llvm-project/llvm/tools/llvm-mca/Dispatch.h

312 lines
13 KiB
C++

//===----------------------- Dispatch.h -------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This file implements classes that are used to model register files,
/// reorder buffers and the hardware dispatch logic.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_TOOLS_LLVM_MCA_DISPATCH_H
#define LLVM_TOOLS_LLVM_MCA_DISPATCH_H
#include "Instruction.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include <map>
namespace mca {
class WriteState;
class DispatchUnit;
class Scheduler;
class Backend;
/// \brief Manages hardware register files, and tracks data dependencies
/// between registers.
class RegisterFile {
const llvm::MCRegisterInfo &MRI;
// Each register file is described by an instance of RegisterMappingTracker.
// RegisterMappingTracker tracks the number of register mappings dynamically
// allocated during the execution.
struct RegisterMappingTracker {
// Total number of register mappings that are available for register
// renaming. A value of zero for this field means: this register file has
// an unbounded number of registers.
const unsigned TotalMappings;
// Number of mappings that are currently in use.
unsigned NumUsedMappings;
RegisterMappingTracker(unsigned NumMappings)
: TotalMappings(NumMappings), NumUsedMappings(0) {}
};
// This is where information related to the various register files is kept.
// This set always contains at least one register file at index #0. That
// register file "sees" all the physical registers declared by the target, and
// (by default) it allows an unbound number of mappings.
// Users can limit the number of mappings that can be created by register file
// #0 through the command line flag `-register-file-size`.
llvm::SmallVector<RegisterMappingTracker, 4> RegisterFiles;
// RegisterMapping objects are mainly used to track physical register
// definitions. A WriteState object describes a register definition, and it is
// used to track RAW dependencies (see Instruction.h). A RegisterMapping
// object also specifies the set of register files. The mapping between
// physreg and register files is done using a "register file mask".
//
// A register file mask identifies a set of register files. Each bit of the
// mask representation references a specific register file.
// For example:
// 0b0001 --> Register file #0
// 0b0010 --> Register file #1
// 0b0100 --> Register file #2
//
// Note that this implementation allows register files to overlap.
// The maximum number of register files allowed by this implementation is 32.
using RegisterMapping = std::pair<WriteState *, unsigned>;
// This map contains one entry for each physical register defined by the
// processor scheduling model.
std::vector<RegisterMapping> RegisterMappings;
// This method creates a new RegisterMappingTracker for a register file that
// contains all the physical registers specified by the register classes in
// the 'RegisterClasses' set.
//
// The long term goal is to let scheduling models optionally describe register
// files via tablegen definitions. This is still a work in progress.
// For example, here is how a tablegen definition for a x86 FP register file
// that features AVX might look like:
//
// def FPRegisterFile : RegisterFile<[VR128RegClass, VR256RegClass], 60>
//
// Here FPRegisterFile contains all the registers defined by register class
// VR128RegClass and VR256RegClass. FPRegisterFile implements 60
// registers which can be used for register renaming purpose.
//
// The list of register classes is then converted by the tablegen backend into
// a list of register class indices. That list, along with the number of
// available mappings, is then used to create a new RegisterMappingTracker.
void addRegisterFile(llvm::ArrayRef<unsigned> RegisterClasses,
unsigned NumTemps);
// Allocates a new register mapping in every register file specified by the
// register file mask. This method is called from addRegisterMapping.
void createNewMappings(unsigned RegisterFileMask,
llvm::MutableArrayRef<unsigned> UsedPhysRegs);
// Removes a previously allocated mapping from each register file in the
// RegisterFileMask set. This method is called from invalidateRegisterMapping.
void removeMappings(unsigned RegisterFileMask,
llvm::MutableArrayRef<unsigned> FreedPhysRegs);
public:
RegisterFile(const llvm::MCRegisterInfo &mri, unsigned TempRegs = 0)
: MRI(mri), RegisterMappings(MRI.getNumRegs(), {nullptr, 0U}) {
addRegisterFile({}, TempRegs);
// TODO: teach the scheduling models how to specify multiple register files.
}
// Creates a new register mapping for RegID.
// This reserves a microarchitectural register in every register file that
// contains RegID.
void addRegisterMapping(WriteState &WS,
llvm::MutableArrayRef<unsigned> UsedPhysRegs);
// Invalidates register mappings associated to the input WriteState object.
// This releases previously allocated mappings for the physical register
// associated to the WriteState.
void invalidateRegisterMapping(const WriteState &WS,
llvm::MutableArrayRef<unsigned> FreedPhysRegs);
// Checks if there are enough microarchitectural registers in the register
// files. Returns a "response mask" where each bit is the response from a
// RegisterMappingTracker.
// For example: if all register files are available, then the response mask
// is a bitmask of all zeroes. If Instead register file #1 is not available,
// then the response mask is 0b10.
unsigned isAvailable(llvm::ArrayRef<unsigned> Regs) const;
void collectWrites(llvm::SmallVectorImpl<WriteState *> &Writes,
unsigned RegID) const;
void updateOnRead(ReadState &RS, unsigned RegID);
unsigned getNumRegisterFiles() const { return RegisterFiles.size(); }
#ifndef NDEBUG
void dump() const;
#endif
};
/// \brief tracks which instructions are in-flight (i.e. dispatched but not
/// retired) in the OoO backend.
///
/// This class checks on every cycle if/which instructions can be retired.
/// Instructions are retired in program order.
/// In the event of instruction retired, the DispatchUnit object that owns
/// this RetireControlUnit gets notified.
/// On instruction retired, register updates are all architecturally
/// committed, and any temporary registers originally allocated for the
/// retired instruction are freed.
struct RetireControlUnit {
// A "token" (object of class RUToken) is created by the retire unit for every
// instruction dispatched to the schedulers. Flag 'Executed' is used to
// quickly check if an instruction has reached the write-back stage. A token
// also carries information related to the number of entries consumed by the
// instruction in the reorder buffer. The idea is that those entries will
// become available again once the instruction is retired. On every cycle,
// the RCU (Retire Control Unit) scans every token starting to search for
// instructions that are ready to retire. retired. Instructions are retired
// in program order. Only 'Executed' instructions are eligible for retire.
// Note that the size of the reorder buffer is defined by the scheduling model
// via field 'NumMicroOpBufferSize'.
struct RUToken {
unsigned Index; // Instruction index.
unsigned NumSlots; // Slots reserved to this instruction.
bool Executed; // True if the instruction is past the WB stage.
};
private:
unsigned NextAvailableSlotIdx;
unsigned CurrentInstructionSlotIdx;
unsigned AvailableSlots;
unsigned MaxRetirePerCycle; // 0 means no limit.
std::vector<RUToken> Queue;
DispatchUnit *Owner;
public:
RetireControlUnit(unsigned NumSlots, unsigned RPC, DispatchUnit *DU)
: NextAvailableSlotIdx(0), CurrentInstructionSlotIdx(0),
AvailableSlots(NumSlots), MaxRetirePerCycle(RPC), Owner(DU) {
assert(NumSlots && "Expected at least one slot!");
Queue.resize(NumSlots);
}
bool isFull() const { return !AvailableSlots; }
bool isEmpty() const { return AvailableSlots == Queue.size(); }
bool isAvailable(unsigned Quantity = 1) const {
// Some instructions may declare a number of uOps which exceedes the size
// of the reorder buffer. To avoid problems, cap the amount of slots to
// the size of the reorder buffer.
Quantity = std::min(Quantity, static_cast<unsigned>(Queue.size()));
return AvailableSlots >= Quantity;
}
// Reserves a number of slots, and returns a new token.
unsigned reserveSlot(unsigned Index, unsigned NumMicroOps);
/// Retires instructions in program order.
void cycleEvent();
void onInstructionExecuted(unsigned TokenID);
#ifndef NDEBUG
void dump() const;
#endif
};
// \brief Implements the hardware dispatch logic.
//
// This class is responsible for the dispatch stage, in which instructions are
// dispatched in groups to the Scheduler. An instruction can be dispatched if
// functional units are available.
// To be more specific, an instruction can be dispatched to the Scheduler if:
// 1) There are enough entries in the reorder buffer (implemented by class
// RetireControlUnit) to accomodate all opcodes.
// 2) There are enough temporaries to rename output register operands.
// 3) There are enough entries available in the used buffered resource(s).
//
// The number of micro opcodes that can be dispatched in one cycle is limited by
// the value of field 'DispatchWidth'. A "dynamic dispatch stall" occurs when
// processor resources are not available (i.e. at least one of the
// abovementioned checks fails). Dispatch stall events are counted during the
// entire execution of the code, and displayed by the performance report when
// flag '-verbose' is specified.
//
// If the number of micro opcodes of an instruction is bigger than
// DispatchWidth, then it can only be dispatched at the beginning of one cycle.
// The DispatchUnit will still have to wait for a number of cycles (depending on
// the DispatchWidth and the number of micro opcodes) before it can serve other
// instructions.
class DispatchUnit {
unsigned DispatchWidth;
unsigned AvailableEntries;
unsigned CarryOver;
Scheduler *SC;
std::unique_ptr<RegisterFile> RAT;
std::unique_ptr<RetireControlUnit> RCU;
Backend *Owner;
bool checkRAT(unsigned Index, const Instruction &Desc);
bool checkRCU(unsigned Index, const InstrDesc &Desc);
bool checkScheduler(unsigned Index, const InstrDesc &Desc);
void updateRAWDependencies(ReadState &RS, const llvm::MCSubtargetInfo &STI);
void notifyInstructionDispatched(unsigned IID,
llvm::ArrayRef<unsigned> UsedPhysRegs);
public:
DispatchUnit(Backend *B, const llvm::MCRegisterInfo &MRI,
unsigned MicroOpBufferSize, unsigned RegisterFileSize,
unsigned MaxRetirePerCycle, unsigned MaxDispatchWidth,
Scheduler *Sched)
: DispatchWidth(MaxDispatchWidth), AvailableEntries(MaxDispatchWidth),
CarryOver(0U), SC(Sched),
RAT(llvm::make_unique<RegisterFile>(MRI, RegisterFileSize)),
RCU(llvm::make_unique<RetireControlUnit>(MicroOpBufferSize,
MaxRetirePerCycle, this)),
Owner(B) {}
unsigned getDispatchWidth() const { return DispatchWidth; }
bool isAvailable(unsigned NumEntries) const {
return NumEntries <= AvailableEntries || AvailableEntries == DispatchWidth;
}
bool isRCUEmpty() const { return RCU->isEmpty(); }
bool canDispatch(unsigned Index, const Instruction &Inst) {
const InstrDesc &Desc = Inst.getDesc();
assert(isAvailable(Desc.NumMicroOps));
return checkRCU(Index, Desc) && checkRAT(Index, Inst) &&
checkScheduler(Index, Desc);
}
void dispatch(unsigned IID, Instruction *I, const llvm::MCSubtargetInfo &STI);
void collectWrites(llvm::SmallVectorImpl<WriteState *> &Vec,
unsigned RegID) const {
return RAT->collectWrites(Vec, RegID);
}
void cycleEvent(unsigned Cycle) {
RCU->cycleEvent();
AvailableEntries =
CarryOver >= DispatchWidth ? 0 : DispatchWidth - CarryOver;
CarryOver = CarryOver >= DispatchWidth ? CarryOver - DispatchWidth : 0U;
}
void notifyInstructionRetired(unsigned Index);
void notifyDispatchStall(unsigned Index, unsigned EventType);
void onInstructionExecuted(unsigned TokenID) {
RCU->onInstructionExecuted(TokenID);
}
#ifndef NDEBUG
void dump() const;
#endif
};
} // namespace mca
#endif