|
|
|
|
// -- the rank of S1 is better than the rank of S2 (by the rules
|
|
// defined below), or, if not that,
|
|
ImplicitConversionRank Rank1 = SCS1.getRank();
|
|
ImplicitConversionRank Rank2 = SCS2.getRank();
|
|
if (Rank1 < Rank2)
|
|
return ImplicitConversionSequence::Better;
|
|
else if (Rank2 < Rank1)
|
|
return ImplicitConversionSequence::Worse;
|
|
|
|
// (C++ 13.3.3.2p4): Two conversion sequences with the same rank
|
|
// are indistinguishable unless one of the following rules
|
|
// applies:
|
|
|
|
// A conversion that is not a conversion of a pointer, or
|
|
// pointer to member, to bool is better than another conversion
|
|
// that is such a conversion.
|
|
if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
|
|
return SCS2.isPointerConversionToBool()
|
|
? ImplicitConversionSequence::Better
|
|
: ImplicitConversionSequence::Worse;
|
|
|
|
// C++ [over.ics.rank]p4b2:
|
|
//
|
|
// If class B is derived directly or indirectly from class A,
|
|
// conversion of B* to A* is better than conversion of B* to
|
|
// void*, and conversion of A* to void* is better than conversion
|
|
// of B* to void*.
|
|
bool SCS1ConvertsToVoid
|
|
= SCS1.isPointerConversionToVoidPointer(Context);
|
|
bool SCS2ConvertsToVoid
|
|
= SCS2.isPointerConversionToVoidPointer(Context);
|
|
if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
|
|
// Exactly one of the conversion sequences is a conversion to
|
|
// a void pointer; it's the worse conversion.
|
|
return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
|
|
: ImplicitConversionSequence::Worse;
|
|
} else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
|
|
// Neither conversion sequence converts to a void pointer; compare
|
|
// their derived-to-base conversions.
|
|
if (ImplicitConversionSequence::CompareKind DerivedCK
|
|
= CompareDerivedToBaseConversions(SCS1, SCS2))
|
|
return DerivedCK;
|
|
} else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
|
|
// Both conversion sequences are conversions to void
|
|
// pointers. Compare the source types to determine if there's an
|
|
// inheritance relationship in their sources.
|
|
QualType FromType1 = SCS1.getFromType();
|
|
QualType FromType2 = SCS2.getFromType();
|
|
|
|
// Adjust the types we're converting from via the array-to-pointer
|
|
// conversion, if we need to.
|
|
if (SCS1.First == ICK_Array_To_Pointer)
|
|
FromType1 = Context.getArrayDecayedType(FromType1);
|
|
if (SCS2.First == ICK_Array_To_Pointer)
|
|
FromType2 = Context.getArrayDecayedType(FromType2);
|
|
|
|
QualType FromPointee1
|
|
= FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
|
|
QualType FromPointee2
|
|
= FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
|
|
|
|
if (IsDerivedFrom(FromPointee2, FromPointee1))
|
|
return ImplicitConversionSequence::Better;
|
|
else if (IsDerivedFrom(FromPointee1, FromPointee2))
|
|
return ImplicitConversionSequence::Worse;
|
|
|
|
// Objective-C++: If one interface is more specific than the
|
|
// other, it is the better one.
|
|
const ObjCObjectType* FromIface1 = FromPointee1->getAs<ObjCObjectType>();
|
|
const ObjCObjectType* FromIface2 = FromPointee2->getAs<ObjCObjectType>();
|
|
if (FromIface1 && FromIface1) {
|
|
if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
|
|
return ImplicitConversionSequence::Better;
|
|
else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
|
|
return ImplicitConversionSequence::Worse;
|
|
}
|
|
}
|
|
|
|
// Compare based on qualification conversions (C++ 13.3.3.2p3,
|
|
// bullet 3).
|
|
if (ImplicitConversionSequence::CompareKind QualCK
|
|
= CompareQualificationConversions(SCS1, SCS2))
|
|
return QualCK;
|
|
|
|
if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
|
|
// C++0x [over.ics.rank]p3b4:
|
|
// -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
|
|
// implicit object parameter of a non-static member function declared
|
|
// without a ref-qualifier, and S1 binds an rvalue reference to an
|
|
// rvalue and S2 binds an lvalue reference.
|
|
// FIXME: We don't know if we're dealing with the implicit object parameter,
|
|
// or if the member function in this case has a ref qualifier.
|
|
// (Of course, we don't have ref qualifiers yet.)
|
|
if (SCS1.RRefBinding != SCS2.RRefBinding)
|
|
return SCS1.RRefBinding ? ImplicitConversionSequence::Better
|
|
: ImplicitConversionSequence::Worse;
|
|
|
|
// C++ [over.ics.rank]p3b4:
|
|
// -- S1 and S2 are reference bindings (8.5.3), and the types to
|
|
// which the references refer are the same type except for
|
|
// top-level cv-qualifiers, and the type to which the reference
|
|
// initialized by S2 refers is more cv-qualified than the type
|
|
// to which the reference initialized by S1 refers.
|
|
QualType T1 = SCS1.getToType(2);
|
|
QualType T2 = SCS2.getToType(2);
|
|
T1 = Context.getCanonicalType(T1);
|
|
T2 = Context.getCanonicalType(T2);
|
|
Qualifiers T1Quals, T2Quals;
|
|
QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
|
|
QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
|
|
if (UnqualT1 == UnqualT2) {
|
|
// If the type is an array type, promote the element qualifiers to the type
|
|
// for comparison.
|
|
if (isa<ArrayType>(T1) && T1Quals)
|
|
T1 = Context.getQualifiedType(UnqualT1, T1Quals);
|
|
if (isa<ArrayType>(T2) && T2Quals)
|
|
T2 = Context.getQualifiedType(UnqualT2, T2Quals);
|
|
if (T2.isMoreQualifiedThan(T1))
|
|
return ImplicitConversionSequence::Better;
|
|
else if (T1.isMoreQualifiedThan(T2))
|
|
return ImplicitConversionSequence::Worse;
|
|
}
|
|
}
|
|
|
|
return ImplicitConversionSequence::Indistinguishable;
|
|
}
|
|
|
|
/// CompareQualificationConversions - Compares two standard conversion
|
|
/// sequences to determine whether they can be ranked based on their
|
|
/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
|
|
ImplicitConversionSequence::CompareKind
|
|
Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
|
|
const StandardConversionSequence& SCS2) {
|
|
// C++ 13.3.3.2p3:
|
|
// -- S1 and S2 differ only in their qualification conversion and
|
|
// yield similar types T1 and T2 (C++ 4.4), respectively, and the
|
|
// cv-qualification signature of type T1 is a proper subset of
|
|
// the cv-qualification signature of type T2, and S1 is not the
|
|
// deprecated string literal array-to-pointer conversion (4.2).
|
|
if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
|
|
SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
|
|
return ImplicitConversionSequence::Indistinguishable;
|
|
|
|
// FIXME: the example in the standard doesn't use a qualification
|
|
// conversion (!)
|
|
QualType T1 = SCS1.getToType(2);
|
|
QualType T2 = SCS2.getToType(2);
|
|
T1 = Context.getCanonicalType(T1);
|
|
T2 = Context.getCanonicalType(T2);
|
|
Qualifiers T1Quals, T2Quals;
|
|
QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
|
|
QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
|
|
|
|
// If the types are the same, we won't learn anything by unwrapped
|
|
// them.
|
|
if (UnqualT1 == UnqualT2)
|
|
return ImplicitConversionSequence::Indistinguishable;
|
|
|
|
// If the type is an array type, promote the element qualifiers to the type
|
|
// for comparison.
|
|
if (isa<ArrayType>(T1) && T1Quals)
|
|
T1 = Context.getQualifiedType(UnqualT1, T1Quals);
|
|
if (isa<ArrayType>(T2) && T2Quals)
|
|
T2 = Context.getQualifiedType(UnqualT2, T2Quals);
|
|
|
|
ImplicitConversionSequence::CompareKind Result
|
|
= ImplicitConversionSequence::Indistinguishable;
|
|
while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
|
|
// Within each iteration of the loop, we check the qualifiers to
|
|
// determine if this still looks like a qualification
|
|
// conversion. Then, if all is well, we unwrap one more level of
|
|
// pointers or pointers-to-members and do it all again
|
|
// until there are no more pointers or pointers-to-members left
|
|
// to unwrap. This essentially mimics what
|
|
// IsQualificationConversion does, but here we're checking for a
|
|
// strict subset of qualifiers.
|
|
if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
|
|
// The qualifiers are the same, so this doesn't tell us anything
|
|
// about how the sequences rank.
|
|
;
|
|
else if (T2.isMoreQualifiedThan(T1)) {
|
|
// T1 has fewer qualifiers, so it could be the better sequence.
|
|
if (Result == ImplicitConversionSequence::Worse)
|
|
// Neither has qualifiers that are a subset of the other's
|
|
// qualifiers.
|
|
return ImplicitConversionSequence::Indistinguishable;
|
|
|
|
Result = ImplicitConversionSequence::Better;
|
|
} else if (T1.isMoreQualifiedThan(T2)) {
|
|
// T2 has fewer qualifiers, so it could be the better sequence.
|
|
if (Result == ImplicitConversionSequence::Better)
|
|
// Neither has qualifiers that are a subset of the other's
|
|
// qualifiers.
|
|
return ImplicitConversionSequence::Indistinguishable;
|
|
|
|
Result = ImplicitConversionSequence::Worse;
|
|
} else {
|
|
// Qualifiers are disjoint.
|
|
return ImplicitConversionSequence::Indistinguishable;
|
|
}
|
|
|
|
// If the types after this point are equivalent, we're done.
|
|
if (Context.hasSameUnqualifiedType(T1, T2))
|
|
break;
|
|
}
|
|
|
|
// Check that the winning standard conversion sequence isn't using
|
|
// the deprecated string literal array to pointer conversion.
|
|
switch (Result) {
|
|
case ImplicitConversionSequence::Better:
|
|
if (SCS1.DeprecatedStringLiteralToCharPtr)
|
|
Result = ImplicitConversionSequence::Indistinguishable;
|
|
break;
|
|
|
|
case ImplicitConversionSequence::Indistinguishable:
|
|
break;
|
|
|
|
case ImplicitConversionSequence::Worse:
|
|
if (SCS2.DeprecatedStringLiteralToCharPtr)
|
|
Result = ImplicitConversionSequence::Indistinguishable;
|
|
break;
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
/// CompareDerivedToBaseConversions - Compares two standard conversion
|
|
/// sequences to determine whether they can be ranked based on their
|
|
/// various kinds of derived-to-base conversions (C++
|
|
/// [over.ics.rank]p4b3). As part of these checks, we also look at
|
|
/// conversions between Objective-C interface types.
|
|
ImplicitConversionSequence::CompareKind
|
|
Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
|
|
const StandardConversionSequence& SCS2) {
|
|
QualType FromType1 = SCS1.getFromType();
|
|
QualType ToType1 = SCS1.getToType(1);
|
|
QualType FromType2 = SCS2.getFromType();
|
|
QualType ToType2 = SCS2.getToType(1);
|
|
|
|
// Adjust the types we're converting from via the array-to-pointer
|
|
// conversion, if we need to.
|
|
if (SCS1.First == ICK_Array_To_Pointer)
|
|
FromType1 = Context.getArrayDecayedType(FromType1);
|
|
if (SCS2.First == ICK_Array_To_Pointer)
|
|
FromType2 = Context.getArrayDecayedType(FromType2);
|
|
|
|
// Canonicalize all of the types.
|
|
FromType1 = Context.getCanonicalType(FromType1);
|
|
ToType1 = Context.getCanonicalType(ToType1);
|
|
FromType2 = Context.getCanonicalType(FromType2);
|
|
ToType2 = Context.getCanonicalType(ToType2);
|
|
|
|
// C++ [over.ics.rank]p4b3:
|
|
//
|
|
// If class B is derived directly or indirectly from class A and
|
|
// class C is derived directly or indirectly from B,
|
|
//
|
|
// For Objective-C, we let A, B, and C also be Objective-C
|
|
// interfaces.
|
|
|
|
// Compare based on pointer conversions.
|
|
if (SCS1.Second == ICK_Pointer_Conversion &&
|
|
SCS2.Second == ICK_Pointer_Conversion &&
|
|
/*FIXME: Remove if Objective-C id conversions get their own rank*/
|
|
FromType1->isPointerType() && FromType2->isPointerType() &&
|
|
ToType1->isPointerType() && ToType2->isPointerType()) {
|
|
QualType FromPointee1
|
|
= FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
|
|
QualType ToPointee1
|
|
= ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
|
|
QualType FromPointee2
|
|
= FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
|
|
QualType ToPointee2
|
|
= ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
|
|
|
|
const ObjCObjectType* FromIface1 = FromPointee1->getAs<ObjCObjectType>();
|
|
const ObjCObjectType* FromIface2 = FromPointee2->getAs<ObjCObjectType>();
|
|
const ObjCObjectType* ToIface1 = ToPointee1->getAs<ObjCObjectType>();
|
|
const ObjCObjectType* ToIface2 = ToPointee2->getAs<ObjCObjectType>();
|
|
|
|
// -- conversion of C* to B* is better than conversion of C* to A*,
|
|
if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
|
|
if (IsDerivedFrom(ToPointee1, ToPointee2))
|
|
return ImplicitConversionSequence::Better;
|
|
else if (IsDerivedFrom(ToPointee2, ToPointee1))
|
|
return ImplicitConversionSequence::Worse;
|
|
|
|
if (ToIface1 && ToIface2) {
|
|
if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
|
|
return ImplicitConversionSequence::Better;
|
|
else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
|
|
return ImplicitConversionSequence::Worse;
|
|
}
|
|
}
|
|
|
|
// -- conversion of B* to A* is better than conversion of C* to A*,
|
|
if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
|
|
if (IsDerivedFrom(FromPointee2, FromPointee1))
|
|
return ImplicitConversionSequence::Better;
|
|
else if (IsDerivedFrom(FromPointee1, FromPointee2))
|
|
return ImplicitConversionSequence::Worse;
|
|
|
|
if (FromIface1 && FromIface2) {
|
|
if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
|
|
return ImplicitConversionSequence::Better;
|
|
else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
|
|
return ImplicitConversionSequence::Worse;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Ranking of member-pointer types.
|
|
if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
|
|
FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
|
|
ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
|
|
const MemberPointerType * FromMemPointer1 =
|
|
FromType1->getAs<MemberPointerType>();
|
|
const MemberPointerType * ToMemPointer1 =
|
|
ToType1->getAs<MemberPointerType>();
|
|
const MemberPointerType * FromMemPointer2 =
|
|
FromType2->getAs<MemberPointerType>();
|
|
const MemberPointerType * ToMemPointer2 =
|
|
ToType2->getAs<MemberPointerType>();
|
|
const Type *FromPointeeType1 = FromMemPointer1->getClass();
|
|
const Type *ToPointeeType1 = ToMemPointer1->getClass();
|
|
const Type *FromPointeeType2 = FromMemPointer2->getClass();
|
|
const Type *ToPointeeType2 = ToMemPointer2->getClass();
|
|
QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
|
|
QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
|
|
QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
|
|
QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
|
|
// conversion of A::* to B::* is better than conversion of A::* to C::*,
|
|
if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
|
|
if (IsDerivedFrom(ToPointee1, ToPointee2))
|
|
return ImplicitConversionSequence::Worse;
|
|
else if (IsDerivedFrom(ToPointee2, ToPointee1))
|
|
return ImplicitConversionSequence::Better;
|
|
}
|
|
// conversion of B::* to C::* is better than conversion of A::* to C::*
|
|
if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
|
|
if (IsDerivedFrom(FromPointee1, FromPointee2))
|
|
return ImplicitConversionSequence::Better;
|
|
else if (IsDerivedFrom(FromPointee2, FromPointee1))
|
|
return ImplicitConversionSequence::Worse;
|
|
}
|
|
}
|
|
|
|
if (SCS1.Second == ICK_Derived_To_Base) {
|
|
// -- conversion of C to B is better than conversion of C to A,
|
|
// -- binding of an expression of type C to a reference of type
|
|
// B& is better than binding an expression of type C to a
|
|
// reference of type A&,
|
|
if (Context.hasSameUnqualifiedType(FromType1, FromType2) &&
|
|
!Context.hasSameUnqualifiedType(ToType1, ToType2)) {
|
|
if (IsDerivedFrom(ToType1, ToType2))
|
|
return ImplicitConversionSequence::Better;
|
|
else if (IsDerivedFrom(ToType2, ToType1))
|
|
return ImplicitConversionSequence::Worse;
|
|
}
|
|
|
|
// -- conversion of B to A is better than conversion of C to A.
|
|
// -- binding of an expression of type B to a reference of type
|
|
// A& is better than binding an expression of type C to a
|
|
// reference of type A&,
|
|
if (!Context.hasSameUnqualifiedType(FromType1, FromType2) &&
|
|
Context.hasSameUnqualifiedType(ToType1, ToType2)) {
|
|
if (IsDerivedFrom(FromType2, FromType1))
|
|
return ImplicitConversionSequence::Better;
|
|
else if (IsDerivedFrom(FromType1, FromType2))
|
|
return ImplicitConversionSequence::Worse;
|
|
}
|
|
}
|
|
|
|
return ImplicitConversionSequence::Indistinguishable;
|
|
}
|
|
|
|
/// CompareReferenceRelationship - Compare the two types T1 and T2 to
|
|
/// determine whether they are reference-related,
|
|
/// reference-compatible, reference-compatible with added
|
|
/// qualification, or incompatible, for use in C++ initialization by
|
|
/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
|
|
/// type, and the first type (T1) is the pointee type of the reference
|
|
/// type being initialized.
|
|
Sema::ReferenceCompareResult
|
|
Sema::CompareReferenceRelationship(SourceLocation Loc,
|
|
QualType OrigT1, QualType OrigT2,
|
|
bool& DerivedToBase) {
|
|
assert(!OrigT1->isReferenceType() &&
|
|
"T1 must be the pointee type of the reference type");
|
|
assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
|
|
|
|
QualType T1 = Context.getCanonicalType(OrigT1);
|
|
QualType T2 = Context.getCanonicalType(OrigT2);
|
|
Qualifiers T1Quals, T2Quals;
|
|
QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
|
|
QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
|
|
|
|
// C++ [dcl.init.ref]p4:
|
|
// Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
|
|
// reference-related to "cv2 T2" if T1 is the same type as T2, or
|
|
// T1 is a base class of T2.
|
|
if (UnqualT1 == UnqualT2)
|
|
DerivedToBase = false;
|
|
else if (!RequireCompleteType(Loc, OrigT2, PDiag()) &&
|
|
IsDerivedFrom(UnqualT2, UnqualT1))
|
|
DerivedToBase = true;
|
|
else
|
|
return Ref_Incompatible;
|
|
|
|
// At this point, we know that T1 and T2 are reference-related (at
|
|
// least).
|
|
|
|
// If the type is an array type, promote the element qualifiers to the type
|
|
// for comparison.
|
|
if (isa<ArrayType>(T1) && T1Quals)
|
|
T1 = Context.getQualifiedType(UnqualT1, T1Quals);
|
|
if (isa<ArrayType>(T2) && T2Quals)
|
|
T2 = Context.getQualifiedType(UnqualT2, T2Quals);
|
|
|
|
// C++ [dcl.init.ref]p4:
|
|
// "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
|
|
// reference-related to T2 and cv1 is the same cv-qualification
|
|
// as, or greater cv-qualification than, cv2. For purposes of
|
|
// overload resolution, cases for which cv1 is greater
|
|
// cv-qualification than cv2 are identified as
|
|
// reference-compatible with added qualification (see 13.3.3.2).
|
|
if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers())
|
|
return Ref_Compatible;
|
|
else if (T1.isMoreQualifiedThan(T2))
|
|
return Ref_Compatible_With_Added_Qualification;
|
|
else
|
|
return Ref_Related;
|
|
}
|
|
|
|
/// \brief Compute an implicit conversion sequence for reference
|
|
/// initialization.
|
|
static ImplicitConversionSequence
|
|
TryReferenceInit(Sema &S, Expr *&Init, QualType DeclType,
|
|
SourceLocation DeclLoc,
|
|
bool SuppressUserConversions,
|
|
bool AllowExplicit) {
|
|
assert(DeclType->isReferenceType() && "Reference init needs a reference");
|
|
|
|
// Most paths end in a failed conversion.
|
|
ImplicitConversionSequence ICS;
|
|
ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
|
|
|
|
QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
|
|
QualType T2 = Init->getType();
|
|
|
|
// If the initializer is the address of an overloaded function, try
|
|
// to resolve the overloaded function. If all goes well, T2 is the
|
|
// type of the resulting function.
|
|
if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
|
|
DeclAccessPair Found;
|
|
if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
|
|
false, Found))
|
|
T2 = Fn->getType();
|
|
}
|
|
|
|
// Compute some basic properties of the types and the initializer.
|
|
bool isRValRef = DeclType->isRValueReferenceType();
|
|
bool DerivedToBase = false;
|
|
Expr::isLvalueResult InitLvalue = Init->isLvalue(S.Context);
|
|
Sema::ReferenceCompareResult RefRelationship
|
|
= S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase);
|
|
|
|
|
|
// C++ [over.ics.ref]p3:
|
|
// Except for an implicit object parameter, for which see 13.3.1,
|
|
// a standard conversion sequence cannot be formed if it requires
|
|
// binding an lvalue reference to non-const to an rvalue or
|
|
// binding an rvalue reference to an lvalue.
|
|
//
|
|
// FIXME: DPG doesn't trust this code. It seems far too early to
|
|
// abort because of a binding of an rvalue reference to an lvalue.
|
|
if (isRValRef && InitLvalue == Expr::LV_Valid)
|
|
return ICS;
|
|
|
|
// C++0x [dcl.init.ref]p16:
|
|
// A reference to type "cv1 T1" is initialized by an expression
|
|
// of type "cv2 T2" as follows:
|
|
|
|
// -- If the initializer expression
|
|
// -- is an lvalue (but is not a bit-field), and "cv1 T1" is
|
|
// reference-compatible with "cv2 T2," or
|
|
//
|
|
// Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
|
|
if (InitLvalue == Expr::LV_Valid &&
|
|
RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
|
|
// C++ [over.ics.ref]p1:
|
|
// When a parameter of reference type binds directly (8.5.3)
|
|
// to an argument expression, the implicit conversion sequence
|
|
// is the identity conversion, unless the argument expression
|
|
// has a type that is a derived class of the parameter type,
|
|
// in which case the implicit conversion sequence is a
|
|
// derived-to-base Conversion (13.3.3.1).
|
|
ICS.setStandard();
|
|
ICS.Standard.First = ICK_Identity;
|
|
ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
|
|
ICS.Standard.Third = ICK_Identity;
|
|
ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
|
|
ICS.Standard.setToType(0, T2);
|
|
ICS.Standard.setToType(1, T1);
|
|
ICS.Standard.setToType(2, T1);
|
|
ICS.Standard.ReferenceBinding = true;
|
|
ICS.Standard.DirectBinding = true;
|
|
ICS.Standard.RRefBinding = false;
|
|
ICS.Standard.CopyConstructor = 0;
|
|
|
|
// Nothing more to do: the inaccessibility/ambiguity check for
|
|
// derived-to-base conversions is suppressed when we're
|
|
// computing the implicit conversion sequence (C++
|
|
// [over.best.ics]p2).
|
|
return ICS;
|
|
}
|
|
|
|
// -- has a class type (i.e., T2 is a class type), where T1 is
|
|
// not reference-related to T2, and can be implicitly
|
|
// converted to an lvalue of type "cv3 T3," where "cv1 T1"
|
|
// is reference-compatible with "cv3 T3" 92) (this
|
|
// conversion is selected by enumerating the applicable
|
|
// conversion functions (13.3.1.6) and choosing the best
|
|
// one through overload resolution (13.3)),
|
|
if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
|
|
!S.RequireCompleteType(DeclLoc, T2, 0) &&
|
|
RefRelationship == Sema::Ref_Incompatible) {
|
|
CXXRecordDecl *T2RecordDecl
|
|
= dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
|
|
|
|
OverloadCandidateSet CandidateSet(DeclLoc);
|
|
const UnresolvedSetImpl *Conversions
|
|
= T2RecordDecl->getVisibleConversionFunctions();
|
|
for (UnresolvedSetImpl::iterator I = Conversions->begin(),
|
|
E = Conversions->end(); I != E; ++I) {
|
|
NamedDecl *D = *I;
|
|
CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
|
|
if (isa<UsingShadowDecl>(D))
|
|
D = cast<UsingShadowDecl>(D)->getTargetDecl();
|
|
|
|
FunctionTemplateDecl *ConvTemplate
|
|
= dyn_cast<FunctionTemplateDecl>(D);
|
|
CXXConversionDecl *Conv;
|
|
if (ConvTemplate)
|
|
Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
|
|
else
|
|
Conv = cast<CXXConversionDecl>(D);
|
|
|
|
// If the conversion function doesn't return a reference type,
|
|
// it can't be considered for this conversion.
|
|
if (Conv->getConversionType()->isLValueReferenceType() &&
|
|
(AllowExplicit || !Conv->isExplicit())) {
|
|
if (ConvTemplate)
|
|
S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
|
|
Init, DeclType, CandidateSet);
|
|
else
|
|
S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
|
|
DeclType, CandidateSet);
|
|
}
|
|
}
|
|
|
|
OverloadCandidateSet::iterator Best;
|
|
switch (S.BestViableFunction(CandidateSet, DeclLoc, Best)) {
|
|
case OR_Success:
|
|
// C++ [over.ics.ref]p1:
|
|
//
|
|
// [...] If the parameter binds directly to the result of
|
|
// applying a conversion function to the argument
|
|
// expression, the implicit conversion sequence is a
|
|
// user-defined conversion sequence (13.3.3.1.2), with the
|
|
// second standard conversion sequence either an identity
|
|
// conversion or, if the conversion function returns an
|
|
// entity of a type that is a derived class of the parameter
|
|
// type, a derived-to-base Conversion.
|
|
if (!Best->FinalConversion.DirectBinding)
|
|
break;
|
|
|
|
ICS.setUserDefined();
|
|
ICS.UserDefined.Before = Best->Conversions[0].Standard;
|
|
ICS.UserDefined.After = Best->FinalConversion;
|
|
ICS.UserDefined.ConversionFunction = Best->Function;
|
|
ICS.UserDefined.EllipsisConversion = false;
|
|
assert(ICS.UserDefined.After.ReferenceBinding &&
|
|
ICS.UserDefined.After.DirectBinding &&
|
|
"Expected a direct reference binding!");
|
|
return ICS;
|
|
|
|
case OR_Ambiguous:
|
|
ICS.setAmbiguous();
|
|
for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
|
|
Cand != CandidateSet.end(); ++Cand)
|
|
if (Cand->Viable)
|
|
ICS.Ambiguous.addConversion(Cand->Function);
|
|
return ICS;
|
|
|
|
case OR_No_Viable_Function:
|
|
case OR_Deleted:
|
|
// There was no suitable conversion, or we found a deleted
|
|
// conversion; continue with other checks.
|
|
break;
|
|
}
|
|
}
|
|
|
|
// -- Otherwise, the reference shall be to a non-volatile const
|
|
// type (i.e., cv1 shall be const), or the reference shall be an
|
|
// rvalue reference and the initializer expression shall be an rvalue.
|
|
//
|
|
// We actually handle one oddity of C++ [over.ics.ref] at this
|
|
// point, which is that, due to p2 (which short-circuits reference
|
|
// binding by only attempting a simple conversion for non-direct
|
|
// bindings) and p3's strange wording, we allow a const volatile
|
|
// reference to bind to an rvalue. Hence the check for the presence
|
|
// of "const" rather than checking for "const" being the only
|
|
// qualifier.
|
|
if (!isRValRef && !T1.isConstQualified())
|
|
return ICS;
|
|
|
|
// -- if T2 is a class type and
|
|
// -- the initializer expression is an rvalue and "cv1 T1"
|
|
// is reference-compatible with "cv2 T2," or
|
|
//
|
|
// -- T1 is not reference-related to T2 and the initializer
|
|
// expression can be implicitly converted to an rvalue
|
|
// of type "cv3 T3" (this conversion is selected by
|
|
// enumerating the applicable conversion functions
|
|
// (13.3.1.6) and choosing the best one through overload
|
|
// resolution (13.3)),
|
|
//
|
|
// then the reference is bound to the initializer
|
|
// expression rvalue in the first case and to the object
|
|
// that is the result of the conversion in the second case
|
|
// (or, in either case, to the appropriate base class
|
|
// subobject of the object).
|
|
//
|
|
// We're only checking the first case here, which is a direct
|
|
// binding in C++0x but not in C++03.
|
|
if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
|
|
RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
|
|
ICS.setStandard();
|
|
ICS.Standard.First = ICK_Identity;
|
|
ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
|
|
ICS.Standard.Third = ICK_Identity;
|
|
ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
|
|
ICS.Standard.setToType(0, T2);
|
|
ICS.Standard.setToType(1, T1);
|
|
ICS.Standard.setToType(2, T1);
|
|
ICS.Standard.ReferenceBinding = true;
|
|
ICS.Standard.DirectBinding = S.getLangOptions().CPlusPlus0x;
|
|
ICS.Standard.RRefBinding = isRValRef;
|
|
ICS.Standard.CopyConstructor = 0;
|
|
return ICS;
|
|
}
|
|
|
|
// -- Otherwise, a temporary of type "cv1 T1" is created and
|
|
// initialized from the initializer expression using the
|
|
// rules for a non-reference copy initialization (8.5). The
|
|
// reference is then bound to the temporary. If T1 is
|
|
// reference-related to T2, cv1 must be the same
|
|
// cv-qualification as, or greater cv-qualification than,
|
|
// cv2; otherwise, the program is ill-formed.
|
|
if (RefRelationship == Sema::Ref_Related) {
|
|
// If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
|
|
// we would be reference-compatible or reference-compatible with
|
|
// added qualification. But that wasn't the case, so the reference
|
|
// initialization fails.
|
|
return ICS;
|
|
}
|
|
|
|
// If at least one of the types is a class type, the types are not
|
|
// related, and we aren't allowed any user conversions, the
|
|
// reference binding fails. This case is important for breaking
|
|
// recursion, since TryImplicitConversion below will attempt to
|
|
// create a temporary through the use of a copy constructor.
|
|
if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
|
|
(T1->isRecordType() || T2->isRecordType()))
|
|
return ICS;
|
|
|
|
// C++ [over.ics.ref]p2:
|
|
// When a parameter of reference type is not bound directly to
|
|
// an argument expression, the conversion sequence is the one
|
|
// required to convert the argument expression to the
|
|
// underlying type of the reference according to
|
|
// 13.3.3.1. Conceptually, this conversion sequence corresponds
|
|
// to copy-initializing a temporary of the underlying type with
|
|
// the argument expression. Any difference in top-level
|
|
// cv-qualification is subsumed by the initialization itself
|
|
// and does not constitute a conversion.
|
|
ICS = S.TryImplicitConversion(Init, T1, SuppressUserConversions,
|
|
/*AllowExplicit=*/false,
|
|
/*InOverloadResolution=*/false);
|
|
|
|
// Of course, that's still a reference binding.
|
|
if (ICS.isStandard()) {
|
|
ICS.Standard.ReferenceBinding = true;
|
|
ICS.Standard.RRefBinding = isRValRef;
|
|
} else if (ICS.isUserDefined()) {
|
|
ICS.UserDefined.After.ReferenceBinding = true;
|
|
ICS.UserDefined.After.RRefBinding = isRValRef;
|
|
}
|
|
return ICS;
|
|
}
|
|
|
|
/// TryCopyInitialization - Try to copy-initialize a value of type
|
|
/// ToType from the expression From. Return the implicit conversion
|
|
/// sequence required to pass this argument, which may be a bad
|
|
/// conversion sequence (meaning that the argument cannot be passed to
|
|
/// a parameter of this type). If @p SuppressUserConversions, then we
|
|
/// do not permit any user-defined conversion sequences.
|
|
static ImplicitConversionSequence
|
|
TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
|
|
bool SuppressUserConversions,
|
|
bool InOverloadResolution) {
|
|
if (ToType->isReferenceType())
|
|
return TryReferenceInit(S, From, ToType,
|
|
/*FIXME:*/From->getLocStart(),
|
|
SuppressUserConversions,
|
|
/*AllowExplicit=*/false);
|
|
|
|
return S.TryImplicitConversion(From, ToType,
|
|
SuppressUserConversions,
|
|
/*AllowExplicit=*/false,
|
|
InOverloadResolution);
|
|
}
|
|
|
|
/// TryObjectArgumentInitialization - Try to initialize the object
|
|
/// parameter of the given member function (@c Method) from the
|
|
/// expression @p From.
|
|
ImplicitConversionSequence
|
|
Sema::TryObjectArgumentInitialization(QualType OrigFromType,
|
|
CXXMethodDecl *Method,
|
|
CXXRecordDecl *ActingContext) {
|
|
QualType ClassType = Context.getTypeDeclType(ActingContext);
|
|
// [class.dtor]p2: A destructor can be invoked for a const, volatile or
|
|
// const volatile object.
|
|
unsigned Quals = isa<CXXDestructorDecl>(Method) ?
|
|
Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
|
|
QualType ImplicitParamType = Context.getCVRQualifiedType(ClassType, Quals);
|
|
|
|
// Set up the conversion sequence as a "bad" conversion, to allow us
|
|
// to exit early.
|
|
ImplicitConversionSequence ICS;
|
|
|
|
// We need to have an object of class type.
|
|
QualType FromType = OrigFromType;
|
|
if (const PointerType *PT = FromType->getAs<PointerType>())
|
|
FromType = PT->getPointeeType();
|
|
|
|
assert(FromType->isRecordType());
|
|
|
|
// The implicit object parameter is has the type "reference to cv X",
|
|
// where X is the class of which the function is a member
|
|
// (C++ [over.match.funcs]p4). However, when finding an implicit
|
|
// conversion sequence for the argument, we are not allowed to
|
|
// create temporaries or perform user-defined conversions
|
|
// (C++ [over.match.funcs]p5). We perform a simplified version of
|
|
// reference binding here, that allows class rvalues to bind to
|
|
// non-constant references.
|
|
|
|
// First check the qualifiers. We don't care about lvalue-vs-rvalue
|
|
// with the implicit object parameter (C++ [over.match.funcs]p5).
|
|
QualType FromTypeCanon = Context.getCanonicalType(FromType);
|
|
if (ImplicitParamType.getCVRQualifiers()
|
|
!= FromTypeCanon.getLocalCVRQualifiers() &&
|
|
!ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
|
|
ICS.setBad(BadConversionSequence::bad_qualifiers,
|
|
OrigFromType, ImplicitParamType);
|
|
return ICS;
|
|
}
|
|
|
|
// Check that we have either the same type or a derived type. It
|
|
// affects the conversion rank.
|
|
QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
|
|
ImplicitConversionKind SecondKind;
|
|
if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
|
|
SecondKind = ICK_Identity;
|
|
} else if (IsDerivedFrom(FromType, ClassType))
|
|
SecondKind = ICK_Derived_To_Base;
|
|
else {
|
|
ICS.setBad(BadConversionSequence::unrelated_class,
|
|
FromType, ImplicitParamType);
|
|
return ICS;
|
|
}
|
|
|
|
// Success. Mark this as a reference binding.
|
|
ICS.setStandard();
|
|
ICS.Standard.setAsIdentityConversion();
|
|
ICS.Standard.Second = SecondKind;
|
|
ICS.Standard.setFromType(FromType);
|
|
ICS.Standard.setAllToTypes(ImplicitParamType);
|
|
ICS.Standard.ReferenceBinding = true;
|
|
ICS.Standard.DirectBinding = true;
|
|
ICS.Standard.RRefBinding = false;
|
|
return ICS;
|
|
}
|
|
|
|
/// PerformObjectArgumentInitialization - Perform initialization of
|
|
/// the implicit object parameter for the given Method with the given
|
|
/// expression.
|
|
bool
|
|
Sema::PerformObjectArgumentInitialization(Expr *&From,
|
|
NestedNameSpecifier *Qualifier,
|
|
NamedDecl *FoundDecl,
|
|
CXXMethodDecl *Method) {
|
|
QualType FromRecordType, DestType;
|
|
QualType ImplicitParamRecordType =
|
|
Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
|
|
|
|
if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
|
|
FromRecordType = PT->getPointeeType();
|
|
DestType = Method->getThisType(Context);
|
|
} else {
|
|
FromRecordType = From->getType();
|
|
DestType = ImplicitParamRecordType;
|
|
}
|
|
|
|
// Note that we always use the true parent context when performing
|
|
// the actual argument initialization.
|
|
ImplicitConversionSequence ICS
|
|
= TryObjectArgumentInitialization(From->getType(), Method,
|
|
Method->getParent());
|
|
if (ICS.isBad())
|
|
return Diag(From->getSourceRange().getBegin(),
|
|
diag::err_implicit_object_parameter_init)
|
|
<< ImplicitParamRecordType << FromRecordType << From->getSourceRange();
|
|
|
|
if (ICS.Standard.Second == ICK_Derived_To_Base)
|
|
return PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
|
|
|
|
if (!Context.hasSameType(From->getType(), DestType))
|
|
ImpCastExprToType(From, DestType, CastExpr::CK_NoOp,
|
|
/*isLvalue=*/!From->getType()->isPointerType());
|
|
return false;
|
|
}
|
|
|
|
/// TryContextuallyConvertToBool - Attempt to contextually convert the
|
|
/// expression From to bool (C++0x [conv]p3).
|
|
ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
|
|
// FIXME: This is pretty broken.
|
|
return TryImplicitConversion(From, Context.BoolTy,
|
|
// FIXME: Are these flags correct?
|
|
/*SuppressUserConversions=*/false,
|
|
/*AllowExplicit=*/true,
|
|
/*InOverloadResolution=*/false);
|
|
}
|
|
|
|
/// PerformContextuallyConvertToBool - Perform a contextual conversion
|
|
/// of the expression From to bool (C++0x [conv]p3).
|
|
bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
|
|
ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
|
|
if (!ICS.isBad())
|
|
return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
|
|
|
|
if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
|
|
return Diag(From->getSourceRange().getBegin(),
|
|
diag::err_typecheck_bool_condition)
|
|
<< From->getType() << From->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
/// TryContextuallyConvertToObjCId - Attempt to contextually convert the
|
|
/// expression From to 'id'.
|
|
ImplicitConversionSequence Sema::TryContextuallyConvertToObjCId(Expr *From) {
|
|
QualType Ty = Context.getObjCIdType();
|
|
return TryImplicitConversion(From, Ty,
|
|
// FIXME: Are these flags correct?
|
|
/*SuppressUserConversions=*/false,
|
|
/*AllowExplicit=*/true,
|
|
/*InOverloadResolution=*/false);
|
|
}
|
|
|
|
/// PerformContextuallyConvertToObjCId - Perform a contextual conversion
|
|
/// of the expression From to 'id'.
|
|
bool Sema::PerformContextuallyConvertToObjCId(Expr *&From) {
|
|
QualType Ty = Context.getObjCIdType();
|
|
ImplicitConversionSequence ICS = TryContextuallyConvertToObjCId(From);
|
|
if (!ICS.isBad())
|
|
return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
|
|
return true;
|
|
}
|
|
|
|
/// AddOverloadCandidate - Adds the given function to the set of
|
|
/// candidate functions, using the given function call arguments. If
|
|
/// @p SuppressUserConversions, then don't allow user-defined
|
|
/// conversions via constructors or conversion operators.
|
|
///
|
|
/// \para PartialOverloading true if we are performing "partial" overloading
|
|
/// based on an incomplete set of function arguments. This feature is used by
|
|
/// code completion.
|
|
void
|
|
Sema::AddOverloadCandidate(FunctionDecl *Function,
|
|
DeclAccessPair FoundDecl,
|
|
Expr **Args, unsigned NumArgs,
|
|
OverloadCandidateSet& CandidateSet,
|
|
bool SuppressUserConversions,
|
|
bool PartialOverloading) {
|
|
const FunctionProtoType* Proto
|
|
= dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
|
|
assert(Proto && "Functions without a prototype cannot be overloaded");
|
|
assert(!Function->getDescribedFunctionTemplate() &&
|
|
"Use AddTemplateOverloadCandidate for function templates");
|
|
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
|
|
if (!isa<CXXConstructorDecl>(Method)) {
|
|
// If we get here, it's because we're calling a member function
|
|
// that is named without a member access expression (e.g.,
|
|
// "this->f") that was either written explicitly or created
|
|
// implicitly. This can happen with a qualified call to a member
|
|
// function, e.g., X::f(). We use an empty type for the implied
|
|
// object argument (C++ [over.call.func]p3), and the acting context
|
|
// is irrelevant.
|
|
AddMethodCandidate(Method, FoundDecl, Method->getParent(),
|
|
QualType(), Args, NumArgs, CandidateSet,
|
|
SuppressUserConversions);
|
|
return;
|
|
}
|
|
// We treat a constructor like a non-member function, since its object
|
|
// argument doesn't participate in overload resolution.
|
|
}
|
|
|
|
if (!CandidateSet.isNewCandidate(Function))
|
|
return;
|
|
|
|
// Overload resolution is always an unevaluated context.
|
|
EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
|
|
|
|
if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
|
|
// C++ [class.copy]p3:
|
|
// A member function template is never instantiated to perform the copy
|
|
// of a class object to an object of its class type.
|
|
QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
|
|
if (NumArgs == 1 &&
|
|
Constructor->isCopyConstructorLikeSpecialization() &&
|
|
(Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
|
|
IsDerivedFrom(Args[0]->getType(), ClassType)))
|
|
return;
|
|
}
|
|
|
|
// Add this candidate
|
|
CandidateSet.push_back(OverloadCandidate());
|
|
OverloadCandidate& Candidate = CandidateSet.back();
|
|
Candidate.FoundDecl = FoundDecl;
|
|
Candidate.Function = Function;
|
|
Candidate.Viable = true;
|
|
Candidate.IsSurrogate = false;
|
|
Candidate.IgnoreObjectArgument = false;
|
|
|
|
unsigned NumArgsInProto = Proto->getNumArgs();
|
|
|
|
// (C++ 13.3.2p2): A candidate function having fewer than m
|
|
// parameters is viable only if it has an ellipsis in its parameter
|
|
// list (8.3.5).
|
|
if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
|
|
!Proto->isVariadic()) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_too_many_arguments;
|
|
return;
|
|
}
|
|
|
|
// (C++ 13.3.2p2): A candidate function having more than m parameters
|
|
// is viable only if the (m+1)st parameter has a default argument
|
|
// (8.3.6). For the purposes of overload resolution, the
|
|
// parameter list is truncated on the right, so that there are
|
|
// exactly m parameters.
|
|
unsigned MinRequiredArgs = Function->getMinRequiredArguments();
|
|
if (NumArgs < MinRequiredArgs && !PartialOverloading) {
|
|
// Not enough arguments.
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_too_few_arguments;
|
|
return;
|
|
}
|
|
|
|
// Determine the implicit conversion sequences for each of the
|
|
// arguments.
|
|
Candidate.Conversions.resize(NumArgs);
|
|
for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
|
|
if (ArgIdx < NumArgsInProto) {
|
|
// (C++ 13.3.2p3): for F to be a viable function, there shall
|
|
// exist for each argument an implicit conversion sequence
|
|
// (13.3.3.1) that converts that argument to the corresponding
|
|
// parameter of F.
|
|
QualType ParamType = Proto->getArgType(ArgIdx);
|
|
Candidate.Conversions[ArgIdx]
|
|
= TryCopyInitialization(*this, Args[ArgIdx], ParamType,
|
|
SuppressUserConversions,
|
|
/*InOverloadResolution=*/true);
|
|
if (Candidate.Conversions[ArgIdx].isBad()) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_bad_conversion;
|
|
break;
|
|
}
|
|
} else {
|
|
// (C++ 13.3.2p2): For the purposes of overload resolution, any
|
|
// argument for which there is no corresponding parameter is
|
|
// considered to ""match the ellipsis" (C+ 13.3.3.1.3).
|
|
Candidate.Conversions[ArgIdx].setEllipsis();
|
|
}
|
|
}
|
|
}
|
|
|
|
/// \brief Add all of the function declarations in the given function set to
|
|
/// the overload canddiate set.
|
|
void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
|
|
Expr **Args, unsigned NumArgs,
|
|
OverloadCandidateSet& CandidateSet,
|
|
bool SuppressUserConversions) {
|
|
for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
|
|
NamedDecl *D = F.getDecl()->getUnderlyingDecl();
|
|
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
|
|
if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
|
|
AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
|
|
cast<CXXMethodDecl>(FD)->getParent(),
|
|
Args[0]->getType(), Args + 1, NumArgs - 1,
|
|
CandidateSet, SuppressUserConversions);
|
|
else
|
|
AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet,
|
|
SuppressUserConversions);
|
|
} else {
|
|
FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
|
|
if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
|
|
!cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
|
|
AddMethodTemplateCandidate(FunTmpl, F.getPair(),
|
|
cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
|
|
/*FIXME: explicit args */ 0,
|
|
Args[0]->getType(), Args + 1, NumArgs - 1,
|
|
CandidateSet,
|
|
SuppressUserConversions);
|
|
else
|
|
AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
|
|
/*FIXME: explicit args */ 0,
|
|
Args, NumArgs, CandidateSet,
|
|
SuppressUserConversions);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// AddMethodCandidate - Adds a named decl (which is some kind of
|
|
/// method) as a method candidate to the given overload set.
|
|
void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
|
|
QualType ObjectType,
|
|
Expr **Args, unsigned NumArgs,
|
|
OverloadCandidateSet& CandidateSet,
|
|
bool SuppressUserConversions) {
|
|
NamedDecl *Decl = FoundDecl.getDecl();
|
|
CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
|
|
|
|
if (isa<UsingShadowDecl>(Decl))
|
|
Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
|
|
|
|
if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
|
|
assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
|
|
"Expected a member function template");
|
|
AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
|
|
/*ExplicitArgs*/ 0,
|
|
ObjectType, Args, NumArgs,
|
|
CandidateSet,
|
|
SuppressUserConversions);
|
|
} else {
|
|
AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
|
|
ObjectType, Args, NumArgs,
|
|
CandidateSet, SuppressUserConversions);
|
|
}
|
|
}
|
|
|
|
/// AddMethodCandidate - Adds the given C++ member function to the set
|
|
/// of candidate functions, using the given function call arguments
|
|
/// and the object argument (@c Object). For example, in a call
|
|
/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
|
|
/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
|
|
/// allow user-defined conversions via constructors or conversion
|
|
/// operators.
|
|
void
|
|
Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
|
|
CXXRecordDecl *ActingContext, QualType ObjectType,
|
|
Expr **Args, unsigned NumArgs,
|
|
OverloadCandidateSet& CandidateSet,
|
|
bool SuppressUserConversions) {
|
|
const FunctionProtoType* Proto
|
|
= dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
|
|
assert(Proto && "Methods without a prototype cannot be overloaded");
|
|
assert(!isa<CXXConstructorDecl>(Method) &&
|
|
"Use AddOverloadCandidate for constructors");
|
|
|
|
if (!CandidateSet.isNewCandidate(Method))
|
|
return;
|
|
|
|
// Overload resolution is always an unevaluated context.
|
|
EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
|
|
|
|
// Add this candidate
|
|
CandidateSet.push_back(OverloadCandidate());
|
|
OverloadCandidate& Candidate = CandidateSet.back();
|
|
Candidate.FoundDecl = FoundDecl;
|
|
Candidate.Function = Method;
|
|
Candidate.IsSurrogate = false;
|
|
Candidate.IgnoreObjectArgument = false;
|
|
|
|
unsigned NumArgsInProto = Proto->getNumArgs();
|
|
|
|
// (C++ 13.3.2p2): A candidate function having fewer than m
|
|
// parameters is viable only if it has an ellipsis in its parameter
|
|
// list (8.3.5).
|
|
if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_too_many_arguments;
|
|
return;
|
|
}
|
|
|
|
// (C++ 13.3.2p2): A candidate function having more than m parameters
|
|
// is viable only if the (m+1)st parameter has a default argument
|
|
// (8.3.6). For the purposes of overload resolution, the
|
|
// parameter list is truncated on the right, so that there are
|
|
// exactly m parameters.
|
|
unsigned MinRequiredArgs = Method->getMinRequiredArguments();
|
|
if (NumArgs < MinRequiredArgs) {
|
|
// Not enough arguments.
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_too_few_arguments;
|
|
return;
|
|
}
|
|
|
|
Candidate.Viable = true;
|
|
Candidate.Conversions.resize(NumArgs + 1);
|
|
|
|
if (Method->isStatic() || ObjectType.isNull())
|
|
// The implicit object argument is ignored.
|
|
Candidate.IgnoreObjectArgument = true;
|
|
else {
|
|
// Determine the implicit conversion sequence for the object
|
|
// parameter.
|
|
Candidate.Conversions[0]
|
|
= TryObjectArgumentInitialization(ObjectType, Method, ActingContext);
|
|
if (Candidate.Conversions[0].isBad()) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_bad_conversion;
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Determine the implicit conversion sequences for each of the
|
|
// arguments.
|
|
for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
|
|
if (ArgIdx < NumArgsInProto) {
|
|
// (C++ 13.3.2p3): for F to be a viable function, there shall
|
|
// exist for each argument an implicit conversion sequence
|
|
// (13.3.3.1) that converts that argument to the corresponding
|
|
// parameter of F.
|
|
QualType ParamType = Proto->getArgType(ArgIdx);
|
|
Candidate.Conversions[ArgIdx + 1]
|
|
= TryCopyInitialization(*this, Args[ArgIdx], ParamType,
|
|
SuppressUserConversions,
|
|
/*InOverloadResolution=*/true);
|
|
if (Candidate.Conversions[ArgIdx + 1].isBad()) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_bad_conversion;
|
|
break;
|
|
}
|
|
} else {
|
|
// (C++ 13.3.2p2): For the purposes of overload resolution, any
|
|
// argument for which there is no corresponding parameter is
|
|
// considered to ""match the ellipsis" (C+ 13.3.3.1.3).
|
|
Candidate.Conversions[ArgIdx + 1].setEllipsis();
|
|
}
|
|
}
|
|
}
|
|
|
|
/// \brief Add a C++ member function template as a candidate to the candidate
|
|
/// set, using template argument deduction to produce an appropriate member
|
|
/// function template specialization.
|
|
void
|
|
Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
|
|
DeclAccessPair FoundDecl,
|
|
CXXRecordDecl *ActingContext,
|
|
const TemplateArgumentListInfo *ExplicitTemplateArgs,
|
|
QualType ObjectType,
|
|
Expr **Args, unsigned NumArgs,
|
|
OverloadCandidateSet& CandidateSet,
|
|
bool SuppressUserConversions) {
|
|
if (!CandidateSet.isNewCandidate(MethodTmpl))
|
|
return;
|
|
|
|
// C++ [over.match.funcs]p7:
|
|
// In each case where a candidate is a function template, candidate
|
|
// function template specializations are generated using template argument
|
|
// deduction (14.8.3, 14.8.2). Those candidates are then handled as
|
|
// candidate functions in the usual way.113) A given name can refer to one
|
|
// or more function templates and also to a set of overloaded non-template
|
|
// functions. In such a case, the candidate functions generated from each
|
|
// function template are combined with the set of non-template candidate
|
|
// functions.
|
|
TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
|
|
FunctionDecl *Specialization = 0;
|
|
if (TemplateDeductionResult Result
|
|
= DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs,
|
|
Args, NumArgs, Specialization, Info)) {
|
|
CandidateSet.push_back(OverloadCandidate());
|
|
OverloadCandidate &Candidate = CandidateSet.back();
|
|
Candidate.FoundDecl = FoundDecl;
|
|
Candidate.Function = MethodTmpl->getTemplatedDecl();
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_bad_deduction;
|
|
Candidate.IsSurrogate = false;
|
|
Candidate.IgnoreObjectArgument = false;
|
|
Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
|
|
Info);
|
|
return;
|
|
}
|
|
|
|
// Add the function template specialization produced by template argument
|
|
// deduction as a candidate.
|
|
assert(Specialization && "Missing member function template specialization?");
|
|
assert(isa<CXXMethodDecl>(Specialization) &&
|
|
"Specialization is not a member function?");
|
|
AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
|
|
ActingContext, ObjectType, Args, NumArgs,
|
|
CandidateSet, SuppressUserConversions);
|
|
}
|
|
|
|
/// \brief Add a C++ function template specialization as a candidate
|
|
/// in the candidate set, using template argument deduction to produce
|
|
/// an appropriate function template specialization.
|
|
void
|
|
Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
|
|
DeclAccessPair FoundDecl,
|
|
const TemplateArgumentListInfo *ExplicitTemplateArgs,
|
|
Expr **Args, unsigned NumArgs,
|
|
OverloadCandidateSet& CandidateSet,
|
|
bool SuppressUserConversions) {
|
|
if (!CandidateSet.isNewCandidate(FunctionTemplate))
|
|
return;
|
|
|
|
// C++ [over.match.funcs]p7:
|
|
// In each case where a candidate is a function template, candidate
|
|
// function template specializations are generated using template argument
|
|
// deduction (14.8.3, 14.8.2). Those candidates are then handled as
|
|
// candidate functions in the usual way.113) A given name can refer to one
|
|
// or more function templates and also to a set of overloaded non-template
|
|
// functions. In such a case, the candidate functions generated from each
|
|
// function template are combined with the set of non-template candidate
|
|
// functions.
|
|
TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
|
|
FunctionDecl *Specialization = 0;
|
|
if (TemplateDeductionResult Result
|
|
= DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
|
|
Args, NumArgs, Specialization, Info)) {
|
|
CandidateSet.push_back(OverloadCandidate());
|
|
OverloadCandidate &Candidate = CandidateSet.back();
|
|
Candidate.FoundDecl = FoundDecl;
|
|
Candidate.Function = FunctionTemplate->getTemplatedDecl();
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_bad_deduction;
|
|
Candidate.IsSurrogate = false;
|
|
Candidate.IgnoreObjectArgument = false;
|
|
Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
|
|
Info);
|
|
return;
|
|
}
|
|
|
|
// Add the function template specialization produced by template argument
|
|
// deduction as a candidate.
|
|
assert(Specialization && "Missing function template specialization?");
|
|
AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet,
|
|
SuppressUserConversions);
|
|
}
|
|
|
|
/// AddConversionCandidate - Add a C++ conversion function as a
|
|
/// candidate in the candidate set (C++ [over.match.conv],
|
|
/// C++ [over.match.copy]). From is the expression we're converting from,
|
|
/// and ToType is the type that we're eventually trying to convert to
|
|
/// (which may or may not be the same type as the type that the
|
|
/// conversion function produces).
|
|
void
|
|
Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
|
|
DeclAccessPair FoundDecl,
|
|
CXXRecordDecl *ActingContext,
|
|
Expr *From, QualType ToType,
|
|
OverloadCandidateSet& CandidateSet) {
|
|
assert(!Conversion->getDescribedFunctionTemplate() &&
|
|
"Conversion function templates use AddTemplateConversionCandidate");
|
|
QualType ConvType = Conversion->getConversionType().getNonReferenceType();
|
|
if (!CandidateSet.isNewCandidate(Conversion))
|
|
return;
|
|
|
|
// Overload resolution is always an unevaluated context.
|
|
EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
|
|
|
|
// Add this candidate
|
|
CandidateSet.push_back(OverloadCandidate());
|
|
OverloadCandidate& Candidate = CandidateSet.back();
|
|
Candidate.FoundDecl = FoundDecl;
|
|
Candidate.Function = Conversion;
|
|
Candidate.IsSurrogate = false;
|
|
Candidate.IgnoreObjectArgument = false;
|
|
Candidate.FinalConversion.setAsIdentityConversion();
|
|
Candidate.FinalConversion.setFromType(ConvType);
|
|
Candidate.FinalConversion.setAllToTypes(ToType);
|
|
|
|
// Determine the implicit conversion sequence for the implicit
|
|
// object parameter.
|
|
Candidate.Viable = true;
|
|
Candidate.Conversions.resize(1);
|
|
Candidate.Conversions[0]
|
|
= TryObjectArgumentInitialization(From->getType(), Conversion,
|
|
ActingContext);
|
|
// Conversion functions to a different type in the base class is visible in
|
|
// the derived class. So, a derived to base conversion should not participate
|
|
// in overload resolution.
|
|
if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base)
|
|
Candidate.Conversions[0].Standard.Second = ICK_Identity;
|
|
if (Candidate.Conversions[0].isBad()) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_bad_conversion;
|
|
return;
|
|
}
|
|
|
|
// We won't go through a user-define type conversion function to convert a
|
|
// derived to base as such conversions are given Conversion Rank. They only
|
|
// go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
|
|
QualType FromCanon
|
|
= Context.getCanonicalType(From->getType().getUnqualifiedType());
|
|
QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
|
|
if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_trivial_conversion;
|
|
return;
|
|
}
|
|
|
|
// To determine what the conversion from the result of calling the
|
|
// conversion function to the type we're eventually trying to
|
|
// convert to (ToType), we need to synthesize a call to the
|
|
// conversion function and attempt copy initialization from it. This
|
|
// makes sure that we get the right semantics with respect to
|
|
// lvalues/rvalues and the type. Fortunately, we can allocate this
|
|
// call on the stack and we don't need its arguments to be
|
|
// well-formed.
|
|
DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
|
|
From->getLocStart());
|
|
ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
|
|
CastExpr::CK_FunctionToPointerDecay,
|
|
&ConversionRef, CXXBaseSpecifierArray(), false);
|
|
|
|
// Note that it is safe to allocate CallExpr on the stack here because
|
|
// there are 0 arguments (i.e., nothing is allocated using ASTContext's
|
|
// allocator).
|
|
CallExpr Call(Context, &ConversionFn, 0, 0,
|
|
Conversion->getConversionType().getNonReferenceType(),
|
|
From->getLocStart());
|
|
ImplicitConversionSequence ICS =
|
|
TryCopyInitialization(*this, &Call, ToType,
|
|
/*SuppressUserConversions=*/true,
|
|
/*InOverloadResolution=*/false);
|
|
|
|
switch (ICS.getKind()) {
|
|
case ImplicitConversionSequence::StandardConversion:
|
|
Candidate.FinalConversion = ICS.Standard;
|
|
|
|
// C++ [over.ics.user]p3:
|
|
// If the user-defined conversion is specified by a specialization of a
|
|
// conversion function template, the second standard conversion sequence
|
|
// shall have exact match rank.
|
|
if (Conversion->getPrimaryTemplate() &&
|
|
GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
|
|
}
|
|
|
|
break;
|
|
|
|
case ImplicitConversionSequence::BadConversion:
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_bad_final_conversion;
|
|
break;
|
|
|
|
default:
|
|
assert(false &&
|
|
"Can only end up with a standard conversion sequence or failure");
|
|
}
|
|
}
|
|
|
|
/// \brief Adds a conversion function template specialization
|
|
/// candidate to the overload set, using template argument deduction
|
|
/// to deduce the template arguments of the conversion function
|
|
/// template from the type that we are converting to (C++
|
|
/// [temp.deduct.conv]).
|
|
void
|
|
Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
|
|
DeclAccessPair FoundDecl,
|
|
CXXRecordDecl *ActingDC,
|
|
Expr *From, QualType ToType,
|
|
OverloadCandidateSet &CandidateSet) {
|
|
assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
|
|
"Only conversion function templates permitted here");
|
|
|
|
if (!CandidateSet.isNewCandidate(FunctionTemplate))
|
|
return;
|
|
|
|
TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
|
|
CXXConversionDecl *Specialization = 0;
|
|
if (TemplateDeductionResult Result
|
|
= DeduceTemplateArguments(FunctionTemplate, ToType,
|
|
Specialization, Info)) {
|
|
CandidateSet.push_back(OverloadCandidate());
|
|
OverloadCandidate &Candidate = CandidateSet.back();
|
|
Candidate.FoundDecl = FoundDecl;
|
|
Candidate.Function = FunctionTemplate->getTemplatedDecl();
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_bad_deduction;
|
|
Candidate.IsSurrogate = false;
|
|
Candidate.IgnoreObjectArgument = false;
|
|
Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
|
|
Info);
|
|
return;
|
|
}
|
|
|
|
// Add the conversion function template specialization produced by
|
|
// template argument deduction as a candidate.
|
|
assert(Specialization && "Missing function template specialization?");
|
|
AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
|
|
CandidateSet);
|
|
}
|
|
|
|
/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
|
|
/// converts the given @c Object to a function pointer via the
|
|
/// conversion function @c Conversion, and then attempts to call it
|
|
/// with the given arguments (C++ [over.call.object]p2-4). Proto is
|
|
/// the type of function that we'll eventually be calling.
|
|
void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
|
|
DeclAccessPair FoundDecl,
|
|
CXXRecordDecl *ActingContext,
|
|
const FunctionProtoType *Proto,
|
|
QualType ObjectType,
|
|
Expr **Args, unsigned NumArgs,
|
|
OverloadCandidateSet& CandidateSet) {
|
|
if (!CandidateSet.isNewCandidate(Conversion))
|
|
return;
|
|
|
|
// Overload resolution is always an unevaluated context.
|
|
EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
|
|
|
|
CandidateSet.push_back(OverloadCandidate());
|
|
OverloadCandidate& Candidate = CandidateSet.back();
|
|
Candidate.FoundDecl = FoundDecl;
|
|
Candidate.Function = 0;
|
|
Candidate.Surrogate = Conversion;
|
|
Candidate.Viable = true;
|
|
Candidate.IsSurrogate = true;
|
|
Candidate.IgnoreObjectArgument = false;
|
|
Candidate.Conversions.resize(NumArgs + 1);
|
|
|
|
// Determine the implicit conversion sequence for the implicit
|
|
// object parameter.
|
|
ImplicitConversionSequence ObjectInit
|
|
= TryObjectArgumentInitialization(ObjectType, Conversion, ActingContext);
|
|
if (ObjectInit.isBad()) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_bad_conversion;
|
|
Candidate.Conversions[0] = ObjectInit;
|
|
return;
|
|
}
|
|
|
|
// The first conversion is actually a user-defined conversion whose
|
|
// first conversion is ObjectInit's standard conversion (which is
|
|
// effectively a reference binding). Record it as such.
|
|
Candidate.Conversions[0].setUserDefined();
|
|
Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
|
|
Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
|
|
Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
|
|
Candidate.Conversions[0].UserDefined.After
|
|
= Candidate.Conversions[0].UserDefined.Before;
|
|
Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
|
|
|
|
// Find the
|
|
unsigned NumArgsInProto = Proto->getNumArgs();
|
|
|
|
// (C++ 13.3.2p2): A candidate function having fewer than m
|
|
// parameters is viable only if it has an ellipsis in its parameter
|
|
// list (8.3.5).
|
|
if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_too_many_arguments;
|
|
return;
|
|
}
|
|
|
|
// Function types don't have any default arguments, so just check if
|
|
// we have enough arguments.
|
|
if (NumArgs < NumArgsInProto) {
|
|
// Not enough arguments.
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_too_few_arguments;
|
|
return;
|
|
}
|
|
|
|
// Determine the implicit conversion sequences for each of the
|
|
// arguments.
|
|
for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
|
|
if (ArgIdx < NumArgsInProto) {
|
|
// (C++ 13.3.2p3): for F to be a viable function, there shall
|
|
// exist for each argument an implicit conversion sequence
|
|
// (13.3.3.1) that converts that argument to the corresponding
|
|
// parameter of F.
|
|
QualType ParamType = Proto->getArgType(ArgIdx);
|
|
Candidate.Conversions[ArgIdx + 1]
|
|
= TryCopyInitialization(*this, Args[ArgIdx], ParamType,
|
|
/*SuppressUserConversions=*/false,
|
|
/*InOverloadResolution=*/false);
|
|
if (Candidate.Conversions[ArgIdx + 1].isBad()) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_bad_conversion;
|
|
break;
|
|
}
|
|
} else {
|
|
// (C++ 13.3.2p2): For the purposes of overload resolution, any
|
|
// argument for which there is no corresponding parameter is
|
|
// considered to ""match the ellipsis" (C+ 13.3.3.1.3).
|
|
Candidate.Conversions[ArgIdx + 1].setEllipsis();
|
|
}
|
|
}
|
|
}
|
|
|
|
/// \brief Add overload candidates for overloaded operators that are
|
|
/// member functions.
|
|
///
|
|
/// Add the overloaded operator candidates that are member functions
|
|
/// for the operator Op that was used in an operator expression such
|
|
/// as "x Op y". , Args/NumArgs provides the operator arguments, and
|
|
/// CandidateSet will store the added overload candidates. (C++
|
|
/// [over.match.oper]).
|
|
void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
|
|
SourceLocation OpLoc,
|
|
Expr **Args, unsigned NumArgs,
|
|
OverloadCandidateSet& CandidateSet,
|
|
SourceRange OpRange) {
|
|
DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
|
|
|
|
// C++ [over.match.oper]p3:
|
|
// For a unary operator @ with an operand of a type whose
|
|
// cv-unqualified version is T1, and for a binary operator @ with
|
|
// a left operand of a type whose cv-unqualified version is T1 and
|
|
// a right operand of a type whose cv-unqualified version is T2,
|
|
// three sets of candidate functions, designated member
|
|
// candidates, non-member candidates and built-in candidates, are
|
|
// constructed as follows:
|
|
QualType T1 = Args[0]->getType();
|
|
QualType T2;
|
|
if (NumArgs > 1)
|
|
T2 = Args[1]->getType();
|
|
|
|
// -- If T1 is a class type, the set of member candidates is the
|
|
// result of the qualified lookup of T1::operator@
|
|
// (13.3.1.1.1); otherwise, the set of member candidates is
|
|
// empty.
|
|
if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
|
|
// Complete the type if it can be completed. Otherwise, we're done.
|
|
if (RequireCompleteType(OpLoc, T1, PDiag()))
|
|
return;
|
|
|
|
LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
|
|
LookupQualifiedName(Operators, T1Rec->getDecl());
|
|
Operators.suppressDiagnostics();
|
|
|
|
for (LookupResult::iterator Oper = Operators.begin(),
|
|
OperEnd = Operators.end();
|
|
Oper != OperEnd;
|
|
++Oper)
|
|
AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
|
|
Args + 1, NumArgs - 1, CandidateSet,
|
|
/* SuppressUserConversions = */ false);
|
|
}
|
|
}
|
|
|
|
/// AddBuiltinCandidate - Add a candidate for a built-in
|
|
/// operator. ResultTy and ParamTys are the result and parameter types
|
|
/// of the built-in candidate, respectively. Args and NumArgs are the
|
|
/// arguments being passed to the candidate. IsAssignmentOperator
|
|
/// should be true when this built-in candidate is an assignment
|
|
/// operator. NumContextualBoolArguments is the number of arguments
|
|
/// (at the beginning of the argument list) that will be contextually
|
|
/// converted to bool.
|
|
void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
|
|
Expr **Args, unsigned NumArgs,
|
|
OverloadCandidateSet& CandidateSet,
|
|
bool IsAssignmentOperator,
|
|
unsigned NumContextualBoolArguments) {
|
|
// Overload resolution is always an unevaluated context.
|
|
EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
|
|
|
|
// Add this candidate
|
|
CandidateSet.push_back(OverloadCandidate());
|
|
OverloadCandidate& Candidate = CandidateSet.back();
|
|
Candidate.FoundDecl = DeclAccessPair::make(0, AS_none);
|
|
Candidate.Function = 0;
|
|
Candidate.IsSurrogate = false;
|
|
Candidate.IgnoreObjectArgument = false;
|
|
Candidate.BuiltinTypes.ResultTy = ResultTy;
|
|
for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
|
|
Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
|
|
|
|
// Determine the implicit conversion sequences for each of the
|
|
// arguments.
|
|
Candidate.Viable = true;
|
|
Candidate.Conversions.resize(NumArgs);
|
|
for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
|
|
// C++ [over.match.oper]p4:
|
|
// For the built-in assignment operators, conversions of the
|
|
// left operand are restricted as follows:
|
|
// -- no temporaries are introduced to hold the left operand, and
|
|
// -- no user-defined conversions are applied to the left
|
|
// operand to achieve a type match with the left-most
|
|
// parameter of a built-in candidate.
|
|
//
|
|
// We block these conversions by turning off user-defined
|
|
// conversions, since that is the only way that initialization of
|
|
// a reference to a non-class type can occur from something that
|
|
// is not of the same type.
|
|
if (ArgIdx < NumContextualBoolArguments) {
|
|
assert(ParamTys[ArgIdx] == Context.BoolTy &&
|
|
"Contextual conversion to bool requires bool type");
|
|
Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
|
|
} else {
|
|
Candidate.Conversions[ArgIdx]
|
|
= TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
|
|
ArgIdx == 0 && IsAssignmentOperator,
|
|
/*InOverloadResolution=*/false);
|
|
}
|
|
if (Candidate.Conversions[ArgIdx].isBad()) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_bad_conversion;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// BuiltinCandidateTypeSet - A set of types that will be used for the
|
|
/// candidate operator functions for built-in operators (C++
|
|
/// [over.built]). The types are separated into pointer types and
|
|
/// enumeration types.
|
|
class BuiltinCandidateTypeSet {
|
|
/// TypeSet - A set of types.
|
|
typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
|
|
|
|
/// PointerTypes - The set of pointer types that will be used in the
|
|
/// built-in candidates.
|
|
TypeSet PointerTypes;
|
|
|
|
/// MemberPointerTypes - The set of member pointer types that will be
|
|
/// used in the built-in candidates.
|
|
TypeSet MemberPointerTypes;
|
|
|
|
/// EnumerationTypes - The set of enumeration types that will be
|
|
/// used in the built-in candidates.
|
|
TypeSet EnumerationTypes;
|
|
|
|
/// \brief The set of vector types that will be used in the built-in
|
|
/// candidates.
|
|
TypeSet VectorTypes;
|
|
|
|
/// Sema - The semantic analysis instance where we are building the
|
|
/// candidate type set.
|
|
Sema &SemaRef;
|
|
|
|
/// Context - The AST context in which we will build the type sets.
|
|
ASTContext &Context;
|
|
|
|
bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
|
|
const Qualifiers &VisibleQuals);
|
|
bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
|
|
|
|
public:
|
|
/// iterator - Iterates through the types that are part of the set.
|
|
typedef TypeSet::iterator iterator;
|
|
|
|
BuiltinCandidateTypeSet(Sema &SemaRef)
|
|
: SemaRef(SemaRef), Context(SemaRef.Context) { }
|
|
|
|
void AddTypesConvertedFrom(QualType Ty,
|
|
SourceLocation Loc,
|
|
bool AllowUserConversions,
|
|
bool AllowExplicitConversions,
|
|
const Qualifiers &VisibleTypeConversionsQuals);
|
|
|
|
/// pointer_begin - First pointer type found;
|
|
iterator pointer_begin() { return PointerTypes.begin(); }
|
|
|
|
/// pointer_end - Past the last pointer type found;
|
|
iterator pointer_end() { return PointerTypes.end(); }
|
|
|
|
/// member_pointer_begin - First member pointer type found;
|
|
iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
|
|
|
|
/// member_pointer_end - Past the last member pointer type found;
|
|
iterator member_pointer_end() { return MemberPointerTypes.end(); }
|
|
|
|
/// enumeration_begin - First enumeration type found;
|
|
iterator enumeration_begin() { return EnumerationTypes.begin(); }
|
|
|
|
/// enumeration_end - Past the last enumeration type found;
|
|
iterator enumeration_end() { return EnumerationTypes.end(); }
|
|
|
|
iterator vector_begin() { return VectorTypes.begin(); }
|
|
iterator vector_end() { return VectorTypes.end(); }
|
|
};
|
|
|
|
/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
|
|
/// the set of pointer types along with any more-qualified variants of
|
|
/// that type. For example, if @p Ty is "int const *", this routine
|
|
/// will add "int const *", "int const volatile *", "int const
|
|
/// restrict *", and "int const volatile restrict *" to the set of
|
|
/// pointer types. Returns true if the add of @p Ty itself succeeded,
|
|
/// false otherwise.
|
|
///
|
|
/// FIXME: what to do about extended qualifiers?
|
|
bool
|
|
BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
|
|
const Qualifiers &VisibleQuals) {
|
|
|
|
// Insert this type.
|
|
if (!PointerTypes.insert(Ty))
|
|
return false;
|
|
|
|
const PointerType *PointerTy = Ty->getAs<PointerType>();
|
|
assert(PointerTy && "type was not a pointer type!");
|
|
|
|
QualType PointeeTy = PointerTy->getPointeeType();
|
|
// Don't add qualified variants of arrays. For one, they're not allowed
|
|
// (the qualifier would sink to the element type), and for another, the
|
|
// only overload situation where it matters is subscript or pointer +- int,
|
|
// and those shouldn't have qualifier variants anyway.
|
|
if (PointeeTy->isArrayType())
|
|
return true;
|
|
unsigned BaseCVR = PointeeTy.getCVRQualifiers();
|
|
if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
|
|
BaseCVR = Array->getElementType().getCVRQualifiers();
|
|
bool hasVolatile = VisibleQuals.hasVolatile();
|
|
bool hasRestrict = VisibleQuals.hasRestrict();
|
|
|
|
// Iterate through all strict supersets of BaseCVR.
|
|
for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
|
|
if ((CVR | BaseCVR) != CVR) continue;
|
|
// Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
|
|
// in the types.
|
|
if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
|
|
if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
|
|
QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
|
|
PointerTypes.insert(Context.getPointerType(QPointeeTy));
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
|
|
/// to the set of pointer types along with any more-qualified variants of
|
|
/// that type. For example, if @p Ty is "int const *", this routine
|
|
/// will add "int const *", "int const volatile *", "int const
|
|
/// restrict *", and "int const volatile restrict *" to the set of
|
|
/// pointer types. Returns true if the add of @p Ty itself succeeded,
|
|
/// false otherwise.
|
|
///
|
|
/// FIXME: what to do about extended qualifiers?
|
|
bool
|
|
BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
|
|
QualType Ty) {
|
|
// Insert this type.
|
|
if (!MemberPointerTypes.insert(Ty))
|
|
return false;
|
|
|
|
const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
|
|
assert(PointerTy && "type was not a member pointer type!");
|
|
|
|
QualType PointeeTy = PointerTy->getPointeeType();
|
|
// Don't add qualified variants of arrays. For one, they're not allowed
|
|
// (the qualifier would sink to the element type), and for another, the
|
|
// only overload situation where it matters is subscript or pointer +- int,
|
|
// and those shouldn't have qualifier variants anyway.
|
|
if (PointeeTy->isArrayType())
|
|
return true;
|
|
const Type *ClassTy = PointerTy->getClass();
|
|
|
|
// Iterate through all strict supersets of the pointee type's CVR
|
|
// qualifiers.
|
|
unsigned BaseCVR = PointeeTy.getCVRQualifiers();
|
|
for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
|
|
if ((CVR | BaseCVR) != CVR) continue;
|
|
|
|
QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
|
|
MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy));
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// AddTypesConvertedFrom - Add each of the types to which the type @p
|
|
/// Ty can be implicit converted to the given set of @p Types. We're
|
|
/// primarily interested in pointer types and enumeration types. We also
|
|
/// take member pointer types, for the conditional operator.
|
|
/// AllowUserConversions is true if we should look at the conversion
|
|
/// functions of a class type, and AllowExplicitConversions if we
|
|
/// should also include the explicit conversion functions of a class
|
|
/// type.
|
|
void
|
|
BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
|
|
SourceLocation Loc,
|
|
bool AllowUserConversions,
|
|
bool AllowExplicitConversions,
|
|
const Qualifiers &VisibleQuals) {
|
|
// Only deal with canonical types.
|
|
Ty = Context.getCanonicalType(Ty);
|
|
|
|
// Look through reference types; they aren't part of the type of an
|
|
// expression for the purposes of conversions.
|
|
if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
|
|
Ty = RefTy->getPointeeType();
|
|
|
|
// We don't care about qualifiers on the type.
|
|
Ty = Ty.getLocalUnqualifiedType();
|
|
|
|
// If we're dealing with an array type, decay to the pointer.
|
|
if (Ty->isArrayType())
|
|
Ty = SemaRef.Context.getArrayDecayedType(Ty);
|
|
|
|
if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
|
|
QualType PointeeTy = PointerTy->getPointeeType();
|
|
|
|
// Insert our type, and its more-qualified variants, into the set
|
|
// of types.
|
|
if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
|
|
return;
|
|
} else if (Ty->isMemberPointerType()) {
|
|
// Member pointers are far easier, since the pointee can't be converted.
|
|
if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
|
|
return;
|
|
} else if (Ty->isEnumeralType()) {
|
|
EnumerationTypes.insert(Ty);
|
|
} else if (Ty->isVectorType()) {
|
|
VectorTypes.insert(Ty);
|
|
} else if (AllowUserConversions) {
|
|
if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
|
|
if (SemaRef.RequireCompleteType(Loc, Ty, 0)) {
|
|
// No conversion functions in incomplete types.
|
|
return;
|
|
}
|
|
|
|
CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
|
|
const UnresolvedSetImpl *Conversions
|
|
= ClassDecl->getVisibleConversionFunctions();
|
|
for (UnresolvedSetImpl::iterator I = Conversions->begin(),
|
|
E = Conversions->end(); I != E; ++I) {
|
|
NamedDecl *D = I.getDecl();
|
|
if (isa<UsingShadowDecl>(D))
|
|
D = cast<UsingShadowDecl>(D)->getTargetDecl();
|
|
|
|
// Skip conversion function templates; they don't tell us anything
|
|
// about which builtin types we can convert to.
|
|
if (isa<FunctionTemplateDecl>(D))
|
|
continue;
|
|
|
|
CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
|
|
if (AllowExplicitConversions || !Conv->isExplicit()) {
|
|
AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
|
|
VisibleQuals);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
|
|
/// the volatile- and non-volatile-qualified assignment operators for the
|
|
/// given type to the candidate set.
|
|
static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
|
|
QualType T,
|
|
Expr **Args,
|
|
unsigned NumArgs,
|
|
OverloadCandidateSet &CandidateSet) {
|
|
QualType ParamTypes[2];
|
|
|
|
// T& operator=(T&, T)
|
|
ParamTypes[0] = S.Context.getLValueReferenceType(T);
|
|
ParamTypes[1] = T;
|
|
S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
|
|
/*IsAssignmentOperator=*/true);
|
|
|
|
if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
|
|
// volatile T& operator=(volatile T&, T)
|
|
ParamTypes[0]
|
|
= S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
|
|
ParamTypes[1] = T;
|
|
S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
|
|
/*IsAssignmentOperator=*/true);
|
|
}
|
|
}
|
|
|
|
/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
|
|
/// if any, found in visible type conversion functions found in ArgExpr's type.
|
|
static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
|
|
Qualifiers VRQuals;
|
|
const RecordType *TyRec;
|
|
if (const MemberPointerType *RHSMPType =
|
|
ArgExpr->getType()->getAs<MemberPointerType>())
|
|
TyRec = RHSMPType->getClass()->getAs<RecordType>();
|
|
else
|
|
TyRec = ArgExpr->getType()->getAs<RecordType>();
|
|
if (!TyRec) {
|
|
// Just to be safe, assume the worst case.
|
|
VRQuals.addVolatile();
|
|
VRQuals.addRestrict();
|
|
return VRQuals;
|
|
}
|
|
|
|
CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
|
|
if (!ClassDecl->hasDefinition())
|
|
return VRQuals;
|
|
|
|
const UnresolvedSetImpl *Conversions =
|
|
ClassDecl->getVisibleConversionFunctions();
|
|
|
|
for (UnresolvedSetImpl::iterator I = Conversions->begin(),
|
|
E = Conversions->end(); I != E; ++I) {
|
|
NamedDecl *D = I.getDecl();
|
|
if (isa<UsingShadowDecl>(D))
|
|
D = cast<UsingShadowDecl>(D)->getTargetDecl();
|
|
if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
|
|
QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
|
|
if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
|
|
CanTy = ResTypeRef->getPointeeType();
|
|
// Need to go down the pointer/mempointer chain and add qualifiers
|
|
// as see them.
|
|
bool done = false;
|
|
while (!done) {
|
|
if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
|
|
CanTy = ResTypePtr->getPointeeType();
|
|
else if (const MemberPointerType *ResTypeMPtr =
|
|
CanTy->getAs<MemberPointerType>())
|
|
CanTy = ResTypeMPtr->getPointeeType();
|
|
else
|
|
done = true;
|
|
if (CanTy.isVolatileQualified())
|
|
VRQuals.addVolatile();
|
|
if (CanTy.isRestrictQualified())
|
|
VRQuals.addRestrict();
|
|
if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
|
|
return VRQuals;
|
|
}
|
|
}
|
|
}
|
|
return VRQuals;
|
|
}
|
|
|
|
/// AddBuiltinOperatorCandidates - Add the appropriate built-in
|
|
/// operator overloads to the candidate set (C++ [over.built]), based
|
|
/// on the operator @p Op and the arguments given. For example, if the
|
|
/// operator is a binary '+', this routine might add "int
|
|
/// operator+(int, int)" to cover integer addition.
|
|
void
|
|
Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
|
|
SourceLocation OpLoc,
|
|
Expr **Args, unsigned NumArgs,
|
|
OverloadCandidateSet& CandidateSet) {
|
|
// The set of "promoted arithmetic types", which are the arithmetic
|
|
// types are that preserved by promotion (C++ [over.built]p2). Note
|
|
// that the first few of these types are the promoted integral
|
|
// types; these types need to be first.
|
|
// FIXME: What about complex?
|
|
const unsigned FirstIntegralType = 0;
|
|
const unsigned LastIntegralType = 13;
|
|
const unsigned FirstPromotedIntegralType = 7,
|
|
LastPromotedIntegralType = 13;
|
|
const unsigned FirstPromotedArithmeticType = 7,
|
|
LastPromotedArithmeticType = 16;
|
|
const unsigned NumArithmeticTypes = 16;
|
|
QualType ArithmeticTypes[NumArithmeticTypes] = {
|
|
Context.BoolTy, Context.CharTy, Context.WCharTy,
|
|
// FIXME: Context.Char16Ty, Context.Char32Ty,
|
|
Context.SignedCharTy, Context.ShortTy,
|
|
Context.UnsignedCharTy, Context.UnsignedShortTy,
|
|
Context.IntTy, Context.LongTy, Context.LongLongTy,
|
|
Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
|
|
Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
|
|
};
|
|
assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy &&
|
|
"Invalid first promoted integral type");
|
|
assert(ArithmeticTypes[LastPromotedIntegralType - 1]
|
|
== Context.UnsignedLongLongTy &&
|
|
"Invalid last promoted integral type");
|
|
assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy &&
|
|
"Invalid first promoted arithmetic type");
|
|
assert(ArithmeticTypes[LastPromotedArithmeticType - 1]
|
|
== Context.LongDoubleTy &&
|
|
"Invalid last promoted arithmetic type");
|
|
|
|
// Find all of the types that the arguments can convert to, but only
|
|
// if the operator we're looking at has built-in operator candidates
|
|
// that make use of these types.
|
|
Qualifiers VisibleTypeConversionsQuals;
|
|
VisibleTypeConversionsQuals.addConst();
|
|
for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
|
|
VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
|
|
|
|
BuiltinCandidateTypeSet CandidateTypes(*this);
|
|
for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
|
|
CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
|
|
OpLoc,
|
|
true,
|
|
(Op == OO_Exclaim ||
|
|
Op == OO_AmpAmp ||
|
|
Op == OO_PipePipe),
|
|
VisibleTypeConversionsQuals);
|
|
|
|
bool isComparison = false;
|
|
switch (Op) {
|
|
case OO_None:
|
|
case NUM_OVERLOADED_OPERATORS:
|
|
assert(false && "Expected an overloaded operator");
|
|
break;
|
|
|
|
case OO_Star: // '*' is either unary or binary
|
|
if (NumArgs == 1)
|
|
goto UnaryStar;
|
|
else
|
|
goto BinaryStar;
|
|
break;
|
|
|
|
case OO_Plus: // '+' is either unary or binary
|
|
if (NumArgs == 1)
|
|
goto UnaryPlus;
|
|
else
|
|
goto BinaryPlus;
|
|
break;
|
|
|
|
case OO_Minus: // '-' is either unary or binary
|
|
if (NumArgs == 1)
|
|
goto UnaryMinus;
|
|
else
|
|
goto BinaryMinus;
|
|
break;
|
|
|
|
case OO_Amp: // '&' is either unary or binary
|
|
if (NumArgs == 1)
|
|
goto UnaryAmp;
|
|
else
|
|
goto BinaryAmp;
|
|
|
|
case OO_PlusPlus:
|
|
case OO_MinusMinus:
|
|
// C++ [over.built]p3:
|
|
//
|
|
// For every pair (T, VQ), where T is an arithmetic type, and VQ
|
|
// is either volatile or empty, there exist candidate operator
|
|
// functions of the form
|
|
//
|
|
// VQ T& operator++(VQ T&);
|
|
// T operator++(VQ T&, int);
|
|
//
|
|
// C++ [over.built]p4:
|
|
//
|
|
// For every pair (T, VQ), where T is an arithmetic type other
|
|
// than bool, and VQ is either volatile or empty, there exist
|
|
// candidate operator functions of the form
|
|
//
|
|
// VQ T& operator--(VQ T&);
|
|
// T operator--(VQ T&, int);
|
|
for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
|
|
Arith < NumArithmeticTypes; ++Arith) {
|
|
QualType ArithTy = ArithmeticTypes[Arith];
|
|
QualType ParamTypes[2]
|
|
= { Context.getLValueReferenceType(ArithTy), Context.IntTy };
|
|
|
|
// Non-volatile version.
|
|
if (NumArgs == 1)
|
|
AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
|
|
else
|
|
AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
|
|
// heuristic to reduce number of builtin candidates in the set.
|
|
// Add volatile version only if there are conversions to a volatile type.
|
|
if (VisibleTypeConversionsQuals.hasVolatile()) {
|
|
// Volatile version
|
|
ParamTypes[0]
|
|
= Context.getLValueReferenceType(Context.getVolatileType(ArithTy));
|
|
if (NumArgs == 1)
|
|
AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
|
|
else
|
|
AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
|
|
}
|
|
}
|
|
|
|
// C++ [over.built]p5:
|
|
//
|
|
// For every pair (T, VQ), where T is a cv-qualified or
|
|
// cv-unqualified object type, and VQ is either volatile or
|
|
// empty, there exist candidate operator functions of the form
|
|
//
|
|
// T*VQ& operator++(T*VQ&);
|
|
// T*VQ& operator--(T*VQ&);
|
|
// T* operator++(T*VQ&, int);
|
|
// T* operator--(T*VQ&, int);
|
|
for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
|
|
Ptr != CandidateTypes.pointer_end(); ++Ptr) {
|
|
// Skip pointer types that aren't pointers to object types.
|
|
if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
|
|
continue;
|
|
|
|
QualType ParamTypes[2] = {
|
|
Context.getLValueReferenceType(*Ptr), Context.IntTy
|
|
};
|
|
|
|
// Without volatile
|
|
if (NumArgs == 1)
|
|
AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
|
|
else
|
|
AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
|
|
|
|
if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
|
|
VisibleTypeConversionsQuals.hasVolatile()) {
|
|
// With volatile
|
|
ParamTypes[0]
|
|
= Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
|
|
if (NumArgs == 1)
|
|
AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
|
|
else
|
|
AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
|
|
}
|
|
}
|
|
break;
|
|
|
|
UnaryStar:
|
|
// C++ [over.built]p6:
|
|
// For every cv-qualified or cv-unqualified object type T, there
|
|
// exist candidate operator functions of the form
|
|
//
|
|
// T& operator*(T*);
|
|
//
|
|
// C++ [over.built]p7:
|
|
// For every function type T, there exist candidate operator
|
|
// functions of the form
|
|
// T& operator*(T*);
|
|
for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
|
|
Ptr != CandidateTypes.pointer_end(); ++Ptr) {
|
|
QualType ParamTy = *Ptr;
|
|
QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
|
|
AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
|
|
&ParamTy, Args, 1, CandidateSet);
|
|
}
|
|
break;
|
|
|
|
UnaryPlus:
|
|
// C++ [over.built]p8:
|
|
// For every type T, there exist candidate operator functions of
|
|
// the form
|
|
//
|
|
// T* operator+(T*);
|
|
for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
|
|
Ptr != CandidateTypes.pointer_end(); ++Ptr) {
|
|
QualType ParamTy = *Ptr;
|
|
AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
|
|
}
|
|
|
|
// Fall through
|
|
|
|
UnaryMinus:
|
|
// C++ [over.built]p9:
|
|
// For every promoted arithmetic type T, there exist candidate
|
|
// operator functions of the form
|
|
//
|
|
// T operator+(T);
|
|
// T operator-(T);
|
|
for (unsigned Arith = FirstPromotedArithmeticType;
|
|
Arith < LastPromotedArithmeticType; ++Arith) {
|
|
QualType ArithTy = ArithmeticTypes[Arith];
|
|
AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
|
|
}
|
|
|
|
// Extension: We also add these operators for vector types.
|
|
for (BuiltinCandidateTypeSet::iterator Vec = CandidateTypes.vector_begin(),
|
|
VecEnd = CandidateTypes.vector_end();
|
|
Vec != VecEnd; ++Vec) {
|
|
QualType VecTy = *Vec;
|
|
AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
|
|
}
|
|
break;
|
|
|
|
case OO_Tilde:
|
|
// C++ [over.built]p10:
|
|
// For every promoted integral type T, there exist candidate
|
|
// operator functions of the form
|
|
//
|
|
// T operator~(T);
|
|
for (unsigned Int = FirstPromotedIntegralType;
|
|
Int < LastPromotedIntegralType; ++Int) {
|
|
QualType IntTy = ArithmeticTypes[Int];
|
|
AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
|
|
}
|
|
|
|
// Extension: We also add this operator for vector types.
|
|
for (BuiltinCandidateTypeSet::iterator Vec = CandidateTypes.vector_begin(),
|
|
VecEnd = CandidateTypes.vector_end();
|
|
Vec != VecEnd; ++Vec) {
|
|
QualType VecTy = *Vec;
|
|
AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
|
|
}
|
|
break;
|
|
|
|
case OO_New:
|
|
case OO_Delete:
|
|
case OO_Array_New:
|
|
case OO_Array_Delete:
|
|
case OO_Call:
|
|
assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
|
|
break;
|
|
|
|
case OO_Comma:
|
|
UnaryAmp:
|
|
case OO_Arrow:
|
|
// C++ [over.match.oper]p3:
|
|
// -- For the operator ',', the unary operator '&', or the
|
|
// operator '->', the built-in candidates set is empty.
|
|
break;
|
|
|
|
case OO_EqualEqual:
|
|
case OO_ExclaimEqual:
|
|
// C++ [over.match.oper]p16:
|
|
// For every pointer to member type T, there exist candidate operator
|
|
// functions of the form
|
|
//
|
|
// bool operator==(T,T);
|
|
// bool operator!=(T,T);
|
|
for (BuiltinCandidateTypeSet::iterator
|
|
MemPtr = CandidateTypes.member_pointer_begin(),
|
|
MemPtrEnd = CandidateTypes.member_pointer_end();
|
|
MemPtr != MemPtrEnd;
|
|
++MemPtr) {
|
|
QualType ParamTypes[2] = { *MemPtr, *MemPtr };
|
|
AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
|
|
}
|
|
|
|
// Fall through
|
|
|
|
case OO_Less:
|
|
case OO_Greater:
|
|
case OO_LessEqual:
|
|
case OO_GreaterEqual:
|
|
// C++ [over.built]p15:
|
|
//
|
|
// For every pointer or enumeration type T, there exist
|
|
// candidate operator functions of the form
|
|
//
|
|
// bool operator<(T, T);
|
|
// bool operator>(T, T);
|
|
// bool operator<=(T, T);
|
|
// bool operator>=(T, T);
|
|
// bool operator==(T, T);
|
|
// bool operator!=(T, T);
|
|
for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
|
|
Ptr != CandidateTypes.pointer_end(); ++Ptr) {
|
|
QualType ParamTypes[2] = { *Ptr, *Ptr };
|
|
AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
|
|
}
|
|
for (BuiltinCandidateTypeSet::iterator Enum
|
|
= CandidateTypes.enumeration_begin();
|
|
Enum != CandidateTypes.enumeration_end(); ++Enum) {
|
|
QualType ParamTypes[2] = { *Enum, *Enum };
|
|
AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
|
|
}
|
|
|
|
// Fall through.
|
|
isComparison = true;
|
|
|
|
BinaryPlus:
|
|
BinaryMinus:
|
|
if (!isComparison) {
|
|
// We didn't fall through, so we must have OO_Plus or OO_Minus.
|
|
|
|
// C++ [over.built]p13:
|
|
//
|
|
// For every cv-qualified or cv-unqualified object type T
|
|
// there exist candidate operator functions of the form
|
|
//
|
|
// T* operator+(T*, ptrdiff_t);
|
|
// T& operator[](T*, ptrdiff_t); [BELOW]
|
|
// T* operator-(T*, ptrdiff_t);
|
|
// T* operator+(ptrdiff_t, T*);
|
|
// T& operator[](ptrdiff_t, T*); [BELOW]
|
|
//
|
|
// C++ [over.built]p14:
|
|
//
|
|
// For every T, where T is a pointer to object type, there
|
|
// exist candidate operator functions of the form
|
|
//
|
|
// ptrdiff_t operator-(T, T);
|
|
for (BuiltinCandidateTypeSet::iterator Ptr
|
|
= CandidateTypes.pointer_begin();
|
|
Ptr != CandidateTypes.pointer_end(); ++Ptr) {
|
|
QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
|
|
|
|
// operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
|
|
AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
|
|
|
|
if (Op == OO_Plus) {
|
|
// T* operator+(ptrdiff_t, T*);
|
|
ParamTypes[0] = ParamTypes[1];
|
|
ParamTypes[1] = *Ptr;
|
|
AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
|
|
} else {
|
|
// ptrdiff_t operator-(T, T);
|
|
ParamTypes[1] = *Ptr;
|
|
AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
|
|
Args, 2, CandidateSet);
|
|
}
|
|
}
|
|
}
|
|
// Fall through
|
|
|
|
case OO_Slash:
|
|
BinaryStar:
|
|
Conditional:
|
|
// C++ [over.built]p12:
|
|
//
|
|
// For every pair of promoted arithmetic types L and R, there
|
|
// exist candidate operator functions of the form
|
|
//
|
|
// LR operator*(L, R);
|
|
// LR operator/(L, R);
|
|
// LR operator+(L, R);
|
|
// LR operator-(L, R);
|
|
// bool operator<(L, R);
|
|
// bool operator>(L, R);
|
|
// bool operator<=(L, R);
|
|
// bool operator>=(L, R);
|
|
// bool operator==(L, R);
|
|
// bool operator!=(L, R);
|
|
//
|
|
// where LR is the result of the usual arithmetic conversions
|
|
// between types L and R.
|
|
//
|
|
// C++ [over.built]p24:
|
|
//
|
|
// For every pair of promoted arithmetic types L and R, there exist
|
|
// candidate operator functions of the form
|
|
//
|
|
// LR operator?(bool, L, R);
|
|
//
|
|
// where LR is the result of the usual arithmetic conversions
|
|
// between types L and R.
|
|
// Our candidates ignore the first parameter.
|
|
for (unsigned Left = FirstPromotedArithmeticType;
|
|
Left < LastPromotedArithmeticType; ++Left) {
|
|
for (unsigned Right = FirstPromotedArithmeticType;
|
|
Right < LastPromotedArithmeticType; ++Right) {
|
|
QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
|
|
QualType Result
|
|
= isComparison
|
|
? Context.BoolTy
|
|
: Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
|
|
AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
|
|
}
|
|
}
|
|
|
|
// Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
|
|
// conditional operator for vector types.
|
|
for (BuiltinCandidateTypeSet::iterator Vec1 = CandidateTypes.vector_begin(),
|
|
Vec1End = CandidateTypes.vector_end();
|
|
Vec1 != Vec1End; ++Vec1)
|
|
for (BuiltinCandidateTypeSet::iterator
|
|
Vec2 = CandidateTypes.vector_begin(),
|
|
Vec2End = CandidateTypes.vector_end();
|
|
Vec2 != Vec2End; ++Vec2) {
|
|
QualType LandR[2] = { *Vec1, *Vec2 };
|
|
QualType Result;
|
|
if (isComparison)
|
|
Result = Context.BoolTy;
|
|
else {
|
|
if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType())
|
|
Result = *Vec1;
|
|
else
|
|
Result = *Vec2;
|
|
}
|
|
|
|
AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
|
|
}
|
|
|
|
break;
|
|
|
|
case OO_Percent:
|
|
BinaryAmp:
|
|
case OO_Caret:
|
|
case OO_Pipe:
|
|
case OO_LessLess:
|
|
case OO_GreaterGreater:
|
|
// C++ [over.built]p17:
|
|
//
|
|
// For every pair of promoted integral types L and R, there
|
|
// exist candidate operator functions of the form
|
|
//
|
|
// LR operator%(L, R);
|
|
// LR operator&(L, R);
|
|
// LR operator^(L, R);
|
|
// LR operator|(L, R);
|
|
// L operator<<(L, R);
|
|
// L operator>>(L, R);
|
|
//
|
|
// where LR is the result of the usual arithmetic conversions
|
|
// between types L and R.
|
|
for (unsigned Left = FirstPromotedIntegralType;
|
|
Left < LastPromotedIntegralType; ++Left) {
|
|
for (unsigned Right = FirstPromotedIntegralType;
|
|
Right < LastPromotedIntegralType; ++Right) {
|
|
QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
|
|
QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
|
|
? LandR[0]
|
|
: Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
|
|
AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case OO_Equal:
|
|
// C++ [over.built]p20:
|
|
//
|
|
// For every pair (T, VQ), where T is an enumeration or
|
|
// pointer to member type and VQ is either volatile or
|
|
// empty, there exist candidate operator functions of the form
|
|
//
|
|
// VQ T& operator=(VQ T&, T);
|
|
for (BuiltinCandidateTypeSet::iterator
|
|
Enum = CandidateTypes.enumeration_begin(),
|
|
EnumEnd = CandidateTypes.enumeration_end();
|
|
Enum != EnumEnd; ++Enum)
|
|
AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2,
|
|
CandidateSet);
|
|
for (BuiltinCandidateTypeSet::iterator
|
|
MemPtr = CandidateTypes.member_pointer_begin(),
|
|
MemPtrEnd = CandidateTypes.member_pointer_end();
|
|
MemPtr != MemPtrEnd; ++MemPtr)
|
|
AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2,
|
|
CandidateSet);
|
|
|
|
// Fall through.
|
|
|
|
case OO_PlusEqual:
|
|
case OO_MinusEqual:
|
|
// C++ [over.built]p19:
|
|
//
|
|
// For every pair (T, VQ), where T is any type and VQ is either
|
|
// volatile or empty, there exist candidate operator functions
|
|
// of the form
|
|
//
|
|
// T*VQ& operator=(T*VQ&, T*);
|
|
//
|
|
// C++ [over.built]p21:
|
|
//
|
|
// For every pair (T, VQ), where T is a cv-qualified or
|
|
// cv-unqualified object type and VQ is either volatile or
|
|
// empty, there exist candidate operator functions of the form
|
|
//
|
|
// T*VQ& operator+=(T*VQ&, ptrdiff_t);
|
|
// T*VQ& operator-=(T*VQ&, ptrdiff_t);
|
|
for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
|
|
Ptr != CandidateTypes.pointer_end(); ++Ptr) {
|
|
QualType ParamTypes[2];
|
|
ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
|
|
|
|
// non-volatile version
|
|
ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
|
|
AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
|
|
/*IsAssigmentOperator=*/Op == OO_Equal);
|
|
|
|
if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
|
|
VisibleTypeConversionsQuals.hasVolatile()) {
|
|
// volatile version
|
|
ParamTypes[0]
|
|
= Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
|
|
AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
|
|
/*IsAssigmentOperator=*/Op == OO_Equal);
|
|
}
|
|
}
|
|
// Fall through.
|
|
|
|
case OO_StarEqual:
|
|
case OO_SlashEqual:
|
|
// C++ [over.built]p18:
|
|
//
|
|
// For every triple (L, VQ, R), where L is an arithmetic type,
|
|
// VQ is either volatile or empty, and R is a promoted
|
|
// arithmetic type, there exist candidate operator functions of
|
|
// the form
|
|
//
|
|
// VQ L& operator=(VQ L&, R);
|
|
// VQ L& operator*=(VQ L&, R);
|
|
// VQ L& operator/=(VQ L&, R);
|
|
// VQ L& operator+=(VQ L&, R);
|
|
// VQ L& operator-=(VQ L&, R);
|
|
for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
|
|
for (unsigned Right = FirstPromotedArithmeticType;
|
|
Right < LastPromotedArithmeticType; ++Right) {
|
|
QualType ParamTypes[2];
|
|
ParamTypes[1] = ArithmeticTypes[Right];
|
|
|
|
// Add this built-in operator as a candidate (VQ is empty).
|
|
ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
|
|
AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
|
|
/*IsAssigmentOperator=*/Op == OO_Equal);
|
|
|
|
// Add this built-in operator as a candidate (VQ is 'volatile').
|
|
if (VisibleTypeConversionsQuals.hasVolatile()) {
|
|
ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]);
|
|
ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
|
|
AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
|
|
/*IsAssigmentOperator=*/Op == OO_Equal);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
|
|
for (BuiltinCandidateTypeSet::iterator Vec1 = CandidateTypes.vector_begin(),
|
|
Vec1End = CandidateTypes.vector_end();
|
|
Vec1 != Vec1End; ++Vec1)
|
|
for (BuiltinCandidateTypeSet::iterator
|
|
Vec2 = CandidateTypes.vector_begin(),
|
|
Vec2End = CandidateTypes.vector_end();
|
|
Vec2 != Vec2End; ++Vec2) {
|
|
QualType ParamTypes[2];
|
|
ParamTypes[1] = *Vec2;
|
|
// Add this built-in operator as a candidate (VQ is empty).
|
|
ParamTypes[0] = Context.getLValueReferenceType(*Vec1);
|
|
AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
|
|
/*IsAssigmentOperator=*/Op == OO_Equal);
|
|
|
|
// Add this built-in operator as a candidate (VQ is 'volatile').
|
|
if (VisibleTypeConversionsQuals.hasVolatile()) {
|
|
ParamTypes[0] = Context.getVolatileType(*Vec1);
|
|
ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
|
|
AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
|
|
/*IsAssigmentOperator=*/Op == OO_Equal);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case OO_PercentEqual:
|
|
case OO_LessLessEqual:
|
|
case OO_GreaterGreaterEqual:
|
|
case OO_AmpEqual:
|
|
case OO_CaretEqual:
|
|
case OO_PipeEqual:
|
|
// C++ [over.built]p22:
|
|
//
|
|
// For every triple (L, VQ, R), where L is an integral type, VQ
|
|
// is either volatile or empty, and R is a promoted integral
|
|
// type, there exist candidate operator functions of the form
|
|
//
|
|
// VQ L& operator%=(VQ L&, R);
|
|
// VQ L& operator<<=(VQ L&, R);
|
|
// VQ L& operator>>=(VQ L&, R);
|
|
// VQ L& operator&=(VQ L&, R);
|
|
// VQ L& operator^=(VQ L&, R);
|
|
// VQ L& operator|=(VQ L&, R);
|
|
for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
|
|
for (unsigned Right = FirstPromotedIntegralType;
|
|
Right < LastPromotedIntegralType; ++Right) {
|
|
QualType ParamTypes[2];
|
|
ParamTypes[1] = ArithmeticTypes[Right];
|
|
|
|
// Add this built-in operator as a candidate (VQ is empty).
|
|
ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
|
|
AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
|
|
if (VisibleTypeConversionsQuals.hasVolatile()) {
|
|
// Add this built-in operator as a candidate (VQ is 'volatile').
|
|
ParamTypes[0] = ArithmeticTypes[Left];
|
|
ParamTypes[0] = Context.getVolatileType(ParamTypes[0]);
|
|
ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
|
|
AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case OO_Exclaim: {
|
|
// C++ [over.operator]p23:
|
|
//
|
|
// There also exist candidate operator functions of the form
|
|
//
|
|
// bool operator!(bool);
|
|
// bool operator&&(bool, bool); [BELOW]
|
|
// bool operator||(bool, bool); [BELOW]
|
|
QualType ParamTy = Context.BoolTy;
|
|
AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
|
|
/*IsAssignmentOperator=*/false,
|
|
/*NumContextualBoolArguments=*/1);
|
|
break;
|
|
}
|
|
|
|
case OO_AmpAmp:
|
|
case OO_PipePipe: {
|
|
// C++ [over.operator]p23:
|
|
//
|
|
// There also exist candidate operator functions of the form
|
|
//
|
|
// bool operator!(bool); [ABOVE]
|
|
// bool operator&&(bool, bool);
|
|
// bool operator||(bool, bool);
|
|
QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
|
|
AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
|
|
/*IsAssignmentOperator=*/false,
|
|
/*NumContextualBoolArguments=*/2);
|
|
break;
|
|
}
|
|
|
|
case OO_Subscript:
|
|
// C++ [over.built]p13:
|
|
//
|
|
// For every cv-qualified or cv-unqualified object type T there
|
|
// exist candidate operator functions of the form
|
|
//
|
|
// T* operator+(T*, ptrdiff_t); [ABOVE]
|
|
// T& operator[](T*, ptrdiff_t);
|
|
// T* operator-(T*, ptrdiff_t); [ABOVE]
|
|
// T* operator+(ptrdiff_t, T*); [ABOVE]
|
|
// T& operator[](ptrdiff_t, T*);
|
|
for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
|
|
Ptr != CandidateTypes.pointer_end(); ++Ptr) {
|
|
QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
|
|
QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
|
|
QualType ResultTy = Context.getLValueReferenceType(PointeeType);
|
|
|
|
// T& operator[](T*, ptrdiff_t)
|
|
AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
|
|
|
|
// T& operator[](ptrdiff_t, T*);
|
|
ParamTypes[0] = ParamTypes[1];
|
|
ParamTypes[1] = *Ptr;
|
|
AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
|
|
}
|
|
break;
|
|
|
|
case OO_ArrowStar:
|
|
// C++ [over.built]p11:
|
|
// For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
|
|
// C1 is the same type as C2 or is a derived class of C2, T is an object
|
|
// type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
|
|
// there exist candidate operator functions of the form
|
|
// CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
|
|
// where CV12 is the union of CV1 and CV2.
|
|
{
|
|
for (BuiltinCandidateTypeSet::iterator Ptr =
|
|
CandidateTypes.pointer_begin();
|
|
Ptr != CandidateTypes.pointer_end(); ++Ptr) {
|
|
QualType C1Ty = (*Ptr);
|
|
QualType C1;
|
|
QualifierCollector Q1;
|
|
if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) {
|
|
C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0);
|
|
if (!isa<RecordType>(C1))
|
|
continue;
|
|
// heuristic to reduce number of builtin candidates in the set.
|
|
// Add volatile/restrict version only if there are conversions to a
|
|
// volatile/restrict type.
|
|
if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
|
|
continue;
|
|
if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
|
|
continue;
|
|
}
|
|
for (BuiltinCandidateTypeSet::iterator
|
|
MemPtr = CandidateTypes.member_pointer_begin(),
|
|
MemPtrEnd = CandidateTypes.member_pointer_end();
|
|
MemPtr != MemPtrEnd; ++MemPtr) {
|
|
const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
|
|
QualType C2 = QualType(mptr->getClass(), 0);
|
|
C2 = C2.getUnqualifiedType();
|
|
if (C1 != C2 && !IsDerivedFrom(C1, C2))
|
|
break;
|
|
QualType ParamTypes[2] = { *Ptr, *MemPtr };
|
|
// build CV12 T&
|
|
QualType T = mptr->getPointeeType();
|
|
if (!VisibleTypeConversionsQuals.hasVolatile() &&
|
|
T.isVolatileQualified())
|
|
continue;
|
|
if (!VisibleTypeConversionsQuals.hasRestrict() &&
|
|
T.isRestrictQualified())
|
|
continue;
|
|
T = Q1.apply(T);
|
|
QualType ResultTy = Context.getLValueReferenceType(T);
|
|
AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case OO_Conditional:
|
|
// Note that we don't consider the first argument, since it has been
|
|
// contextually converted to bool long ago. The candidates below are
|
|
// therefore added as binary.
|
|
//
|
|
// C++ [over.built]p24:
|
|
// For every type T, where T is a pointer or pointer-to-member type,
|
|
// there exist candidate operator functions of the form
|
|
//
|
|
// T operator?(bool, T, T);
|
|
//
|
|
for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
|
|
E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
|
|
QualType ParamTypes[2] = { *Ptr, *Ptr };
|
|
AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
|
|
}
|
|
for (BuiltinCandidateTypeSet::iterator Ptr =
|
|
CandidateTypes.member_pointer_begin(),
|
|
E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
|
|
QualType ParamTypes[2] = { *Ptr, *Ptr };
|
|
AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
|
|
}
|
|
goto Conditional;
|
|
}
|
|
}
|
|
|
|
/// \brief Add function candidates found via argument-dependent lookup
|
|
/// to the set of overloading candidates.
|
|
///
|
|
/// This routine performs argument-dependent name lookup based on the
|
|
/// given function name (which may also be an operator name) and adds
|
|
/// all of the overload candidates found by ADL to the overload
|
|
/// candidate set (C++ [basic.lookup.argdep]).
|
|
void
|
|
Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
|
|
bool Operator,
|
|
Expr **Args, unsigned NumArgs,
|
|
const TemplateArgumentListInfo *ExplicitTemplateArgs,
|
|
OverloadCandidateSet& CandidateSet,
|
|
bool PartialOverloading) {
|
|
ADLResult Fns;
|
|
|
|
// FIXME: This approach for uniquing ADL results (and removing
|
|
// redundant candidates from the set) relies on pointer-equality,
|
|
// which means we need to key off the canonical decl. However,
|
|
// always going back to the canonical decl might not get us the
|
|
// right set of default arguments. What default arguments are
|
|
// we supposed to consider on ADL candidates, anyway?
|
|
|
|
// FIXME: Pass in the explicit template arguments?
|
|
ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns);
|
|
|
|
// Erase all of the candidates we already knew about.
|
|
for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
|
|
CandEnd = CandidateSet.end();
|
|
Cand != CandEnd; ++Cand)
|
|
if (Cand->Function) {
|
|
Fns.erase(Cand->Function);
|
|
if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
|
|
Fns.erase(FunTmpl);
|
|
}
|
|
|
|
// For each of the ADL candidates we found, add it to the overload
|
|
// set.
|
|
for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
|
|
DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
|
|
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
|
|
if (ExplicitTemplateArgs)
|
|
continue;
|
|
|
|
AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet,
|
|
false, PartialOverloading);
|
|
} else
|
|
AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
|
|
FoundDecl, ExplicitTemplateArgs,
|
|
Args, NumArgs, CandidateSet);
|
|
}
|
|
}
|
|
|
|
/// isBetterOverloadCandidate - Determines whether the first overload
|
|
/// candidate is a better candidate than the second (C++ 13.3.3p1).
|
|
bool
|
|
Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
|
|
const OverloadCandidate& Cand2,
|
|
SourceLocation Loc) {
|
|
// Define viable functions to be better candidates than non-viable
|
|
// functions.
|
|
if (!Cand2.Viable)
|
|
return Cand1.Viable;
|
|
else if (!Cand1.Viable)
|
|
return false;
|
|
|
|
// C++ [over.match.best]p1:
|
|
//
|
|
// -- if F is a static member function, ICS1(F) is defined such
|
|
// that ICS1(F) is neither better nor worse than ICS1(G) for
|
|
// any function G, and, symmetrically, ICS1(G) is neither
|
|
// better nor worse than ICS1(F).
|
|
unsigned StartArg = 0;
|
|
if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
|
|
StartArg = 1;
|
|
|
|
// C++ [over.match.best]p1:
|
|
// A viable function F1 is defined to be a better function than another
|
|
// viable function F2 if for all arguments i, ICSi(F1) is not a worse
|
|
// conversion sequence than ICSi(F2), and then...
|
|
unsigned NumArgs = Cand1.Conversions.size();
|
|
assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
|
|
bool HasBetterConversion = false;
|
|
for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
|
|
switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
|
|
Cand2.Conversions[ArgIdx])) {
|
|
case ImplicitConversionSequence::Better:
|
|
// Cand1 has a better conversion sequence.
|
|
HasBetterConversion = true;
|
|
break;
|
|
|
|
case ImplicitConversionSequence::Worse:
|
|
// Cand1 can't be better than Cand2.
|
|
return false;
|
|
|
|
case ImplicitConversionSequence::Indistinguishable:
|
|
// Do nothing.
|
|
break;
|
|
}
|
|
}
|
|
|
|
// -- for some argument j, ICSj(F1) is a better conversion sequence than
|
|
// ICSj(F2), or, if not that,
|
|
if (HasBetterConversion)
|
|
return true;
|
|
|
|
// - F1 is a non-template function and F2 is a function template
|
|
// specialization, or, if not that,
|
|
if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) &&
|
|
Cand2.Function && Cand2.Function->getPrimaryTemplate())
|
|
return true;
|
|
|
|
// -- F1 and F2 are function template specializations, and the function
|
|
// template for F1 is more specialized than the template for F2
|
|
// according to the partial ordering rules described in 14.5.5.2, or,
|
|
// if not that,
|
|
if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
|
|
Cand2.Function && Cand2.Function->getPrimaryTemplate())
|
|
if (FunctionTemplateDecl *BetterTemplate
|
|
= getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
|
|
Cand2.Function->getPrimaryTemplate(),
|
|
Loc,
|
|
isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
|
|
: TPOC_Call))
|
|
return BetterTemplate == Cand1.Function->getPrimaryTemplate();
|
|
|
|
// -- the context is an initialization by user-defined conversion
|
|
// (see 8.5, 13.3.1.5) and the standard conversion sequence
|
|
// from the return type of F1 to the destination type (i.e.,
|
|
// the type of the entity being initialized) is a better
|
|
// conversion sequence than the standard conversion sequence
|
|
// from the return type of F2 to the destination type.
|
|
if (Cand1.Function && Cand2.Function &&
|
|
isa<CXXConversionDecl>(Cand1.Function) &&
|
|
isa<CXXConversionDecl>(Cand2.Function)) {
|
|
switch (CompareStandardConversionSequences(Cand1.FinalConversion,
|
|
Cand2.FinalConversion)) {
|
|
case ImplicitConversionSequence::Better:
|
|
// Cand1 has a better conversion sequence.
|
|
return true;
|
|
|
|
case ImplicitConversionSequence::Worse:
|
|
// Cand1 can't be better than Cand2.
|
|
return false;
|
|
|
|
case ImplicitConversionSequence::Indistinguishable:
|
|
// Do nothing
|
|
break;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// \brief Computes the best viable function (C++ 13.3.3)
|
|
/// within an overload candidate set.
|
|
///
|
|
/// \param CandidateSet the set of candidate functions.
|
|
///
|
|
/// \param Loc the location of the function name (or operator symbol) for
|
|
/// which overload resolution occurs.
|
|
///
|
|
/// \param Best f overload resolution was successful or found a deleted
|
|
/// function, Best points to the candidate function found.
|
|
///
|
|
/// \returns The result of overload resolution.
|
|
OverloadingResult Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
|
|
SourceLocation Loc,
|
|
OverloadCandidateSet::iterator& Best) {
|
|
// Find the best viable function.
|
|
Best = CandidateSet.end();
|
|
for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
|
|
Cand != CandidateSet.end(); ++Cand) {
|
|
if (Cand->Viable) {
|
|
if (Best == CandidateSet.end() ||
|
|
isBetterOverloadCandidate(*Cand, *Best, Loc))
|
|
Best = Cand;
|
|
}
|
|
}
|
|
|
|
// If we didn't find any viable functions, abort.
|
|
if (Best == CandidateSet.end())
|
|
return OR_No_Viable_Function;
|
|
|
|
// Make sure that this function is better than every other viable
|
|
// function. If not, we have an ambiguity.
|
|
for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
|
|
Cand != CandidateSet.end(); ++Cand) {
|
|
if (Cand->Viable &&
|
|
Cand != Best &&
|
|
!isBetterOverloadCandidate(*Best, *Cand, Loc)) {
|
|
Best = CandidateSet.end();
|
|
return OR_Ambiguous;
|
|
}
|
|
}
|
|
|
|
// Best is the best viable function.
|
|
if (Best->Function &&
|
|
(Best->Function->isDeleted() ||
|
|
Best->Function->getAttr<UnavailableAttr>()))
|
|
return OR_Deleted;
|
|
|
|
// C++ [basic.def.odr]p2:
|
|
// An overloaded function is used if it is selected by overload resolution
|
|
// when referred to from a potentially-evaluated expression. [Note: this
|
|
// covers calls to named functions (5.2.2), operator overloading
|
|
// (clause 13), user-defined conversions (12.3.2), allocation function for
|
|
// placement new (5.3.4), as well as non-default initialization (8.5).
|
|
if (Best->Function)
|
|
MarkDeclarationReferenced(Loc, Best->Function);
|
|
return OR_Success;
|
|
}
|
|
|
|
namespace {
|
|
|
|
enum OverloadCandidateKind {
|
|
oc_function,
|
|
oc_method,
|
|
oc_constructor,
|
|
oc_function_template,
|
|
oc_method_template,
|
|
oc_constructor_template,
|
|
oc_implicit_default_constructor,
|
|
oc_implicit_copy_constructor,
|
|
oc_implicit_copy_assignment
|
|
};
|
|
|
|
OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
|
|
FunctionDecl *Fn,
|
|
std::string &Description) {
|
|
bool isTemplate = false;
|
|
|
|
if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
|
|
isTemplate = true;
|
|
Description = S.getTemplateArgumentBindingsText(
|
|
FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
|
|
}
|
|
|
|
if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
|
|
if (!Ctor->isImplicit())
|
|
return isTemplate ? oc_constructor_template : oc_constructor;
|
|
|
|
return Ctor->isCopyConstructor() ? oc_implicit_copy_constructor
|
|
: oc_implicit_default_constructor;
|
|
}
|
|
|
|
if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
|
|
// This actually gets spelled 'candidate function' for now, but
|
|
// it doesn't hurt to split it out.
|
|
if (!Meth->isImplicit())
|
|
return isTemplate ? oc_method_template : oc_method;
|
|
|
|
assert(Meth->isCopyAssignment()
|
|
&& "implicit method is not copy assignment operator?");
|
|
return oc_implicit_copy_assignment;
|
|
}
|
|
|
|
return isTemplate ? oc_function_template : oc_function;
|
|
}
|
|
|
|
} // end anonymous namespace
|
|
|
|
// Notes the location of an overload candidate.
|
|
void Sema::NoteOverloadCandidate(FunctionDecl *Fn) {
|
|
std::string FnDesc;
|
|
OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
|
|
Diag(Fn->getLocation(), diag::note_ovl_candidate)
|
|
<< (unsigned) K << FnDesc;
|
|
}
|
|
|
|
/// Diagnoses an ambiguous conversion. The partial diagnostic is the
|
|
/// "lead" diagnostic; it will be given two arguments, the source and
|
|
/// target types of the conversion.
|
|
void Sema::DiagnoseAmbiguousConversion(const ImplicitConversionSequence &ICS,
|
|
SourceLocation CaretLoc,
|
|
const PartialDiagnostic &PDiag) {
|
|
Diag(CaretLoc, PDiag)
|
|
<< ICS.Ambiguous.getFromType() << ICS.Ambiguous.getToType();
|
|
for (AmbiguousConversionSequence::const_iterator
|
|
I = ICS.Ambiguous.begin(), E = ICS.Ambiguous.end(); I != E; ++I) {
|
|
NoteOverloadCandidate(*I);
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
|
|
void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
|
|
const ImplicitConversionSequence &Conv = Cand->Conversions[I];
|
|
assert(Conv.isBad());
|
|
assert(Cand->Function && "for now, candidate must be a function");
|
|
FunctionDecl *Fn = Cand->Function;
|
|
|
|
// There's a conversion slot for the object argument if this is a
|
|
// non-constructor method. Note that 'I' corresponds the
|
|
// conversion-slot index.
|
|
bool isObjectArgument = false;
|
|
if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
|
|
if (I == 0)
|
|
isObjectArgument = true;
|
|
else
|
|
I--;
|
|
}
|
|
|
|
std::string FnDesc;
|
|
OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
|
|
|
|
Expr *FromExpr = Conv.Bad.FromExpr;
|
|
QualType FromTy = Conv.Bad.getFromType();
|
|
QualType ToTy = Conv.Bad.getToType();
|
|
|
|
if (FromTy == S.Context.OverloadTy) {
|
|
assert(FromExpr && "overload set argument came from implicit argument?");
|
|
Expr *E = FromExpr->IgnoreParens();
|
|
if (isa<UnaryOperator>(E))
|
|
E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
|
|
DeclarationName Name = cast<OverloadExpr>(E)->getName();
|
|
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
|
|
<< (unsigned) FnKind << FnDesc
|
|
<< (FromExpr ? FromExpr->getSourceRange() : SourceRange())
|
|
<< ToTy << Name << I+1;
|
|
return;
|
|
}
|
|
|
|
// Do some hand-waving analysis to see if the non-viability is due
|
|
// to a qualifier mismatch.
|
|
CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
|
|
CanQualType CToTy = S.Context.getCanonicalType(ToTy);
|
|
if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
|
|
CToTy = RT->getPointeeType();
|
|
else {
|
|
// TODO: detect and diagnose the full richness of const mismatches.
|
|
if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
|
|
if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
|
|
CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
|
|
}
|
|
|
|
if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
|
|
!CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
|
|
// It is dumb that we have to do this here.
|
|
while (isa<ArrayType>(CFromTy))
|
|
CFromTy = CFromTy->getAs<ArrayType>()->getElementType();
|
|
while (isa<ArrayType>(CToTy))
|
|
CToTy = CFromTy->getAs<ArrayType>()->getElementType();
|
|
|
|
Qualifiers FromQs = CFromTy.getQualifiers();
|
|
Qualifiers ToQs = CToTy.getQualifiers();
|
|
|
|
if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
|
|
<< (unsigned) FnKind << FnDesc
|
|
<< (FromExpr ? FromExpr->getSourceRange() : SourceRange())
|
|
<< FromTy
|
|
<< FromQs.getAddressSpace() << ToQs.getAddressSpace()
|
|
<< (unsigned) isObjectArgument << I+1;
|
|
return;
|
|
}
|
|
|
|
unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
|
|
assert(CVR && "unexpected qualifiers mismatch");
|
|
|
|
if (isObjectArgument) {
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
|
|
<< (unsigned) FnKind << FnDesc
|
|
<< (FromExpr ? FromExpr->getSourceRange() : SourceRange())
|
|
<< FromTy << (CVR - 1);
|
|
} else {
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
|
|
<< (unsigned) FnKind << FnDesc
|
|
<< (FromExpr ? FromExpr->getSourceRange() : SourceRange())
|
|
<< FromTy << (CVR - 1) << I+1;
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Diagnose references or pointers to incomplete types differently,
|
|
// since it's far from impossible that the incompleteness triggered
|
|
// the failure.
|
|
QualType TempFromTy = FromTy.getNonReferenceType();
|
|
if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
|
|
TempFromTy = PTy->getPointeeType();
|
|
if (TempFromTy->isIncompleteType()) {
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
|
|
<< (unsigned) FnKind << FnDesc
|
|
<< (FromExpr ? FromExpr->getSourceRange() : SourceRange())
|
|
<< FromTy << ToTy << (unsigned) isObjectArgument << I+1;
|
|
return;
|
|
}
|
|
|
|
// TODO: specialize more based on the kind of mismatch
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv)
|
|
<< (unsigned) FnKind << FnDesc
|
|
<< (FromExpr ? FromExpr->getSourceRange() : SourceRange())
|
|
<< FromTy << ToTy << (unsigned) isObjectArgument << I+1;
|
|
}
|
|
|
|
void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
|
|
unsigned NumFormalArgs) {
|
|
// TODO: treat calls to a missing default constructor as a special case
|
|
|
|
FunctionDecl *Fn = Cand->Function;
|
|
const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
|
|
|
|
unsigned MinParams = Fn->getMinRequiredArguments();
|
|
|
|
// at least / at most / exactly
|
|
// FIXME: variadic templates "at most" should account for parameter packs
|
|
unsigned mode, modeCount;
|
|
if (NumFormalArgs < MinParams) {
|
|
assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
|
|
(Cand->FailureKind == ovl_fail_bad_deduction &&
|
|
Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
|
|
if (MinParams != FnTy->getNumArgs() || FnTy->isVariadic())
|
|
mode = 0; // "at least"
|
|
else
|
|
mode = 2; // "exactly"
|
|
modeCount = MinParams;
|
|
} else {
|
|
assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
|
|
(Cand->FailureKind == ovl_fail_bad_deduction &&
|
|
Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
|
|
if (MinParams != FnTy->getNumArgs())
|
|
mode = 1; // "at most"
|
|
else
|
|
mode = 2; // "exactly"
|
|
modeCount = FnTy->getNumArgs();
|
|
}
|
|
|
|
std::string Description;
|
|
OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
|
|
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
|
|
<< (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode
|
|
<< modeCount << NumFormalArgs;
|
|
}
|
|
|
|
/// Diagnose a failed template-argument deduction.
|
|
void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
|
|
Expr **Args, unsigned NumArgs) {
|
|
FunctionDecl *Fn = Cand->Function; // pattern
|
|
|
|
TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter();
|
|
NamedDecl *ParamD;
|
|
(ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
|
|
(ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
|
|
(ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
|
|
switch (Cand->DeductionFailure.Result) {
|
|
case Sema::TDK_Success:
|
|
llvm_unreachable("TDK_success while diagnosing bad deduction");
|
|
|
|
case Sema::TDK_Incomplete: {
|
|
assert(ParamD && "no parameter found for incomplete deduction result");
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction)
|
|
<< ParamD->getDeclName();
|
|
return;
|
|
}
|
|
|
|
case Sema::TDK_Inconsistent:
|
|
case Sema::TDK_InconsistentQuals: {
|
|
assert(ParamD && "no parameter found for inconsistent deduction result");
|
|
int which = 0;
|
|
if (isa<TemplateTypeParmDecl>(ParamD))
|
|
which = 0;
|
|
else if (isa<NonTypeTemplateParmDecl>(ParamD))
|
|
which = 1;
|
|
else {
|
|
which = 2;
|
|
}
|
|
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction)
|
|
<< which << ParamD->getDeclName()
|
|
<< *Cand->DeductionFailure.getFirstArg()
|
|
<< *Cand->DeductionFailure.getSecondArg();
|
|
return;
|
|
}
|
|
|
|
case Sema::TDK_InvalidExplicitArguments:
|
|
assert(ParamD && "no parameter found for invalid explicit arguments");
|
|
if (ParamD->getDeclName())
|
|
S.Diag(Fn->getLocation(),
|
|
diag::note_ovl_candidate_explicit_arg_mismatch_named)
|
|
<< ParamD->getDeclName();
|
|
else {
|
|
int index = 0;
|
|
if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
|
|
index = TTP->getIndex();
|
|
else if (NonTypeTemplateParmDecl *NTTP
|
|
= dyn_cast<NonTypeTemplateParmDecl>(ParamD))
|
|
index = NTTP->getIndex();
|
|
else
|
|
index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
|
|
S.Diag(Fn->getLocation(),
|
|
diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
|
|
<< (index + 1);
|
|
}
|
|
return;
|
|
|
|
case Sema::TDK_TooManyArguments:
|
|
case Sema::TDK_TooFewArguments:
|
|
DiagnoseArityMismatch(S, Cand, NumArgs);
|
|
return;
|
|
|
|
case Sema::TDK_InstantiationDepth:
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth);
|
|
return;
|
|
|
|
case Sema::TDK_SubstitutionFailure: {
|
|
std::string ArgString;
|
|
if (TemplateArgumentList *Args
|
|
= Cand->DeductionFailure.getTemplateArgumentList())
|
|
ArgString = S.getTemplateArgumentBindingsText(
|
|
Fn->getDescribedFunctionTemplate()->getTemplateParameters(),
|
|
*Args);
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure)
|
|
<< ArgString;
|
|
return;
|
|
}
|
|
|
|
// TODO: diagnose these individually, then kill off
|
|
// note_ovl_candidate_bad_deduction, which is uselessly vague.
|
|
case Sema::TDK_NonDeducedMismatch:
|
|
case Sema::TDK_FailedOverloadResolution:
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/// Generates a 'note' diagnostic for an overload candidate. We've
|
|
/// already generated a primary error at the call site.
|
|
///
|
|
/// It really does need to be a single diagnostic with its caret
|
|
/// pointed at the candidate declaration. Yes, this creates some
|
|
/// major challenges of technical writing. Yes, this makes pointing
|
|
/// out problems with specific arguments quite awkward. It's still
|
|
/// better than generating twenty screens of text for every failed
|
|
/// overload.
|
|
///
|
|
/// It would be great to be able to express per-candidate problems
|
|
/// more richly for those diagnostic clients that cared, but we'd
|
|
/// still have to be just as careful with the default diagnostics.
|
|
void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
|
|
Expr **Args, unsigned NumArgs) {
|
|
FunctionDecl *Fn = Cand->Function;
|
|
|
|
// Note deleted candidates, but only if they're viable.
|
|
if (Cand->Viable && (Fn->isDeleted() || Fn->hasAttr<UnavailableAttr>())) {
|
|
std::string FnDesc;
|
|
OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
|
|
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
|
|
<< FnKind << FnDesc << Fn->isDeleted();
|
|
return;
|
|
}
|
|
|
|
// We don't really have anything else to say about viable candidates.
|
|
if (Cand->Viable) {
|
|
S.NoteOverloadCandidate(Fn);
|
|
return;
|
|
}
|
|
|
|
switch (Cand->FailureKind) {
|
|
case ovl_fail_too_many_arguments:
|
|
case ovl_fail_too_few_arguments:
|
|
return DiagnoseArityMismatch(S, Cand, NumArgs);
|
|
|
|
case ovl_fail_bad_deduction:
|
|
return DiagnoseBadDeduction(S, Cand, Args, NumArgs);
|
|
|
|
case ovl_fail_trivial_conversion:
|
|
case ovl_fail_bad_final_conversion:
|
|
case ovl_fail_final_conversion_not_exact:
|
|
return S.NoteOverloadCandidate(Fn);
|
|
|
|
case ovl_fail_bad_conversion: {
|
|
unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
|
|
for (unsigned N = Cand->Conversions.size(); I != N; ++I)
|
|
if (Cand->Conversions[I].isBad())
|
|
return DiagnoseBadConversion(S, Cand, I);
|
|
|
|
// FIXME: this currently happens when we're called from SemaInit
|
|
// when user-conversion overload fails. Figure out how to handle
|
|
// those conditions and diagnose them well.
|
|
return S.NoteOverloadCandidate(Fn);
|
|
}
|
|
}
|
|
}
|
|
|
|
void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
|
|
// Desugar the type of the surrogate down to a function type,
|
|
// retaining as many typedefs as possible while still showing
|
|
// the function type (and, therefore, its parameter types).
|
|
QualType FnType = Cand->Surrogate->getConversionType();
|
|
bool isLValueReference = false;
|
|
bool isRValueReference = false;
|
|
bool isPointer = false;
|
|
if (const LValueReferenceType *FnTypeRef =
|
|
FnType->getAs<LValueReferenceType>()) {
|
|
FnType = FnTypeRef->getPointeeType();
|
|
isLValueReference = true;
|
|
} else if (const RValueReferenceType *FnTypeRef =
|
|
FnType->getAs<RValueReferenceType>()) {
|
|
FnType = FnTypeRef->getPointeeType();
|
|
isRValueReference = true;
|
|
}
|
|
if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
|
|
FnType = FnTypePtr->getPointeeType();
|
|
isPointer = true;
|
|
}
|
|
// Desugar down to a function type.
|
|
FnType = QualType(FnType->getAs<FunctionType>(), 0);
|
|
// Reconstruct the pointer/reference as appropriate.
|
|
if (isPointer) FnType = S.Context.getPointerType(FnType);
|
|
if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
|
|
if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
|
|
|
|
S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
|
|
<< FnType;
|
|
}
|
|
|
|
void NoteBuiltinOperatorCandidate(Sema &S,
|
|
const char *Opc,
|
|
SourceLocation OpLoc,
|
|
OverloadCandidate *Cand) {
|
|
assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
|
|
std::string TypeStr("operator");
|
|
TypeStr += Opc;
|
|
TypeStr += "(";
|
|
TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
|
|
if (Cand->Conversions.size() == 1) {
|
|
TypeStr += ")";
|
|
S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
|
|
} else {
|
|
TypeStr += ", ";
|
|
TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
|
|
TypeStr += ")";
|
|
S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
|
|
}
|
|
}
|
|
|
|
void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
|
|
OverloadCandidate *Cand) {
|
|
unsigned NoOperands = Cand->Conversions.size();
|
|
for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
|
|
const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
|
|
if (ICS.isBad()) break; // all meaningless after first invalid
|
|
if (!ICS.isAmbiguous()) continue;
|
|
|
|
S.DiagnoseAmbiguousConversion(ICS, OpLoc,
|
|
S.PDiag(diag::note_ambiguous_type_conversion));
|
|
}
|
|
}
|
|
|
|
SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
|
|
if (Cand->Function)
|
|
return Cand->Function->getLocation();
|
|
if (Cand->IsSurrogate)
|
|
return Cand->Surrogate->getLocation();
|
|
return SourceLocation();
|
|
}
|
|
|
|
struct CompareOverloadCandidatesForDisplay {
|
|
Sema &S;
|
|
CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
|
|
|
|
bool operator()(const OverloadCandidate *L,
|
|
const OverloadCandidate *R) {
|
|
// Fast-path this check.
|
|
if (L == R) return false;
|
|
|
|
// Order first by viability.
|
|
if (L->Viable) {
|
|
if (!R->Viable) return true;
|
|
|
|
// TODO: introduce a tri-valued comparison for overload
|
|
// candidates. Would be more worthwhile if we had a sort
|
|
// that could exploit it.
|
|
if (S.isBetterOverloadCandidate(*L, *R, SourceLocation())) return true;
|
|
if (S.isBetterOverloadCandidate(*R, *L, SourceLocation())) return false;
|
|
} else if (R->Viable)
|
|
return false;
|
|
|
|
assert(L->Viable == R->Viable);
|
|
|
|
// Criteria by which we can sort non-viable candidates:
|
|
if (!L->Viable) {
|
|
// 1. Arity mismatches come after other candidates.
|
|
if (L->FailureKind == ovl_fail_too_many_arguments ||
|
|
L->FailureKind == ovl_fail_too_few_arguments)
|
|
return false;
|
|
if (R->FailureKind == ovl_fail_too_many_arguments ||
|
|
R->FailureKind == ovl_fail_too_few_arguments)
|
|
return true;
|
|
|
|
// 2. Bad conversions come first and are ordered by the number
|
|
// of bad conversions and quality of good conversions.
|
|
if (L->FailureKind == ovl_fail_bad_conversion) {
|
|
if (R->FailureKind != ovl_fail_bad_conversion)
|
|
return true;
|
|
|
|
// If there's any ordering between the defined conversions...
|
|
// FIXME: this might not be transitive.
|
|
assert(L->Conversions.size() == R->Conversions.size());
|
|
|
|
int leftBetter = 0;
|
|
unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
|
|
for (unsigned E = L->Conversions.size(); I != E; ++I) {
|
|
switch (S.CompareImplicitConversionSequences(L->Conversions[I],
|
|
R->Conversions[I])) {
|
|
case ImplicitConversionSequence::Better:
|
|
leftBetter++;
|
|
break;
|
|
|
|
case ImplicitConversionSequence::Worse:
|
|
leftBetter--;
|
|
break;
|
|
|
|
case ImplicitConversionSequence::Indistinguishable:
|
|
break;
|
|
}
|
|
}
|
|
if (leftBetter > 0) return true;
|
|
if (leftBetter < 0) return false;
|
|
|
|
} else if (R->FailureKind == ovl_fail_bad_conversion)
|
|
return false;
|
|
|
|
// TODO: others?
|
|
}
|
|
|
|
// Sort everything else by location.
|
|
SourceLocation LLoc = GetLocationForCandidate(L);
|
|
SourceLocation RLoc = GetLocationForCandidate(R);
|
|
|
|
// Put candidates without locations (e.g. builtins) at the end.
|
|
if (LLoc.isInvalid()) return false;
|
|
if (RLoc.isInvalid()) return true;
|
|
|
|
return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
|
|
}
|
|
};
|
|
|
|
/// CompleteNonViableCandidate - Normally, overload resolution only
|
|
/// computes up to the first
|
|
void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
|
|
Expr **Args, unsigned NumArgs) {
|
|
assert(!Cand->Viable);
|
|
|
|
// Don't do anything on failures other than bad conversion.
|
|
if (Cand->FailureKind != ovl_fail_bad_conversion) return;
|
|
|
|
// Skip forward to the first bad conversion.
|
|
unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
|
|
unsigned ConvCount = Cand->Conversions.size();
|
|
while (true) {
|
|
assert(ConvIdx != ConvCount && "no bad conversion in candidate");
|
|
ConvIdx++;
|
|
if (Cand->Conversions[ConvIdx - 1].isBad())
|
|
break;
|
|
}
|
|
|
|
if (ConvIdx == ConvCount)
|
|
return;
|
|
|
|
assert(!Cand->Conversions[ConvIdx].isInitialized() &&
|
|
"remaining conversion is initialized?");
|
|
|
|
// FIXME: this should probably be preserved from the overload
|
|
// operation somehow.
|
|
bool SuppressUserConversions = false;
|
|
|
|
const FunctionProtoType* Proto;
|
|
unsigned ArgIdx = ConvIdx;
|
|
|
|
if (Cand->IsSurrogate) {
|
|
QualType ConvType
|
|
= Cand->Surrogate->getConversionType().getNonReferenceType();
|
|
if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
|
|
ConvType = ConvPtrType->getPointeeType();
|
|
Proto = ConvType->getAs<FunctionProtoType>();
|
|
ArgIdx--;
|
|
} else if (Cand->Function) {
|
|
Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
|
|
if (isa<CXXMethodDecl>(Cand->Function) &&
|
|
!isa<CXXConstructorDecl>(Cand->Function))
|
|
ArgIdx--;
|
|
} else {
|
|
// Builtin binary operator with a bad first conversion.
|
|
assert(ConvCount <= 3);
|
|
for (; ConvIdx != ConvCount; ++ConvIdx)
|
|
Cand->Conversions[ConvIdx]
|
|
= TryCopyInitialization(S, Args[ConvIdx],
|
|
Cand->BuiltinTypes.ParamTypes[ConvIdx],
|
|
SuppressUserConversions,
|
|
/*InOverloadResolution*/ true);
|
|
return;
|
|
}
|
|
|
|
// Fill in the rest of the conversions.
|
|
unsigned NumArgsInProto = Proto->getNumArgs();
|
|
for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
|
|
if (ArgIdx < NumArgsInProto)
|
|
Cand->Conversions[ConvIdx]
|
|
= TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx),
|
|
SuppressUserConversions,
|
|
/*InOverloadResolution=*/true);
|
|
else
|
|
Cand->Conversions[ConvIdx].setEllipsis();
|
|
}
|
|
}
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// PrintOverloadCandidates - When overload resolution fails, prints
|
|
/// diagnostic messages containing the candidates in the candidate
|
|
/// set.
|
|
void
|
|
Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
|
|
OverloadCandidateDisplayKind OCD,
|
|
Expr **Args, unsigned NumArgs,
|
|
const char *Opc,
|
|
SourceLocation OpLoc) {
|
|
// Sort the candidates by viability and position. Sorting directly would
|
|
// be prohibitive, so we make a set of pointers and sort those.
|
|
llvm::SmallVector<OverloadCandidate*, 32> Cands;
|
|
if (OCD == OCD_AllCandidates) Cands.reserve(CandidateSet.size());
|
|
for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
|
|
LastCand = CandidateSet.end();
|
|
Cand != LastCand; ++Cand) {
|
|
if (Cand->Viable)
|
|
Cands.push_back(Cand);
|
|
else if (OCD == OCD_AllCandidates) {
|
|
CompleteNonViableCandidate(*this, Cand, Args, NumArgs);
|
|
if (Cand->Function || Cand->IsSurrogate)
|
|
Cands.push_back(Cand);
|
|
// Otherwise, this a non-viable builtin candidate. We do not, in general,
|
|
// want to list every possible builtin candidate.
|
|
}
|
|
}
|
|
|
|
std::sort(Cands.begin(), Cands.end(),
|
|
CompareOverloadCandidatesForDisplay(*this));
|
|
|
|
bool ReportedAmbiguousConversions = false;
|
|
|
|
llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E;
|
|
const Diagnostic::OverloadsShown ShowOverloads = Diags.getShowOverloads();
|
|
unsigned CandsShown = 0;
|
|
for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
|
|
OverloadCandidate *Cand = *I;
|
|
|
|
// Set an arbitrary limit on the number of candidate functions we'll spam
|
|
// the user with. FIXME: This limit should depend on details of the
|
|
// candidate list.
|
|
if (CandsShown >= 4 && ShowOverloads == Diagnostic::Ovl_Best) {
|
|
break;
|
|
}
|
|
++CandsShown;
|
|
|
|
if (Cand->Function)
|
|
NoteFunctionCandidate(*this, Cand, Args, NumArgs);
|
|
else if (Cand->IsSurrogate)
|
|
NoteSurrogateCandidate(*this, Cand);
|
|
else {
|
|
assert(Cand->Viable &&
|
|
"Non-viable built-in candidates are not added to Cands.");
|
|
// Generally we only see ambiguities including viable builtin
|
|
// operators if overload resolution got screwed up by an
|
|
// ambiguous user-defined conversion.
|
|
//
|
|
// FIXME: It's quite possible for different conversions to see
|
|
// different ambiguities, though.
|
|
if (!ReportedAmbiguousConversions) {
|
|
NoteAmbiguousUserConversions(*this, OpLoc, Cand);
|
|
ReportedAmbiguousConversions = true;
|
|
}
|
|
|
|
// If this is a viable builtin, print it.
|
|
NoteBuiltinOperatorCandidate(*this, Opc, OpLoc, Cand);
|
|
}
|
|
}
|
|
|
|
if (I != E)
|
|
Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
|
|
}
|
|
|
|
static bool CheckUnresolvedAccess(Sema &S, OverloadExpr *E, DeclAccessPair D) {
|
|
if (isa<UnresolvedLookupExpr>(E))
|
|
return S.CheckUnresolvedLookupAccess(cast<UnresolvedLookupExpr>(E), D);
|
|
|
|
return S.CheckUnresolvedMemberAccess(cast<UnresolvedMemberExpr>(E), D);
|
|
}
|
|
|
|
/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
|
|
/// an overloaded function (C++ [over.over]), where @p From is an
|
|
/// expression with overloaded function type and @p ToType is the type
|
|
/// we're trying to resolve to. For example:
|
|
///
|
|
/// @code
|
|
/// int f(double);
|
|
/// int f(int);
|
|
///
|
|
/// int (*pfd)(double) = f; // selects f(double)
|
|
/// @endcode
|
|
///
|
|
/// This routine returns the resulting FunctionDecl if it could be
|
|
/// resolved, and NULL otherwise. When @p Complain is true, this
|
|
/// routine will emit diagnostics if there is an error.
|
|
FunctionDecl *
|
|
Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
|
|
bool Complain,
|
|
DeclAccessPair &FoundResult) {
|
|
QualType FunctionType = ToType;
|
|
bool IsMember = false;
|
|
if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
|
|
FunctionType = ToTypePtr->getPointeeType();
|
|
else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
|
|
FunctionType = ToTypeRef->getPointeeType();
|
|
else if (const MemberPointerType *MemTypePtr =
|
|
ToType->getAs<MemberPointerType>()) {
|
|
FunctionType = MemTypePtr->getPointeeType();
|
|
IsMember = true;
|
|
}
|
|
|
|
// C++ [over.over]p1:
|
|
// [...] [Note: any redundant set of parentheses surrounding the
|
|
// overloaded function name is ignored (5.1). ]
|
|
// C++ [over.over]p1:
|
|
// [...] The overloaded function name can be preceded by the &
|
|
// operator.
|
|
OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
|
|
TemplateArgumentListInfo ETABuffer, *ExplicitTemplateArgs = 0;
|
|
if (OvlExpr->hasExplicitTemplateArgs()) {
|
|
OvlExpr->getExplicitTemplateArgs().copyInto(ETABuffer);
|
|
ExplicitTemplateArgs = &ETABuffer;
|
|
}
|
|
|
|
// We expect a pointer or reference to function, or a function pointer.
|
|
FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
|
|
if (!FunctionType->isFunctionType()) {
|
|
if (Complain)
|
|
Diag(From->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
|
|
<< OvlExpr->getName() << ToType;
|
|
|
|
return 0;
|
|
}
|
|
|
|
assert(From->getType() == Context.OverloadTy);
|
|
|
|
// Look through all of the overloaded functions, searching for one
|
|
// whose type matches exactly.
|
|
llvm::SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
|
|
llvm::SmallVector<FunctionDecl *, 4> NonMatches;
|
|
|
|
bool FoundNonTemplateFunction = false;
|
|
for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
|
|
E = OvlExpr->decls_end(); I != E; ++I) {
|
|
// Look through any using declarations to find the underlying function.
|
|
NamedDecl *Fn = (*I)->getUnderlyingDecl();
|
|
|
|
// C++ [over.over]p3:
|
|
// Non-member functions and static member functions match
|
|
// targets of type "pointer-to-function" or "reference-to-function."
|
|
// Nonstatic member functions match targets of
|
|
// type "pointer-to-member-function."
|
|
// Note that according to DR 247, the containing class does not matter.
|
|
|
|
if (FunctionTemplateDecl *FunctionTemplate
|
|
= dyn_cast<FunctionTemplateDecl>(Fn)) {
|
|
if (CXXMethodDecl *Method
|
|
= dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
|
|
// Skip non-static function templates when converting to pointer, and
|
|
// static when converting to member pointer.
|
|
if (Method->isStatic() == IsMember)
|
|
continue;
|
|
} else if (IsMember)
|
|
continue;
|
|
|
|
// C++ [over.over]p2:
|
|
// If the name is a function template, template argument deduction is
|
|
// done (14.8.2.2), and if the argument deduction succeeds, the
|
|
// resulting template argument list is used to generate a single
|
|
// function template specialization, which is added to the set of
|
|
// overloaded functions considered.
|
|
// FIXME: We don't really want to build the specialization here, do we?
|
|
FunctionDecl *Specialization = 0;
|
|
TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
|
|
if (TemplateDeductionResult Result
|
|
= DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
|
|
FunctionType, Specialization, Info)) {
|
|
// FIXME: make a note of the failed deduction for diagnostics.
|
|
(void)Result;
|
|
} else {
|
|
// FIXME: If the match isn't exact, shouldn't we just drop this as
|
|
// a candidate? Find a testcase before changing the code.
|
|
assert(FunctionType
|
|
== Context.getCanonicalType(Specialization->getType()));
|
|
Matches.push_back(std::make_pair(I.getPair(),
|
|
cast<FunctionDecl>(Specialization->getCanonicalDecl())));
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
|
|
// Skip non-static functions when converting to pointer, and static
|
|
// when converting to member pointer.
|
|
if (Method->isStatic() == IsMember)
|
|
continue;
|
|
|
|
// If we have explicit template arguments, skip non-templates.
|
|
if (OvlExpr->hasExplicitTemplateArgs())
|
|
continue;
|
|
} else if (IsMember)
|
|
continue;
|
|
|
|
if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
|
|
QualType ResultTy;
|
|
if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) ||
|
|
IsNoReturnConversion(Context, FunDecl->getType(), FunctionType,
|
|
ResultTy)) {
|
|
Matches.push_back(std::make_pair(I.getPair(),
|
|
cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
|
|
FoundNonTemplateFunction = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If there were 0 or 1 matches, we're done.
|
|
if (Matches.empty()) {
|
|
if (Complain) {
|
|
Diag(From->getLocStart(), diag::err_addr_ovl_no_viable)
|
|
<< OvlExpr->getName() << FunctionType;
|
|
for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
|
|
E = OvlExpr->decls_end();
|
|
I != E; ++I)
|
|
if (FunctionDecl *F = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
|
|
NoteOverloadCandidate(F);
|
|
}
|
|
|
|
return 0;
|
|
} else if (Matches.size() == 1) {
|
|
FunctionDecl *Result = Matches[0].second;
|
|
FoundResult = Matches[0].first;
|
|
MarkDeclarationReferenced(From->getLocStart(), Result);
|
|
if (Complain)
|
|
CheckAddressOfMemberAccess(OvlExpr, Matches[0].first);
|
|
return Result;
|
|
}
|
|
|
|
// C++ [over.over]p4:
|
|
// If more than one function is selected, [...]
|
|
if (!FoundNonTemplateFunction) {
|
|
// [...] and any given function template specialization F1 is
|
|
// eliminated if the set contains a second function template
|
|
// specialization whose function template is more specialized
|
|
// than the function template of F1 according to the partial
|
|
// ordering rules of 14.5.5.2.
|
|
|
|
// The algorithm specified above is quadratic. We instead use a
|
|
// two-pass algorithm (similar to the one used to identify the
|
|
// best viable function in an overload set) that identifies the
|
|
// best function template (if it exists).
|
|
|
|
UnresolvedSet<4> MatchesCopy; // TODO: avoid!
|
|
for (unsigned I = 0, E = Matches.size(); I != E; ++I)
|
|
MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
|
|
|
|
UnresolvedSetIterator Result =
|
|
getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(),
|
|
TPOC_Other, From->getLocStart(),
|
|
PDiag(),
|
|
PDiag(diag::err_addr_ovl_ambiguous)
|
|
<< Matches[0].second->getDeclName(),
|
|
PDiag(diag::note_ovl_candidate)
|
|
<< (unsigned) oc_function_template);
|
|
assert(Result != MatchesCopy.end() && "no most-specialized template");
|
|
MarkDeclarationReferenced(From->getLocStart(), *Result);
|
|
FoundResult = Matches[Result - MatchesCopy.begin()].first;
|
|
if (Complain) {
|
|
CheckUnresolvedAccess(*this, OvlExpr, FoundResult);
|
|
DiagnoseUseOfDecl(FoundResult, OvlExpr->getNameLoc());
|
|
}
|
|
return cast<FunctionDecl>(*Result);
|
|
}
|
|
|
|
// [...] any function template specializations in the set are
|
|
// eliminated if the set also contains a non-template function, [...]
|
|
for (unsigned I = 0, N = Matches.size(); I != N; ) {
|
|
if (Matches[I].second->getPrimaryTemplate() == 0)
|
|
++I;
|
|
else {
|
|
Matches[I] = Matches[--N];
|
|
Matches.set_size(N);
|
|
}
|
|
}
|
|
|
|
// [...] After such eliminations, if any, there shall remain exactly one
|
|
// selected function.
|
|
if (Matches.size() == 1) {
|
|
MarkDeclarationReferenced(From->getLocStart(), Matches[0].second);
|
|
FoundResult = Matches[0].first;
|
|
if (Complain) {
|
|
CheckUnresolvedAccess(*this, OvlExpr, Matches[0].first);
|
|
DiagnoseUseOfDecl(Matches[0].first, OvlExpr->getNameLoc());
|
|
}
|
|
return cast<FunctionDecl>(Matches[0].second);
|
|
}
|
|
|
|
// FIXME: We should probably return the same thing that BestViableFunction
|
|
// returns (even if we issue the diagnostics here).
|
|
Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
|
|
<< Matches[0].second->getDeclName();
|
|
for (unsigned I = 0, E = Matches.size(); I != E; ++I)
|
|
NoteOverloadCandidate(Matches[I].second);
|
|
return 0;
|
|
}
|
|
|
|
/// \brief Given an expression that refers to an overloaded function, try to
|
|
/// resolve that overloaded function expression down to a single function.
|
|
///
|
|
/// This routine can only resolve template-ids that refer to a single function
|
|
/// template, where that template-id refers to a single template whose template
|
|
/// arguments are either provided by the template-id or have defaults,
|
|
/// as described in C++0x [temp.arg.explicit]p3.
|
|
FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From) {
|
|
// C++ [over.over]p1:
|
|
// [...] [Note: any redundant set of parentheses surrounding the
|
|
// overloaded function name is ignored (5.1). ]
|
|
// C++ [over.over]p1:
|
|
// [...] The overloaded function name can be preceded by the &
|
|
// operator.
|
|
|
|
if (From->getType() != Context.OverloadTy)
|
|
return 0;
|
|
|
|
OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
|
|
|
|
// If we didn't actually find any template-ids, we're done.
|
|
if (!OvlExpr->hasExplicitTemplateArgs())
|
|
return 0;
|
|
|
|
TemplateArgumentListInfo ExplicitTemplateArgs;
|
|
OvlExpr->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
|
|
|
|
// Look through all of the overloaded functions, searching for one
|
|
// whose type matches exactly.
|
|
FunctionDecl *Matched = 0;
|
|
for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
|
|
E = OvlExpr->decls_end(); I != E; ++I) {
|
|
// C++0x [temp.arg.explicit]p3:
|
|
// [...] In contexts where deduction is done and fails, or in contexts
|
|
// where deduction is not done, if a template argument list is
|
|
// specified and it, along with any default template arguments,
|
|
// identifies a single function template specialization, then the
|
|
// template-id is an lvalue for the function template specialization.
|
|
FunctionTemplateDecl *FunctionTemplate = cast<FunctionTemplateDecl>(*I);
|
|
|
|
// C++ [over.over]p2:
|
|
// If the name is a function template, template argument deduction is
|
|
// done (14.8.2.2), and if the argument deduction succeeds, the
|
|
// resulting template argument list is used to generate a single
|
|
// function template specialization, which is added to the set of
|
|
// overloaded functions considered.
|
|
FunctionDecl *Specialization = 0;
|
|
TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
|
|
if (TemplateDeductionResult Result
|
|
= DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
|
|
Specialization, Info)) {
|
|
// FIXME: make a note of the failed deduction for diagnostics.
|
|
(void)Result;
|
|
continue;
|
|
}
|
|
|
|
// Multiple matches; we can't resolve to a single declaration.
|
|
if (Matched)
|
|
return 0;
|
|
|
|
Matched = Specialization;
|
|
}
|
|
|
|
return Matched;
|
|
}
|
|
|
|
/// \brief Add a single candidate to the overload set.
|
|
static void AddOverloadedCallCandidate(Sema &S,
|
|
DeclAccessPair FoundDecl,
|
|
const TemplateArgumentListInfo *ExplicitTemplateArgs,
|
|
Expr **Args, unsigned NumArgs,
|
|
OverloadCandidateSet &CandidateSet,
|
|
bool PartialOverloading) {
|
|
NamedDecl *Callee = FoundDecl.getDecl();
|
|
if (isa<UsingShadowDecl>(Callee))
|
|
Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
|
|
|
|
if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
|
|
assert(!ExplicitTemplateArgs && "Explicit template arguments?");
|
|
S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet,
|
|
false, PartialOverloading);
|
|
return;
|
|
}
|
|
|
|
if (FunctionTemplateDecl *FuncTemplate
|
|
= dyn_cast<FunctionTemplateDecl>(Callee)) {
|
|
S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
|
|
ExplicitTemplateArgs,
|
|
Args, NumArgs, CandidateSet);
|
|
return;
|
|
}
|
|
|
|
assert(false && "unhandled case in overloaded call candidate");
|
|
|
|
// do nothing?
|
|
}
|
|
|
|
/// \brief Add the overload candidates named by callee and/or found by argument
|
|
/// dependent lookup to the given overload set.
|
|
void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
|
|
Expr **Args, unsigned NumArgs,
|
|
OverloadCandidateSet &CandidateSet,
|
|
bool PartialOverloading) {
|
|
|
|
#ifndef NDEBUG
|
|
// Verify that ArgumentDependentLookup is consistent with the rules
|
|
// in C++0x [basic.lookup.argdep]p3:
|
|
//
|
|
// Let X be the lookup set produced by unqualified lookup (3.4.1)
|
|
// and let Y be the lookup set produced by argument dependent
|
|
// lookup (defined as follows). If X contains
|
|
//
|
|
// -- a declaration of a class member, or
|
|
//
|
|
// -- a block-scope function declaration that is not a
|
|
// using-declaration, or
|
|
//
|
|
// -- a declaration that is neither a function or a function
|
|
// template
|
|
//
|
|
// then Y is empty.
|
|
|
|
if (ULE->requiresADL()) {
|
|
for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
|
|
E = ULE->decls_end(); I != E; ++I) {
|
|
assert(!(*I)->getDeclContext()->isRecord());
|
|
assert(isa<UsingShadowDecl>(*I) ||
|
|
!(*I)->getDeclContext()->isFunctionOrMethod());
|
|
assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// It would be nice to avoid this copy.
|
|
TemplateArgumentListInfo TABuffer;
|
|
const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
|
|
if (ULE->hasExplicitTemplateArgs()) {
|
|
ULE->copyTemplateArgumentsInto(TABuffer);
|
|
ExplicitTemplateArgs = &TABuffer;
|
|
}
|
|
|
|
for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
|
|
E = ULE->decls_end(); I != E; ++I)
|
|
AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs,
|
|
Args, NumArgs, CandidateSet,
|
|
PartialOverloading);
|
|
|
|
if (ULE->requiresADL())
|
|
AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
|
|
Args, NumArgs,
|
|
ExplicitTemplateArgs,
|
|
CandidateSet,
|
|
PartialOverloading);
|
|
}
|
|
|
|
static Sema::OwningExprResult Destroy(Sema &SemaRef, Expr *Fn,
|
|
Expr **Args, unsigned NumArgs) {
|
|
Fn->Destroy(SemaRef.Context);
|
|
for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
|
|
Args[Arg]->Destroy(SemaRef.Context);
|
|
return SemaRef.ExprError();
|
|
}
|
|
|
|
/// Attempts to recover from a call where no functions were found.
|
|
///
|
|
/// Returns true if new candidates were found.
|
|
static Sema::OwningExprResult
|
|
BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
|
|
UnresolvedLookupExpr *ULE,
|
|
SourceLocation LParenLoc,
|
|
Expr **Args, unsigned NumArgs,
|
|
SourceLocation *CommaLocs,
|
|
SourceLocation RParenLoc) {
|
|
|
|
CXXScopeSpec SS;
|
|
if (ULE->getQualifier()) {
|
|
SS.setScopeRep(ULE->getQualifier());
|
|
SS.setRange(ULE->getQualifierRange());
|
|
}
|
|
|
|
TemplateArgumentListInfo TABuffer;
|
|
const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
|
|
if (ULE->hasExplicitTemplateArgs()) {
|
|
ULE->copyTemplateArgumentsInto(TABuffer);
|
|
ExplicitTemplateArgs = &TABuffer;
|
|
}
|
|
|
|
LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
|
|
Sema::LookupOrdinaryName);
|
|
if (SemaRef.DiagnoseEmptyLookup(S, SS, R, Sema::CTC_Expression))
|
|
return Destroy(SemaRef, Fn, Args, NumArgs);
|
|
|
|
assert(!R.empty() && "lookup results empty despite recovery");
|
|
|
|
// Build an implicit member call if appropriate. Just drop the
|
|
// casts and such from the call, we don't really care.
|
|
Sema::OwningExprResult NewFn = SemaRef.ExprError();
|
|
if ((*R.begin())->isCXXClassMember())
|
|
NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, ExplicitTemplateArgs);
|
|
else if (ExplicitTemplateArgs)
|
|
NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs);
|
|
else
|
|
NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
|
|
|
|
if (NewFn.isInvalid())
|
|
return Destroy(SemaRef, Fn, Args, NumArgs);
|
|
|
|
Fn->Destroy(SemaRef.Context);
|
|
|
|
// This shouldn't cause an infinite loop because we're giving it
|
|
// an expression with non-empty lookup results, which should never
|
|
// end up here.
|
|
return SemaRef.ActOnCallExpr(/*Scope*/ 0, move(NewFn), LParenLoc,
|
|
Sema::MultiExprArg(SemaRef, (void**) Args, NumArgs),
|
|
CommaLocs, RParenLoc);
|
|
}
|
|
|
|
/// ResolveOverloadedCallFn - Given the call expression that calls Fn
|
|
/// (which eventually refers to the declaration Func) and the call
|
|
/// arguments Args/NumArgs, attempt to resolve the function call down
|
|
/// to a specific function. If overload resolution succeeds, returns
|
|
/// the function declaration produced by overload
|
|
/// resolution. Otherwise, emits diagnostics, deletes all of the
|
|
/// arguments and Fn, and returns NULL.
|
|
Sema::OwningExprResult
|
|
Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
|
|
SourceLocation LParenLoc,
|
|
Expr **Args, unsigned NumArgs,
|
|
SourceLocation *CommaLocs,
|
|
SourceLocation RParenLoc) {
|
|
#ifndef NDEBUG
|
|
if (ULE->requiresADL()) {
|
|
// To do ADL, we must have found an unqualified name.
|
|
assert(!ULE->getQualifier() && "qualified name with ADL");
|
|
|
|
// We don't perform ADL for implicit declarations of builtins.
|
|
// Verify that this was correctly set up.
|
|
FunctionDecl *F;
|
|
if (ULE->decls_begin() + 1 == ULE->decls_end() &&
|
|
(F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
|
|
F->getBuiltinID() && F->isImplicit())
|
|
assert(0 && "performing ADL for builtin");
|
|
|
|
// We don't perform ADL in C.
|
|
assert(getLangOptions().CPlusPlus && "ADL enabled in C");
|
|
}
|
|
#endif
|
|
|
|
OverloadCandidateSet CandidateSet(Fn->getExprLoc());
|
|
|
|
// Add the functions denoted by the callee to the set of candidate
|
|
// functions, including those from argument-dependent lookup.
|
|
AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet);
|
|
|
|
// If we found nothing, try to recover.
|
|
// AddRecoveryCallCandidates diagnoses the error itself, so we just
|
|
// bailout out if it fails.
|
|
if (CandidateSet.empty())
|
|
return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs,
|
|
CommaLocs, RParenLoc);
|
|
|
|
OverloadCandidateSet::iterator Best;
|
|
switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
|
|
case OR_Success: {
|
|
FunctionDecl *FDecl = Best->Function;
|
|
CheckUnresolvedLookupAccess(ULE, Best->FoundDecl);
|
|
DiagnoseUseOfDecl(Best->FoundDecl, ULE->getNameLoc());
|
|
Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl);
|
|
return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc);
|
|
}
|
|
|
|
case OR_No_Viable_Function:
|
|
Diag(Fn->getSourceRange().getBegin(),
|
|
diag::err_ovl_no_viable_function_in_call)
|
|
<< ULE->getName() << Fn->getSourceRange();
|
|
PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
|
|
break;
|
|
|
|
case OR_Ambiguous:
|
|
Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
|
|
<< ULE->getName() << Fn->getSourceRange();
|
|
PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
|
|
break;
|
|
|
|
case OR_Deleted:
|
|
Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
|
|
<< Best->Function->isDeleted()
|
|
<< ULE->getName()
|
|
<< Fn->getSourceRange();
|
|
PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
|
|
break;
|
|
}
|
|
|
|
// Overload resolution failed. Destroy all of the subexpressions and
|
|
// return NULL.
|
|
Fn->Destroy(Context);
|
|
for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
|
|
Args[Arg]->Destroy(Context);
|
|
return ExprError();
|
|
}
|
|
|
|
static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
|
|
return Functions.size() > 1 ||
|
|
(Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
|
|
}
|
|
|
|
/// \brief Create a unary operation that may resolve to an overloaded
|
|
/// operator.
|
|
///
|
|
/// \param OpLoc The location of the operator itself (e.g., '*').
|
|
///
|
|
/// \param OpcIn The UnaryOperator::Opcode that describes this
|
|
/// operator.
|
|
///
|
|
/// \param Functions The set of non-member functions that will be
|
|
/// considered by overload resolution. The caller needs to build this
|
|
/// set based on the context using, e.g.,
|
|
/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
|
|
/// set should not contain any member functions; those will be added
|
|
/// by CreateOverloadedUnaryOp().
|
|
///
|
|
/// \param input The input argument.
|
|
Sema::OwningExprResult
|
|
Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
|
|
const UnresolvedSetImpl &Fns,
|
|
ExprArg input) {
|
|
UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
|
|
Expr *Input = (Expr *)input.get();
|
|
|
|
OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
|
|
assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
|
|
DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
|
|
|
|
Expr *Args[2] = { Input, 0 };
|
|
unsigned NumArgs = 1;
|
|
|
|
// For post-increment and post-decrement, add the implicit '0' as
|
|
// the second argument, so that we know this is a post-increment or
|
|
// post-decrement.
|
|
if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
|
|
llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
|
|
Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
|
|
SourceLocation());
|
|
NumArgs = 2;
|
|
}
|
|
|
|
if (Input->isTypeDependent()) {
|
|
CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
|
|
UnresolvedLookupExpr *Fn
|
|
= UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
|
|
0, SourceRange(), OpName, OpLoc,
|
|
/*ADL*/ true, IsOverloaded(Fns),
|
|
Fns.begin(), Fns.end());
|
|
input.release();
|
|
return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
|
|
&Args[0], NumArgs,
|
|
Context.DependentTy,
|
|
OpLoc));
|
|
}
|
|
|
|
// Build an empty overload set.
|
|
OverloadCandidateSet CandidateSet(OpLoc);
|
|
|
|
// Add the candidates from the given function set.
|
|
AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false);
|
|
|
|
// Add operator candidates that are member functions.
|
|
AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
|
|
|
|
// Add candidates from ADL.
|
|
AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
|
|
Args, NumArgs,
|
|
/*ExplicitTemplateArgs*/ 0,
|
|
CandidateSet);
|
|
|
|
// Add builtin operator candidates.
|
|
AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
|
|
|
|
// Perform overload resolution.
|
|
OverloadCandidateSet::iterator Best;
|
|
switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
|
|
case OR_Success: {
|
|
// We found a built-in operator or an overloaded operator.
|
|
FunctionDecl *FnDecl = Best->Function;
|
|
|
|
if (FnDecl) {
|
|
// We matched an overloaded operator. Build a call to that
|
|
// operator.
|
|
|
|
// Convert the arguments.
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
|
|
CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl);
|
|
|
|
if (PerformObjectArgumentInitialization(Input, /*Qualifier=*/0,
|
|
Best->FoundDecl, Method))
|
|
return ExprError();
|
|
} else {
|
|
// Convert the arguments.
|
|
OwningExprResult InputInit
|
|
= PerformCopyInitialization(InitializedEntity::InitializeParameter(
|
|
FnDecl->getParamDecl(0)),
|
|
SourceLocation(),
|
|
move(input));
|
|
if (InputInit.isInvalid())
|
|
return ExprError();
|
|
|
|
input = move(InputInit);
|
|
Input = (Expr *)input.get();
|
|
}
|
|
|
|
DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
|
|
|
|
// Determine the result type
|
|
QualType ResultTy = FnDecl->getResultType().getNonReferenceType();
|
|
|
|
// Build the actual expression node.
|
|
Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
|
|
SourceLocation());
|
|
UsualUnaryConversions(FnExpr);
|
|
|
|
input.release();
|
|
Args[0] = Input;
|
|
ExprOwningPtr<CallExpr> TheCall(this,
|
|
new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
|
|
Args, NumArgs, ResultTy, OpLoc));
|
|
|
|
if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
|
|
FnDecl))
|
|
return ExprError();
|
|
|
|
return MaybeBindToTemporary(TheCall.release());
|
|
} else {
|
|
// We matched a built-in operator. Convert the arguments, then
|
|
// break out so that we will build the appropriate built-in
|
|
// operator node.
|
|
if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
|
|
Best->Conversions[0], AA_Passing))
|
|
return ExprError();
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
case OR_No_Viable_Function:
|
|
// No viable function; fall through to handling this as a
|
|
// built-in operator, which will produce an error message for us.
|
|
break;
|
|
|
|
case OR_Ambiguous:
|
|
Diag(OpLoc, diag::err_ovl_ambiguous_oper)
|
|
<< UnaryOperator::getOpcodeStr(Opc)
|
|
<< Input->getSourceRange();
|
|
PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs,
|
|
UnaryOperator::getOpcodeStr(Opc), OpLoc);
|
|
return ExprError();
|
|
|
|
case OR_Deleted:
|
|
Diag(OpLoc, diag::err_ovl_deleted_oper)
|
|
<< Best->Function->isDeleted()
|
|
<< UnaryOperator::getOpcodeStr(Opc)
|
|
<< Input->getSourceRange();
|
|
PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
|
|
return ExprError();
|
|
}
|
|
|
|
// Either we found no viable overloaded operator or we matched a
|
|
// built-in operator. In either case, fall through to trying to
|
|
// build a built-in operation.
|
|
input.release();
|
|
return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
|
|
}
|
|
|
|
/// \brief Create a binary operation that may resolve to an overloaded
|
|
/// operator.
|
|
///
|
|
/// \param OpLoc The location of the operator itself (e.g., '+').
|
|
///
|
|
/// \param OpcIn The BinaryOperator::Opcode that describes this
|
|
/// operator.
|
|
///
|
|
/// \param Functions The set of non-member functions that will be
|
|
/// considered by overload resolution. The caller needs to build this
|
|
/// set based on the context using, e.g.,
|
|
/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
|
|
/// set should not contain any member functions; those will be added
|
|
/// by CreateOverloadedBinOp().
|
|
///
|
|
/// \param LHS Left-hand argument.
|
|
/// \param RHS Right-hand argument.
|
|
Sema::OwningExprResult
|
|
Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
|
|
unsigned OpcIn,
|
|
const UnresolvedSetImpl &Fns,
|
|
Expr *LHS, Expr *RHS) {
|
|
Expr *Args[2] = { LHS, RHS };
|
|
LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
|
|
|
|
BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
|
|
OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
|
|
DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
|
|
|
|
// If either side is type-dependent, create an appropriate dependent
|
|
// expression.
|
|
if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
|
|
if (Fns.empty()) {
|
|
// If there are no functions to store, just build a dependent
|
|
// BinaryOperator or CompoundAssignment.
|
|
if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign)
|
|
return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
|
|
Context.DependentTy, OpLoc));
|
|
|
|
return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
|
|
Context.DependentTy,
|
|
Context.DependentTy,
|
|
Context.DependentTy,
|
|
OpLoc));
|
|
}
|
|
|
|
// FIXME: save results of ADL from here?
|
|
CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
|
|
UnresolvedLookupExpr *Fn
|
|
= UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
|
|
0, SourceRange(), OpName, OpLoc,
|
|
/*ADL*/ true, IsOverloaded(Fns),
|
|
Fns.begin(), Fns.end());
|
|
return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
|
|
Args, 2,
|
|
Context.DependentTy,
|
|
OpLoc));
|
|
}
|
|
|
|
// If this is the .* operator, which is not overloadable, just
|
|
// create a built-in binary operator.
|
|
if (Opc == BinaryOperator::PtrMemD)
|
|
return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
|
|
|
|
// If this is the assignment operator, we only perform overload resolution
|
|
// if the left-hand side is a class or enumeration type. This is actually
|
|
// a hack. The standard requires that we do overload resolution between the
|
|
// various built-in candidates, but as DR507 points out, this can lead to
|
|
// problems. So we do it this way, which pretty much follows what GCC does.
|
|
// Note that we go the traditional code path for compound assignment forms.
|
|
if (Opc==BinaryOperator::Assign && !Args[0]->getType()->isOverloadableType())
|
|
return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
|
|
|
|
// Build an empty overload set.
|
|
OverloadCandidateSet CandidateSet(OpLoc);
|
|
|
|
// Add the candidates from the given function set.
|
|
AddFunctionCandidates(Fns, Args, 2, CandidateSet, false);
|
|
|
|
// Add operator candidates that are member functions.
|
|
AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
|
|
|
|
// Add candidates from ADL.
|
|
AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
|
|
Args, 2,
|
|
/*ExplicitTemplateArgs*/ 0,
|
|
CandidateSet);
|
|
|
|
// Add builtin operator candidates.
|
|
AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
|
|
|
|
// Perform overload resolution.
|
|
OverloadCandidateSet::iterator Best;
|
|
switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
|
|
case OR_Success: {
|
|
// We found a built-in operator or an overloaded operator.
|
|
FunctionDecl *FnDecl = Best->Function;
|
|
|
|
if (FnDecl) {
|
|
// We matched an overloaded operator. Build a call to that
|
|
// operator.
|
|
|
|
// Convert the arguments.
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
|
|
// Best->Access is only meaningful for class members.
|
|
CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
|
|
|
|
OwningExprResult Arg1
|
|
= PerformCopyInitialization(
|
|
InitializedEntity::InitializeParameter(
|
|
FnDecl->getParamDecl(0)),
|
|
SourceLocation(),
|
|
Owned(Args[1]));
|
|
if (Arg1.isInvalid())
|
|
return ExprError();
|
|
|
|
if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
|
|
Best->FoundDecl, Method))
|
|
return ExprError();
|
|
|
|
Args[1] = RHS = Arg1.takeAs<Expr>();
|
|
} else {
|
|
// Convert the arguments.
|
|
OwningExprResult Arg0
|
|
= PerformCopyInitialization(
|
|
InitializedEntity::InitializeParameter(
|
|
FnDecl->getParamDecl(0)),
|
|
SourceLocation(),
|
|
Owned(Args[0]));
|
|
if (Arg0.isInvalid())
|
|
return ExprError();
|
|
|
|
OwningExprResult Arg1
|
|
= PerformCopyInitialization(
|
|
InitializedEntity::InitializeParameter(
|
|
FnDecl->getParamDecl(1)),
|
|
SourceLocation(),
|
|
Owned(Args[1]));
|
|
if (Arg1.isInvalid())
|
|
return ExprError();
|
|
Args[0] = LHS = Arg0.takeAs<Expr>();
|
|
Args[1] = RHS = Arg1.takeAs<Expr>();
|
|
}
|
|
|
|
DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
|
|
|
|
// Determine the result type
|
|
QualType ResultTy
|
|
= FnDecl->getType()->getAs<FunctionType>()->getResultType();
|
|
ResultTy = ResultTy.getNonReferenceType();
|
|
|
|
// Build the actual expression node.
|
|
Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
|
|
OpLoc);
|
|
UsualUnaryConversions(FnExpr);
|
|
|
|
ExprOwningPtr<CXXOperatorCallExpr>
|
|
TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
|
|
Args, 2, ResultTy,
|
|
OpLoc));
|
|
|
|
if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
|
|
FnDecl))
|
|
return ExprError();
|
|
|
|
return MaybeBindToTemporary(TheCall.release());
|
|
} else {
|
|
// We matched a built-in operator. Convert the arguments, then
|
|
// break out so that we will build the appropriate built-in
|
|
// operator node.
|
|
if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
|
|
Best->Conversions[0], AA_Passing) ||
|
|
PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
|
|
Best->Conversions[1], AA_Passing))
|
|
return ExprError();
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
case OR_No_Viable_Function: {
|
|
// C++ [over.match.oper]p9:
|
|
// If the operator is the operator , [...] and there are no
|
|
// viable functions, then the operator is assumed to be the
|
|
// built-in operator and interpreted according to clause 5.
|
|
if (Opc == BinaryOperator::Comma)
|
|
break;
|
|
|
|
// For class as left operand for assignment or compound assigment operator
|
|
// do not fall through to handling in built-in, but report that no overloaded
|
|
// assignment operator found
|
|
OwningExprResult Result = ExprError();
|
|
if (Args[0]->getType()->isRecordType() &&
|
|
Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
|
|
Diag(OpLoc, diag::err_ovl_no_viable_oper)
|
|
<< BinaryOperator::getOpcodeStr(Opc)
|
|
<< Args[0]->getSourceRange() << Args[1]->getSourceRange();
|
|
} else {
|
|
// No viable function; try to create a built-in operation, which will
|
|
// produce an error. Then, show the non-viable candidates.
|
|
Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
|
|
}
|
|
assert(Result.isInvalid() &&
|
|
"C++ binary operator overloading is missing candidates!");
|
|
if (Result.isInvalid())
|
|
PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
|
|
BinaryOperator::getOpcodeStr(Opc), OpLoc);
|
|
return move(Result);
|
|
}
|
|
|
|
case OR_Ambiguous:
|
|
Diag(OpLoc, diag::err_ovl_ambiguous_oper)
|
|
<< BinaryOperator::getOpcodeStr(Opc)
|
|
<< Args[0]->getSourceRange() << Args[1]->getSourceRange();
|
|
PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
|
|
BinaryOperator::getOpcodeStr(Opc), OpLoc);
|
|
return ExprError();
|
|
|
|
case OR_Deleted:
|
|
Diag(OpLoc, diag::err_ovl_deleted_oper)
|
|
<< Best->Function->isDeleted()
|
|
<< BinaryOperator::getOpcodeStr(Opc)
|
|
<< Args[0]->getSourceRange() << Args[1]->getSourceRange();
|
|
PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2);
|
|
return ExprError();
|
|
}
|
|
|
|
// We matched a built-in operator; build it.
|
|
return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
|
|
}
|
|
|
|
Action::OwningExprResult
|
|
Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
|
|
SourceLocation RLoc,
|
|
ExprArg Base, ExprArg Idx) {
|
|
Expr *Args[2] = { static_cast<Expr*>(Base.get()),
|
|
static_cast<Expr*>(Idx.get()) };
|
|
DeclarationName OpName =
|
|
Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
|
|
|
|
// If either side is type-dependent, create an appropriate dependent
|
|
// expression.
|
|
if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
|
|
|
|
CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
|
|
UnresolvedLookupExpr *Fn
|
|
= UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
|
|
0, SourceRange(), OpName, LLoc,
|
|
/*ADL*/ true, /*Overloaded*/ false,
|
|
UnresolvedSetIterator(),
|
|
UnresolvedSetIterator());
|
|
// Can't add any actual overloads yet
|
|
|
|
Base.release();
|
|
Idx.release();
|
|
return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
|
|
Args, 2,
|
|
Context.DependentTy,
|
|
RLoc));
|
|
}
|
|
|
|
// Build an empty overload set.
|
|
OverloadCandidateSet CandidateSet(LLoc);
|
|
|
|
// Subscript can only be overloaded as a member function.
|
|
|
|
// Add operator candidates that are member functions.
|
|
AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
|
|
|
|
// Add builtin operator candidates.
|
|
AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
|
|
|
|
// Perform overload resolution.
|
|
OverloadCandidateSet::iterator Best;
|
|
switch (BestViableFunction(CandidateSet, LLoc, Best)) {
|
|
case OR_Success: {
|
|
// We found a built-in operator or an overloaded operator.
|
|
FunctionDecl *FnDecl = Best->Function;
|
|
|
|
if (FnDecl) {
|
|
// We matched an overloaded operator. Build a call to that
|
|
// operator.
|
|
|
|
CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
|
|
DiagnoseUseOfDecl(Best->FoundDecl, LLoc);
|
|
|
|
// Convert the arguments.
|
|
CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
|
|
if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
|
|
Best->FoundDecl, Method))
|
|
return ExprError();
|
|
|
|
// Convert the arguments.
|
|
OwningExprResult InputInit
|
|
= PerformCopyInitialization(InitializedEntity::InitializeParameter(
|
|
FnDecl->getParamDecl(0)),
|
|
SourceLocation(),
|
|
Owned(Args[1]));
|
|
if (InputInit.isInvalid())
|
|
return ExprError();
|
|
|
|
Args[1] = InputInit.takeAs<Expr>();
|
|
|
|
// Determine the result type
|
|
QualType ResultTy
|
|
= FnDecl->getType()->getAs<FunctionType>()->getResultType();
|
|
ResultTy = ResultTy.getNonReferenceType();
|
|
|
|
// Build the actual expression node.
|
|
Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
|
|
LLoc);
|
|
UsualUnaryConversions(FnExpr);
|
|
|
|
Base.release();
|
|
Idx.release();
|
|
ExprOwningPtr<CXXOperatorCallExpr>
|
|
TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
|
|
FnExpr, Args, 2,
|
|
ResultTy, RLoc));
|
|
|
|
if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(),
|
|
FnDecl))
|
|
return ExprError();
|
|
|
|
return MaybeBindToTemporary(TheCall.release());
|
|
} else {
|
|
// We matched a built-in operator. Convert the arguments, then
|
|
// break out so that we will build the appropriate built-in
|
|
// operator node.
|
|
if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
|
|
Best->Conversions[0], AA_Passing) ||
|
|
PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
|
|
Best->Conversions[1], AA_Passing))
|
|
return ExprError();
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
case OR_No_Viable_Function: {
|
|
if (CandidateSet.empty())
|
|
Diag(LLoc, diag::err_ovl_no_oper)
|
|
<< Args[0]->getType() << /*subscript*/ 0
|
|
<< Args[0]->getSourceRange() << Args[1]->getSourceRange();
|
|
else
|
|
Diag(LLoc, diag::err_ovl_no_viable_subscript)
|
|
<< Args[0]->getType()
|
|
<< Args[0]->getSourceRange() << Args[1]->getSourceRange();
|
|
PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
|
|
"[]", LLoc);
|
|
return ExprError();
|
|
}
|
|
|
|
case OR_Ambiguous:
|
|
Diag(LLoc, diag::err_ovl_ambiguous_oper)
|
|
<< "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange();
|
|
PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
|
|
"[]", LLoc);
|
|
return ExprError();
|
|
|
|
case OR_Deleted:
|
|
Diag(LLoc, diag::err_ovl_deleted_oper)
|
|
<< Best->Function->isDeleted() << "[]"
|
|
<< Args[0]->getSourceRange() << Args[1]->getSourceRange();
|
|
PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
|
|
"[]", LLoc);
|
|
return ExprError();
|
|
}
|
|
|
|
// We matched a built-in operator; build it.
|
|
Base.release();
|
|
Idx.release();
|
|
return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc,
|
|
Owned(Args[1]), RLoc);
|
|
}
|
|
|
|
/// BuildCallToMemberFunction - Build a call to a member
|
|
/// function. MemExpr is the expression that refers to the member
|
|
/// function (and includes the object parameter), Args/NumArgs are the
|
|
/// arguments to the function call (not including the object
|
|
/// parameter). The caller needs to validate that the member
|
|
/// expression refers to a member function or an overloaded member
|
|
/// function.
|
|
Sema::OwningExprResult
|
|
Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
|
|
SourceLocation LParenLoc, Expr **Args,
|
|
unsigned NumArgs, SourceLocation *CommaLocs,
|
|
SourceLocation RParenLoc) {
|
|
// Dig out the member expression. This holds both the object
|
|
// argument and the member function we're referring to.
|
|
Expr *NakedMemExpr = MemExprE->IgnoreParens();
|
|
|
|
MemberExpr *MemExpr;
|
|
CXXMethodDecl *Method = 0;
|
|
DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public);
|
|
NestedNameSpecifier *Qualifier = 0;
|
|
if (isa<MemberExpr>(NakedMemExpr)) {
|
|
MemExpr = cast<MemberExpr>(NakedMemExpr);
|
|
Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
|
|
FoundDecl = MemExpr->getFoundDecl();
|
|
Qualifier = MemExpr->getQualifier();
|
|
} else {
|
|
UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
|
|
Qualifier = UnresExpr->getQualifier();
|
|
|
|
QualType ObjectType = UnresExpr->getBaseType();
|
|
|
|
// Add overload candidates
|
|
OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
|
|
|
|
// FIXME: avoid copy.
|
|
TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
|
|
if (UnresExpr->hasExplicitTemplateArgs()) {
|
|
UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
|
|
TemplateArgs = &TemplateArgsBuffer;
|
|
}
|
|
|
|
for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
|
|
E = UnresExpr->decls_end(); I != E; ++I) {
|
|
|
|
NamedDecl *Func = *I;
|
|
CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
|
|
if (isa<UsingShadowDecl>(Func))
|
|
Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
|
|
|
|
if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
|
|
// If explicit template arguments were provided, we can't call a
|
|
// non-template member function.
|
|
if (TemplateArgs)
|
|
continue;
|
|
|
|
AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
|
|
Args, NumArgs,
|
|
CandidateSet, /*SuppressUserConversions=*/false);
|
|
} else {
|
|
AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
|
|
I.getPair(), ActingDC, TemplateArgs,
|
|
ObjectType, Args, NumArgs,
|
|
CandidateSet,
|
|
/*SuppressUsedConversions=*/false);
|
|
}
|
|
}
|
|
|
|
DeclarationName DeclName = UnresExpr->getMemberName();
|
|
|
|
OverloadCandidateSet::iterator Best;
|
|
switch (BestViableFunction(CandidateSet, UnresExpr->getLocStart(), Best)) {
|
|
case OR_Success:
|
|
Method = cast<CXXMethodDecl>(Best->Function);
|
|
FoundDecl = Best->FoundDecl;
|
|
CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
|
|
DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc());
|
|
break;
|
|
|
|
case OR_No_Viable_Function:
|
|
Diag(UnresExpr->getMemberLoc(),
|
|
diag::err_ovl_no_viable_member_function_in_call)
|
|
<< DeclName << MemExprE->getSourceRange();
|
|
PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
|
|
// FIXME: Leaking incoming expressions!
|
|
return ExprError();
|
|
|
|
case OR_Ambiguous:
|
|
Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
|
|
<< DeclName << MemExprE->getSourceRange();
|
|
PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
|
|
// FIXME: Leaking incoming expressions!
|
|
return ExprError();
|
|
|
|
case OR_Deleted:
|
|
Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
|
|
<< Best->Function->isDeleted()
|
|
<< DeclName << MemExprE->getSourceRange();
|
|
PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
|
|
// FIXME: Leaking incoming expressions!
|
|
return ExprError();
|
|
}
|
|
|
|
MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
|
|
|
|
// If overload resolution picked a static member, build a
|
|
// non-member call based on that function.
|
|
if (Method->isStatic()) {
|
|
return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
|
|
Args, NumArgs, RParenLoc);
|
|
}
|
|
|
|
MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
|
|
}
|
|
|
|
assert(Method && "Member call to something that isn't a method?");
|
|
ExprOwningPtr<CXXMemberCallExpr>
|
|
TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
|
|
NumArgs,
|
|
Method->getResultType().getNonReferenceType(),
|
|
RParenLoc));
|
|
|
|
// Check for a valid return type.
|
|
if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
|
|
TheCall.get(), Method))
|
|
return ExprError();
|
|
|
|
// Convert the object argument (for a non-static member function call).
|
|
// We only need to do this if there was actually an overload; otherwise
|
|
// it was done at lookup.
|
|
Expr *ObjectArg = MemExpr->getBase();
|
|
if (!Method->isStatic() &&
|
|
PerformObjectArgumentInitialization(ObjectArg, Qualifier,
|
|
FoundDecl, Method))
|
|
return ExprError();
|
|
MemExpr->setBase(ObjectArg);
|
|
|
|
// Convert the rest of the arguments
|
|
const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();
|
|
if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
|
|
RParenLoc))
|
|
return ExprError();
|
|
|
|
if (CheckFunctionCall(Method, TheCall.get()))
|
|
return ExprError();
|
|
|
|
return MaybeBindToTemporary(TheCall.release());
|
|
}
|
|
|
|
/// BuildCallToObjectOfClassType - Build a call to an object of class
|
|
/// type (C++ [over.call.object]), which can end up invoking an
|
|
/// overloaded function call operator (@c operator()) or performing a
|
|
/// user-defined conversion on the object argument.
|
|
Sema::ExprResult
|
|
Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
|
|
SourceLocation LParenLoc,
|
|
Expr **Args, unsigned NumArgs,
|
|
SourceLocation *CommaLocs,
|
|
SourceLocation RParenLoc) {
|
|
assert(Object->getType()->isRecordType() && "Requires object type argument");
|
|
const RecordType *Record = Object->getType()->getAs<RecordType>();
|
|
|
|
// C++ [over.call.object]p1:
|
|
// If the primary-expression E in the function call syntax
|
|
// evaluates to a class object of type "cv T", then the set of
|
|
// candidate functions includes at least the function call
|
|
// operators of T. The function call operators of T are obtained by
|
|
// ordinary lookup of the name operator() in the context of
|
|
// (E).operator().
|
|
OverloadCandidateSet CandidateSet(LParenLoc);
|
|
DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
|
|
|
|
if (RequireCompleteType(LParenLoc, Object->getType(),
|
|
PDiag(diag::err_incomplete_object_call)
|
|
<< Object->getSourceRange()))
|
|
return true;
|
|
|
|
LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
|
|
LookupQualifiedName(R, Record->getDecl());
|
|
R.suppressDiagnostics();
|
|
|
|
for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
|
|
Oper != OperEnd; ++Oper) {
|
|
AddMethodCandidate(Oper.getPair(), Object->getType(),
|
|
Args, NumArgs, CandidateSet,
|
|
/*SuppressUserConversions=*/ false);
|
|
}
|
|
|
|
// C++ [over.call.object]p2:
|
|
// In addition, for each conversion function declared in T of the
|
|
// form
|
|
//
|
|
// operator conversion-type-id () cv-qualifier;
|
|
//
|
|
// where cv-qualifier is the same cv-qualification as, or a
|
|
// greater cv-qualification than, cv, and where conversion-type-id
|
|
// denotes the type "pointer to function of (P1,...,Pn) returning
|
|
// R", or the type "reference to pointer to function of
|
|
// (P1,...,Pn) returning R", or the type "reference to function
|
|
// of (P1,...,Pn) returning R", a surrogate call function [...]
|
|
// is also considered as a candidate function. Similarly,
|
|
// surrogate call functions are added to the set of candidate
|
|
// functions for each conversion function declared in an
|
|
// accessible base class provided the function is not hidden
|
|
// within T by another intervening declaration.
|
|
const UnresolvedSetImpl *Conversions
|
|
= cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
|
|
for (UnresolvedSetImpl::iterator I = Conversions->begin(),
|
|
E = Conversions->end(); I != E; ++I) {
|
|
NamedDecl *D = *I;
|
|
CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
|
|
if (isa<UsingShadowDecl>(D))
|
|
D = cast<UsingShadowDecl>(D)->getTargetDecl();
|
|
|
|
// Skip over templated conversion functions; they aren't
|
|
// surrogates.
|
|
if (isa<FunctionTemplateDecl>(D))
|
|
continue;
|
|
|
|
CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
|
|
|
|
// Strip the reference type (if any) and then the pointer type (if
|
|
// any) to get down to what might be a function type.
|
|
QualType ConvType = Conv->getConversionType().getNonReferenceType();
|
|
if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
|
|
ConvType = ConvPtrType->getPointeeType();
|
|
|
|
if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
|
|
AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
|
|
Object->getType(), Args, NumArgs,
|
|
CandidateSet);
|
|
}
|
|
|
|
// Perform overload resolution.
|
|
OverloadCandidateSet::iterator Best;
|
|
switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
|
|
case OR_Success:
|
|
// Overload resolution succeeded; we'll build the appropriate call
|
|
// below.
|
|
break;
|
|
|
|
case OR_No_Viable_Function:
|
|
if (CandidateSet.empty())
|
|
Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_oper)
|
|
<< Object->getType() << /*call*/ 1
|
|
<< Object->getSourceRange();
|
|
else
|
|
Diag(Object->getSourceRange().getBegin(),
|
|
diag::err_ovl_no_viable_object_call)
|
|
<< Object->getType() << Object->getSourceRange();
|
|
PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
|
|
break;
|
|
|
|
case OR_Ambiguous:
|
|
Diag(Object->getSourceRange().getBegin(),
|
|
diag::err_ovl_ambiguous_object_call)
|
|
<< Object->getType() << Object->getSourceRange();
|
|
PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
|
|
break;
|
|
|
|
case OR_Deleted:
|
|
Diag(Object->getSourceRange().getBegin(),
|
|
diag::err_ovl_deleted_object_call)
|
|
<< Best->Function->isDeleted()
|
|
<< Object->getType() << Object->getSourceRange();
|
|
PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
|
|
break;
|
|
}
|
|
|
|
if (Best == CandidateSet.end()) {
|
|
// We had an error; delete all of the subexpressions and return
|
|
// the error.
|
|
Object->Destroy(Context);
|
|
for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
|
|
Args[ArgIdx]->Destroy(Context);
|
|
return true;
|
|
}
|
|
|
|
if (Best->Function == 0) {
|
|
// Since there is no function declaration, this is one of the
|
|
// surrogate candidates. Dig out the conversion function.
|
|
CXXConversionDecl *Conv
|
|
= cast<CXXConversionDecl>(
|
|
Best->Conversions[0].UserDefined.ConversionFunction);
|
|
|
|
CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl);
|
|
DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
|
|
|
|
// We selected one of the surrogate functions that converts the
|
|
// object parameter to a function pointer. Perform the conversion
|
|
// on the object argument, then let ActOnCallExpr finish the job.
|
|
|
|
// Create an implicit member expr to refer to the conversion operator.
|
|
// and then call it.
|
|
CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(Object, Best->FoundDecl,
|
|
Conv);
|
|
|
|
return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc,
|
|
MultiExprArg(*this, (ExprTy**)Args, NumArgs),
|
|
CommaLocs, RParenLoc).result();
|
|
}
|
|
|
|
CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl);
|
|
DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
|
|
|
|
// We found an overloaded operator(). Build a CXXOperatorCallExpr
|
|
// that calls this method, using Object for the implicit object
|
|
// parameter and passing along the remaining arguments.
|
|
CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
|
|
const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();
|
|
|
|
unsigned NumArgsInProto = Proto->getNumArgs();
|
|
unsigned NumArgsToCheck = NumArgs;
|
|
|
|
// Build the full argument list for the method call (the
|
|
// implicit object parameter is placed at the beginning of the
|
|
// list).
|
|
Expr **MethodArgs;
|
|
if (NumArgs < NumArgsInProto) {
|
|
NumArgsToCheck = NumArgsInProto;
|
|
MethodArgs = new Expr*[NumArgsInProto + 1];
|
|
} else {
|
|
MethodArgs = new Expr*[NumArgs + 1];
|
|
}
|
|
MethodArgs[0] = Object;
|
|
for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
|
|
MethodArgs[ArgIdx + 1] = Args[ArgIdx];
|
|
|
|
Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
|
|
SourceLocation());
|
|
UsualUnaryConversions(NewFn);
|
|
|
|
// Once we've built TheCall, all of the expressions are properly
|
|
// owned.
|
|
QualType ResultTy = Method->getResultType().getNonReferenceType();
|
|
ExprOwningPtr<CXXOperatorCallExpr>
|
|
TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
|
|
MethodArgs, NumArgs + 1,
|
|
ResultTy, RParenLoc));
|
|
delete [] MethodArgs;
|
|
|
|
if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(),
|
|
Method))
|
|
return true;
|
|
|
|
// We may have default arguments. If so, we need to allocate more
|
|
// slots in the call for them.
|
|
if (NumArgs < NumArgsInProto)
|
|
TheCall->setNumArgs(Context, NumArgsInProto + 1);
|
|
else if (NumArgs > NumArgsInProto)
|
|
NumArgsToCheck = NumArgsInProto;
|
|
|
|
bool IsError = false;
|
|
|
|
// Initialize the implicit object parameter.
|
|
IsError |= PerformObjectArgumentInitialization(Object, /*Qualifier=*/0,
|
|
Best->FoundDecl, Method);
|
|
TheCall->setArg(0, Object);
|
|
|
|
|
|
// Check the argument types.
|
|
for (unsigned i = 0; i != NumArgsToCheck; i++) {
|
|
Expr *Arg;
|
|
if (i < NumArgs) {
|
|
Arg = Args[i];
|
|
|
|
// Pass the argument.
|
|
|
|
OwningExprResult InputInit
|
|
= PerformCopyInitialization(InitializedEntity::InitializeParameter(
|
|
Method->getParamDecl(i)),
|
|
SourceLocation(), Owned(Arg));
|
|
|
|
IsError |= InputInit.isInvalid();
|
|
Arg = InputInit.takeAs<Expr>();
|
|
} else {
|
|
OwningExprResult DefArg
|
|
= BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
|
|
if (DefArg.isInvalid()) {
|
|
IsError = true;
|
|
break;
|
|
}
|
|
|
|
Arg = DefArg.takeAs<Expr>();
|
|
}
|
|
|
|
TheCall->setArg(i + 1, Arg);
|
|
}
|
|
|
|
// If this is a variadic call, handle args passed through "...".
|
|
if (Proto->isVariadic()) {
|
|
// Promote the arguments (C99 6.5.2.2p7).
|
|
for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
|
|
Expr *Arg = Args[i];
|
|
IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod, 0);
|
|
TheCall->setArg(i + 1, Arg);
|
|
}
|
|
}
|
|
|
|
if (IsError) return true;
|
|
|
|
if (CheckFunctionCall(Method, TheCall.get()))
|
|
return true;
|
|
|
|
return MaybeBindToTemporary(TheCall.release()).result();
|
|
}
|
|
|
|
/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
|
|
/// (if one exists), where @c Base is an expression of class type and
|
|
/// @c Member is the name of the member we're trying to find.
|
|
Sema::OwningExprResult
|
|
Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
|
|
Expr *Base = static_cast<Expr *>(BaseIn.get());
|
|
assert(Base->getType()->isRecordType() && "left-hand side must have class type");
|
|
|
|
SourceLocation Loc = Base->getExprLoc();
|
|
|
|
// C++ [over.ref]p1:
|
|
//
|
|
// [...] An expression x->m is interpreted as (x.operator->())->m
|
|
// for a class object x of type T if T::operator->() exists and if
|
|
// the operator is selected as the best match function by the
|
|
// overload resolution mechanism (13.3).
|
|
DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
|
|
OverloadCandidateSet CandidateSet(Loc);
|
|
const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
|
|
|
|
if (RequireCompleteType(Loc, Base->getType(),
|
|
PDiag(diag::err_typecheck_incomplete_tag)
|
|
<< Base->getSourceRange()))
|
|
return ExprError();
|
|
|
|
LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
|
|
LookupQualifiedName(R, BaseRecord->getDecl());
|
|
R.suppressDiagnostics();
|
|
|
|
for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
|
|
Oper != OperEnd; ++Oper) {
|
|
AddMethodCandidate(Oper.getPair(), Base->getType(), 0, 0, CandidateSet,
|
|
/*SuppressUserConversions=*/false);
|
|
}
|
|
|
|
// Perform overload resolution.
|
|
OverloadCandidateSet::iterator Best;
|
|
switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
|
|
case OR_Success:
|
|
// Overload resolution succeeded; we'll build the call below.
|
|
break;
|
|
|
|
case OR_No_Viable_Function:
|
|
if (CandidateSet.empty())
|
|
Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
|
|
<< Base->getType() << Base->getSourceRange();
|
|
else
|
|
Diag(OpLoc, diag::err_ovl_no_viable_oper)
|
|
<< "operator->" << Base->getSourceRange();
|
|
PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
|
|
return ExprError();
|
|
|
|
case OR_Ambiguous:
|
|
Diag(OpLoc, diag::err_ovl_ambiguous_oper)
|
|
<< "->" << Base->getSourceRange();
|
|
PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Base, 1);
|
|
return ExprError();
|
|
|
|
case OR_Deleted:
|
|
Diag(OpLoc, diag::err_ovl_deleted_oper)
|
|
<< Best->Function->isDeleted()
|
|
<< "->" << Base->getSourceRange();
|
|
PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
|
|
return ExprError();
|
|
}
|
|
|
|
CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl);
|
|
DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
|
|
|
|
// Convert the object parameter.
|
|
CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
|
|
if (PerformObjectArgumentInitialization(Base, /*Qualifier=*/0,
|
|
Best->FoundDecl, Method))
|
|
return ExprError();
|
|
|
|
// No concerns about early exits now.
|
|
BaseIn.release();
|
|
|
|
// Build the operator call.
|
|
Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
|
|
SourceLocation());
|
|
UsualUnaryConversions(FnExpr);
|
|
|
|
QualType ResultTy = Method->getResultType().getNonReferenceType();
|
|
ExprOwningPtr<CXXOperatorCallExpr>
|
|
TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr,
|
|
&Base, 1, ResultTy, OpLoc));
|
|
|
|
if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(),
|
|
Method))
|
|
return ExprError();
|
|
return move(TheCall);
|
|
}
|
|
|
|
/// FixOverloadedFunctionReference - E is an expression that refers to
|
|
/// a C++ overloaded function (possibly with some parentheses and
|
|
/// perhaps a '&' around it). We have resolved the overloaded function
|
|
/// to the function declaration Fn, so patch up the expression E to
|
|
/// refer (possibly indirectly) to Fn. Returns the new expr.
|
|
Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
|
|
FunctionDecl *Fn) {
|
|
if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
|
|
Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
|
|
Found, Fn);
|
|
if (SubExpr == PE->getSubExpr())
|
|
return PE->Retain();
|
|
|
|
return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
|
|
}
|
|
|
|
if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
|
|
Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
|
|
Found, Fn);
|
|
assert(Context.hasSameType(ICE->getSubExpr()->getType(),
|
|
SubExpr->getType()) &&
|
|
"Implicit cast type cannot be determined from overload");
|
|
if (SubExpr == ICE->getSubExpr())
|
|
return ICE->Retain();
|
|
|
|
return new (Context) ImplicitCastExpr(ICE->getType(),
|
|
ICE->getCastKind(),
|
|
SubExpr, CXXBaseSpecifierArray(),
|
|
ICE->isLvalueCast());
|
|
}
|
|
|
|
if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
|
|
assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
|
|
"Can only take the address of an overloaded function");
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
|
|
if (Method->isStatic()) {
|
|
// Do nothing: static member functions aren't any different
|
|
// from non-member functions.
|
|
} else {
|
|
// Fix the sub expression, which really has to be an
|
|
// UnresolvedLookupExpr holding an overloaded member function
|
|
// or template.
|
|
Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
|
|
Found, Fn);
|
|
if (SubExpr == UnOp->getSubExpr())
|
|
return UnOp->Retain();
|
|
|
|
assert(isa<DeclRefExpr>(SubExpr)
|
|
&& "fixed to something other than a decl ref");
|
|
assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
|
|
&& "fixed to a member ref with no nested name qualifier");
|
|
|
|
// We have taken the address of a pointer to member
|
|
// function. Perform the computation here so that we get the
|
|
// appropriate pointer to member type.
|
|
QualType ClassType
|
|
= Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
|
|
QualType MemPtrType
|
|
= Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
|
|
|
|
return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
|
|
MemPtrType, UnOp->getOperatorLoc());
|
|
}
|
|
}
|
|
Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
|
|
Found, Fn);
|
|
if (SubExpr == UnOp->getSubExpr())
|
|
return UnOp->Retain();
|
|
|
|
return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
|
|
Context.getPointerType(SubExpr->getType()),
|
|
UnOp->getOperatorLoc());
|
|
}
|
|
|
|
if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
|
|
// FIXME: avoid copy.
|
|
TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
|
|
if (ULE->hasExplicitTemplateArgs()) {
|
|
ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
|
|
TemplateArgs = &TemplateArgsBuffer;
|
|
}
|
|
|
|
return DeclRefExpr::Create(Context,
|
|
ULE->getQualifier(),
|
|
ULE->getQualifierRange(),
|
|
Fn,
|
|
ULE->getNameLoc(),
|
|
Fn->getType(),
|
|
TemplateArgs);
|
|
}
|
|
|
|
if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
|
|
// FIXME: avoid copy.
|
|
TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
|
|
if (MemExpr->hasExplicitTemplateArgs()) {
|
|
MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
|
|
TemplateArgs = &TemplateArgsBuffer;
|
|
}
|
|
|
|
Expr *Base;
|
|
|
|
// If we're filling in
|
|
if (MemExpr->isImplicitAccess()) {
|
|
if (cast<CXXMethodDecl>(Fn)->isStatic()) {
|
|
return DeclRefExpr::Create(Context,
|
|
MemExpr->getQualifier(),
|
|
MemExpr->getQualifierRange(),
|
|
Fn,
|
|
MemExpr->getMemberLoc(),
|
|
Fn->getType(),
|
|
TemplateArgs);
|
|
} else {
|
|
SourceLocation Loc = MemExpr->getMemberLoc();
|
|
if (MemExpr->getQualifier())
|
|
Loc = MemExpr->getQualifierRange().getBegin();
|
|
Base = new (Context) CXXThisExpr(Loc,
|
|
MemExpr->getBaseType(),
|
|
/*isImplicit=*/true);
|
|
}
|
|
} else
|
|
Base = MemExpr->getBase()->Retain();
|
|
|
|
return MemberExpr::Create(Context, Base,
|
|
MemExpr->isArrow(),
|
|
MemExpr->getQualifier(),
|
|
MemExpr->getQualifierRange(),
|
|
Fn,
|
|
Found,
|
|
MemExpr->getMemberLoc(),
|
|
TemplateArgs,
|
|
Fn->getType());
|
|
}
|
|
|
|
assert(false && "Invalid reference to overloaded function");
|
|
return E->Retain();
|
|
}
|
|
|
|
Sema::OwningExprResult Sema::FixOverloadedFunctionReference(OwningExprResult E,
|
|
DeclAccessPair Found,
|
|
FunctionDecl *Fn) {
|
|
return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn));
|
|
}
|
|
|
|
} // end namespace clang
|