llvm-project/polly
Tobias Grosser 29a4dd92b7 CodegenCleanup: Drop CFLAA pass from codegen cleanup sequence
Since r274197 -polly-position=before-vectorizer caused various LNT failures
for example in SingleSource/Benchmarks/Linpack. These failures seem to only
occur when the CFLAA pass is scheduled in our codegen-cleanup passes, which
suggests that the way we call this AA pass is somehow problematic.  As this pass
is not of high importance, we drop the pass for now to prevent these failures
from happening. At a later point, we might investigate more in-depth why this
specific usage scenario caused correctness issues.

llvm-svn: 274427
2016-07-02 07:58:13 +00:00
..
cmake Respect LLVM_INSTALL_TOOLCHAIN_ONLY. 2016-06-21 18:14:01 +00:00
docs docs: Remove reference to PoCC 2016-05-17 19:44:16 +00:00
include/polly ScopInfo: Add array_begin() and array_end() iterators 2016-06-30 20:53:50 +00:00
lib CodegenCleanup: Drop CFLAA pass from codegen cleanup sequence 2016-07-02 07:58:13 +00:00
test Ensure parameter names are isl-compatible 2016-07-01 13:40:28 +00:00
tools Update copyright year to 2016. 2016-03-30 22:41:38 +00:00
utils Revise polly-{update|check}-format targets 2015-09-14 16:59:50 +00:00
www [WWW] Mark task as done and me as owner of some task 2016-05-02 11:21:30 +00:00
.arcconfig Adjusted arc linter config for modern version of arcanist 2015-08-12 09:01:16 +00:00
.arclint Adjusted arc linter config for modern version of arcanist 2015-08-12 09:01:16 +00:00
.gitattributes gitattributes: .png and .txt are no text files 2013-07-28 09:05:20 +00:00
.gitignore Add git patch files to .gitignore 2015-06-23 20:55:01 +00:00
CMakeLists.txt Respect LLVM_INSTALL_TOOLCHAIN_ONLY. 2016-06-21 18:14:01 +00:00
CREDITS.txt Add myself to the credits 2014-08-10 03:37:29 +00:00
LICENSE.txt Update copyright year to 2016. 2016-03-30 22:41:38 +00:00
README

README

Polly - Polyhedral optimizations for LLVM
-----------------------------------------
http://polly.llvm.org/

Polly uses a mathematical representation, the polyhedral model, to represent and
transform loops and other control flow structures. Using an abstract
representation it is possible to reason about transformations in a more general
way and to use highly optimized linear programming libraries to figure out the
optimal loop structure. These transformations can be used to do constant
propagation through arrays, remove dead loop iterations, optimize loops for
cache locality, optimize arrays, apply advanced automatic parallelization, drive
vectorization, or they can be used to do software pipelining.