forked from OSchip/llvm-project
547 lines
18 KiB
C++
547 lines
18 KiB
C++
//===-- SIShrinkInstructions.cpp - Shrink Instructions --------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
/// The pass tries to use the 32-bit encoding for instructions when possible.
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
|
|
#include "AMDGPU.h"
|
|
#include "AMDGPUMCInstLower.h"
|
|
#include "AMDGPUSubtarget.h"
|
|
#include "SIInstrInfo.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
|
|
#define DEBUG_TYPE "si-shrink-instructions"
|
|
|
|
STATISTIC(NumInstructionsShrunk,
|
|
"Number of 64-bit instruction reduced to 32-bit.");
|
|
STATISTIC(NumLiteralConstantsFolded,
|
|
"Number of literal constants folded into 32-bit instructions.");
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
class SIShrinkInstructions : public MachineFunctionPass {
|
|
public:
|
|
static char ID;
|
|
|
|
public:
|
|
SIShrinkInstructions() : MachineFunctionPass(ID) {
|
|
}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
|
|
StringRef getPassName() const override { return "SI Shrink Instructions"; }
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesCFG();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
};
|
|
|
|
} // End anonymous namespace.
|
|
|
|
INITIALIZE_PASS(SIShrinkInstructions, DEBUG_TYPE,
|
|
"SI Shrink Instructions", false, false)
|
|
|
|
char SIShrinkInstructions::ID = 0;
|
|
|
|
FunctionPass *llvm::createSIShrinkInstructionsPass() {
|
|
return new SIShrinkInstructions();
|
|
}
|
|
|
|
static bool isVGPR(const MachineOperand *MO, const SIRegisterInfo &TRI,
|
|
const MachineRegisterInfo &MRI) {
|
|
if (!MO->isReg())
|
|
return false;
|
|
|
|
if (TargetRegisterInfo::isVirtualRegister(MO->getReg()))
|
|
return TRI.hasVGPRs(MRI.getRegClass(MO->getReg()));
|
|
|
|
return TRI.hasVGPRs(TRI.getPhysRegClass(MO->getReg()));
|
|
}
|
|
|
|
static bool canShrink(MachineInstr &MI, const SIInstrInfo *TII,
|
|
const SIRegisterInfo &TRI,
|
|
const MachineRegisterInfo &MRI) {
|
|
|
|
const MachineOperand *Src2 = TII->getNamedOperand(MI, AMDGPU::OpName::src2);
|
|
// Can't shrink instruction with three operands.
|
|
// FIXME: v_cndmask_b32 has 3 operands and is shrinkable, but we need to add
|
|
// a special case for it. It can only be shrunk if the third operand
|
|
// is vcc. We should handle this the same way we handle vopc, by addding
|
|
// a register allocation hint pre-regalloc and then do the shrinking
|
|
// post-regalloc.
|
|
if (Src2) {
|
|
switch (MI.getOpcode()) {
|
|
default: return false;
|
|
|
|
case AMDGPU::V_ADDC_U32_e64:
|
|
case AMDGPU::V_SUBB_U32_e64:
|
|
if (TII->getNamedOperand(MI, AMDGPU::OpName::src1)->isImm())
|
|
return false;
|
|
// Additional verification is needed for sdst/src2.
|
|
return true;
|
|
|
|
case AMDGPU::V_MAC_F32_e64:
|
|
case AMDGPU::V_MAC_F16_e64:
|
|
if (!isVGPR(Src2, TRI, MRI) ||
|
|
TII->hasModifiersSet(MI, AMDGPU::OpName::src2_modifiers))
|
|
return false;
|
|
break;
|
|
|
|
case AMDGPU::V_CNDMASK_B32_e64:
|
|
break;
|
|
}
|
|
}
|
|
|
|
const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
|
|
if (Src1 && (!isVGPR(Src1, TRI, MRI) ||
|
|
TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers)))
|
|
return false;
|
|
|
|
// We don't need to check src0, all input types are legal, so just make sure
|
|
// src0 isn't using any modifiers.
|
|
if (TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers))
|
|
return false;
|
|
|
|
// Check output modifiers
|
|
return !TII->hasModifiersSet(MI, AMDGPU::OpName::omod) &&
|
|
!TII->hasModifiersSet(MI, AMDGPU::OpName::clamp);
|
|
}
|
|
|
|
/// \brief This function checks \p MI for operands defined by a move immediate
|
|
/// instruction and then folds the literal constant into the instruction if it
|
|
/// can. This function assumes that \p MI is a VOP1, VOP2, or VOPC instructions.
|
|
static bool foldImmediates(MachineInstr &MI, const SIInstrInfo *TII,
|
|
MachineRegisterInfo &MRI, bool TryToCommute = true) {
|
|
assert(TII->isVOP1(MI) || TII->isVOP2(MI) || TII->isVOPC(MI));
|
|
|
|
int Src0Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0);
|
|
|
|
// Try to fold Src0
|
|
MachineOperand &Src0 = MI.getOperand(Src0Idx);
|
|
if (Src0.isReg()) {
|
|
unsigned Reg = Src0.getReg();
|
|
if (TargetRegisterInfo::isVirtualRegister(Reg) && MRI.hasOneUse(Reg)) {
|
|
MachineInstr *Def = MRI.getUniqueVRegDef(Reg);
|
|
if (Def && Def->isMoveImmediate()) {
|
|
MachineOperand &MovSrc = Def->getOperand(1);
|
|
bool ConstantFolded = false;
|
|
|
|
if (MovSrc.isImm() && (isInt<32>(MovSrc.getImm()) ||
|
|
isUInt<32>(MovSrc.getImm()))) {
|
|
// It's possible to have only one component of a super-reg defined by
|
|
// a single mov, so we need to clear any subregister flag.
|
|
Src0.setSubReg(0);
|
|
Src0.ChangeToImmediate(MovSrc.getImm());
|
|
ConstantFolded = true;
|
|
} else if (MovSrc.isFI()) {
|
|
Src0.setSubReg(0);
|
|
Src0.ChangeToFrameIndex(MovSrc.getIndex());
|
|
ConstantFolded = true;
|
|
}
|
|
|
|
if (ConstantFolded) {
|
|
assert(MRI.use_empty(Reg));
|
|
Def->eraseFromParent();
|
|
++NumLiteralConstantsFolded;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// We have failed to fold src0, so commute the instruction and try again.
|
|
if (TryToCommute && MI.isCommutable()) {
|
|
if (TII->commuteInstruction(MI)) {
|
|
if (foldImmediates(MI, TII, MRI, false))
|
|
return true;
|
|
|
|
// Commute back.
|
|
TII->commuteInstruction(MI);
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Copy MachineOperand with all flags except setting it as implicit.
|
|
static void copyFlagsToImplicitVCC(MachineInstr &MI,
|
|
const MachineOperand &Orig) {
|
|
|
|
for (MachineOperand &Use : MI.implicit_operands()) {
|
|
if (Use.isUse() && Use.getReg() == AMDGPU::VCC) {
|
|
Use.setIsUndef(Orig.isUndef());
|
|
Use.setIsKill(Orig.isKill());
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool isKImmOperand(const SIInstrInfo *TII, const MachineOperand &Src) {
|
|
return isInt<16>(Src.getImm()) &&
|
|
!TII->isInlineConstant(*Src.getParent(),
|
|
Src.getParent()->getOperandNo(&Src));
|
|
}
|
|
|
|
static bool isKUImmOperand(const SIInstrInfo *TII, const MachineOperand &Src) {
|
|
return isUInt<16>(Src.getImm()) &&
|
|
!TII->isInlineConstant(*Src.getParent(),
|
|
Src.getParent()->getOperandNo(&Src));
|
|
}
|
|
|
|
static bool isKImmOrKUImmOperand(const SIInstrInfo *TII,
|
|
const MachineOperand &Src,
|
|
bool &IsUnsigned) {
|
|
if (isInt<16>(Src.getImm())) {
|
|
IsUnsigned = false;
|
|
return !TII->isInlineConstant(Src);
|
|
}
|
|
|
|
if (isUInt<16>(Src.getImm())) {
|
|
IsUnsigned = true;
|
|
return !TII->isInlineConstant(Src);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// \returns true if the constant in \p Src should be replaced with a bitreverse
|
|
/// of an inline immediate.
|
|
static bool isReverseInlineImm(const SIInstrInfo *TII,
|
|
const MachineOperand &Src,
|
|
int32_t &ReverseImm) {
|
|
if (!isInt<32>(Src.getImm()) || TII->isInlineConstant(Src))
|
|
return false;
|
|
|
|
ReverseImm = reverseBits<int32_t>(static_cast<int32_t>(Src.getImm()));
|
|
return ReverseImm >= -16 && ReverseImm <= 64;
|
|
}
|
|
|
|
/// Copy implicit register operands from specified instruction to this
|
|
/// instruction that are not part of the instruction definition.
|
|
static void copyExtraImplicitOps(MachineInstr &NewMI, MachineFunction &MF,
|
|
const MachineInstr &MI) {
|
|
for (unsigned i = MI.getDesc().getNumOperands() +
|
|
MI.getDesc().getNumImplicitUses() +
|
|
MI.getDesc().getNumImplicitDefs(), e = MI.getNumOperands();
|
|
i != e; ++i) {
|
|
const MachineOperand &MO = MI.getOperand(i);
|
|
if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
|
|
NewMI.addOperand(MF, MO);
|
|
}
|
|
}
|
|
|
|
static void shrinkScalarCompare(const SIInstrInfo *TII, MachineInstr &MI) {
|
|
// cmpk instructions do scc = dst <cc op> imm16, so commute the instruction to
|
|
// get constants on the RHS.
|
|
if (!MI.getOperand(0).isReg())
|
|
TII->commuteInstruction(MI, false, 0, 1);
|
|
|
|
const MachineOperand &Src1 = MI.getOperand(1);
|
|
if (!Src1.isImm())
|
|
return;
|
|
|
|
int SOPKOpc = AMDGPU::getSOPKOp(MI.getOpcode());
|
|
if (SOPKOpc == -1)
|
|
return;
|
|
|
|
// eq/ne is special because the imm16 can be treated as signed or unsigned,
|
|
// and initially selectd to the unsigned versions.
|
|
if (SOPKOpc == AMDGPU::S_CMPK_EQ_U32 || SOPKOpc == AMDGPU::S_CMPK_LG_U32) {
|
|
bool HasUImm;
|
|
if (isKImmOrKUImmOperand(TII, Src1, HasUImm)) {
|
|
if (!HasUImm) {
|
|
SOPKOpc = (SOPKOpc == AMDGPU::S_CMPK_EQ_U32) ?
|
|
AMDGPU::S_CMPK_EQ_I32 : AMDGPU::S_CMPK_LG_I32;
|
|
}
|
|
|
|
MI.setDesc(TII->get(SOPKOpc));
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
const MCInstrDesc &NewDesc = TII->get(SOPKOpc);
|
|
|
|
if ((TII->sopkIsZext(SOPKOpc) && isKUImmOperand(TII, Src1)) ||
|
|
(!TII->sopkIsZext(SOPKOpc) && isKImmOperand(TII, Src1))) {
|
|
MI.setDesc(NewDesc);
|
|
}
|
|
}
|
|
|
|
bool SIShrinkInstructions::runOnMachineFunction(MachineFunction &MF) {
|
|
if (skipFunction(MF.getFunction()))
|
|
return false;
|
|
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
|
|
const SIInstrInfo *TII = ST.getInstrInfo();
|
|
const SIRegisterInfo &TRI = TII->getRegisterInfo();
|
|
|
|
std::vector<unsigned> I1Defs;
|
|
|
|
for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
|
|
BI != BE; ++BI) {
|
|
|
|
MachineBasicBlock &MBB = *BI;
|
|
MachineBasicBlock::iterator I, Next;
|
|
for (I = MBB.begin(); I != MBB.end(); I = Next) {
|
|
Next = std::next(I);
|
|
MachineInstr &MI = *I;
|
|
|
|
if (MI.getOpcode() == AMDGPU::V_MOV_B32_e32) {
|
|
// If this has a literal constant source that is the same as the
|
|
// reversed bits of an inline immediate, replace with a bitreverse of
|
|
// that constant. This saves 4 bytes in the common case of materializing
|
|
// sign bits.
|
|
|
|
// Test if we are after regalloc. We only want to do this after any
|
|
// optimizations happen because this will confuse them.
|
|
// XXX - not exactly a check for post-regalloc run.
|
|
MachineOperand &Src = MI.getOperand(1);
|
|
if (Src.isImm() &&
|
|
TargetRegisterInfo::isPhysicalRegister(MI.getOperand(0).getReg())) {
|
|
int32_t ReverseImm;
|
|
if (isReverseInlineImm(TII, Src, ReverseImm)) {
|
|
MI.setDesc(TII->get(AMDGPU::V_BFREV_B32_e32));
|
|
Src.setImm(ReverseImm);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Combine adjacent s_nops to use the immediate operand encoding how long
|
|
// to wait.
|
|
//
|
|
// s_nop N
|
|
// s_nop M
|
|
// =>
|
|
// s_nop (N + M)
|
|
if (MI.getOpcode() == AMDGPU::S_NOP &&
|
|
Next != MBB.end() &&
|
|
(*Next).getOpcode() == AMDGPU::S_NOP) {
|
|
|
|
MachineInstr &NextMI = *Next;
|
|
// The instruction encodes the amount to wait with an offset of 1,
|
|
// i.e. 0 is wait 1 cycle. Convert both to cycles and then convert back
|
|
// after adding.
|
|
uint8_t Nop0 = MI.getOperand(0).getImm() + 1;
|
|
uint8_t Nop1 = NextMI.getOperand(0).getImm() + 1;
|
|
|
|
// Make sure we don't overflow the bounds.
|
|
if (Nop0 + Nop1 <= 8) {
|
|
NextMI.getOperand(0).setImm(Nop0 + Nop1 - 1);
|
|
MI.eraseFromParent();
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
// FIXME: We also need to consider movs of constant operands since
|
|
// immediate operands are not folded if they have more than one use, and
|
|
// the operand folding pass is unaware if the immediate will be free since
|
|
// it won't know if the src == dest constraint will end up being
|
|
// satisfied.
|
|
if (MI.getOpcode() == AMDGPU::S_ADD_I32 ||
|
|
MI.getOpcode() == AMDGPU::S_MUL_I32) {
|
|
const MachineOperand *Dest = &MI.getOperand(0);
|
|
MachineOperand *Src0 = &MI.getOperand(1);
|
|
MachineOperand *Src1 = &MI.getOperand(2);
|
|
|
|
if (!Src0->isReg() && Src1->isReg()) {
|
|
if (TII->commuteInstruction(MI, false, 1, 2))
|
|
std::swap(Src0, Src1);
|
|
}
|
|
|
|
// FIXME: This could work better if hints worked with subregisters. If
|
|
// we have a vector add of a constant, we usually don't get the correct
|
|
// allocation due to the subregister usage.
|
|
if (TargetRegisterInfo::isVirtualRegister(Dest->getReg()) &&
|
|
Src0->isReg()) {
|
|
MRI.setRegAllocationHint(Dest->getReg(), 0, Src0->getReg());
|
|
MRI.setRegAllocationHint(Src0->getReg(), 0, Dest->getReg());
|
|
continue;
|
|
}
|
|
|
|
if (Src0->isReg() && Src0->getReg() == Dest->getReg()) {
|
|
if (Src1->isImm() && isKImmOperand(TII, *Src1)) {
|
|
unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_I32) ?
|
|
AMDGPU::S_ADDK_I32 : AMDGPU::S_MULK_I32;
|
|
|
|
MI.setDesc(TII->get(Opc));
|
|
MI.tieOperands(0, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Try to use s_cmpk_*
|
|
if (MI.isCompare() && TII->isSOPC(MI)) {
|
|
shrinkScalarCompare(TII, MI);
|
|
continue;
|
|
}
|
|
|
|
// Try to use S_MOVK_I32, which will save 4 bytes for small immediates.
|
|
if (MI.getOpcode() == AMDGPU::S_MOV_B32) {
|
|
const MachineOperand &Dst = MI.getOperand(0);
|
|
MachineOperand &Src = MI.getOperand(1);
|
|
|
|
if (Src.isImm() &&
|
|
TargetRegisterInfo::isPhysicalRegister(Dst.getReg())) {
|
|
int32_t ReverseImm;
|
|
if (isKImmOperand(TII, Src))
|
|
MI.setDesc(TII->get(AMDGPU::S_MOVK_I32));
|
|
else if (isReverseInlineImm(TII, Src, ReverseImm)) {
|
|
MI.setDesc(TII->get(AMDGPU::S_BREV_B32));
|
|
Src.setImm(ReverseImm);
|
|
}
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
if (!TII->hasVALU32BitEncoding(MI.getOpcode()))
|
|
continue;
|
|
|
|
if (!canShrink(MI, TII, TRI, MRI)) {
|
|
// Try commuting the instruction and see if that enables us to shrink
|
|
// it.
|
|
if (!MI.isCommutable() || !TII->commuteInstruction(MI) ||
|
|
!canShrink(MI, TII, TRI, MRI))
|
|
continue;
|
|
}
|
|
|
|
// getVOPe32 could be -1 here if we started with an instruction that had
|
|
// a 32-bit encoding and then commuted it to an instruction that did not.
|
|
if (!TII->hasVALU32BitEncoding(MI.getOpcode()))
|
|
continue;
|
|
|
|
int Op32 = AMDGPU::getVOPe32(MI.getOpcode());
|
|
|
|
if (TII->isVOPC(Op32)) {
|
|
unsigned DstReg = MI.getOperand(0).getReg();
|
|
if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
|
|
// VOPC instructions can only write to the VCC register. We can't
|
|
// force them to use VCC here, because this is only one register and
|
|
// cannot deal with sequences which would require multiple copies of
|
|
// VCC, e.g. S_AND_B64 (vcc = V_CMP_...), (vcc = V_CMP_...)
|
|
//
|
|
// So, instead of forcing the instruction to write to VCC, we provide
|
|
// a hint to the register allocator to use VCC and then we we will run
|
|
// this pass again after RA and shrink it if it outputs to VCC.
|
|
MRI.setRegAllocationHint(MI.getOperand(0).getReg(), 0, AMDGPU::VCC);
|
|
continue;
|
|
}
|
|
if (DstReg != AMDGPU::VCC)
|
|
continue;
|
|
}
|
|
|
|
if (Op32 == AMDGPU::V_CNDMASK_B32_e32) {
|
|
// We shrink V_CNDMASK_B32_e64 using regalloc hints like we do for VOPC
|
|
// instructions.
|
|
const MachineOperand *Src2 =
|
|
TII->getNamedOperand(MI, AMDGPU::OpName::src2);
|
|
if (!Src2->isReg())
|
|
continue;
|
|
unsigned SReg = Src2->getReg();
|
|
if (TargetRegisterInfo::isVirtualRegister(SReg)) {
|
|
MRI.setRegAllocationHint(SReg, 0, AMDGPU::VCC);
|
|
continue;
|
|
}
|
|
if (SReg != AMDGPU::VCC)
|
|
continue;
|
|
}
|
|
|
|
// Check for the bool flag output for instructions like V_ADD_I32_e64.
|
|
const MachineOperand *SDst = TII->getNamedOperand(MI,
|
|
AMDGPU::OpName::sdst);
|
|
|
|
// Check the carry-in operand for v_addc_u32_e64.
|
|
const MachineOperand *Src2 = TII->getNamedOperand(MI,
|
|
AMDGPU::OpName::src2);
|
|
|
|
if (SDst) {
|
|
if (SDst->getReg() != AMDGPU::VCC) {
|
|
if (TargetRegisterInfo::isVirtualRegister(SDst->getReg()))
|
|
MRI.setRegAllocationHint(SDst->getReg(), 0, AMDGPU::VCC);
|
|
continue;
|
|
}
|
|
|
|
// All of the instructions with carry outs also have an SGPR input in
|
|
// src2.
|
|
if (Src2 && Src2->getReg() != AMDGPU::VCC) {
|
|
if (TargetRegisterInfo::isVirtualRegister(Src2->getReg()))
|
|
MRI.setRegAllocationHint(Src2->getReg(), 0, AMDGPU::VCC);
|
|
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// We can shrink this instruction
|
|
DEBUG(dbgs() << "Shrinking " << MI);
|
|
|
|
MachineInstrBuilder Inst32 =
|
|
BuildMI(MBB, I, MI.getDebugLoc(), TII->get(Op32));
|
|
|
|
// Add the dst operand if the 32-bit encoding also has an explicit $vdst.
|
|
// For VOPC instructions, this is replaced by an implicit def of vcc.
|
|
int Op32DstIdx = AMDGPU::getNamedOperandIdx(Op32, AMDGPU::OpName::vdst);
|
|
if (Op32DstIdx != -1) {
|
|
// dst
|
|
Inst32.add(MI.getOperand(0));
|
|
} else {
|
|
assert(MI.getOperand(0).getReg() == AMDGPU::VCC &&
|
|
"Unexpected case");
|
|
}
|
|
|
|
|
|
Inst32.add(*TII->getNamedOperand(MI, AMDGPU::OpName::src0));
|
|
|
|
const MachineOperand *Src1 =
|
|
TII->getNamedOperand(MI, AMDGPU::OpName::src1);
|
|
if (Src1)
|
|
Inst32.add(*Src1);
|
|
|
|
if (Src2) {
|
|
int Op32Src2Idx = AMDGPU::getNamedOperandIdx(Op32, AMDGPU::OpName::src2);
|
|
if (Op32Src2Idx != -1) {
|
|
Inst32.add(*Src2);
|
|
} else {
|
|
// In the case of V_CNDMASK_B32_e32, the explicit operand src2 is
|
|
// replaced with an implicit read of vcc. This was already added
|
|
// during the initial BuildMI, so find it to preserve the flags.
|
|
copyFlagsToImplicitVCC(*Inst32, *Src2);
|
|
}
|
|
}
|
|
|
|
++NumInstructionsShrunk;
|
|
|
|
// Copy extra operands not present in the instruction definition.
|
|
copyExtraImplicitOps(*Inst32, MF, MI);
|
|
|
|
MI.eraseFromParent();
|
|
foldImmediates(*Inst32, TII, MRI);
|
|
|
|
DEBUG(dbgs() << "e32 MI = " << *Inst32 << '\n');
|
|
|
|
|
|
}
|
|
}
|
|
return false;
|
|
}
|