forked from OSchip/llvm-project
666 lines
22 KiB
C++
666 lines
22 KiB
C++
//===- HexagonShuffler.cpp - Instruction bundle shuffling -----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This implements the shuffling of insns inside a bundle according to the
|
|
// packet formation rules of the Hexagon ISA.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "hexagon-shuffle"
|
|
|
|
#include "MCTargetDesc/HexagonShuffler.h"
|
|
#include "Hexagon.h"
|
|
#include "MCTargetDesc/HexagonBaseInfo.h"
|
|
#include "MCTargetDesc/HexagonMCInstrInfo.h"
|
|
#include "MCTargetDesc/HexagonMCTargetDesc.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCInst.h"
|
|
#include "llvm/MC/MCSubtargetInfo.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/SourceMgr.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
// Insn shuffling priority.
|
|
class HexagonBid {
|
|
// The priority is directly proportional to how restricted the insn is based
|
|
// on its flexibility to run on the available slots. So, the fewer slots it
|
|
// may run on, the higher its priority.
|
|
enum { MAX = 360360 }; // LCD of 1/2, 1/3, 1/4,... 1/15.
|
|
unsigned Bid = 0;
|
|
|
|
public:
|
|
HexagonBid() = default;
|
|
HexagonBid(unsigned B) { Bid = B ? MAX / countPopulation(B) : 0; }
|
|
|
|
// Check if the insn priority is overflowed.
|
|
bool isSold() const { return (Bid >= MAX); }
|
|
|
|
HexagonBid &operator+=(const HexagonBid &B) {
|
|
Bid += B.Bid;
|
|
return *this;
|
|
}
|
|
};
|
|
|
|
// Slot shuffling allocation.
|
|
class HexagonUnitAuction {
|
|
HexagonBid Scores[HEXAGON_PACKET_SIZE];
|
|
// Mask indicating which slot is unavailable.
|
|
unsigned isSold : HEXAGON_PACKET_SIZE;
|
|
|
|
public:
|
|
HexagonUnitAuction(unsigned cs = 0) : isSold(cs) {}
|
|
|
|
// Allocate slots.
|
|
bool bid(unsigned B) {
|
|
// Exclude already auctioned slots from the bid.
|
|
unsigned b = B & ~isSold;
|
|
if (b) {
|
|
for (unsigned i = 0; i < HEXAGON_PACKET_SIZE; ++i)
|
|
if (b & (1 << i)) {
|
|
// Request candidate slots.
|
|
Scores[i] += HexagonBid(b);
|
|
isSold |= Scores[i].isSold() << i;
|
|
}
|
|
return true;
|
|
} else
|
|
// Error if the desired slots are already full.
|
|
return false;
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
unsigned HexagonResource::setWeight(unsigned s) {
|
|
const unsigned SlotWeight = 8;
|
|
const unsigned MaskWeight = SlotWeight - 1;
|
|
unsigned Units = getUnits();
|
|
unsigned Key = ((1u << s) & Units) != 0;
|
|
|
|
// Calculate relative weight of the insn for the given slot, weighing it the
|
|
// heavier the more restrictive the insn is and the lowest the slots that the
|
|
// insn may be executed in.
|
|
if (Key == 0 || Units == 0 || (SlotWeight * s >= 32))
|
|
return Weight = 0;
|
|
|
|
unsigned Ctpop = countPopulation(Units);
|
|
unsigned Cttz = countTrailingZeros(Units);
|
|
Weight = (1u << (SlotWeight * s)) * ((MaskWeight - Ctpop) << Cttz);
|
|
return Weight;
|
|
}
|
|
|
|
void HexagonCVIResource::SetupTUL(TypeUnitsAndLanes *TUL, StringRef CPU) {
|
|
(*TUL)[HexagonII::TypeCVI_VA] =
|
|
UnitsAndLanes(CVI_XLANE | CVI_SHIFT | CVI_MPY0 | CVI_MPY1, 1);
|
|
(*TUL)[HexagonII::TypeCVI_VA_DV] = UnitsAndLanes(CVI_XLANE | CVI_MPY0, 2);
|
|
(*TUL)[HexagonII::TypeCVI_VX] = UnitsAndLanes(CVI_MPY0 | CVI_MPY1, 1);
|
|
(*TUL)[HexagonII::TypeCVI_VX_LATE] = UnitsAndLanes(CVI_MPY0 | CVI_MPY1, 1);
|
|
(*TUL)[HexagonII::TypeCVI_VX_DV] = UnitsAndLanes(CVI_MPY0, 2);
|
|
(*TUL)[HexagonII::TypeCVI_VP] = UnitsAndLanes(CVI_XLANE, 1);
|
|
(*TUL)[HexagonII::TypeCVI_VP_VS] = UnitsAndLanes(CVI_XLANE, 2);
|
|
(*TUL)[HexagonII::TypeCVI_VS] = UnitsAndLanes(CVI_SHIFT, 1);
|
|
(*TUL)[HexagonII::TypeCVI_VS_VX] = UnitsAndLanes(CVI_XLANE | CVI_SHIFT, 1);
|
|
(*TUL)[HexagonII::TypeCVI_VINLANESAT] =
|
|
(CPU == "hexagonv60")
|
|
? UnitsAndLanes(CVI_SHIFT, 1)
|
|
: UnitsAndLanes(CVI_XLANE | CVI_SHIFT | CVI_MPY0 | CVI_MPY1, 1);
|
|
(*TUL)[HexagonII::TypeCVI_VM_LD] =
|
|
UnitsAndLanes(CVI_XLANE | CVI_SHIFT | CVI_MPY0 | CVI_MPY1, 1);
|
|
(*TUL)[HexagonII::TypeCVI_VM_TMP_LD] = UnitsAndLanes(CVI_NONE, 0);
|
|
(*TUL)[HexagonII::TypeCVI_VM_VP_LDU] = UnitsAndLanes(CVI_XLANE, 1);
|
|
(*TUL)[HexagonII::TypeCVI_VM_ST] =
|
|
UnitsAndLanes(CVI_XLANE | CVI_SHIFT | CVI_MPY0 | CVI_MPY1, 1);
|
|
(*TUL)[HexagonII::TypeCVI_VM_NEW_ST] = UnitsAndLanes(CVI_NONE, 0);
|
|
(*TUL)[HexagonII::TypeCVI_VM_STU] = UnitsAndLanes(CVI_XLANE, 1);
|
|
(*TUL)[HexagonII::TypeCVI_HIST] = UnitsAndLanes(CVI_XLANE, 4);
|
|
(*TUL)[HexagonII::TypeCVI_GATHER] =
|
|
UnitsAndLanes(CVI_XLANE | CVI_SHIFT | CVI_MPY0 | CVI_MPY1, 1);
|
|
(*TUL)[HexagonII::TypeCVI_SCATTER] =
|
|
UnitsAndLanes(CVI_XLANE | CVI_SHIFT | CVI_MPY0 | CVI_MPY1, 1);
|
|
(*TUL)[HexagonII::TypeCVI_SCATTER_DV] =
|
|
UnitsAndLanes(CVI_XLANE | CVI_MPY0, 2);
|
|
(*TUL)[HexagonII::TypeCVI_SCATTER_NEW_ST] =
|
|
UnitsAndLanes(CVI_XLANE | CVI_SHIFT | CVI_MPY0 | CVI_MPY1, 1);
|
|
}
|
|
|
|
HexagonCVIResource::HexagonCVIResource(TypeUnitsAndLanes *TUL,
|
|
MCInstrInfo const &MCII, unsigned s,
|
|
MCInst const *id)
|
|
: HexagonResource(s) {
|
|
unsigned T = HexagonMCInstrInfo::getType(MCII, *id);
|
|
|
|
if (TUL->count(T)) {
|
|
// For an HVX insn.
|
|
Valid = true;
|
|
setUnits((*TUL)[T].first);
|
|
setLanes((*TUL)[T].second);
|
|
setLoad(HexagonMCInstrInfo::getDesc(MCII, *id).mayLoad());
|
|
setStore(HexagonMCInstrInfo::getDesc(MCII, *id).mayStore());
|
|
} else {
|
|
// For core insns.
|
|
Valid = false;
|
|
setUnits(0);
|
|
setLanes(0);
|
|
setLoad(false);
|
|
setStore(false);
|
|
}
|
|
}
|
|
|
|
struct CVIUnits {
|
|
unsigned Units;
|
|
unsigned Lanes;
|
|
};
|
|
using HVXInstsT = SmallVector<struct CVIUnits, 8>;
|
|
|
|
static unsigned makeAllBits(unsigned startBit, unsigned Lanes)
|
|
{
|
|
for (unsigned i = 1; i < Lanes; ++i)
|
|
startBit = (startBit << 1) | startBit;
|
|
return startBit;
|
|
}
|
|
|
|
static bool checkHVXPipes(const HVXInstsT &hvxInsts, unsigned startIdx,
|
|
unsigned usedUnits) {
|
|
if (startIdx < hvxInsts.size()) {
|
|
if (!hvxInsts[startIdx].Units)
|
|
return checkHVXPipes(hvxInsts, startIdx + 1, usedUnits);
|
|
for (unsigned b = 0x1; b <= 0x8; b <<= 1) {
|
|
if ((hvxInsts[startIdx].Units & b) == 0)
|
|
continue;
|
|
unsigned allBits = makeAllBits(b, hvxInsts[startIdx].Lanes);
|
|
if ((allBits & usedUnits) == 0) {
|
|
if (checkHVXPipes(hvxInsts, startIdx + 1, usedUnits | allBits))
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
HexagonShuffler::HexagonShuffler(MCContext &Context, bool ReportErrors,
|
|
MCInstrInfo const &MCII,
|
|
MCSubtargetInfo const &STI)
|
|
: Context(Context), MCII(MCII), STI(STI), ReportErrors(ReportErrors) {
|
|
reset();
|
|
HexagonCVIResource::SetupTUL(&TUL, STI.getCPU());
|
|
}
|
|
|
|
void HexagonShuffler::reset() {
|
|
Packet.clear();
|
|
BundleFlags = 0;
|
|
}
|
|
|
|
void HexagonShuffler::append(MCInst const &ID, MCInst const *Extender,
|
|
unsigned S) {
|
|
HexagonInstr PI(&TUL, MCII, &ID, Extender, S);
|
|
|
|
Packet.push_back(PI);
|
|
}
|
|
|
|
static struct {
|
|
unsigned first;
|
|
unsigned second;
|
|
} jumpSlots[] = {{8, 4}, {8, 2}, {8, 1}, {4, 2}, {4, 1}, {2, 1}};
|
|
#define MAX_JUMP_SLOTS (sizeof(jumpSlots) / sizeof(jumpSlots[0]))
|
|
|
|
void HexagonShuffler::restrictSlot1AOK() {
|
|
bool HasRestrictSlot1AOK = false;
|
|
SMLoc RestrictLoc;
|
|
for (iterator ISJ = begin(); ISJ != end(); ++ISJ) {
|
|
MCInst const &Inst = ISJ->getDesc();
|
|
if (HexagonMCInstrInfo::isRestrictSlot1AOK(MCII, Inst)) {
|
|
HasRestrictSlot1AOK = true;
|
|
RestrictLoc = Inst.getLoc();
|
|
}
|
|
}
|
|
if (HasRestrictSlot1AOK)
|
|
for (iterator ISJ = begin(); ISJ != end(); ++ISJ) {
|
|
MCInst const &Inst = ISJ->getDesc();
|
|
unsigned Type = HexagonMCInstrInfo::getType(MCII, Inst);
|
|
if (Type != HexagonII::TypeALU32_2op &&
|
|
Type != HexagonII::TypeALU32_3op &&
|
|
Type != HexagonII::TypeALU32_ADDI) {
|
|
unsigned Units = ISJ->Core.getUnits();
|
|
if (Units & 2U) {
|
|
AppliedRestrictions.push_back(std::make_pair(
|
|
Inst.getLoc(),
|
|
"Instruction was restricted from being in slot 1"));
|
|
AppliedRestrictions.push_back(
|
|
std::make_pair(RestrictLoc, "Instruction can only be combine "
|
|
"with an ALU instruction in slot 1"));
|
|
ISJ->Core.setUnits(Units & ~2U);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void HexagonShuffler::restrictNoSlot1Store() {
|
|
bool HasRestrictNoSlot1Store = false;
|
|
SMLoc RestrictLoc;
|
|
for (iterator ISJ = begin(); ISJ != end(); ++ISJ) {
|
|
MCInst const &Inst = ISJ->getDesc();
|
|
if (HexagonMCInstrInfo::isRestrictNoSlot1Store(MCII, Inst)) {
|
|
HasRestrictNoSlot1Store = true;
|
|
RestrictLoc = Inst.getLoc();
|
|
}
|
|
}
|
|
if (HasRestrictNoSlot1Store) {
|
|
bool AppliedRestriction = false;
|
|
for (iterator ISJ = begin(); ISJ != end(); ++ISJ) {
|
|
MCInst const &Inst = ISJ->getDesc();
|
|
if (HexagonMCInstrInfo::getDesc(MCII, Inst).mayStore()) {
|
|
unsigned Units = ISJ->Core.getUnits();
|
|
if (Units & 2U) {
|
|
AppliedRestriction = true;
|
|
AppliedRestrictions.push_back(std::make_pair(
|
|
Inst.getLoc(),
|
|
"Instruction was restricted from being in slot 1"));
|
|
ISJ->Core.setUnits(Units & ~2U);
|
|
}
|
|
}
|
|
}
|
|
if (AppliedRestriction)
|
|
AppliedRestrictions.push_back(std::make_pair(
|
|
RestrictLoc, "Instruction does not allow a store in slot 1"));
|
|
}
|
|
}
|
|
|
|
void HexagonShuffler::applySlotRestrictions() {
|
|
restrictSlot1AOK();
|
|
restrictNoSlot1Store();
|
|
}
|
|
|
|
/// Check that the packet is legal and enforce relative insn order.
|
|
bool HexagonShuffler::check() {
|
|
// Descriptive slot masks.
|
|
const unsigned slotSingleLoad = 0x1, slotSingleStore = 0x1,
|
|
slotThree = 0x8, // slotFirstJump = 0x8,
|
|
slotFirstLoadStore = 0x2, slotLastLoadStore = 0x1;
|
|
// Highest slots for branches and stores used to keep their original order.
|
|
// unsigned slotJump = slotFirstJump;
|
|
unsigned slotLoadStore = slotFirstLoadStore;
|
|
// Number of memory operations, loads, solo loads, stores, solo stores, single
|
|
// stores.
|
|
unsigned memory = 0, loads = 0, load0 = 0, stores = 0, store0 = 0, store1 = 0;
|
|
// Number of duplex insns
|
|
unsigned duplex = 0;
|
|
unsigned pSlot3Cnt = 0;
|
|
unsigned memops = 0;
|
|
iterator slot3ISJ = end();
|
|
std::vector<iterator> foundBranches;
|
|
unsigned reservedSlots = 0;
|
|
|
|
// Collect information from the insns in the packet.
|
|
for (iterator ISJ = begin(); ISJ != end(); ++ISJ) {
|
|
MCInst const &ID = ISJ->getDesc();
|
|
|
|
if (HexagonMCInstrInfo::prefersSlot3(MCII, ID)) {
|
|
++pSlot3Cnt;
|
|
slot3ISJ = ISJ;
|
|
}
|
|
reservedSlots |= HexagonMCInstrInfo::getOtherReservedSlots(MCII, STI, ID);
|
|
|
|
switch (HexagonMCInstrInfo::getType(MCII, ID)) {
|
|
case HexagonII::TypeS_2op:
|
|
case HexagonII::TypeS_3op:
|
|
case HexagonII::TypeALU64:
|
|
break;
|
|
case HexagonII::TypeJ:
|
|
foundBranches.push_back(ISJ);
|
|
break;
|
|
case HexagonII::TypeCVI_VM_VP_LDU:
|
|
case HexagonII::TypeCVI_VM_LD:
|
|
case HexagonII::TypeCVI_VM_TMP_LD:
|
|
case HexagonII::TypeCVI_GATHER:
|
|
case HexagonII::TypeCVI_GATHER_RST:
|
|
case HexagonII::TypeLD:
|
|
++loads;
|
|
++memory;
|
|
if (ISJ->Core.getUnits() == slotSingleLoad ||
|
|
HexagonMCInstrInfo::getType(MCII, ID) == HexagonII::TypeCVI_VM_VP_LDU)
|
|
++load0;
|
|
if (HexagonMCInstrInfo::getDesc(MCII, ID).isReturn())
|
|
foundBranches.push_back(ISJ);
|
|
break;
|
|
case HexagonII::TypeCVI_VM_STU:
|
|
case HexagonII::TypeCVI_VM_ST:
|
|
case HexagonII::TypeCVI_VM_NEW_ST:
|
|
case HexagonII::TypeCVI_SCATTER:
|
|
case HexagonII::TypeCVI_SCATTER_DV:
|
|
case HexagonII::TypeCVI_SCATTER_RST:
|
|
case HexagonII::TypeCVI_SCATTER_NEW_RST:
|
|
case HexagonII::TypeCVI_SCATTER_NEW_ST:
|
|
case HexagonII::TypeST:
|
|
++stores;
|
|
++memory;
|
|
if (ISJ->Core.getUnits() == slotSingleStore ||
|
|
HexagonMCInstrInfo::getType(MCII, ID) == HexagonII::TypeCVI_VM_STU)
|
|
++store0;
|
|
break;
|
|
case HexagonII::TypeV4LDST:
|
|
++loads;
|
|
++stores;
|
|
++store1;
|
|
++memops;
|
|
++memory;
|
|
break;
|
|
case HexagonII::TypeNCJ:
|
|
++memory; // NV insns are memory-like.
|
|
foundBranches.push_back(ISJ);
|
|
break;
|
|
case HexagonII::TypeV2LDST:
|
|
if (HexagonMCInstrInfo::getDesc(MCII, ID).mayLoad()) {
|
|
++loads;
|
|
++memory;
|
|
if (ISJ->Core.getUnits() == slotSingleLoad ||
|
|
HexagonMCInstrInfo::getType(MCII, ID) ==
|
|
HexagonII::TypeCVI_VM_VP_LDU)
|
|
++load0;
|
|
} else {
|
|
assert(HexagonMCInstrInfo::getDesc(MCII, ID).mayStore());
|
|
++memory;
|
|
++stores;
|
|
}
|
|
break;
|
|
case HexagonII::TypeCR:
|
|
// Legacy conditional branch predicated on a register.
|
|
case HexagonII::TypeCJ:
|
|
if (HexagonMCInstrInfo::getDesc(MCII, ID).isBranch())
|
|
foundBranches.push_back(ISJ);
|
|
break;
|
|
case HexagonII::TypeDUPLEX: {
|
|
++duplex;
|
|
MCInst const &Inst0 = *ID.getOperand(0).getInst();
|
|
MCInst const &Inst1 = *ID.getOperand(1).getInst();
|
|
if (HexagonMCInstrInfo::getDesc(MCII, Inst0).isBranch())
|
|
foundBranches.push_back(ISJ);
|
|
if (HexagonMCInstrInfo::getDesc(MCII, Inst1).isBranch())
|
|
foundBranches.push_back(ISJ);
|
|
if (HexagonMCInstrInfo::getDesc(MCII, Inst0).isReturn())
|
|
foundBranches.push_back(ISJ);
|
|
if (HexagonMCInstrInfo::getDesc(MCII, Inst1).isReturn())
|
|
foundBranches.push_back(ISJ);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
applySlotRestrictions();
|
|
|
|
// Check if the packet is legal.
|
|
if ((load0 > 1 || store0 > 1) || (duplex > 1 || (duplex && memory))) {
|
|
reportError(llvm::Twine("invalid instruction packet"));
|
|
return false;
|
|
}
|
|
|
|
// Modify packet accordingly.
|
|
// TODO: need to reserve slots #0 and #1 for duplex insns.
|
|
bool bOnlySlot3 = false;
|
|
for (iterator ISJ = begin(); ISJ != end(); ++ISJ) {
|
|
MCInst const &ID = ISJ->getDesc();
|
|
|
|
if (!ISJ->Core.getUnits()) {
|
|
// Error if insn may not be executed in any slot.
|
|
return false;
|
|
}
|
|
|
|
// A single load must use slot #0.
|
|
if (HexagonMCInstrInfo::getDesc(MCII, ID).mayLoad()) {
|
|
if (loads == 1 && loads == memory && memops == 0)
|
|
// Pin the load to slot #0.
|
|
switch (ID.getOpcode()) {
|
|
case Hexagon::V6_vgathermw:
|
|
case Hexagon::V6_vgathermh:
|
|
case Hexagon::V6_vgathermhw:
|
|
case Hexagon::V6_vgathermwq:
|
|
case Hexagon::V6_vgathermhq:
|
|
case Hexagon::V6_vgathermhwq:
|
|
// Slot1 only loads
|
|
break;
|
|
default:
|
|
ISJ->Core.setUnits(ISJ->Core.getUnits() & slotSingleLoad);
|
|
break;
|
|
}
|
|
else if (loads >= 1 && isMemReorderDisabled()) { // }:mem_noshuf
|
|
// Loads must keep the original order ONLY if
|
|
// isMemReorderDisabled() == true
|
|
if (slotLoadStore < slotLastLoadStore) {
|
|
// Error if no more slots available for loads.
|
|
reportError(
|
|
llvm::Twine("invalid instruction packet: too many loads"));
|
|
return false;
|
|
}
|
|
// Pin the load to the highest slot available to it.
|
|
ISJ->Core.setUnits(ISJ->Core.getUnits() & slotLoadStore);
|
|
// Update the next highest slot available to loads.
|
|
slotLoadStore >>= 1;
|
|
}
|
|
}
|
|
|
|
// A single store must use slot #0.
|
|
if (HexagonMCInstrInfo::getDesc(MCII, ID).mayStore()) {
|
|
if (!store0) {
|
|
if (stores == 1 && (loads == 0 || !isMemReorderDisabled()))
|
|
// Pin the store to slot #0 only if isMemReorderDisabled() == false
|
|
ISJ->Core.setUnits(ISJ->Core.getUnits() & slotSingleStore);
|
|
else if (stores >= 1) {
|
|
if (slotLoadStore < slotLastLoadStore) {
|
|
// Error if no more slots available for stores.
|
|
reportError(Twine("invalid instruction packet: too many stores"));
|
|
return false;
|
|
}
|
|
// Pin the store to the highest slot available to it.
|
|
ISJ->Core.setUnits(ISJ->Core.getUnits() & slotLoadStore);
|
|
// Update the next highest slot available to stores.
|
|
slotLoadStore >>= 1;
|
|
}
|
|
}
|
|
if (store1 && stores > 1) {
|
|
// Error if a single store with another store.
|
|
reportError(Twine("invalid instruction packet: too many stores"));
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// flag if an instruction requires to be in slot 3
|
|
if (ISJ->Core.getUnits() == slotThree)
|
|
bOnlySlot3 = true;
|
|
|
|
if (!ISJ->Core.getUnits()) {
|
|
// Error if insn may not be executed in any slot.
|
|
reportError(Twine("invalid instruction packet: out of slots"));
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// preserve branch order
|
|
bool validateSlots = true;
|
|
if (foundBranches.size() > 1) {
|
|
if (foundBranches.size() > 2) {
|
|
reportError(Twine("too many branches in packet"));
|
|
return false;
|
|
}
|
|
|
|
// try all possible choices
|
|
for (unsigned int i = 0; i < MAX_JUMP_SLOTS; ++i) {
|
|
// validate first jump with this slot rule
|
|
if (!(jumpSlots[i].first & foundBranches[0]->Core.getUnits()))
|
|
continue;
|
|
|
|
// validate second jump with this slot rule
|
|
if (!(jumpSlots[i].second & foundBranches[1]->Core.getUnits()))
|
|
continue;
|
|
|
|
// both valid for this configuration, set new slot rules
|
|
PacketSave = Packet;
|
|
foundBranches[0]->Core.setUnits(jumpSlots[i].first);
|
|
foundBranches[1]->Core.setUnits(jumpSlots[i].second);
|
|
|
|
HexagonUnitAuction AuctionCore(reservedSlots);
|
|
std::stable_sort(begin(), end(), HexagonInstr::lessCore);
|
|
|
|
// see if things ok with that instruction being pinned to slot "slotJump"
|
|
bool bFail = false;
|
|
for (iterator I = begin(); I != end() && !bFail; ++I)
|
|
if (!AuctionCore.bid(I->Core.getUnits()))
|
|
bFail = true;
|
|
|
|
// if yes, great, if not then restore original slot mask
|
|
if (!bFail) {
|
|
validateSlots = false; // all good, no need to re-do auction
|
|
break;
|
|
} else
|
|
// restore original values
|
|
Packet = PacketSave;
|
|
}
|
|
if (validateSlots) {
|
|
reportError(Twine("invalid instruction packet: out of slots"));
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (foundBranches.size() <= 1 && bOnlySlot3 == false && pSlot3Cnt == 1 &&
|
|
slot3ISJ != end()) {
|
|
validateSlots = true;
|
|
// save off slot mask of instruction marked with A_PREFER_SLOT3
|
|
// and then pin it to slot #3
|
|
unsigned saveUnits = slot3ISJ->Core.getUnits();
|
|
slot3ISJ->Core.setUnits(saveUnits & slotThree);
|
|
|
|
HexagonUnitAuction AuctionCore(reservedSlots);
|
|
std::stable_sort(begin(), end(), HexagonInstr::lessCore);
|
|
|
|
// see if things ok with that instruction being pinned to slot #3
|
|
bool bFail = false;
|
|
for (iterator I = begin(); I != end() && !bFail; ++I)
|
|
if (!AuctionCore.bid(I->Core.getUnits()))
|
|
bFail = true;
|
|
|
|
// if yes, great, if not then restore original slot mask
|
|
if (!bFail)
|
|
validateSlots = false; // all good, no need to re-do auction
|
|
else
|
|
for (iterator ISJ = begin(); ISJ != end(); ++ISJ) {
|
|
MCInst const &ID = ISJ->getDesc();
|
|
if (HexagonMCInstrInfo::prefersSlot3(MCII, ID))
|
|
ISJ->Core.setUnits(saveUnits);
|
|
}
|
|
}
|
|
|
|
// Check if any slot, core or CVI, is over-subscribed.
|
|
// Verify the core slot subscriptions.
|
|
if (validateSlots) {
|
|
HexagonUnitAuction AuctionCore(reservedSlots);
|
|
|
|
std::stable_sort(begin(), end(), HexagonInstr::lessCore);
|
|
|
|
for (iterator I = begin(); I != end(); ++I)
|
|
if (!AuctionCore.bid(I->Core.getUnits())) {
|
|
reportError(Twine("invalid instruction packet: slot error"));
|
|
return false;
|
|
}
|
|
}
|
|
// Verify the CVI slot subscriptions.
|
|
std::stable_sort(begin(), end(), HexagonInstr::lessCVI);
|
|
// create vector of hvx instructions to check
|
|
HVXInstsT hvxInsts;
|
|
hvxInsts.clear();
|
|
for (iterator I = begin(); I != end(); ++I) {
|
|
struct CVIUnits inst;
|
|
inst.Units = I->CVI.getUnits();
|
|
inst.Lanes = I->CVI.getLanes();
|
|
if (inst.Units == 0)
|
|
continue; // not an hvx inst or an hvx inst that doesn't uses any pipes
|
|
hvxInsts.push_back(inst);
|
|
}
|
|
// if there are any hvx instructions in this packet, check pipe usage
|
|
if (hvxInsts.size() > 0) {
|
|
unsigned startIdx, usedUnits;
|
|
startIdx = usedUnits = 0x0;
|
|
if (!checkHVXPipes(hvxInsts, startIdx, usedUnits)) {
|
|
// too many pipes used to be valid
|
|
reportError(Twine("invalid instruction packet: slot error"));
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool HexagonShuffler::shuffle() {
|
|
if (size() > HEXAGON_PACKET_SIZE) {
|
|
// Ignore a packet with with more than what a packet can hold
|
|
// or with compound or duplex insns for now.
|
|
reportError(Twine("invalid instruction packet"));
|
|
return false;
|
|
}
|
|
|
|
// Check and prepare packet.
|
|
bool Ok = true;
|
|
if (size() > 1 && (Ok = check()))
|
|
// Reorder the handles for each slot.
|
|
for (unsigned nSlot = 0, emptySlots = 0; nSlot < HEXAGON_PACKET_SIZE;
|
|
++nSlot) {
|
|
iterator ISJ, ISK;
|
|
unsigned slotSkip, slotWeight;
|
|
|
|
// Prioritize the handles considering their restrictions.
|
|
for (ISJ = ISK = Packet.begin(), slotSkip = slotWeight = 0;
|
|
ISK != Packet.end(); ++ISK, ++slotSkip)
|
|
if (slotSkip < nSlot - emptySlots)
|
|
// Note which handle to begin at.
|
|
++ISJ;
|
|
else
|
|
// Calculate the weight of the slot.
|
|
slotWeight += ISK->Core.setWeight(HEXAGON_PACKET_SIZE - nSlot - 1);
|
|
|
|
if (slotWeight)
|
|
// Sort the packet, favoring source order,
|
|
// beginning after the previous slot.
|
|
std::stable_sort(ISJ, Packet.end());
|
|
else
|
|
// Skip unused slot.
|
|
++emptySlots;
|
|
}
|
|
|
|
for (iterator ISJ = begin(); ISJ != end(); ++ISJ)
|
|
DEBUG(dbgs().write_hex(ISJ->Core.getUnits()); if (ISJ->CVI.isValid()) {
|
|
dbgs() << '/';
|
|
dbgs().write_hex(ISJ->CVI.getUnits()) << '|';
|
|
dbgs() << ISJ->CVI.getLanes();
|
|
} dbgs() << ':'
|
|
<< HexagonMCInstrInfo::getDesc(MCII, ISJ->getDesc()).getOpcode();
|
|
dbgs() << '\n');
|
|
DEBUG(dbgs() << '\n');
|
|
|
|
return Ok;
|
|
}
|
|
|
|
void HexagonShuffler::reportError(Twine const &Msg) {
|
|
if (ReportErrors) {
|
|
for (auto const &I : AppliedRestrictions) {
|
|
auto SM = Context.getSourceManager();
|
|
if (SM)
|
|
SM->PrintMessage(I.first, SourceMgr::DK_Note, I.second);
|
|
}
|
|
Context.reportError(Loc, Msg);
|
|
}
|
|
}
|