Go to file
Yonghong Song 29bc5dd194 [BPF] implement isTruncateFree and isZExtFree in BPFTargetLowering
Currently, isTruncateFree() and isZExtFree() callbacks return false
as they are not implemented in BPF backend. This may cause suboptimal
code generation. For example, if the load in the context of zero extension
has more than one use, the pattern zextload{i8,i16,i32} will
not be generated. Rather, the load will be matched first and
then the result is zero extended.

For example, in the test together with this commit, we have
   I1: %0 = load i32, i32* %data_end1, align 4, !tbaa !2
   I2: %conv = zext i32 %0 to i64
   ...
   I3: %2 = load i32, i32* %data, align 4, !tbaa !7
   I4: %conv2 = zext i32 %2 to i64
   ...
   I5: %4 = trunc i64 %sub.ptr.lhs.cast to i32
   I6: %conv13 = sub i32 %4, %2
   ...

The I1 and I2 will match to one zextloadi32 DAG node, where SUBREG_TO_REG is
used to convert a 32bit register to 64bit one. During code generation,
SUBREG_TO_REG is a noop.

The %2 in I3 is used in both I4 and I6. If isTruncateFree() is false,
the current implementation will generate a SLL_ri and SRL_ri
for the zext part during lowering.

This patch implement isTruncateFree() in the BPF backend, so for the
above example, I3 and I4 will generate a zextloadi32 DAG node with
SUBREG_TO_REG is generated during lowering to Machine IR.

isZExtFree() is also implemented as it should help code gen as well.

This patch also enables the change in https://reviews.llvm.org/D73985
since it won't kick in generates MOV_32_64 machine instruction.

Differential Revision: https://reviews.llvm.org/D74101
2020-02-11 09:59:19 -08:00
clang [DirectoryWatcher] Fix misuse of FSEvents API and data race 2020-02-11 09:25:38 -08:00
clang-tools-extra [clangd] Expose completion range in code completion results (C++ API) 2020-02-11 15:25:03 +01:00
compiler-rt Fix errors/warnings in scudo build. 2020-02-11 08:37:37 -08:00
debuginfo-tests Replace CHECK-NEXT with CHECK-DAG. The order isn't relevant we just 2020-02-07 15:09:44 -08:00
libc Remove leftover artifacts from use of gtest. 2020-02-04 21:41:45 -08:00
libclc libclc/r600: Use target specific builtins to implement rsqrt and native_rsqrt 2020-02-09 14:42:15 -05:00
libcxx [libc++] Make sure that vector copy-construction is disabled for non-copyable types 2020-02-11 17:12:16 +01:00
libcxxabi [libcxxabi] Fix layout of __cxa_exception for win64 2020-02-03 09:55:02 +02:00
libunwind unwind: rename `__personality_routine` to `_Unwind_Personality_Fn` 2020-02-10 08:52:31 -08:00
lld [ELF][RISCV] Add R_RISCV_IRELATIVE 2020-02-10 20:22:39 -08:00
lldb [lldb][NFC] Remove support file searching from SourceFileCompleter 2020-02-11 18:50:25 +01:00
llvm [BPF] implement isTruncateFree and isZExtFree in BPFTargetLowering 2020-02-11 09:59:19 -08:00
mlir [mlir][ods] Added RankedIntElementsAttr class 2020-02-11 10:01:57 -05:00
openmp [CMake] Rename EXCLUDE_FROM_ALL and make it an argument to add_lit_testsuite 2020-02-06 15:33:18 -08:00
parallel-libs Fix typos throughout the license files that somehow I and my reviewers 2019-01-21 09:52:34 +00:00
polly [Polly][Docs] Fix wrong claim about optimization levels. 2020-02-10 20:14:40 -06:00
pstl Bump the trunk major version to 11 2020-01-15 13:38:01 +01:00
.arcconfig Include phabricator.uri in .arcconfig 2020-01-23 11:50:18 -08:00
.clang-format Add .clang-tidy and .clang-format files to the toplevel of the 2019-01-29 16:43:16 +00:00
.clang-tidy - Update .clang-tidy to ignore parameters of main like functions for naming violations in clang and llvm directory 2020-01-31 16:49:45 +00:00
.git-blame-ignore-revs Add LLDB reformatting to .git-blame-ignore-revs 2019-09-04 09:31:55 +00:00
.gitignore Add a newline at the end of the file 2019-09-04 06:33:46 +00:00
CONTRIBUTING.md Add contributing info to CONTRIBUTING.md and README.md 2019-12-02 15:47:15 +00:00
README.md Add contributing info to CONTRIBUTING.md and README.md 2019-12-02 15:47:15 +00:00

README.md

The LLVM Compiler Infrastructure

This directory and its subdirectories contain source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and runtime environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from https://llvm.org/docs/GettingStarted.html.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and converts it into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang front end. This component compiles C, C++, Objective C, and Objective C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example workflow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related subprojects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • mkdir build

    • cd build

    • cmake -G <generator> [options] ../llvm

      Some common generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some Common options:

      • -DLLVM_ENABLE_PROJECTS='...' --- semicolon-separated list of the LLVM subprojects you'd like to additionally build. Can include any of: clang, clang-tools-extra, libcxx, libcxxabi, libunwind, lldb, compiler-rt, lld, polly, or debuginfo-tests.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang;libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full pathname of where you want the LLVM tools and libraries to be installed (default /usr/local).

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • Run your build tool of choice!

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate build targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use make -j NNN (NNN is the number of parallel jobs, use e.g. number of CPUs you have.)

    • For more information see CMake

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.