llvm-project/llvm/lib/Transforms/Utils/Evaluator.cpp

597 lines
24 KiB
C++

//===- Evaluator.cpp - LLVM IR evaluator ----------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Function evaluator for LLVM IR.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/Evaluator.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/DiagnosticPrinter.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "evaluator"
using namespace llvm;
static inline bool
isSimpleEnoughValueToCommit(Constant *C,
SmallPtrSetImpl<Constant *> &SimpleConstants,
const DataLayout &DL);
/// Return true if the specified constant can be handled by the code generator.
/// We don't want to generate something like:
/// void *X = &X/42;
/// because the code generator doesn't have a relocation that can handle that.
///
/// This function should be called if C was not found (but just got inserted)
/// in SimpleConstants to avoid having to rescan the same constants all the
/// time.
static bool
isSimpleEnoughValueToCommitHelper(Constant *C,
SmallPtrSetImpl<Constant *> &SimpleConstants,
const DataLayout &DL) {
// Simple global addresses are supported, do not allow dllimport or
// thread-local globals.
if (auto *GV = dyn_cast<GlobalValue>(C))
return !GV->hasDLLImportStorageClass() && !GV->isThreadLocal();
// Simple integer, undef, constant aggregate zero, etc are all supported.
if (C->getNumOperands() == 0 || isa<BlockAddress>(C))
return true;
// Aggregate values are safe if all their elements are.
if (isa<ConstantAggregate>(C)) {
for (Value *Op : C->operands())
if (!isSimpleEnoughValueToCommit(cast<Constant>(Op), SimpleConstants, DL))
return false;
return true;
}
// We don't know exactly what relocations are allowed in constant expressions,
// so we allow &global+constantoffset, which is safe and uniformly supported
// across targets.
ConstantExpr *CE = cast<ConstantExpr>(C);
switch (CE->getOpcode()) {
case Instruction::BitCast:
// Bitcast is fine if the casted value is fine.
return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
case Instruction::IntToPtr:
case Instruction::PtrToInt:
// int <=> ptr is fine if the int type is the same size as the
// pointer type.
if (DL.getTypeSizeInBits(CE->getType()) !=
DL.getTypeSizeInBits(CE->getOperand(0)->getType()))
return false;
return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
// GEP is fine if it is simple + constant offset.
case Instruction::GetElementPtr:
for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
if (!isa<ConstantInt>(CE->getOperand(i)))
return false;
return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
case Instruction::Add:
// We allow simple+cst.
if (!isa<ConstantInt>(CE->getOperand(1)))
return false;
return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
}
return false;
}
static inline bool
isSimpleEnoughValueToCommit(Constant *C,
SmallPtrSetImpl<Constant *> &SimpleConstants,
const DataLayout &DL) {
// If we already checked this constant, we win.
if (!SimpleConstants.insert(C).second)
return true;
// Check the constant.
return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL);
}
/// Return true if this constant is simple enough for us to understand. In
/// particular, if it is a cast to anything other than from one pointer type to
/// another pointer type, we punt. We basically just support direct accesses to
/// globals and GEP's of globals. This should be kept up to date with
/// CommitValueTo.
static bool isSimpleEnoughPointerToCommit(Constant *C) {
// Conservatively, avoid aggregate types. This is because we don't
// want to worry about them partially overlapping other stores.
if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
return false;
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
// Do not allow weak/*_odr/linkonce linkage or external globals.
return GV->hasUniqueInitializer();
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
// Handle a constantexpr gep.
if (CE->getOpcode() == Instruction::GetElementPtr &&
isa<GlobalVariable>(CE->getOperand(0)) &&
cast<GEPOperator>(CE)->isInBounds()) {
GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
// Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
// external globals.
if (!GV->hasUniqueInitializer())
return false;
// The first index must be zero.
ConstantInt *CI = dyn_cast<ConstantInt>(*std::next(CE->op_begin()));
if (!CI || !CI->isZero()) return false;
// The remaining indices must be compile-time known integers within the
// notional bounds of the corresponding static array types.
if (!CE->isGEPWithNoNotionalOverIndexing())
return false;
return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
// A constantexpr bitcast from a pointer to another pointer is a no-op,
// and we know how to evaluate it by moving the bitcast from the pointer
// operand to the value operand.
} else if (CE->getOpcode() == Instruction::BitCast &&
isa<GlobalVariable>(CE->getOperand(0))) {
// Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
// external globals.
return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer();
}
}
return false;
}
/// Return the value that would be computed by a load from P after the stores
/// reflected by 'memory' have been performed. If we can't decide, return null.
Constant *Evaluator::ComputeLoadResult(Constant *P) {
// If this memory location has been recently stored, use the stored value: it
// is the most up-to-date.
DenseMap<Constant*, Constant*>::const_iterator I = MutatedMemory.find(P);
if (I != MutatedMemory.end()) return I->second;
// Access it.
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
if (GV->hasDefinitiveInitializer())
return GV->getInitializer();
return nullptr;
}
// Handle a constantexpr getelementptr.
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
if (CE->getOpcode() == Instruction::GetElementPtr &&
isa<GlobalVariable>(CE->getOperand(0))) {
GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
if (GV->hasDefinitiveInitializer())
return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
}
return nullptr; // don't know how to evaluate.
}
/// Evaluate all instructions in block BB, returning true if successful, false
/// if we can't evaluate it. NewBB returns the next BB that control flows into,
/// or null upon return.
bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
BasicBlock *&NextBB) {
// This is the main evaluation loop.
while (1) {
Constant *InstResult = nullptr;
DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n");
if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
if (!SI->isSimple()) {
DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n");
return false; // no volatile/atomic accesses.
}
Constant *Ptr = getVal(SI->getOperand(1));
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr);
Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
DEBUG(dbgs() << "; To: " << *Ptr << "\n");
}
if (!isSimpleEnoughPointerToCommit(Ptr)) {
// If this is too complex for us to commit, reject it.
DEBUG(dbgs() << "Pointer is too complex for us to evaluate store.");
return false;
}
Constant *Val = getVal(SI->getOperand(0));
// If this might be too difficult for the backend to handle (e.g. the addr
// of one global variable divided by another) then we can't commit it.
if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) {
DEBUG(dbgs() << "Store value is too complex to evaluate store. " << *Val
<< "\n");
return false;
}
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
if (CE->getOpcode() == Instruction::BitCast) {
DEBUG(dbgs() << "Attempting to resolve bitcast on constant ptr.\n");
// If we're evaluating a store through a bitcast, then we need
// to pull the bitcast off the pointer type and push it onto the
// stored value.
Ptr = CE->getOperand(0);
Type *NewTy = cast<PointerType>(Ptr->getType())->getElementType();
// In order to push the bitcast onto the stored value, a bitcast
// from NewTy to Val's type must be legal. If it's not, we can try
// introspecting NewTy to find a legal conversion.
while (!Val->getType()->canLosslesslyBitCastTo(NewTy)) {
// If NewTy is a struct, we can convert the pointer to the struct
// into a pointer to its first member.
// FIXME: This could be extended to support arrays as well.
if (StructType *STy = dyn_cast<StructType>(NewTy)) {
NewTy = STy->getTypeAtIndex(0U);
IntegerType *IdxTy = IntegerType::get(NewTy->getContext(), 32);
Constant *IdxZero = ConstantInt::get(IdxTy, 0, false);
Constant * const IdxList[] = {IdxZero, IdxZero};
Ptr = ConstantExpr::getGetElementPtr(nullptr, Ptr, IdxList);
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
// If we can't improve the situation by introspecting NewTy,
// we have to give up.
} else {
DEBUG(dbgs() << "Failed to bitcast constant ptr, can not "
"evaluate.\n");
return false;
}
}
// If we found compatible types, go ahead and push the bitcast
// onto the stored value.
Val = ConstantExpr::getBitCast(Val, NewTy);
DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n");
}
}
MutatedMemory[Ptr] = Val;
} else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
InstResult = ConstantExpr::get(BO->getOpcode(),
getVal(BO->getOperand(0)),
getVal(BO->getOperand(1)));
DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: " << *InstResult
<< "\n");
} else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
InstResult = ConstantExpr::getCompare(CI->getPredicate(),
getVal(CI->getOperand(0)),
getVal(CI->getOperand(1)));
DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult
<< "\n");
} else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
InstResult = ConstantExpr::getCast(CI->getOpcode(),
getVal(CI->getOperand(0)),
CI->getType());
DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult
<< "\n");
} else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)),
getVal(SI->getOperand(1)),
getVal(SI->getOperand(2)));
DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult
<< "\n");
} else if (auto *EVI = dyn_cast<ExtractValueInst>(CurInst)) {
InstResult = ConstantExpr::getExtractValue(
getVal(EVI->getAggregateOperand()), EVI->getIndices());
DEBUG(dbgs() << "Found an ExtractValueInst! Simplifying: " << *InstResult
<< "\n");
} else if (auto *IVI = dyn_cast<InsertValueInst>(CurInst)) {
InstResult = ConstantExpr::getInsertValue(
getVal(IVI->getAggregateOperand()),
getVal(IVI->getInsertedValueOperand()), IVI->getIndices());
DEBUG(dbgs() << "Found an InsertValueInst! Simplifying: " << *InstResult
<< "\n");
} else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
Constant *P = getVal(GEP->getOperand(0));
SmallVector<Constant*, 8> GEPOps;
for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
i != e; ++i)
GEPOps.push_back(getVal(*i));
InstResult =
ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), P, GEPOps,
cast<GEPOperator>(GEP)->isInBounds());
DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult
<< "\n");
} else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
if (!LI->isSimple()) {
DEBUG(dbgs() << "Found a Load! Not a simple load, can not evaluate.\n");
return false; // no volatile/atomic accesses.
}
Constant *Ptr = getVal(LI->getOperand(0));
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
DEBUG(dbgs() << "Found a constant pointer expression, constant "
"folding: " << *Ptr << "\n");
}
InstResult = ComputeLoadResult(Ptr);
if (!InstResult) {
DEBUG(dbgs() << "Failed to compute load result. Can not evaluate load."
"\n");
return false; // Could not evaluate load.
}
DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n");
} else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
if (AI->isArrayAllocation()) {
DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n");
return false; // Cannot handle array allocs.
}
Type *Ty = AI->getAllocatedType();
AllocaTmps.push_back(
make_unique<GlobalVariable>(Ty, false, GlobalValue::InternalLinkage,
UndefValue::get(Ty), AI->getName()));
InstResult = AllocaTmps.back().get();
DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n");
} else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) {
CallSite CS(&*CurInst);
// Debug info can safely be ignored here.
if (isa<DbgInfoIntrinsic>(CS.getInstruction())) {
DEBUG(dbgs() << "Ignoring debug info.\n");
++CurInst;
continue;
}
// Cannot handle inline asm.
if (isa<InlineAsm>(CS.getCalledValue())) {
DEBUG(dbgs() << "Found inline asm, can not evaluate.\n");
return false;
}
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) {
if (MSI->isVolatile()) {
DEBUG(dbgs() << "Can not optimize a volatile memset " <<
"intrinsic.\n");
return false;
}
Constant *Ptr = getVal(MSI->getDest());
Constant *Val = getVal(MSI->getValue());
Constant *DestVal = ComputeLoadResult(getVal(Ptr));
if (Val->isNullValue() && DestVal && DestVal->isNullValue()) {
// This memset is a no-op.
DEBUG(dbgs() << "Ignoring no-op memset.\n");
++CurInst;
continue;
}
}
if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
II->getIntrinsicID() == Intrinsic::lifetime_end) {
DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n");
++CurInst;
continue;
}
if (II->getIntrinsicID() == Intrinsic::invariant_start) {
// We don't insert an entry into Values, as it doesn't have a
// meaningful return value.
if (!II->use_empty()) {
DEBUG(dbgs() << "Found unused invariant_start. Can't evaluate.\n");
return false;
}
ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0));
Value *PtrArg = getVal(II->getArgOperand(1));
Value *Ptr = PtrArg->stripPointerCasts();
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
Type *ElemTy = GV->getValueType();
if (!Size->isAllOnesValue() &&
Size->getValue().getLimitedValue() >=
DL.getTypeStoreSize(ElemTy)) {
Invariants.insert(GV);
DEBUG(dbgs() << "Found a global var that is an invariant: " << *GV
<< "\n");
} else {
DEBUG(dbgs() << "Found a global var, but can not treat it as an "
"invariant.\n");
}
}
// Continue even if we do nothing.
++CurInst;
continue;
} else if (II->getIntrinsicID() == Intrinsic::assume) {
DEBUG(dbgs() << "Skipping assume intrinsic.\n");
++CurInst;
continue;
}
DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n");
return false;
}
// Resolve function pointers.
Function *Callee = dyn_cast<Function>(getVal(CS.getCalledValue()));
if (!Callee || Callee->mayBeOverridden()) {
DEBUG(dbgs() << "Can not resolve function pointer.\n");
return false; // Cannot resolve.
}
SmallVector<Constant*, 8> Formals;
for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i)
Formals.push_back(getVal(*i));
if (Callee->isDeclaration()) {
// If this is a function we can constant fold, do it.
if (Constant *C = ConstantFoldCall(Callee, Formals, TLI)) {
InstResult = C;
DEBUG(dbgs() << "Constant folded function call. Result: " <<
*InstResult << "\n");
} else {
DEBUG(dbgs() << "Can not constant fold function call.\n");
return false;
}
} else {
if (Callee->getFunctionType()->isVarArg()) {
DEBUG(dbgs() << "Can not constant fold vararg function call.\n");
return false;
}
Constant *RetVal = nullptr;
// Execute the call, if successful, use the return value.
ValueStack.emplace_back();
if (!EvaluateFunction(Callee, RetVal, Formals)) {
DEBUG(dbgs() << "Failed to evaluate function.\n");
return false;
}
ValueStack.pop_back();
InstResult = RetVal;
if (InstResult) {
DEBUG(dbgs() << "Successfully evaluated function. Result: "
<< *InstResult << "\n\n");
} else {
DEBUG(dbgs() << "Successfully evaluated function. Result: 0\n\n");
}
}
} else if (isa<TerminatorInst>(CurInst)) {
DEBUG(dbgs() << "Found a terminator instruction.\n");
if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
if (BI->isUnconditional()) {
NextBB = BI->getSuccessor(0);
} else {
ConstantInt *Cond =
dyn_cast<ConstantInt>(getVal(BI->getCondition()));
if (!Cond) return false; // Cannot determine.
NextBB = BI->getSuccessor(!Cond->getZExtValue());
}
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
ConstantInt *Val =
dyn_cast<ConstantInt>(getVal(SI->getCondition()));
if (!Val) return false; // Cannot determine.
NextBB = SI->findCaseValue(Val).getCaseSuccessor();
} else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
Value *Val = getVal(IBI->getAddress())->stripPointerCasts();
if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
NextBB = BA->getBasicBlock();
else
return false; // Cannot determine.
} else if (isa<ReturnInst>(CurInst)) {
NextBB = nullptr;
} else {
// invoke, unwind, resume, unreachable.
DEBUG(dbgs() << "Can not handle terminator.");
return false; // Cannot handle this terminator.
}
// We succeeded at evaluating this block!
DEBUG(dbgs() << "Successfully evaluated block.\n");
return true;
} else {
// Did not know how to evaluate this!
DEBUG(dbgs() << "Failed to evaluate block due to unhandled instruction."
"\n");
return false;
}
if (!CurInst->use_empty()) {
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult))
InstResult = ConstantFoldConstantExpression(CE, DL, TLI);
setVal(&*CurInst, InstResult);
}
// If we just processed an invoke, we finished evaluating the block.
if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) {
NextBB = II->getNormalDest();
DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n");
return true;
}
// Advance program counter.
++CurInst;
}
}
/// Evaluate a call to function F, returning true if successful, false if we
/// can't evaluate it. ActualArgs contains the formal arguments for the
/// function.
bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal,
const SmallVectorImpl<Constant*> &ActualArgs) {
// Check to see if this function is already executing (recursion). If so,
// bail out. TODO: we might want to accept limited recursion.
if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
return false;
CallStack.push_back(F);
// Initialize arguments to the incoming values specified.
unsigned ArgNo = 0;
for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
++AI, ++ArgNo)
setVal(&*AI, ActualArgs[ArgNo]);
// ExecutedBlocks - We only handle non-looping, non-recursive code. As such,
// we can only evaluate any one basic block at most once. This set keeps
// track of what we have executed so we can detect recursive cases etc.
SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
// CurBB - The current basic block we're evaluating.
BasicBlock *CurBB = &F->front();
BasicBlock::iterator CurInst = CurBB->begin();
while (1) {
BasicBlock *NextBB = nullptr; // Initialized to avoid compiler warnings.
DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n");
if (!EvaluateBlock(CurInst, NextBB))
return false;
if (!NextBB) {
// Successfully running until there's no next block means that we found
// the return. Fill it the return value and pop the call stack.
ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator());
if (RI->getNumOperands())
RetVal = getVal(RI->getOperand(0));
CallStack.pop_back();
return true;
}
// Okay, we succeeded in evaluating this control flow. See if we have
// executed the new block before. If so, we have a looping function,
// which we cannot evaluate in reasonable time.
if (!ExecutedBlocks.insert(NextBB).second)
return false; // looped!
// Okay, we have never been in this block before. Check to see if there
// are any PHI nodes. If so, evaluate them with information about where
// we came from.
PHINode *PN = nullptr;
for (CurInst = NextBB->begin();
(PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB)));
// Advance to the next block.
CurBB = NextBB;
}
}