forked from OSchip/llvm-project
2909 lines
114 KiB
C++
2909 lines
114 KiB
C++
//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This transformation analyzes and transforms the induction variables (and
|
|
// computations derived from them) into simpler forms suitable for subsequent
|
|
// analysis and transformation.
|
|
//
|
|
// If the trip count of a loop is computable, this pass also makes the following
|
|
// changes:
|
|
// 1. The exit condition for the loop is canonicalized to compare the
|
|
// induction value against the exit value. This turns loops like:
|
|
// 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
|
|
// 2. Any use outside of the loop of an expression derived from the indvar
|
|
// is changed to compute the derived value outside of the loop, eliminating
|
|
// the dependence on the exit value of the induction variable. If the only
|
|
// purpose of the loop is to compute the exit value of some derived
|
|
// expression, this transformation will make the loop dead.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar/IndVarSimplify.h"
|
|
#include "llvm/ADT/APFloat.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/LoopPass.h"
|
|
#include "llvm/Analysis/MemorySSA.h"
|
|
#include "llvm/Analysis/MemorySSAUpdater.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpander.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/ConstantRange.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Use.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/IR/ValueHandle.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Scalar/LoopPassManager.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Transforms/Utils/LoopUtils.h"
|
|
#include "llvm/Transforms/Utils/SimplifyIndVar.h"
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "indvars"
|
|
|
|
STATISTIC(NumWidened , "Number of indvars widened");
|
|
STATISTIC(NumReplaced , "Number of exit values replaced");
|
|
STATISTIC(NumLFTR , "Number of loop exit tests replaced");
|
|
STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated");
|
|
STATISTIC(NumElimIV , "Number of congruent IVs eliminated");
|
|
|
|
// Trip count verification can be enabled by default under NDEBUG if we
|
|
// implement a strong expression equivalence checker in SCEV. Until then, we
|
|
// use the verify-indvars flag, which may assert in some cases.
|
|
static cl::opt<bool> VerifyIndvars(
|
|
"verify-indvars", cl::Hidden,
|
|
cl::desc("Verify the ScalarEvolution result after running indvars. Has no "
|
|
"effect in release builds. (Note: this adds additional SCEV "
|
|
"queries potentially changing the analysis result)"));
|
|
|
|
static cl::opt<ReplaceExitVal> ReplaceExitValue(
|
|
"replexitval", cl::Hidden, cl::init(OnlyCheapRepl),
|
|
cl::desc("Choose the strategy to replace exit value in IndVarSimplify"),
|
|
cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"),
|
|
clEnumValN(OnlyCheapRepl, "cheap",
|
|
"only replace exit value when the cost is cheap"),
|
|
clEnumValN(NoHardUse, "noharduse",
|
|
"only replace exit values when loop def likely dead"),
|
|
clEnumValN(AlwaysRepl, "always",
|
|
"always replace exit value whenever possible")));
|
|
|
|
static cl::opt<bool> UsePostIncrementRanges(
|
|
"indvars-post-increment-ranges", cl::Hidden,
|
|
cl::desc("Use post increment control-dependent ranges in IndVarSimplify"),
|
|
cl::init(true));
|
|
|
|
static cl::opt<bool>
|
|
DisableLFTR("disable-lftr", cl::Hidden, cl::init(false),
|
|
cl::desc("Disable Linear Function Test Replace optimization"));
|
|
|
|
static cl::opt<bool>
|
|
LoopPredication("indvars-predicate-loops", cl::Hidden, cl::init(true),
|
|
cl::desc("Predicate conditions in read only loops"));
|
|
|
|
namespace {
|
|
|
|
struct RewritePhi;
|
|
|
|
class IndVarSimplify {
|
|
LoopInfo *LI;
|
|
ScalarEvolution *SE;
|
|
DominatorTree *DT;
|
|
const DataLayout &DL;
|
|
TargetLibraryInfo *TLI;
|
|
const TargetTransformInfo *TTI;
|
|
std::unique_ptr<MemorySSAUpdater> MSSAU;
|
|
|
|
SmallVector<WeakTrackingVH, 16> DeadInsts;
|
|
|
|
bool handleFloatingPointIV(Loop *L, PHINode *PH);
|
|
bool rewriteNonIntegerIVs(Loop *L);
|
|
|
|
bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI);
|
|
/// Try to eliminate loop exits based on analyzeable exit counts
|
|
bool optimizeLoopExits(Loop *L, SCEVExpander &Rewriter);
|
|
/// Try to form loop invariant tests for loop exits by changing how many
|
|
/// iterations of the loop run when that is unobservable.
|
|
bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter);
|
|
|
|
bool rewriteFirstIterationLoopExitValues(Loop *L);
|
|
|
|
bool linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB,
|
|
const SCEV *ExitCount,
|
|
PHINode *IndVar, SCEVExpander &Rewriter);
|
|
|
|
bool sinkUnusedInvariants(Loop *L);
|
|
|
|
public:
|
|
IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
|
|
const DataLayout &DL, TargetLibraryInfo *TLI,
|
|
TargetTransformInfo *TTI, MemorySSA *MSSA)
|
|
: LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI) {
|
|
if (MSSA)
|
|
MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
|
|
}
|
|
|
|
bool run(Loop *L);
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// Determine the insertion point for this user. By default, insert immediately
|
|
/// before the user. SCEVExpander or LICM will hoist loop invariants out of the
|
|
/// loop. For PHI nodes, there may be multiple uses, so compute the nearest
|
|
/// common dominator for the incoming blocks. A nullptr can be returned if no
|
|
/// viable location is found: it may happen if User is a PHI and Def only comes
|
|
/// to this PHI from unreachable blocks.
|
|
static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
|
|
DominatorTree *DT, LoopInfo *LI) {
|
|
PHINode *PHI = dyn_cast<PHINode>(User);
|
|
if (!PHI)
|
|
return User;
|
|
|
|
Instruction *InsertPt = nullptr;
|
|
for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
|
|
if (PHI->getIncomingValue(i) != Def)
|
|
continue;
|
|
|
|
BasicBlock *InsertBB = PHI->getIncomingBlock(i);
|
|
|
|
if (!DT->isReachableFromEntry(InsertBB))
|
|
continue;
|
|
|
|
if (!InsertPt) {
|
|
InsertPt = InsertBB->getTerminator();
|
|
continue;
|
|
}
|
|
InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
|
|
InsertPt = InsertBB->getTerminator();
|
|
}
|
|
|
|
// If we have skipped all inputs, it means that Def only comes to Phi from
|
|
// unreachable blocks.
|
|
if (!InsertPt)
|
|
return nullptr;
|
|
|
|
auto *DefI = dyn_cast<Instruction>(Def);
|
|
if (!DefI)
|
|
return InsertPt;
|
|
|
|
assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");
|
|
|
|
auto *L = LI->getLoopFor(DefI->getParent());
|
|
assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));
|
|
|
|
for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
|
|
if (LI->getLoopFor(DTN->getBlock()) == L)
|
|
return DTN->getBlock()->getTerminator();
|
|
|
|
llvm_unreachable("DefI dominates InsertPt!");
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// rewriteNonIntegerIVs and helpers. Prefer integer IVs.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Convert APF to an integer, if possible.
|
|
static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
|
|
bool isExact = false;
|
|
// See if we can convert this to an int64_t
|
|
uint64_t UIntVal;
|
|
if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true,
|
|
APFloat::rmTowardZero, &isExact) != APFloat::opOK ||
|
|
!isExact)
|
|
return false;
|
|
IntVal = UIntVal;
|
|
return true;
|
|
}
|
|
|
|
/// If the loop has floating induction variable then insert corresponding
|
|
/// integer induction variable if possible.
|
|
/// For example,
|
|
/// for(double i = 0; i < 10000; ++i)
|
|
/// bar(i)
|
|
/// is converted into
|
|
/// for(int i = 0; i < 10000; ++i)
|
|
/// bar((double)i);
|
|
bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
|
|
unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
|
|
unsigned BackEdge = IncomingEdge^1;
|
|
|
|
// Check incoming value.
|
|
auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
|
|
|
|
int64_t InitValue;
|
|
if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
|
|
return false;
|
|
|
|
// Check IV increment. Reject this PN if increment operation is not
|
|
// an add or increment value can not be represented by an integer.
|
|
auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
|
|
if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false;
|
|
|
|
// If this is not an add of the PHI with a constantfp, or if the constant fp
|
|
// is not an integer, bail out.
|
|
ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
|
|
int64_t IncValue;
|
|
if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
|
|
!ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
|
|
return false;
|
|
|
|
// Check Incr uses. One user is PN and the other user is an exit condition
|
|
// used by the conditional terminator.
|
|
Value::user_iterator IncrUse = Incr->user_begin();
|
|
Instruction *U1 = cast<Instruction>(*IncrUse++);
|
|
if (IncrUse == Incr->user_end()) return false;
|
|
Instruction *U2 = cast<Instruction>(*IncrUse++);
|
|
if (IncrUse != Incr->user_end()) return false;
|
|
|
|
// Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't
|
|
// only used by a branch, we can't transform it.
|
|
FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
|
|
if (!Compare)
|
|
Compare = dyn_cast<FCmpInst>(U2);
|
|
if (!Compare || !Compare->hasOneUse() ||
|
|
!isa<BranchInst>(Compare->user_back()))
|
|
return false;
|
|
|
|
BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
|
|
|
|
// We need to verify that the branch actually controls the iteration count
|
|
// of the loop. If not, the new IV can overflow and no one will notice.
|
|
// The branch block must be in the loop and one of the successors must be out
|
|
// of the loop.
|
|
assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
|
|
if (!L->contains(TheBr->getParent()) ||
|
|
(L->contains(TheBr->getSuccessor(0)) &&
|
|
L->contains(TheBr->getSuccessor(1))))
|
|
return false;
|
|
|
|
// If it isn't a comparison with an integer-as-fp (the exit value), we can't
|
|
// transform it.
|
|
ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
|
|
int64_t ExitValue;
|
|
if (ExitValueVal == nullptr ||
|
|
!ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
|
|
return false;
|
|
|
|
// Find new predicate for integer comparison.
|
|
CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
|
|
switch (Compare->getPredicate()) {
|
|
default: return false; // Unknown comparison.
|
|
case CmpInst::FCMP_OEQ:
|
|
case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
|
|
case CmpInst::FCMP_ONE:
|
|
case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
|
|
case CmpInst::FCMP_OGT:
|
|
case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
|
|
case CmpInst::FCMP_OGE:
|
|
case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
|
|
case CmpInst::FCMP_OLT:
|
|
case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
|
|
case CmpInst::FCMP_OLE:
|
|
case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
|
|
}
|
|
|
|
// We convert the floating point induction variable to a signed i32 value if
|
|
// we can. This is only safe if the comparison will not overflow in a way
|
|
// that won't be trapped by the integer equivalent operations. Check for this
|
|
// now.
|
|
// TODO: We could use i64 if it is native and the range requires it.
|
|
|
|
// The start/stride/exit values must all fit in signed i32.
|
|
if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
|
|
return false;
|
|
|
|
// If not actually striding (add x, 0.0), avoid touching the code.
|
|
if (IncValue == 0)
|
|
return false;
|
|
|
|
// Positive and negative strides have different safety conditions.
|
|
if (IncValue > 0) {
|
|
// If we have a positive stride, we require the init to be less than the
|
|
// exit value.
|
|
if (InitValue >= ExitValue)
|
|
return false;
|
|
|
|
uint32_t Range = uint32_t(ExitValue-InitValue);
|
|
// Check for infinite loop, either:
|
|
// while (i <= Exit) or until (i > Exit)
|
|
if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
|
|
if (++Range == 0) return false; // Range overflows.
|
|
}
|
|
|
|
unsigned Leftover = Range % uint32_t(IncValue);
|
|
|
|
// If this is an equality comparison, we require that the strided value
|
|
// exactly land on the exit value, otherwise the IV condition will wrap
|
|
// around and do things the fp IV wouldn't.
|
|
if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
|
|
Leftover != 0)
|
|
return false;
|
|
|
|
// If the stride would wrap around the i32 before exiting, we can't
|
|
// transform the IV.
|
|
if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
|
|
return false;
|
|
} else {
|
|
// If we have a negative stride, we require the init to be greater than the
|
|
// exit value.
|
|
if (InitValue <= ExitValue)
|
|
return false;
|
|
|
|
uint32_t Range = uint32_t(InitValue-ExitValue);
|
|
// Check for infinite loop, either:
|
|
// while (i >= Exit) or until (i < Exit)
|
|
if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
|
|
if (++Range == 0) return false; // Range overflows.
|
|
}
|
|
|
|
unsigned Leftover = Range % uint32_t(-IncValue);
|
|
|
|
// If this is an equality comparison, we require that the strided value
|
|
// exactly land on the exit value, otherwise the IV condition will wrap
|
|
// around and do things the fp IV wouldn't.
|
|
if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
|
|
Leftover != 0)
|
|
return false;
|
|
|
|
// If the stride would wrap around the i32 before exiting, we can't
|
|
// transform the IV.
|
|
if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
|
|
return false;
|
|
}
|
|
|
|
IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
|
|
|
|
// Insert new integer induction variable.
|
|
PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
|
|
NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
|
|
PN->getIncomingBlock(IncomingEdge));
|
|
|
|
Value *NewAdd =
|
|
BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
|
|
Incr->getName()+".int", Incr);
|
|
NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
|
|
|
|
ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
|
|
ConstantInt::get(Int32Ty, ExitValue),
|
|
Compare->getName());
|
|
|
|
// In the following deletions, PN may become dead and may be deleted.
|
|
// Use a WeakTrackingVH to observe whether this happens.
|
|
WeakTrackingVH WeakPH = PN;
|
|
|
|
// Delete the old floating point exit comparison. The branch starts using the
|
|
// new comparison.
|
|
NewCompare->takeName(Compare);
|
|
Compare->replaceAllUsesWith(NewCompare);
|
|
RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI, MSSAU.get());
|
|
|
|
// Delete the old floating point increment.
|
|
Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
|
|
RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI, MSSAU.get());
|
|
|
|
// If the FP induction variable still has uses, this is because something else
|
|
// in the loop uses its value. In order to canonicalize the induction
|
|
// variable, we chose to eliminate the IV and rewrite it in terms of an
|
|
// int->fp cast.
|
|
//
|
|
// We give preference to sitofp over uitofp because it is faster on most
|
|
// platforms.
|
|
if (WeakPH) {
|
|
Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
|
|
&*PN->getParent()->getFirstInsertionPt());
|
|
PN->replaceAllUsesWith(Conv);
|
|
RecursivelyDeleteTriviallyDeadInstructions(PN, TLI, MSSAU.get());
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) {
|
|
// First step. Check to see if there are any floating-point recurrences.
|
|
// If there are, change them into integer recurrences, permitting analysis by
|
|
// the SCEV routines.
|
|
BasicBlock *Header = L->getHeader();
|
|
|
|
SmallVector<WeakTrackingVH, 8> PHIs;
|
|
for (PHINode &PN : Header->phis())
|
|
PHIs.push_back(&PN);
|
|
|
|
bool Changed = false;
|
|
for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
|
|
if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
|
|
Changed |= handleFloatingPointIV(L, PN);
|
|
|
|
// If the loop previously had floating-point IV, ScalarEvolution
|
|
// may not have been able to compute a trip count. Now that we've done some
|
|
// re-writing, the trip count may be computable.
|
|
if (Changed)
|
|
SE->forgetLoop(L);
|
|
return Changed;
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
// rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know
|
|
// they will exit at the first iteration.
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
/// Check to see if this loop has loop invariant conditions which lead to loop
|
|
/// exits. If so, we know that if the exit path is taken, it is at the first
|
|
/// loop iteration. This lets us predict exit values of PHI nodes that live in
|
|
/// loop header.
|
|
bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) {
|
|
// Verify the input to the pass is already in LCSSA form.
|
|
assert(L->isLCSSAForm(*DT));
|
|
|
|
SmallVector<BasicBlock *, 8> ExitBlocks;
|
|
L->getUniqueExitBlocks(ExitBlocks);
|
|
|
|
bool MadeAnyChanges = false;
|
|
for (auto *ExitBB : ExitBlocks) {
|
|
// If there are no more PHI nodes in this exit block, then no more
|
|
// values defined inside the loop are used on this path.
|
|
for (PHINode &PN : ExitBB->phis()) {
|
|
for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues();
|
|
IncomingValIdx != E; ++IncomingValIdx) {
|
|
auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx);
|
|
|
|
// Can we prove that the exit must run on the first iteration if it
|
|
// runs at all? (i.e. early exits are fine for our purposes, but
|
|
// traces which lead to this exit being taken on the 2nd iteration
|
|
// aren't.) Note that this is about whether the exit branch is
|
|
// executed, not about whether it is taken.
|
|
if (!L->getLoopLatch() ||
|
|
!DT->dominates(IncomingBB, L->getLoopLatch()))
|
|
continue;
|
|
|
|
// Get condition that leads to the exit path.
|
|
auto *TermInst = IncomingBB->getTerminator();
|
|
|
|
Value *Cond = nullptr;
|
|
if (auto *BI = dyn_cast<BranchInst>(TermInst)) {
|
|
// Must be a conditional branch, otherwise the block
|
|
// should not be in the loop.
|
|
Cond = BI->getCondition();
|
|
} else if (auto *SI = dyn_cast<SwitchInst>(TermInst))
|
|
Cond = SI->getCondition();
|
|
else
|
|
continue;
|
|
|
|
if (!L->isLoopInvariant(Cond))
|
|
continue;
|
|
|
|
auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx));
|
|
|
|
// Only deal with PHIs in the loop header.
|
|
if (!ExitVal || ExitVal->getParent() != L->getHeader())
|
|
continue;
|
|
|
|
// If ExitVal is a PHI on the loop header, then we know its
|
|
// value along this exit because the exit can only be taken
|
|
// on the first iteration.
|
|
auto *LoopPreheader = L->getLoopPreheader();
|
|
assert(LoopPreheader && "Invalid loop");
|
|
int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader);
|
|
if (PreheaderIdx != -1) {
|
|
assert(ExitVal->getParent() == L->getHeader() &&
|
|
"ExitVal must be in loop header");
|
|
MadeAnyChanges = true;
|
|
PN.setIncomingValue(IncomingValIdx,
|
|
ExitVal->getIncomingValue(PreheaderIdx));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return MadeAnyChanges;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// IV Widening - Extend the width of an IV to cover its widest uses.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
// Collect information about induction variables that are used by sign/zero
|
|
// extend operations. This information is recorded by CollectExtend and provides
|
|
// the input to WidenIV.
|
|
struct WideIVInfo {
|
|
PHINode *NarrowIV = nullptr;
|
|
|
|
// Widest integer type created [sz]ext
|
|
Type *WidestNativeType = nullptr;
|
|
|
|
// Was a sext user seen before a zext?
|
|
bool IsSigned = false;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// Update information about the induction variable that is extended by this
|
|
/// sign or zero extend operation. This is used to determine the final width of
|
|
/// the IV before actually widening it.
|
|
static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
|
|
const TargetTransformInfo *TTI) {
|
|
bool IsSigned = Cast->getOpcode() == Instruction::SExt;
|
|
if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
|
|
return;
|
|
|
|
Type *Ty = Cast->getType();
|
|
uint64_t Width = SE->getTypeSizeInBits(Ty);
|
|
if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
|
|
return;
|
|
|
|
// Check that `Cast` actually extends the induction variable (we rely on this
|
|
// later). This takes care of cases where `Cast` is extending a truncation of
|
|
// the narrow induction variable, and thus can end up being narrower than the
|
|
// "narrow" induction variable.
|
|
uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType());
|
|
if (NarrowIVWidth >= Width)
|
|
return;
|
|
|
|
// Cast is either an sext or zext up to this point.
|
|
// We should not widen an indvar if arithmetics on the wider indvar are more
|
|
// expensive than those on the narrower indvar. We check only the cost of ADD
|
|
// because at least an ADD is required to increment the induction variable. We
|
|
// could compute more comprehensively the cost of all instructions on the
|
|
// induction variable when necessary.
|
|
if (TTI &&
|
|
TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
|
|
TTI->getArithmeticInstrCost(Instruction::Add,
|
|
Cast->getOperand(0)->getType())) {
|
|
return;
|
|
}
|
|
|
|
if (!WI.WidestNativeType) {
|
|
WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
|
|
WI.IsSigned = IsSigned;
|
|
return;
|
|
}
|
|
|
|
// We extend the IV to satisfy the sign of its first user, arbitrarily.
|
|
if (WI.IsSigned != IsSigned)
|
|
return;
|
|
|
|
if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
|
|
WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Record a link in the Narrow IV def-use chain along with the WideIV that
|
|
/// computes the same value as the Narrow IV def. This avoids caching Use*
|
|
/// pointers.
|
|
struct NarrowIVDefUse {
|
|
Instruction *NarrowDef = nullptr;
|
|
Instruction *NarrowUse = nullptr;
|
|
Instruction *WideDef = nullptr;
|
|
|
|
// True if the narrow def is never negative. Tracking this information lets
|
|
// us use a sign extension instead of a zero extension or vice versa, when
|
|
// profitable and legal.
|
|
bool NeverNegative = false;
|
|
|
|
NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
|
|
bool NeverNegative)
|
|
: NarrowDef(ND), NarrowUse(NU), WideDef(WD),
|
|
NeverNegative(NeverNegative) {}
|
|
};
|
|
|
|
/// The goal of this transform is to remove sign and zero extends without
|
|
/// creating any new induction variables. To do this, it creates a new phi of
|
|
/// the wider type and redirects all users, either removing extends or inserting
|
|
/// truncs whenever we stop propagating the type.
|
|
class WidenIV {
|
|
// Parameters
|
|
PHINode *OrigPhi;
|
|
Type *WideType;
|
|
|
|
// Context
|
|
LoopInfo *LI;
|
|
Loop *L;
|
|
ScalarEvolution *SE;
|
|
DominatorTree *DT;
|
|
|
|
// Does the module have any calls to the llvm.experimental.guard intrinsic
|
|
// at all? If not we can avoid scanning instructions looking for guards.
|
|
bool HasGuards;
|
|
|
|
// Result
|
|
PHINode *WidePhi = nullptr;
|
|
Instruction *WideInc = nullptr;
|
|
const SCEV *WideIncExpr = nullptr;
|
|
SmallVectorImpl<WeakTrackingVH> &DeadInsts;
|
|
|
|
SmallPtrSet<Instruction *,16> Widened;
|
|
SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
|
|
|
|
enum ExtendKind { ZeroExtended, SignExtended, Unknown };
|
|
|
|
// A map tracking the kind of extension used to widen each narrow IV
|
|
// and narrow IV user.
|
|
// Key: pointer to a narrow IV or IV user.
|
|
// Value: the kind of extension used to widen this Instruction.
|
|
DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap;
|
|
|
|
using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>;
|
|
|
|
// A map with control-dependent ranges for post increment IV uses. The key is
|
|
// a pair of IV def and a use of this def denoting the context. The value is
|
|
// a ConstantRange representing possible values of the def at the given
|
|
// context.
|
|
DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos;
|
|
|
|
Optional<ConstantRange> getPostIncRangeInfo(Value *Def,
|
|
Instruction *UseI) {
|
|
DefUserPair Key(Def, UseI);
|
|
auto It = PostIncRangeInfos.find(Key);
|
|
return It == PostIncRangeInfos.end()
|
|
? Optional<ConstantRange>(None)
|
|
: Optional<ConstantRange>(It->second);
|
|
}
|
|
|
|
void calculatePostIncRanges(PHINode *OrigPhi);
|
|
void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser);
|
|
|
|
void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) {
|
|
DefUserPair Key(Def, UseI);
|
|
auto It = PostIncRangeInfos.find(Key);
|
|
if (It == PostIncRangeInfos.end())
|
|
PostIncRangeInfos.insert({Key, R});
|
|
else
|
|
It->second = R.intersectWith(It->second);
|
|
}
|
|
|
|
public:
|
|
WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
|
|
DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
|
|
bool HasGuards)
|
|
: OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo),
|
|
L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree),
|
|
HasGuards(HasGuards), DeadInsts(DI) {
|
|
assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
|
|
ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended;
|
|
}
|
|
|
|
PHINode *createWideIV(SCEVExpander &Rewriter);
|
|
|
|
protected:
|
|
Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
|
|
Instruction *Use);
|
|
|
|
Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
|
|
Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
|
|
const SCEVAddRecExpr *WideAR);
|
|
Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
|
|
|
|
ExtendKind getExtendKind(Instruction *I);
|
|
|
|
using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>;
|
|
|
|
WidenedRecTy getWideRecurrence(NarrowIVDefUse DU);
|
|
|
|
WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU);
|
|
|
|
const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
|
|
unsigned OpCode) const;
|
|
|
|
Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
|
|
|
|
bool widenLoopCompare(NarrowIVDefUse DU);
|
|
bool widenWithVariantUse(NarrowIVDefUse DU);
|
|
void widenWithVariantUseCodegen(NarrowIVDefUse DU);
|
|
|
|
void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
|
|
bool IsSigned, Instruction *Use) {
|
|
// Set the debug location and conservative insertion point.
|
|
IRBuilder<> Builder(Use);
|
|
// Hoist the insertion point into loop preheaders as far as possible.
|
|
for (const Loop *L = LI->getLoopFor(Use->getParent());
|
|
L && L->getLoopPreheader() && L->isLoopInvariant(NarrowOper);
|
|
L = L->getParentLoop())
|
|
Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
|
|
|
|
return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
|
|
Builder.CreateZExt(NarrowOper, WideType);
|
|
}
|
|
|
|
/// Instantiate a wide operation to replace a narrow operation. This only needs
|
|
/// to handle operations that can evaluation to SCEVAddRec. It can safely return
|
|
/// 0 for any operation we decide not to clone.
|
|
Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU,
|
|
const SCEVAddRecExpr *WideAR) {
|
|
unsigned Opcode = DU.NarrowUse->getOpcode();
|
|
switch (Opcode) {
|
|
default:
|
|
return nullptr;
|
|
case Instruction::Add:
|
|
case Instruction::Mul:
|
|
case Instruction::UDiv:
|
|
case Instruction::Sub:
|
|
return cloneArithmeticIVUser(DU, WideAR);
|
|
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
case Instruction::Shl:
|
|
case Instruction::LShr:
|
|
case Instruction::AShr:
|
|
return cloneBitwiseIVUser(DU);
|
|
}
|
|
}
|
|
|
|
Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) {
|
|
Instruction *NarrowUse = DU.NarrowUse;
|
|
Instruction *NarrowDef = DU.NarrowDef;
|
|
Instruction *WideDef = DU.WideDef;
|
|
|
|
LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");
|
|
|
|
// Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
|
|
// about the narrow operand yet so must insert a [sz]ext. It is probably loop
|
|
// invariant and will be folded or hoisted. If it actually comes from a
|
|
// widened IV, it should be removed during a future call to widenIVUse.
|
|
bool IsSigned = getExtendKind(NarrowDef) == SignExtended;
|
|
Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
|
|
? WideDef
|
|
: createExtendInst(NarrowUse->getOperand(0), WideType,
|
|
IsSigned, NarrowUse);
|
|
Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
|
|
? WideDef
|
|
: createExtendInst(NarrowUse->getOperand(1), WideType,
|
|
IsSigned, NarrowUse);
|
|
|
|
auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
|
|
auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
|
|
NarrowBO->getName());
|
|
IRBuilder<> Builder(NarrowUse);
|
|
Builder.Insert(WideBO);
|
|
WideBO->copyIRFlags(NarrowBO);
|
|
return WideBO;
|
|
}
|
|
|
|
Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU,
|
|
const SCEVAddRecExpr *WideAR) {
|
|
Instruction *NarrowUse = DU.NarrowUse;
|
|
Instruction *NarrowDef = DU.NarrowDef;
|
|
Instruction *WideDef = DU.WideDef;
|
|
|
|
LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
|
|
|
|
unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;
|
|
|
|
// We're trying to find X such that
|
|
//
|
|
// Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
|
|
//
|
|
// We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
|
|
// and check using SCEV if any of them are correct.
|
|
|
|
// Returns true if extending NonIVNarrowDef according to `SignExt` is a
|
|
// correct solution to X.
|
|
auto GuessNonIVOperand = [&](bool SignExt) {
|
|
const SCEV *WideLHS;
|
|
const SCEV *WideRHS;
|
|
|
|
auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
|
|
if (SignExt)
|
|
return SE->getSignExtendExpr(S, Ty);
|
|
return SE->getZeroExtendExpr(S, Ty);
|
|
};
|
|
|
|
if (IVOpIdx == 0) {
|
|
WideLHS = SE->getSCEV(WideDef);
|
|
const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
|
|
WideRHS = GetExtend(NarrowRHS, WideType);
|
|
} else {
|
|
const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
|
|
WideLHS = GetExtend(NarrowLHS, WideType);
|
|
WideRHS = SE->getSCEV(WideDef);
|
|
}
|
|
|
|
// WideUse is "WideDef `op.wide` X" as described in the comment.
|
|
const SCEV *WideUse = nullptr;
|
|
|
|
switch (NarrowUse->getOpcode()) {
|
|
default:
|
|
llvm_unreachable("No other possibility!");
|
|
|
|
case Instruction::Add:
|
|
WideUse = SE->getAddExpr(WideLHS, WideRHS);
|
|
break;
|
|
|
|
case Instruction::Mul:
|
|
WideUse = SE->getMulExpr(WideLHS, WideRHS);
|
|
break;
|
|
|
|
case Instruction::UDiv:
|
|
WideUse = SE->getUDivExpr(WideLHS, WideRHS);
|
|
break;
|
|
|
|
case Instruction::Sub:
|
|
WideUse = SE->getMinusSCEV(WideLHS, WideRHS);
|
|
break;
|
|
}
|
|
|
|
return WideUse == WideAR;
|
|
};
|
|
|
|
bool SignExtend = getExtendKind(NarrowDef) == SignExtended;
|
|
if (!GuessNonIVOperand(SignExtend)) {
|
|
SignExtend = !SignExtend;
|
|
if (!GuessNonIVOperand(SignExtend))
|
|
return nullptr;
|
|
}
|
|
|
|
Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
|
|
? WideDef
|
|
: createExtendInst(NarrowUse->getOperand(0), WideType,
|
|
SignExtend, NarrowUse);
|
|
Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
|
|
? WideDef
|
|
: createExtendInst(NarrowUse->getOperand(1), WideType,
|
|
SignExtend, NarrowUse);
|
|
|
|
auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
|
|
auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
|
|
NarrowBO->getName());
|
|
|
|
IRBuilder<> Builder(NarrowUse);
|
|
Builder.Insert(WideBO);
|
|
WideBO->copyIRFlags(NarrowBO);
|
|
return WideBO;
|
|
}
|
|
|
|
WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) {
|
|
auto It = ExtendKindMap.find(I);
|
|
assert(It != ExtendKindMap.end() && "Instruction not yet extended!");
|
|
return It->second;
|
|
}
|
|
|
|
const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
|
|
unsigned OpCode) const {
|
|
if (OpCode == Instruction::Add)
|
|
return SE->getAddExpr(LHS, RHS);
|
|
if (OpCode == Instruction::Sub)
|
|
return SE->getMinusSCEV(LHS, RHS);
|
|
if (OpCode == Instruction::Mul)
|
|
return SE->getMulExpr(LHS, RHS);
|
|
|
|
llvm_unreachable("Unsupported opcode.");
|
|
}
|
|
|
|
/// No-wrap operations can transfer sign extension of their result to their
|
|
/// operands. Generate the SCEV value for the widened operation without
|
|
/// actually modifying the IR yet. If the expression after extending the
|
|
/// operands is an AddRec for this loop, return the AddRec and the kind of
|
|
/// extension used.
|
|
WidenIV::WidenedRecTy WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) {
|
|
// Handle the common case of add<nsw/nuw>
|
|
const unsigned OpCode = DU.NarrowUse->getOpcode();
|
|
// Only Add/Sub/Mul instructions supported yet.
|
|
if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
|
|
OpCode != Instruction::Mul)
|
|
return {nullptr, Unknown};
|
|
|
|
// One operand (NarrowDef) has already been extended to WideDef. Now determine
|
|
// if extending the other will lead to a recurrence.
|
|
const unsigned ExtendOperIdx =
|
|
DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
|
|
assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
|
|
|
|
const SCEV *ExtendOperExpr = nullptr;
|
|
const OverflowingBinaryOperator *OBO =
|
|
cast<OverflowingBinaryOperator>(DU.NarrowUse);
|
|
ExtendKind ExtKind = getExtendKind(DU.NarrowDef);
|
|
if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
|
|
ExtendOperExpr = SE->getSignExtendExpr(
|
|
SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
|
|
else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
|
|
ExtendOperExpr = SE->getZeroExtendExpr(
|
|
SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
|
|
else
|
|
return {nullptr, Unknown};
|
|
|
|
// When creating this SCEV expr, don't apply the current operations NSW or NUW
|
|
// flags. This instruction may be guarded by control flow that the no-wrap
|
|
// behavior depends on. Non-control-equivalent instructions can be mapped to
|
|
// the same SCEV expression, and it would be incorrect to transfer NSW/NUW
|
|
// semantics to those operations.
|
|
const SCEV *lhs = SE->getSCEV(DU.WideDef);
|
|
const SCEV *rhs = ExtendOperExpr;
|
|
|
|
// Let's swap operands to the initial order for the case of non-commutative
|
|
// operations, like SUB. See PR21014.
|
|
if (ExtendOperIdx == 0)
|
|
std::swap(lhs, rhs);
|
|
const SCEVAddRecExpr *AddRec =
|
|
dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode));
|
|
|
|
if (!AddRec || AddRec->getLoop() != L)
|
|
return {nullptr, Unknown};
|
|
|
|
return {AddRec, ExtKind};
|
|
}
|
|
|
|
/// Is this instruction potentially interesting for further simplification after
|
|
/// widening it's type? In other words, can the extend be safely hoisted out of
|
|
/// the loop with SCEV reducing the value to a recurrence on the same loop. If
|
|
/// so, return the extended recurrence and the kind of extension used. Otherwise
|
|
/// return {nullptr, Unknown}.
|
|
WidenIV::WidenedRecTy WidenIV::getWideRecurrence(NarrowIVDefUse DU) {
|
|
if (!SE->isSCEVable(DU.NarrowUse->getType()))
|
|
return {nullptr, Unknown};
|
|
|
|
const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse);
|
|
if (SE->getTypeSizeInBits(NarrowExpr->getType()) >=
|
|
SE->getTypeSizeInBits(WideType)) {
|
|
// NarrowUse implicitly widens its operand. e.g. a gep with a narrow
|
|
// index. So don't follow this use.
|
|
return {nullptr, Unknown};
|
|
}
|
|
|
|
const SCEV *WideExpr;
|
|
ExtendKind ExtKind;
|
|
if (DU.NeverNegative) {
|
|
WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
|
|
if (isa<SCEVAddRecExpr>(WideExpr))
|
|
ExtKind = SignExtended;
|
|
else {
|
|
WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
|
|
ExtKind = ZeroExtended;
|
|
}
|
|
} else if (getExtendKind(DU.NarrowDef) == SignExtended) {
|
|
WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
|
|
ExtKind = SignExtended;
|
|
} else {
|
|
WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
|
|
ExtKind = ZeroExtended;
|
|
}
|
|
const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
|
|
if (!AddRec || AddRec->getLoop() != L)
|
|
return {nullptr, Unknown};
|
|
return {AddRec, ExtKind};
|
|
}
|
|
|
|
/// This IV user cannot be widened. Replace this use of the original narrow IV
|
|
/// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
|
|
static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) {
|
|
auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
|
|
if (!InsertPt)
|
|
return;
|
|
LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user "
|
|
<< *DU.NarrowUse << "\n");
|
|
IRBuilder<> Builder(InsertPt);
|
|
Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
|
|
DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
|
|
}
|
|
|
|
/// If the narrow use is a compare instruction, then widen the compare
|
|
// (and possibly the other operand). The extend operation is hoisted into the
|
|
// loop preheader as far as possible.
|
|
bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) {
|
|
ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
|
|
if (!Cmp)
|
|
return false;
|
|
|
|
// We can legally widen the comparison in the following two cases:
|
|
//
|
|
// - The signedness of the IV extension and comparison match
|
|
//
|
|
// - The narrow IV is always positive (and thus its sign extension is equal
|
|
// to its zero extension). For instance, let's say we're zero extending
|
|
// %narrow for the following use
|
|
//
|
|
// icmp slt i32 %narrow, %val ... (A)
|
|
//
|
|
// and %narrow is always positive. Then
|
|
//
|
|
// (A) == icmp slt i32 sext(%narrow), sext(%val)
|
|
// == icmp slt i32 zext(%narrow), sext(%val)
|
|
bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended;
|
|
if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
|
|
return false;
|
|
|
|
Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
|
|
unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
|
|
unsigned IVWidth = SE->getTypeSizeInBits(WideType);
|
|
assert(CastWidth <= IVWidth && "Unexpected width while widening compare.");
|
|
|
|
// Widen the compare instruction.
|
|
auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
|
|
if (!InsertPt)
|
|
return false;
|
|
IRBuilder<> Builder(InsertPt);
|
|
DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
|
|
|
|
// Widen the other operand of the compare, if necessary.
|
|
if (CastWidth < IVWidth) {
|
|
Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
|
|
DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// The widenIVUse avoids generating trunc by evaluating the use as AddRec, this
|
|
// will not work when:
|
|
// 1) SCEV traces back to an instruction inside the loop that SCEV can not
|
|
// expand, eg. add %indvar, (load %addr)
|
|
// 2) SCEV finds a loop variant, eg. add %indvar, %loopvariant
|
|
// While SCEV fails to avoid trunc, we can still try to use instruction
|
|
// combining approach to prove trunc is not required. This can be further
|
|
// extended with other instruction combining checks, but for now we handle the
|
|
// following case (sub can be "add" and "mul", "nsw + sext" can be "nus + zext")
|
|
//
|
|
// Src:
|
|
// %c = sub nsw %b, %indvar
|
|
// %d = sext %c to i64
|
|
// Dst:
|
|
// %indvar.ext1 = sext %indvar to i64
|
|
// %m = sext %b to i64
|
|
// %d = sub nsw i64 %m, %indvar.ext1
|
|
// Therefore, as long as the result of add/sub/mul is extended to wide type, no
|
|
// trunc is required regardless of how %b is generated. This pattern is common
|
|
// when calculating address in 64 bit architecture
|
|
bool WidenIV::widenWithVariantUse(NarrowIVDefUse DU) {
|
|
Instruction *NarrowUse = DU.NarrowUse;
|
|
Instruction *NarrowDef = DU.NarrowDef;
|
|
Instruction *WideDef = DU.WideDef;
|
|
|
|
// Handle the common case of add<nsw/nuw>
|
|
const unsigned OpCode = NarrowUse->getOpcode();
|
|
// Only Add/Sub/Mul instructions are supported.
|
|
if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
|
|
OpCode != Instruction::Mul)
|
|
return false;
|
|
|
|
// The operand that is not defined by NarrowDef of DU. Let's call it the
|
|
// other operand.
|
|
unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == NarrowDef ? 1 : 0;
|
|
assert(DU.NarrowUse->getOperand(1 - ExtendOperIdx) == DU.NarrowDef &&
|
|
"bad DU");
|
|
|
|
const SCEV *ExtendOperExpr = nullptr;
|
|
const OverflowingBinaryOperator *OBO =
|
|
cast<OverflowingBinaryOperator>(NarrowUse);
|
|
ExtendKind ExtKind = getExtendKind(NarrowDef);
|
|
if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
|
|
ExtendOperExpr = SE->getSignExtendExpr(
|
|
SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType);
|
|
else if (ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
|
|
ExtendOperExpr = SE->getZeroExtendExpr(
|
|
SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType);
|
|
else
|
|
return false;
|
|
|
|
// Verifying that Defining operand is an AddRec
|
|
const SCEV *Op1 = SE->getSCEV(WideDef);
|
|
const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1);
|
|
if (!AddRecOp1 || AddRecOp1->getLoop() != L)
|
|
return false;
|
|
// Verifying that other operand is an Extend.
|
|
if (ExtKind == SignExtended) {
|
|
if (!isa<SCEVSignExtendExpr>(ExtendOperExpr))
|
|
return false;
|
|
} else {
|
|
if (!isa<SCEVZeroExtendExpr>(ExtendOperExpr))
|
|
return false;
|
|
}
|
|
|
|
if (ExtKind == SignExtended) {
|
|
for (Use &U : NarrowUse->uses()) {
|
|
SExtInst *User = dyn_cast<SExtInst>(U.getUser());
|
|
if (!User || User->getType() != WideType)
|
|
return false;
|
|
}
|
|
} else { // ExtKind == ZeroExtended
|
|
for (Use &U : NarrowUse->uses()) {
|
|
ZExtInst *User = dyn_cast<ZExtInst>(U.getUser());
|
|
if (!User || User->getType() != WideType)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Special Case for widening with loop variant (see
|
|
/// WidenIV::widenWithVariant). This is the code generation part.
|
|
void WidenIV::widenWithVariantUseCodegen(NarrowIVDefUse DU) {
|
|
Instruction *NarrowUse = DU.NarrowUse;
|
|
Instruction *NarrowDef = DU.NarrowDef;
|
|
Instruction *WideDef = DU.WideDef;
|
|
|
|
ExtendKind ExtKind = getExtendKind(NarrowDef);
|
|
|
|
LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
|
|
|
|
// Generating a widening use instruction.
|
|
Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
|
|
? WideDef
|
|
: createExtendInst(NarrowUse->getOperand(0), WideType,
|
|
ExtKind, NarrowUse);
|
|
Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
|
|
? WideDef
|
|
: createExtendInst(NarrowUse->getOperand(1), WideType,
|
|
ExtKind, NarrowUse);
|
|
|
|
auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
|
|
auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
|
|
NarrowBO->getName());
|
|
IRBuilder<> Builder(NarrowUse);
|
|
Builder.Insert(WideBO);
|
|
WideBO->copyIRFlags(NarrowBO);
|
|
|
|
assert(ExtKind != Unknown && "Unknown ExtKind not handled");
|
|
|
|
ExtendKindMap[NarrowUse] = ExtKind;
|
|
|
|
for (Use &U : NarrowUse->uses()) {
|
|
Instruction *User = nullptr;
|
|
if (ExtKind == SignExtended)
|
|
User = dyn_cast<SExtInst>(U.getUser());
|
|
else
|
|
User = dyn_cast<ZExtInst>(U.getUser());
|
|
if (User && User->getType() == WideType) {
|
|
LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
|
|
<< *WideBO << "\n");
|
|
++NumElimExt;
|
|
User->replaceAllUsesWith(WideBO);
|
|
DeadInsts.emplace_back(User);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Determine whether an individual user of the narrow IV can be widened. If so,
|
|
/// return the wide clone of the user.
|
|
Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
|
|
assert(ExtendKindMap.count(DU.NarrowDef) &&
|
|
"Should already know the kind of extension used to widen NarrowDef");
|
|
|
|
// Stop traversing the def-use chain at inner-loop phis or post-loop phis.
|
|
if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
|
|
if (LI->getLoopFor(UsePhi->getParent()) != L) {
|
|
// For LCSSA phis, sink the truncate outside the loop.
|
|
// After SimplifyCFG most loop exit targets have a single predecessor.
|
|
// Otherwise fall back to a truncate within the loop.
|
|
if (UsePhi->getNumOperands() != 1)
|
|
truncateIVUse(DU, DT, LI);
|
|
else {
|
|
// Widening the PHI requires us to insert a trunc. The logical place
|
|
// for this trunc is in the same BB as the PHI. This is not possible if
|
|
// the BB is terminated by a catchswitch.
|
|
if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator()))
|
|
return nullptr;
|
|
|
|
PHINode *WidePhi =
|
|
PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
|
|
UsePhi);
|
|
WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
|
|
IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt());
|
|
Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
|
|
UsePhi->replaceAllUsesWith(Trunc);
|
|
DeadInsts.emplace_back(UsePhi);
|
|
LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to "
|
|
<< *WidePhi << "\n");
|
|
}
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// This narrow use can be widened by a sext if it's non-negative or its narrow
|
|
// def was widended by a sext. Same for zext.
|
|
auto canWidenBySExt = [&]() {
|
|
return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended;
|
|
};
|
|
auto canWidenByZExt = [&]() {
|
|
return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended;
|
|
};
|
|
|
|
// Our raison d'etre! Eliminate sign and zero extension.
|
|
if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) ||
|
|
(isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) {
|
|
Value *NewDef = DU.WideDef;
|
|
if (DU.NarrowUse->getType() != WideType) {
|
|
unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
|
|
unsigned IVWidth = SE->getTypeSizeInBits(WideType);
|
|
if (CastWidth < IVWidth) {
|
|
// The cast isn't as wide as the IV, so insert a Trunc.
|
|
IRBuilder<> Builder(DU.NarrowUse);
|
|
NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
|
|
}
|
|
else {
|
|
// A wider extend was hidden behind a narrower one. This may induce
|
|
// another round of IV widening in which the intermediate IV becomes
|
|
// dead. It should be very rare.
|
|
LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
|
|
<< " not wide enough to subsume " << *DU.NarrowUse
|
|
<< "\n");
|
|
DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
|
|
NewDef = DU.NarrowUse;
|
|
}
|
|
}
|
|
if (NewDef != DU.NarrowUse) {
|
|
LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
|
|
<< " replaced by " << *DU.WideDef << "\n");
|
|
++NumElimExt;
|
|
DU.NarrowUse->replaceAllUsesWith(NewDef);
|
|
DeadInsts.emplace_back(DU.NarrowUse);
|
|
}
|
|
// Now that the extend is gone, we want to expose it's uses for potential
|
|
// further simplification. We don't need to directly inform SimplifyIVUsers
|
|
// of the new users, because their parent IV will be processed later as a
|
|
// new loop phi. If we preserved IVUsers analysis, we would also want to
|
|
// push the uses of WideDef here.
|
|
|
|
// No further widening is needed. The deceased [sz]ext had done it for us.
|
|
return nullptr;
|
|
}
|
|
|
|
// Does this user itself evaluate to a recurrence after widening?
|
|
WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU);
|
|
if (!WideAddRec.first)
|
|
WideAddRec = getWideRecurrence(DU);
|
|
|
|
assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown));
|
|
if (!WideAddRec.first) {
|
|
// If use is a loop condition, try to promote the condition instead of
|
|
// truncating the IV first.
|
|
if (widenLoopCompare(DU))
|
|
return nullptr;
|
|
|
|
// We are here about to generate a truncate instruction that may hurt
|
|
// performance because the scalar evolution expression computed earlier
|
|
// in WideAddRec.first does not indicate a polynomial induction expression.
|
|
// In that case, look at the operands of the use instruction to determine
|
|
// if we can still widen the use instead of truncating its operand.
|
|
if (widenWithVariantUse(DU)) {
|
|
widenWithVariantUseCodegen(DU);
|
|
return nullptr;
|
|
}
|
|
|
|
// This user does not evaluate to a recurrence after widening, so don't
|
|
// follow it. Instead insert a Trunc to kill off the original use,
|
|
// eventually isolating the original narrow IV so it can be removed.
|
|
truncateIVUse(DU, DT, LI);
|
|
return nullptr;
|
|
}
|
|
// Assume block terminators cannot evaluate to a recurrence. We can't to
|
|
// insert a Trunc after a terminator if there happens to be a critical edge.
|
|
assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
|
|
"SCEV is not expected to evaluate a block terminator");
|
|
|
|
// Reuse the IV increment that SCEVExpander created as long as it dominates
|
|
// NarrowUse.
|
|
Instruction *WideUse = nullptr;
|
|
if (WideAddRec.first == WideIncExpr &&
|
|
Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
|
|
WideUse = WideInc;
|
|
else {
|
|
WideUse = cloneIVUser(DU, WideAddRec.first);
|
|
if (!WideUse)
|
|
return nullptr;
|
|
}
|
|
// Evaluation of WideAddRec ensured that the narrow expression could be
|
|
// extended outside the loop without overflow. This suggests that the wide use
|
|
// evaluates to the same expression as the extended narrow use, but doesn't
|
|
// absolutely guarantee it. Hence the following failsafe check. In rare cases
|
|
// where it fails, we simply throw away the newly created wide use.
|
|
if (WideAddRec.first != SE->getSCEV(WideUse)) {
|
|
LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": "
|
|
<< *SE->getSCEV(WideUse) << " != " << *WideAddRec.first
|
|
<< "\n");
|
|
DeadInsts.emplace_back(WideUse);
|
|
return nullptr;
|
|
}
|
|
|
|
// if we reached this point then we are going to replace
|
|
// DU.NarrowUse with WideUse. Reattach DbgValue then.
|
|
replaceAllDbgUsesWith(*DU.NarrowUse, *WideUse, *WideUse, *DT);
|
|
|
|
ExtendKindMap[DU.NarrowUse] = WideAddRec.second;
|
|
// Returning WideUse pushes it on the worklist.
|
|
return WideUse;
|
|
}
|
|
|
|
/// Add eligible users of NarrowDef to NarrowIVUsers.
|
|
void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
|
|
const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
|
|
bool NonNegativeDef =
|
|
SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
|
|
SE->getConstant(NarrowSCEV->getType(), 0));
|
|
for (User *U : NarrowDef->users()) {
|
|
Instruction *NarrowUser = cast<Instruction>(U);
|
|
|
|
// Handle data flow merges and bizarre phi cycles.
|
|
if (!Widened.insert(NarrowUser).second)
|
|
continue;
|
|
|
|
bool NonNegativeUse = false;
|
|
if (!NonNegativeDef) {
|
|
// We might have a control-dependent range information for this context.
|
|
if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser))
|
|
NonNegativeUse = RangeInfo->getSignedMin().isNonNegative();
|
|
}
|
|
|
|
NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef,
|
|
NonNegativeDef || NonNegativeUse);
|
|
}
|
|
}
|
|
|
|
/// Process a single induction variable. First use the SCEVExpander to create a
|
|
/// wide induction variable that evaluates to the same recurrence as the
|
|
/// original narrow IV. Then use a worklist to forward traverse the narrow IV's
|
|
/// def-use chain. After widenIVUse has processed all interesting IV users, the
|
|
/// narrow IV will be isolated for removal by DeleteDeadPHIs.
|
|
///
|
|
/// It would be simpler to delete uses as they are processed, but we must avoid
|
|
/// invalidating SCEV expressions.
|
|
PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
|
|
// Is this phi an induction variable?
|
|
const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
|
|
if (!AddRec)
|
|
return nullptr;
|
|
|
|
// Widen the induction variable expression.
|
|
const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended
|
|
? SE->getSignExtendExpr(AddRec, WideType)
|
|
: SE->getZeroExtendExpr(AddRec, WideType);
|
|
|
|
assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
|
|
"Expect the new IV expression to preserve its type");
|
|
|
|
// Can the IV be extended outside the loop without overflow?
|
|
AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
|
|
if (!AddRec || AddRec->getLoop() != L)
|
|
return nullptr;
|
|
|
|
// An AddRec must have loop-invariant operands. Since this AddRec is
|
|
// materialized by a loop header phi, the expression cannot have any post-loop
|
|
// operands, so they must dominate the loop header.
|
|
assert(
|
|
SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
|
|
SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) &&
|
|
"Loop header phi recurrence inputs do not dominate the loop");
|
|
|
|
// Iterate over IV uses (including transitive ones) looking for IV increments
|
|
// of the form 'add nsw %iv, <const>'. For each increment and each use of
|
|
// the increment calculate control-dependent range information basing on
|
|
// dominating conditions inside of the loop (e.g. a range check inside of the
|
|
// loop). Calculated ranges are stored in PostIncRangeInfos map.
|
|
//
|
|
// Control-dependent range information is later used to prove that a narrow
|
|
// definition is not negative (see pushNarrowIVUsers). It's difficult to do
|
|
// this on demand because when pushNarrowIVUsers needs this information some
|
|
// of the dominating conditions might be already widened.
|
|
if (UsePostIncrementRanges)
|
|
calculatePostIncRanges(OrigPhi);
|
|
|
|
// The rewriter provides a value for the desired IV expression. This may
|
|
// either find an existing phi or materialize a new one. Either way, we
|
|
// expect a well-formed cyclic phi-with-increments. i.e. any operand not part
|
|
// of the phi-SCC dominates the loop entry.
|
|
Instruction *InsertPt = &L->getHeader()->front();
|
|
WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
|
|
|
|
// Remembering the WideIV increment generated by SCEVExpander allows
|
|
// widenIVUse to reuse it when widening the narrow IV's increment. We don't
|
|
// employ a general reuse mechanism because the call above is the only call to
|
|
// SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
|
|
if (BasicBlock *LatchBlock = L->getLoopLatch()) {
|
|
WideInc =
|
|
cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
|
|
WideIncExpr = SE->getSCEV(WideInc);
|
|
// Propagate the debug location associated with the original loop increment
|
|
// to the new (widened) increment.
|
|
auto *OrigInc =
|
|
cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
|
|
WideInc->setDebugLoc(OrigInc->getDebugLoc());
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
|
|
++NumWidened;
|
|
|
|
// Traverse the def-use chain using a worklist starting at the original IV.
|
|
assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
|
|
|
|
Widened.insert(OrigPhi);
|
|
pushNarrowIVUsers(OrigPhi, WidePhi);
|
|
|
|
while (!NarrowIVUsers.empty()) {
|
|
NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
|
|
|
|
// Process a def-use edge. This may replace the use, so don't hold a
|
|
// use_iterator across it.
|
|
Instruction *WideUse = widenIVUse(DU, Rewriter);
|
|
|
|
// Follow all def-use edges from the previous narrow use.
|
|
if (WideUse)
|
|
pushNarrowIVUsers(DU.NarrowUse, WideUse);
|
|
|
|
// widenIVUse may have removed the def-use edge.
|
|
if (DU.NarrowDef->use_empty())
|
|
DeadInsts.emplace_back(DU.NarrowDef);
|
|
}
|
|
|
|
// Attach any debug information to the new PHI.
|
|
replaceAllDbgUsesWith(*OrigPhi, *WidePhi, *WidePhi, *DT);
|
|
|
|
return WidePhi;
|
|
}
|
|
|
|
/// Calculates control-dependent range for the given def at the given context
|
|
/// by looking at dominating conditions inside of the loop
|
|
void WidenIV::calculatePostIncRange(Instruction *NarrowDef,
|
|
Instruction *NarrowUser) {
|
|
using namespace llvm::PatternMatch;
|
|
|
|
Value *NarrowDefLHS;
|
|
const APInt *NarrowDefRHS;
|
|
if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS),
|
|
m_APInt(NarrowDefRHS))) ||
|
|
!NarrowDefRHS->isNonNegative())
|
|
return;
|
|
|
|
auto UpdateRangeFromCondition = [&] (Value *Condition,
|
|
bool TrueDest) {
|
|
CmpInst::Predicate Pred;
|
|
Value *CmpRHS;
|
|
if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS),
|
|
m_Value(CmpRHS))))
|
|
return;
|
|
|
|
CmpInst::Predicate P =
|
|
TrueDest ? Pred : CmpInst::getInversePredicate(Pred);
|
|
|
|
auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS));
|
|
auto CmpConstrainedLHSRange =
|
|
ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange);
|
|
auto NarrowDefRange = CmpConstrainedLHSRange.addWithNoWrap(
|
|
*NarrowDefRHS, OverflowingBinaryOperator::NoSignedWrap);
|
|
|
|
updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange);
|
|
};
|
|
|
|
auto UpdateRangeFromGuards = [&](Instruction *Ctx) {
|
|
if (!HasGuards)
|
|
return;
|
|
|
|
for (Instruction &I : make_range(Ctx->getIterator().getReverse(),
|
|
Ctx->getParent()->rend())) {
|
|
Value *C = nullptr;
|
|
if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C))))
|
|
UpdateRangeFromCondition(C, /*TrueDest=*/true);
|
|
}
|
|
};
|
|
|
|
UpdateRangeFromGuards(NarrowUser);
|
|
|
|
BasicBlock *NarrowUserBB = NarrowUser->getParent();
|
|
// If NarrowUserBB is statically unreachable asking dominator queries may
|
|
// yield surprising results. (e.g. the block may not have a dom tree node)
|
|
if (!DT->isReachableFromEntry(NarrowUserBB))
|
|
return;
|
|
|
|
for (auto *DTB = (*DT)[NarrowUserBB]->getIDom();
|
|
L->contains(DTB->getBlock());
|
|
DTB = DTB->getIDom()) {
|
|
auto *BB = DTB->getBlock();
|
|
auto *TI = BB->getTerminator();
|
|
UpdateRangeFromGuards(TI);
|
|
|
|
auto *BI = dyn_cast<BranchInst>(TI);
|
|
if (!BI || !BI->isConditional())
|
|
continue;
|
|
|
|
auto *TrueSuccessor = BI->getSuccessor(0);
|
|
auto *FalseSuccessor = BI->getSuccessor(1);
|
|
|
|
auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) {
|
|
return BBE.isSingleEdge() &&
|
|
DT->dominates(BBE, NarrowUser->getParent());
|
|
};
|
|
|
|
if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor)))
|
|
UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true);
|
|
|
|
if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor)))
|
|
UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false);
|
|
}
|
|
}
|
|
|
|
/// Calculates PostIncRangeInfos map for the given IV
|
|
void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) {
|
|
SmallPtrSet<Instruction *, 16> Visited;
|
|
SmallVector<Instruction *, 6> Worklist;
|
|
Worklist.push_back(OrigPhi);
|
|
Visited.insert(OrigPhi);
|
|
|
|
while (!Worklist.empty()) {
|
|
Instruction *NarrowDef = Worklist.pop_back_val();
|
|
|
|
for (Use &U : NarrowDef->uses()) {
|
|
auto *NarrowUser = cast<Instruction>(U.getUser());
|
|
|
|
// Don't go looking outside the current loop.
|
|
auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()];
|
|
if (!NarrowUserLoop || !L->contains(NarrowUserLoop))
|
|
continue;
|
|
|
|
if (!Visited.insert(NarrowUser).second)
|
|
continue;
|
|
|
|
Worklist.push_back(NarrowUser);
|
|
|
|
calculatePostIncRange(NarrowDef, NarrowUser);
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Live IV Reduction - Minimize IVs live across the loop.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Simplification of IV users based on SCEV evaluation.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
class IndVarSimplifyVisitor : public IVVisitor {
|
|
ScalarEvolution *SE;
|
|
const TargetTransformInfo *TTI;
|
|
PHINode *IVPhi;
|
|
|
|
public:
|
|
WideIVInfo WI;
|
|
|
|
IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
|
|
const TargetTransformInfo *TTI,
|
|
const DominatorTree *DTree)
|
|
: SE(SCEV), TTI(TTI), IVPhi(IV) {
|
|
DT = DTree;
|
|
WI.NarrowIV = IVPhi;
|
|
}
|
|
|
|
// Implement the interface used by simplifyUsersOfIV.
|
|
void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// Iteratively perform simplification on a worklist of IV users. Each
|
|
/// successive simplification may push more users which may themselves be
|
|
/// candidates for simplification.
|
|
///
|
|
/// Sign/Zero extend elimination is interleaved with IV simplification.
|
|
bool IndVarSimplify::simplifyAndExtend(Loop *L,
|
|
SCEVExpander &Rewriter,
|
|
LoopInfo *LI) {
|
|
SmallVector<WideIVInfo, 8> WideIVs;
|
|
|
|
auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction(
|
|
Intrinsic::getName(Intrinsic::experimental_guard));
|
|
bool HasGuards = GuardDecl && !GuardDecl->use_empty();
|
|
|
|
SmallVector<PHINode*, 8> LoopPhis;
|
|
for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
|
|
LoopPhis.push_back(cast<PHINode>(I));
|
|
}
|
|
// Each round of simplification iterates through the SimplifyIVUsers worklist
|
|
// for all current phis, then determines whether any IVs can be
|
|
// widened. Widening adds new phis to LoopPhis, inducing another round of
|
|
// simplification on the wide IVs.
|
|
bool Changed = false;
|
|
while (!LoopPhis.empty()) {
|
|
// Evaluate as many IV expressions as possible before widening any IVs. This
|
|
// forces SCEV to set no-wrap flags before evaluating sign/zero
|
|
// extension. The first time SCEV attempts to normalize sign/zero extension,
|
|
// the result becomes final. So for the most predictable results, we delay
|
|
// evaluation of sign/zero extend evaluation until needed, and avoid running
|
|
// other SCEV based analysis prior to simplifyAndExtend.
|
|
do {
|
|
PHINode *CurrIV = LoopPhis.pop_back_val();
|
|
|
|
// Information about sign/zero extensions of CurrIV.
|
|
IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
|
|
|
|
Changed |= simplifyUsersOfIV(CurrIV, SE, DT, LI, TTI, DeadInsts, Rewriter,
|
|
&Visitor);
|
|
|
|
if (Visitor.WI.WidestNativeType) {
|
|
WideIVs.push_back(Visitor.WI);
|
|
}
|
|
} while(!LoopPhis.empty());
|
|
|
|
for (; !WideIVs.empty(); WideIVs.pop_back()) {
|
|
WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts, HasGuards);
|
|
if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) {
|
|
Changed = true;
|
|
LoopPhis.push_back(WidePhi);
|
|
}
|
|
}
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// linearFunctionTestReplace and its kin. Rewrite the loop exit condition.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Given an Value which is hoped to be part of an add recurance in the given
|
|
/// loop, return the associated Phi node if so. Otherwise, return null. Note
|
|
/// that this is less general than SCEVs AddRec checking.
|
|
static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L) {
|
|
Instruction *IncI = dyn_cast<Instruction>(IncV);
|
|
if (!IncI)
|
|
return nullptr;
|
|
|
|
switch (IncI->getOpcode()) {
|
|
case Instruction::Add:
|
|
case Instruction::Sub:
|
|
break;
|
|
case Instruction::GetElementPtr:
|
|
// An IV counter must preserve its type.
|
|
if (IncI->getNumOperands() == 2)
|
|
break;
|
|
LLVM_FALLTHROUGH;
|
|
default:
|
|
return nullptr;
|
|
}
|
|
|
|
PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
|
|
if (Phi && Phi->getParent() == L->getHeader()) {
|
|
if (L->isLoopInvariant(IncI->getOperand(1)))
|
|
return Phi;
|
|
return nullptr;
|
|
}
|
|
if (IncI->getOpcode() == Instruction::GetElementPtr)
|
|
return nullptr;
|
|
|
|
// Allow add/sub to be commuted.
|
|
Phi = dyn_cast<PHINode>(IncI->getOperand(1));
|
|
if (Phi && Phi->getParent() == L->getHeader()) {
|
|
if (L->isLoopInvariant(IncI->getOperand(0)))
|
|
return Phi;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// Whether the current loop exit test is based on this value. Currently this
|
|
/// is limited to a direct use in the loop condition.
|
|
static bool isLoopExitTestBasedOn(Value *V, BasicBlock *ExitingBB) {
|
|
BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
|
|
ICmpInst *ICmp = dyn_cast<ICmpInst>(BI->getCondition());
|
|
// TODO: Allow non-icmp loop test.
|
|
if (!ICmp)
|
|
return false;
|
|
|
|
// TODO: Allow indirect use.
|
|
return ICmp->getOperand(0) == V || ICmp->getOperand(1) == V;
|
|
}
|
|
|
|
/// linearFunctionTestReplace policy. Return true unless we can show that the
|
|
/// current exit test is already sufficiently canonical.
|
|
static bool needsLFTR(Loop *L, BasicBlock *ExitingBB) {
|
|
assert(L->getLoopLatch() && "Must be in simplified form");
|
|
|
|
// Avoid converting a constant or loop invariant test back to a runtime
|
|
// test. This is critical for when SCEV's cached ExitCount is less precise
|
|
// than the current IR (such as after we've proven a particular exit is
|
|
// actually dead and thus the BE count never reaches our ExitCount.)
|
|
BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
|
|
if (L->isLoopInvariant(BI->getCondition()))
|
|
return false;
|
|
|
|
// Do LFTR to simplify the exit condition to an ICMP.
|
|
ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
|
|
if (!Cond)
|
|
return true;
|
|
|
|
// Do LFTR to simplify the exit ICMP to EQ/NE
|
|
ICmpInst::Predicate Pred = Cond->getPredicate();
|
|
if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
|
|
return true;
|
|
|
|
// Look for a loop invariant RHS
|
|
Value *LHS = Cond->getOperand(0);
|
|
Value *RHS = Cond->getOperand(1);
|
|
if (!L->isLoopInvariant(RHS)) {
|
|
if (!L->isLoopInvariant(LHS))
|
|
return true;
|
|
std::swap(LHS, RHS);
|
|
}
|
|
// Look for a simple IV counter LHS
|
|
PHINode *Phi = dyn_cast<PHINode>(LHS);
|
|
if (!Phi)
|
|
Phi = getLoopPhiForCounter(LHS, L);
|
|
|
|
if (!Phi)
|
|
return true;
|
|
|
|
// Do LFTR if PHI node is defined in the loop, but is *not* a counter.
|
|
int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
|
|
if (Idx < 0)
|
|
return true;
|
|
|
|
// Do LFTR if the exit condition's IV is *not* a simple counter.
|
|
Value *IncV = Phi->getIncomingValue(Idx);
|
|
return Phi != getLoopPhiForCounter(IncV, L);
|
|
}
|
|
|
|
/// Return true if undefined behavior would provable be executed on the path to
|
|
/// OnPathTo if Root produced a posion result. Note that this doesn't say
|
|
/// anything about whether OnPathTo is actually executed or whether Root is
|
|
/// actually poison. This can be used to assess whether a new use of Root can
|
|
/// be added at a location which is control equivalent with OnPathTo (such as
|
|
/// immediately before it) without introducing UB which didn't previously
|
|
/// exist. Note that a false result conveys no information.
|
|
static bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root,
|
|
Instruction *OnPathTo,
|
|
DominatorTree *DT) {
|
|
// Basic approach is to assume Root is poison, propagate poison forward
|
|
// through all users we can easily track, and then check whether any of those
|
|
// users are provable UB and must execute before out exiting block might
|
|
// exit.
|
|
|
|
// The set of all recursive users we've visited (which are assumed to all be
|
|
// poison because of said visit)
|
|
SmallSet<const Value *, 16> KnownPoison;
|
|
SmallVector<const Instruction*, 16> Worklist;
|
|
Worklist.push_back(Root);
|
|
while (!Worklist.empty()) {
|
|
const Instruction *I = Worklist.pop_back_val();
|
|
|
|
// If we know this must trigger UB on a path leading our target.
|
|
if (mustTriggerUB(I, KnownPoison) && DT->dominates(I, OnPathTo))
|
|
return true;
|
|
|
|
// If we can't analyze propagation through this instruction, just skip it
|
|
// and transitive users. Safe as false is a conservative result.
|
|
if (!propagatesPoison(I) && I != Root)
|
|
continue;
|
|
|
|
if (KnownPoison.insert(I).second)
|
|
for (const User *User : I->users())
|
|
Worklist.push_back(cast<Instruction>(User));
|
|
}
|
|
|
|
// Might be non-UB, or might have a path we couldn't prove must execute on
|
|
// way to exiting bb.
|
|
return false;
|
|
}
|
|
|
|
/// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
|
|
/// down to checking that all operands are constant and listing instructions
|
|
/// that may hide undef.
|
|
static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
|
|
unsigned Depth) {
|
|
if (isa<Constant>(V))
|
|
return !isa<UndefValue>(V);
|
|
|
|
if (Depth >= 6)
|
|
return false;
|
|
|
|
// Conservatively handle non-constant non-instructions. For example, Arguments
|
|
// may be undef.
|
|
Instruction *I = dyn_cast<Instruction>(V);
|
|
if (!I)
|
|
return false;
|
|
|
|
// Load and return values may be undef.
|
|
if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
|
|
return false;
|
|
|
|
// Optimistically handle other instructions.
|
|
for (Value *Op : I->operands()) {
|
|
if (!Visited.insert(Op).second)
|
|
continue;
|
|
if (!hasConcreteDefImpl(Op, Visited, Depth+1))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Return true if the given value is concrete. We must prove that undef can
|
|
/// never reach it.
|
|
///
|
|
/// TODO: If we decide that this is a good approach to checking for undef, we
|
|
/// may factor it into a common location.
|
|
static bool hasConcreteDef(Value *V) {
|
|
SmallPtrSet<Value*, 8> Visited;
|
|
Visited.insert(V);
|
|
return hasConcreteDefImpl(V, Visited, 0);
|
|
}
|
|
|
|
/// Return true if this IV has any uses other than the (soon to be rewritten)
|
|
/// loop exit test.
|
|
static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
|
|
int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
|
|
Value *IncV = Phi->getIncomingValue(LatchIdx);
|
|
|
|
for (User *U : Phi->users())
|
|
if (U != Cond && U != IncV) return false;
|
|
|
|
for (User *U : IncV->users())
|
|
if (U != Cond && U != Phi) return false;
|
|
return true;
|
|
}
|
|
|
|
/// Return true if the given phi is a "counter" in L. A counter is an
|
|
/// add recurance (of integer or pointer type) with an arbitrary start, and a
|
|
/// step of 1. Note that L must have exactly one latch.
|
|
static bool isLoopCounter(PHINode* Phi, Loop *L,
|
|
ScalarEvolution *SE) {
|
|
assert(Phi->getParent() == L->getHeader());
|
|
assert(L->getLoopLatch());
|
|
|
|
if (!SE->isSCEVable(Phi->getType()))
|
|
return false;
|
|
|
|
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
|
|
if (!AR || AR->getLoop() != L || !AR->isAffine())
|
|
return false;
|
|
|
|
const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
|
|
if (!Step || !Step->isOne())
|
|
return false;
|
|
|
|
int LatchIdx = Phi->getBasicBlockIndex(L->getLoopLatch());
|
|
Value *IncV = Phi->getIncomingValue(LatchIdx);
|
|
return (getLoopPhiForCounter(IncV, L) == Phi);
|
|
}
|
|
|
|
/// Search the loop header for a loop counter (anadd rec w/step of one)
|
|
/// suitable for use by LFTR. If multiple counters are available, select the
|
|
/// "best" one based profitable heuristics.
|
|
///
|
|
/// BECount may be an i8* pointer type. The pointer difference is already
|
|
/// valid count without scaling the address stride, so it remains a pointer
|
|
/// expression as far as SCEV is concerned.
|
|
static PHINode *FindLoopCounter(Loop *L, BasicBlock *ExitingBB,
|
|
const SCEV *BECount,
|
|
ScalarEvolution *SE, DominatorTree *DT) {
|
|
uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
|
|
|
|
Value *Cond = cast<BranchInst>(ExitingBB->getTerminator())->getCondition();
|
|
|
|
// Loop over all of the PHI nodes, looking for a simple counter.
|
|
PHINode *BestPhi = nullptr;
|
|
const SCEV *BestInit = nullptr;
|
|
BasicBlock *LatchBlock = L->getLoopLatch();
|
|
assert(LatchBlock && "Must be in simplified form");
|
|
const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
|
|
|
|
for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
|
|
PHINode *Phi = cast<PHINode>(I);
|
|
if (!isLoopCounter(Phi, L, SE))
|
|
continue;
|
|
|
|
// Avoid comparing an integer IV against a pointer Limit.
|
|
if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
|
|
continue;
|
|
|
|
const auto *AR = cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
|
|
|
|
// AR may be a pointer type, while BECount is an integer type.
|
|
// AR may be wider than BECount. With eq/ne tests overflow is immaterial.
|
|
// AR may not be a narrower type, or we may never exit.
|
|
uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
|
|
if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth))
|
|
continue;
|
|
|
|
// Avoid reusing a potentially undef value to compute other values that may
|
|
// have originally had a concrete definition.
|
|
if (!hasConcreteDef(Phi)) {
|
|
// We explicitly allow unknown phis as long as they are already used by
|
|
// the loop exit test. This is legal since performing LFTR could not
|
|
// increase the number of undef users.
|
|
Value *IncPhi = Phi->getIncomingValueForBlock(LatchBlock);
|
|
if (!isLoopExitTestBasedOn(Phi, ExitingBB) &&
|
|
!isLoopExitTestBasedOn(IncPhi, ExitingBB))
|
|
continue;
|
|
}
|
|
|
|
// Avoid introducing undefined behavior due to poison which didn't exist in
|
|
// the original program. (Annoyingly, the rules for poison and undef
|
|
// propagation are distinct, so this does NOT cover the undef case above.)
|
|
// We have to ensure that we don't introduce UB by introducing a use on an
|
|
// iteration where said IV produces poison. Our strategy here differs for
|
|
// pointers and integer IVs. For integers, we strip and reinfer as needed,
|
|
// see code in linearFunctionTestReplace. For pointers, we restrict
|
|
// transforms as there is no good way to reinfer inbounds once lost.
|
|
if (!Phi->getType()->isIntegerTy() &&
|
|
!mustExecuteUBIfPoisonOnPathTo(Phi, ExitingBB->getTerminator(), DT))
|
|
continue;
|
|
|
|
const SCEV *Init = AR->getStart();
|
|
|
|
if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
|
|
// Don't force a live loop counter if another IV can be used.
|
|
if (AlmostDeadIV(Phi, LatchBlock, Cond))
|
|
continue;
|
|
|
|
// Prefer to count-from-zero. This is a more "canonical" counter form. It
|
|
// also prefers integer to pointer IVs.
|
|
if (BestInit->isZero() != Init->isZero()) {
|
|
if (BestInit->isZero())
|
|
continue;
|
|
}
|
|
// If two IVs both count from zero or both count from nonzero then the
|
|
// narrower is likely a dead phi that has been widened. Use the wider phi
|
|
// to allow the other to be eliminated.
|
|
else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
|
|
continue;
|
|
}
|
|
BestPhi = Phi;
|
|
BestInit = Init;
|
|
}
|
|
return BestPhi;
|
|
}
|
|
|
|
/// Insert an IR expression which computes the value held by the IV IndVar
|
|
/// (which must be an loop counter w/unit stride) after the backedge of loop L
|
|
/// is taken ExitCount times.
|
|
static Value *genLoopLimit(PHINode *IndVar, BasicBlock *ExitingBB,
|
|
const SCEV *ExitCount, bool UsePostInc, Loop *L,
|
|
SCEVExpander &Rewriter, ScalarEvolution *SE) {
|
|
assert(isLoopCounter(IndVar, L, SE));
|
|
const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
|
|
const SCEV *IVInit = AR->getStart();
|
|
|
|
// IVInit may be a pointer while ExitCount is an integer when FindLoopCounter
|
|
// finds a valid pointer IV. Sign extend ExitCount in order to materialize a
|
|
// GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
|
|
// the existing GEPs whenever possible.
|
|
if (IndVar->getType()->isPointerTy() &&
|
|
!ExitCount->getType()->isPointerTy()) {
|
|
// IVOffset will be the new GEP offset that is interpreted by GEP as a
|
|
// signed value. ExitCount on the other hand represents the loop trip count,
|
|
// which is an unsigned value. FindLoopCounter only allows induction
|
|
// variables that have a positive unit stride of one. This means we don't
|
|
// have to handle the case of negative offsets (yet) and just need to zero
|
|
// extend ExitCount.
|
|
Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
|
|
const SCEV *IVOffset = SE->getTruncateOrZeroExtend(ExitCount, OfsTy);
|
|
if (UsePostInc)
|
|
IVOffset = SE->getAddExpr(IVOffset, SE->getOne(OfsTy));
|
|
|
|
// Expand the code for the iteration count.
|
|
assert(SE->isLoopInvariant(IVOffset, L) &&
|
|
"Computed iteration count is not loop invariant!");
|
|
|
|
// We could handle pointer IVs other than i8*, but we need to compensate for
|
|
// gep index scaling.
|
|
assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()),
|
|
cast<PointerType>(IndVar->getType())
|
|
->getElementType())->isOne() &&
|
|
"unit stride pointer IV must be i8*");
|
|
|
|
const SCEV *IVLimit = SE->getAddExpr(IVInit, IVOffset);
|
|
BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
|
|
return Rewriter.expandCodeFor(IVLimit, IndVar->getType(), BI);
|
|
} else {
|
|
// In any other case, convert both IVInit and ExitCount to integers before
|
|
// comparing. This may result in SCEV expansion of pointers, but in practice
|
|
// SCEV will fold the pointer arithmetic away as such:
|
|
// BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
|
|
//
|
|
// Valid Cases: (1) both integers is most common; (2) both may be pointers
|
|
// for simple memset-style loops.
|
|
//
|
|
// IVInit integer and ExitCount pointer would only occur if a canonical IV
|
|
// were generated on top of case #2, which is not expected.
|
|
|
|
assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
|
|
// For unit stride, IVCount = Start + ExitCount with 2's complement
|
|
// overflow.
|
|
|
|
// For integer IVs, truncate the IV before computing IVInit + BECount,
|
|
// unless we know apriori that the limit must be a constant when evaluated
|
|
// in the bitwidth of the IV. We prefer (potentially) keeping a truncate
|
|
// of the IV in the loop over a (potentially) expensive expansion of the
|
|
// widened exit count add(zext(add)) expression.
|
|
if (SE->getTypeSizeInBits(IVInit->getType())
|
|
> SE->getTypeSizeInBits(ExitCount->getType())) {
|
|
if (isa<SCEVConstant>(IVInit) && isa<SCEVConstant>(ExitCount))
|
|
ExitCount = SE->getZeroExtendExpr(ExitCount, IVInit->getType());
|
|
else
|
|
IVInit = SE->getTruncateExpr(IVInit, ExitCount->getType());
|
|
}
|
|
|
|
const SCEV *IVLimit = SE->getAddExpr(IVInit, ExitCount);
|
|
|
|
if (UsePostInc)
|
|
IVLimit = SE->getAddExpr(IVLimit, SE->getOne(IVLimit->getType()));
|
|
|
|
// Expand the code for the iteration count.
|
|
assert(SE->isLoopInvariant(IVLimit, L) &&
|
|
"Computed iteration count is not loop invariant!");
|
|
// Ensure that we generate the same type as IndVar, or a smaller integer
|
|
// type. In the presence of null pointer values, we have an integer type
|
|
// SCEV expression (IVInit) for a pointer type IV value (IndVar).
|
|
Type *LimitTy = ExitCount->getType()->isPointerTy() ?
|
|
IndVar->getType() : ExitCount->getType();
|
|
BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
|
|
return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
|
|
}
|
|
}
|
|
|
|
/// This method rewrites the exit condition of the loop to be a canonical !=
|
|
/// comparison against the incremented loop induction variable. This pass is
|
|
/// able to rewrite the exit tests of any loop where the SCEV analysis can
|
|
/// determine a loop-invariant trip count of the loop, which is actually a much
|
|
/// broader range than just linear tests.
|
|
bool IndVarSimplify::
|
|
linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB,
|
|
const SCEV *ExitCount,
|
|
PHINode *IndVar, SCEVExpander &Rewriter) {
|
|
assert(L->getLoopLatch() && "Loop no longer in simplified form?");
|
|
assert(isLoopCounter(IndVar, L, SE));
|
|
Instruction * const IncVar =
|
|
cast<Instruction>(IndVar->getIncomingValueForBlock(L->getLoopLatch()));
|
|
|
|
// Initialize CmpIndVar to the preincremented IV.
|
|
Value *CmpIndVar = IndVar;
|
|
bool UsePostInc = false;
|
|
|
|
// If the exiting block is the same as the backedge block, we prefer to
|
|
// compare against the post-incremented value, otherwise we must compare
|
|
// against the preincremented value.
|
|
if (ExitingBB == L->getLoopLatch()) {
|
|
// For pointer IVs, we chose to not strip inbounds which requires us not
|
|
// to add a potentially UB introducing use. We need to either a) show
|
|
// the loop test we're modifying is already in post-inc form, or b) show
|
|
// that adding a use must not introduce UB.
|
|
bool SafeToPostInc =
|
|
IndVar->getType()->isIntegerTy() ||
|
|
isLoopExitTestBasedOn(IncVar, ExitingBB) ||
|
|
mustExecuteUBIfPoisonOnPathTo(IncVar, ExitingBB->getTerminator(), DT);
|
|
if (SafeToPostInc) {
|
|
UsePostInc = true;
|
|
CmpIndVar = IncVar;
|
|
}
|
|
}
|
|
|
|
// It may be necessary to drop nowrap flags on the incrementing instruction
|
|
// if either LFTR moves from a pre-inc check to a post-inc check (in which
|
|
// case the increment might have previously been poison on the last iteration
|
|
// only) or if LFTR switches to a different IV that was previously dynamically
|
|
// dead (and as such may be arbitrarily poison). We remove any nowrap flags
|
|
// that SCEV didn't infer for the post-inc addrec (even if we use a pre-inc
|
|
// check), because the pre-inc addrec flags may be adopted from the original
|
|
// instruction, while SCEV has to explicitly prove the post-inc nowrap flags.
|
|
// TODO: This handling is inaccurate for one case: If we switch to a
|
|
// dynamically dead IV that wraps on the first loop iteration only, which is
|
|
// not covered by the post-inc addrec. (If the new IV was not dynamically
|
|
// dead, it could not be poison on the first iteration in the first place.)
|
|
if (auto *BO = dyn_cast<BinaryOperator>(IncVar)) {
|
|
const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IncVar));
|
|
if (BO->hasNoUnsignedWrap())
|
|
BO->setHasNoUnsignedWrap(AR->hasNoUnsignedWrap());
|
|
if (BO->hasNoSignedWrap())
|
|
BO->setHasNoSignedWrap(AR->hasNoSignedWrap());
|
|
}
|
|
|
|
Value *ExitCnt = genLoopLimit(
|
|
IndVar, ExitingBB, ExitCount, UsePostInc, L, Rewriter, SE);
|
|
assert(ExitCnt->getType()->isPointerTy() ==
|
|
IndVar->getType()->isPointerTy() &&
|
|
"genLoopLimit missed a cast");
|
|
|
|
// Insert a new icmp_ne or icmp_eq instruction before the branch.
|
|
BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
|
|
ICmpInst::Predicate P;
|
|
if (L->contains(BI->getSuccessor(0)))
|
|
P = ICmpInst::ICMP_NE;
|
|
else
|
|
P = ICmpInst::ICMP_EQ;
|
|
|
|
IRBuilder<> Builder(BI);
|
|
|
|
// The new loop exit condition should reuse the debug location of the
|
|
// original loop exit condition.
|
|
if (auto *Cond = dyn_cast<Instruction>(BI->getCondition()))
|
|
Builder.SetCurrentDebugLocation(Cond->getDebugLoc());
|
|
|
|
// For integer IVs, if we evaluated the limit in the narrower bitwidth to
|
|
// avoid the expensive expansion of the limit expression in the wider type,
|
|
// emit a truncate to narrow the IV to the ExitCount type. This is safe
|
|
// since we know (from the exit count bitwidth), that we can't self-wrap in
|
|
// the narrower type.
|
|
unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
|
|
unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
|
|
if (CmpIndVarSize > ExitCntSize) {
|
|
assert(!CmpIndVar->getType()->isPointerTy() &&
|
|
!ExitCnt->getType()->isPointerTy());
|
|
|
|
// Before resorting to actually inserting the truncate, use the same
|
|
// reasoning as from SimplifyIndvar::eliminateTrunc to see if we can extend
|
|
// the other side of the comparison instead. We still evaluate the limit
|
|
// in the narrower bitwidth, we just prefer a zext/sext outside the loop to
|
|
// a truncate within in.
|
|
bool Extended = false;
|
|
const SCEV *IV = SE->getSCEV(CmpIndVar);
|
|
const SCEV *TruncatedIV = SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
|
|
ExitCnt->getType());
|
|
const SCEV *ZExtTrunc =
|
|
SE->getZeroExtendExpr(TruncatedIV, CmpIndVar->getType());
|
|
|
|
if (ZExtTrunc == IV) {
|
|
Extended = true;
|
|
ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(),
|
|
"wide.trip.count");
|
|
} else {
|
|
const SCEV *SExtTrunc =
|
|
SE->getSignExtendExpr(TruncatedIV, CmpIndVar->getType());
|
|
if (SExtTrunc == IV) {
|
|
Extended = true;
|
|
ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(),
|
|
"wide.trip.count");
|
|
}
|
|
}
|
|
|
|
if (Extended) {
|
|
bool Discard;
|
|
L->makeLoopInvariant(ExitCnt, Discard);
|
|
} else
|
|
CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
|
|
"lftr.wideiv");
|
|
}
|
|
LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
|
|
<< " LHS:" << *CmpIndVar << '\n'
|
|
<< " op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==")
|
|
<< "\n"
|
|
<< " RHS:\t" << *ExitCnt << "\n"
|
|
<< "ExitCount:\t" << *ExitCount << "\n"
|
|
<< " was: " << *BI->getCondition() << "\n");
|
|
|
|
Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
|
|
Value *OrigCond = BI->getCondition();
|
|
// It's tempting to use replaceAllUsesWith here to fully replace the old
|
|
// comparison, but that's not immediately safe, since users of the old
|
|
// comparison may not be dominated by the new comparison. Instead, just
|
|
// update the branch to use the new comparison; in the common case this
|
|
// will make old comparison dead.
|
|
BI->setCondition(Cond);
|
|
DeadInsts.push_back(OrigCond);
|
|
|
|
++NumLFTR;
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// sinkUnusedInvariants. A late subpass to cleanup loop preheaders.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// If there's a single exit block, sink any loop-invariant values that
|
|
/// were defined in the preheader but not used inside the loop into the
|
|
/// exit block to reduce register pressure in the loop.
|
|
bool IndVarSimplify::sinkUnusedInvariants(Loop *L) {
|
|
BasicBlock *ExitBlock = L->getExitBlock();
|
|
if (!ExitBlock) return false;
|
|
|
|
BasicBlock *Preheader = L->getLoopPreheader();
|
|
if (!Preheader) return false;
|
|
|
|
bool MadeAnyChanges = false;
|
|
BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt();
|
|
BasicBlock::iterator I(Preheader->getTerminator());
|
|
while (I != Preheader->begin()) {
|
|
--I;
|
|
// New instructions were inserted at the end of the preheader.
|
|
if (isa<PHINode>(I))
|
|
break;
|
|
|
|
// Don't move instructions which might have side effects, since the side
|
|
// effects need to complete before instructions inside the loop. Also don't
|
|
// move instructions which might read memory, since the loop may modify
|
|
// memory. Note that it's okay if the instruction might have undefined
|
|
// behavior: LoopSimplify guarantees that the preheader dominates the exit
|
|
// block.
|
|
if (I->mayHaveSideEffects() || I->mayReadFromMemory())
|
|
continue;
|
|
|
|
// Skip debug info intrinsics.
|
|
if (isa<DbgInfoIntrinsic>(I))
|
|
continue;
|
|
|
|
// Skip eh pad instructions.
|
|
if (I->isEHPad())
|
|
continue;
|
|
|
|
// Don't sink alloca: we never want to sink static alloca's out of the
|
|
// entry block, and correctly sinking dynamic alloca's requires
|
|
// checks for stacksave/stackrestore intrinsics.
|
|
// FIXME: Refactor this check somehow?
|
|
if (isa<AllocaInst>(I))
|
|
continue;
|
|
|
|
// Determine if there is a use in or before the loop (direct or
|
|
// otherwise).
|
|
bool UsedInLoop = false;
|
|
for (Use &U : I->uses()) {
|
|
Instruction *User = cast<Instruction>(U.getUser());
|
|
BasicBlock *UseBB = User->getParent();
|
|
if (PHINode *P = dyn_cast<PHINode>(User)) {
|
|
unsigned i =
|
|
PHINode::getIncomingValueNumForOperand(U.getOperandNo());
|
|
UseBB = P->getIncomingBlock(i);
|
|
}
|
|
if (UseBB == Preheader || L->contains(UseBB)) {
|
|
UsedInLoop = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If there is, the def must remain in the preheader.
|
|
if (UsedInLoop)
|
|
continue;
|
|
|
|
// Otherwise, sink it to the exit block.
|
|
Instruction *ToMove = &*I;
|
|
bool Done = false;
|
|
|
|
if (I != Preheader->begin()) {
|
|
// Skip debug info intrinsics.
|
|
do {
|
|
--I;
|
|
} while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
|
|
|
|
if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
|
|
Done = true;
|
|
} else {
|
|
Done = true;
|
|
}
|
|
|
|
MadeAnyChanges = true;
|
|
ToMove->moveBefore(*ExitBlock, InsertPt);
|
|
if (Done) break;
|
|
InsertPt = ToMove->getIterator();
|
|
}
|
|
|
|
return MadeAnyChanges;
|
|
}
|
|
|
|
/// Return a symbolic upper bound for the backedge taken count of the loop.
|
|
/// This is more general than getConstantMaxBackedgeTakenCount as it returns
|
|
/// an arbitrary expression as opposed to only constants.
|
|
/// TODO: Move into the ScalarEvolution class.
|
|
static const SCEV* getMaxBackedgeTakenCount(ScalarEvolution &SE,
|
|
DominatorTree &DT, Loop *L) {
|
|
SmallVector<BasicBlock*, 16> ExitingBlocks;
|
|
L->getExitingBlocks(ExitingBlocks);
|
|
|
|
// Form an expression for the maximum exit count possible for this loop. We
|
|
// merge the max and exact information to approximate a version of
|
|
// getConstantMaxBackedgeTakenCount which isn't restricted to just constants.
|
|
SmallVector<const SCEV*, 4> ExitCounts;
|
|
for (BasicBlock *ExitingBB : ExitingBlocks) {
|
|
const SCEV *ExitCount = SE.getExitCount(L, ExitingBB);
|
|
if (isa<SCEVCouldNotCompute>(ExitCount))
|
|
ExitCount = SE.getExitCount(L, ExitingBB,
|
|
ScalarEvolution::ConstantMaximum);
|
|
if (!isa<SCEVCouldNotCompute>(ExitCount)) {
|
|
assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
|
|
"We should only have known counts for exiting blocks that "
|
|
"dominate latch!");
|
|
ExitCounts.push_back(ExitCount);
|
|
}
|
|
}
|
|
if (ExitCounts.empty())
|
|
return SE.getCouldNotCompute();
|
|
return SE.getUMinFromMismatchedTypes(ExitCounts);
|
|
}
|
|
|
|
bool IndVarSimplify::optimizeLoopExits(Loop *L, SCEVExpander &Rewriter) {
|
|
SmallVector<BasicBlock*, 16> ExitingBlocks;
|
|
L->getExitingBlocks(ExitingBlocks);
|
|
|
|
// Remove all exits which aren't both rewriteable and analyzeable.
|
|
auto NewEnd = llvm::remove_if(ExitingBlocks, [&](BasicBlock *ExitingBB) {
|
|
// If our exitting block exits multiple loops, we can only rewrite the
|
|
// innermost one. Otherwise, we're changing how many times the innermost
|
|
// loop runs before it exits.
|
|
if (LI->getLoopFor(ExitingBB) != L)
|
|
return true;
|
|
|
|
// Can't rewrite non-branch yet.
|
|
BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
|
|
if (!BI)
|
|
return true;
|
|
|
|
// If already constant, nothing to do.
|
|
if (isa<Constant>(BI->getCondition()))
|
|
return true;
|
|
|
|
const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
|
|
if (isa<SCEVCouldNotCompute>(ExitCount))
|
|
return true;
|
|
return false;
|
|
});
|
|
ExitingBlocks.erase(NewEnd, ExitingBlocks.end());
|
|
|
|
if (ExitingBlocks.empty())
|
|
return false;
|
|
|
|
// Get a symbolic upper bound on the loop backedge taken count.
|
|
const SCEV *MaxExitCount = getMaxBackedgeTakenCount(*SE, *DT, L);
|
|
if (isa<SCEVCouldNotCompute>(MaxExitCount))
|
|
return false;
|
|
|
|
// Visit our exit blocks in order of dominance. We know from the fact that
|
|
// all exits (left) are analyzeable that the must be a total dominance order
|
|
// between them as each must dominate the latch. The visit order only
|
|
// matters for the provably equal case.
|
|
llvm::sort(ExitingBlocks,
|
|
[&](BasicBlock *A, BasicBlock *B) {
|
|
// std::sort sorts in ascending order, so we want the inverse of
|
|
// the normal dominance relation.
|
|
if (A == B) return false;
|
|
if (DT->properlyDominates(A, B)) return true;
|
|
if (DT->properlyDominates(B, A)) return false;
|
|
llvm_unreachable("expected total dominance order!");
|
|
});
|
|
#ifdef ASSERT
|
|
for (unsigned i = 1; i < ExitingBlocks.size(); i++) {
|
|
assert(DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i]));
|
|
}
|
|
#endif
|
|
|
|
auto FoldExit = [&](BasicBlock *ExitingBB, bool IsTaken) {
|
|
BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
|
|
bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
|
|
auto *OldCond = BI->getCondition();
|
|
auto *NewCond = ConstantInt::get(OldCond->getType(),
|
|
IsTaken ? ExitIfTrue : !ExitIfTrue);
|
|
BI->setCondition(NewCond);
|
|
if (OldCond->use_empty())
|
|
DeadInsts.push_back(OldCond);
|
|
};
|
|
|
|
bool Changed = false;
|
|
SmallSet<const SCEV*, 8> DominatingExitCounts;
|
|
for (BasicBlock *ExitingBB : ExitingBlocks) {
|
|
const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
|
|
assert(!isa<SCEVCouldNotCompute>(ExitCount) && "checked above");
|
|
|
|
// If we know we'd exit on the first iteration, rewrite the exit to
|
|
// reflect this. This does not imply the loop must exit through this
|
|
// exit; there may be an earlier one taken on the first iteration.
|
|
// TODO: Given we know the backedge can't be taken, we should go ahead
|
|
// and break it. Or at least, kill all the header phis and simplify.
|
|
if (ExitCount->isZero()) {
|
|
FoldExit(ExitingBB, true);
|
|
Changed = true;
|
|
continue;
|
|
}
|
|
|
|
// If we end up with a pointer exit count, bail. Note that we can end up
|
|
// with a pointer exit count for one exiting block, and not for another in
|
|
// the same loop.
|
|
if (!ExitCount->getType()->isIntegerTy() ||
|
|
!MaxExitCount->getType()->isIntegerTy())
|
|
continue;
|
|
|
|
Type *WiderType =
|
|
SE->getWiderType(MaxExitCount->getType(), ExitCount->getType());
|
|
ExitCount = SE->getNoopOrZeroExtend(ExitCount, WiderType);
|
|
MaxExitCount = SE->getNoopOrZeroExtend(MaxExitCount, WiderType);
|
|
assert(MaxExitCount->getType() == ExitCount->getType());
|
|
|
|
// Can we prove that some other exit must be taken strictly before this
|
|
// one?
|
|
if (SE->isLoopEntryGuardedByCond(L, CmpInst::ICMP_ULT,
|
|
MaxExitCount, ExitCount)) {
|
|
FoldExit(ExitingBB, false);
|
|
Changed = true;
|
|
continue;
|
|
}
|
|
|
|
// As we run, keep track of which exit counts we've encountered. If we
|
|
// find a duplicate, we've found an exit which would have exited on the
|
|
// exiting iteration, but (from the visit order) strictly follows another
|
|
// which does the same and is thus dead.
|
|
if (!DominatingExitCounts.insert(ExitCount).second) {
|
|
FoldExit(ExitingBB, false);
|
|
Changed = true;
|
|
continue;
|
|
}
|
|
|
|
// TODO: There might be another oppurtunity to leverage SCEV's reasoning
|
|
// here. If we kept track of the min of dominanting exits so far, we could
|
|
// discharge exits with EC >= MDEC. This is less powerful than the existing
|
|
// transform (since later exits aren't considered), but potentially more
|
|
// powerful for any case where SCEV can prove a >=u b, but neither a == b
|
|
// or a >u b. Such a case is not currently known.
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
bool IndVarSimplify::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) {
|
|
SmallVector<BasicBlock*, 16> ExitingBlocks;
|
|
L->getExitingBlocks(ExitingBlocks);
|
|
|
|
// Finally, see if we can rewrite our exit conditions into a loop invariant
|
|
// form. If we have a read-only loop, and we can tell that we must exit down
|
|
// a path which does not need any of the values computed within the loop, we
|
|
// can rewrite the loop to exit on the first iteration. Note that this
|
|
// doesn't either a) tell us the loop exits on the first iteration (unless
|
|
// *all* exits are predicateable) or b) tell us *which* exit might be taken.
|
|
// This transformation looks a lot like a restricted form of dead loop
|
|
// elimination, but restricted to read-only loops and without neccesssarily
|
|
// needing to kill the loop entirely.
|
|
if (!LoopPredication)
|
|
return false;
|
|
|
|
if (!SE->hasLoopInvariantBackedgeTakenCount(L))
|
|
return false;
|
|
|
|
// Note: ExactBTC is the exact backedge taken count *iff* the loop exits
|
|
// through *explicit* control flow. We have to eliminate the possibility of
|
|
// implicit exits (see below) before we know it's truly exact.
|
|
const SCEV *ExactBTC = SE->getBackedgeTakenCount(L);
|
|
if (isa<SCEVCouldNotCompute>(ExactBTC) ||
|
|
!SE->isLoopInvariant(ExactBTC, L) ||
|
|
!isSafeToExpand(ExactBTC, *SE))
|
|
return false;
|
|
|
|
// If we end up with a pointer exit count, bail. It may be unsized.
|
|
if (!ExactBTC->getType()->isIntegerTy())
|
|
return false;
|
|
|
|
auto BadExit = [&](BasicBlock *ExitingBB) {
|
|
// If our exiting block exits multiple loops, we can only rewrite the
|
|
// innermost one. Otherwise, we're changing how many times the innermost
|
|
// loop runs before it exits.
|
|
if (LI->getLoopFor(ExitingBB) != L)
|
|
return true;
|
|
|
|
// Can't rewrite non-branch yet.
|
|
BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
|
|
if (!BI)
|
|
return true;
|
|
|
|
// If already constant, nothing to do.
|
|
if (isa<Constant>(BI->getCondition()))
|
|
return true;
|
|
|
|
// If the exit block has phis, we need to be able to compute the values
|
|
// within the loop which contains them. This assumes trivially lcssa phis
|
|
// have already been removed; TODO: generalize
|
|
BasicBlock *ExitBlock =
|
|
BI->getSuccessor(L->contains(BI->getSuccessor(0)) ? 1 : 0);
|
|
if (!ExitBlock->phis().empty())
|
|
return true;
|
|
|
|
const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
|
|
assert(!isa<SCEVCouldNotCompute>(ExactBTC) && "implied by having exact trip count");
|
|
if (!SE->isLoopInvariant(ExitCount, L) ||
|
|
!isSafeToExpand(ExitCount, *SE))
|
|
return true;
|
|
|
|
// If we end up with a pointer exit count, bail. It may be unsized.
|
|
if (!ExitCount->getType()->isIntegerTy())
|
|
return true;
|
|
|
|
return false;
|
|
};
|
|
|
|
// If we have any exits which can't be predicated themselves, than we can't
|
|
// predicate any exit which isn't guaranteed to execute before it. Consider
|
|
// two exits (a) and (b) which would both exit on the same iteration. If we
|
|
// can predicate (b), but not (a), and (a) preceeds (b) along some path, then
|
|
// we could convert a loop from exiting through (a) to one exiting through
|
|
// (b). Note that this problem exists only for exits with the same exit
|
|
// count, and we could be more aggressive when exit counts are known inequal.
|
|
llvm::sort(ExitingBlocks,
|
|
[&](BasicBlock *A, BasicBlock *B) {
|
|
// std::sort sorts in ascending order, so we want the inverse of
|
|
// the normal dominance relation, plus a tie breaker for blocks
|
|
// unordered by dominance.
|
|
if (DT->properlyDominates(A, B)) return true;
|
|
if (DT->properlyDominates(B, A)) return false;
|
|
return A->getName() < B->getName();
|
|
});
|
|
// Check to see if our exit blocks are a total order (i.e. a linear chain of
|
|
// exits before the backedge). If they aren't, reasoning about reachability
|
|
// is complicated and we choose not to for now.
|
|
for (unsigned i = 1; i < ExitingBlocks.size(); i++)
|
|
if (!DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i]))
|
|
return false;
|
|
|
|
// Given our sorted total order, we know that exit[j] must be evaluated
|
|
// after all exit[i] such j > i.
|
|
for (unsigned i = 0, e = ExitingBlocks.size(); i < e; i++)
|
|
if (BadExit(ExitingBlocks[i])) {
|
|
ExitingBlocks.resize(i);
|
|
break;
|
|
}
|
|
|
|
if (ExitingBlocks.empty())
|
|
return false;
|
|
|
|
// We rely on not being able to reach an exiting block on a later iteration
|
|
// then it's statically compute exit count. The implementaton of
|
|
// getExitCount currently has this invariant, but assert it here so that
|
|
// breakage is obvious if this ever changes..
|
|
assert(llvm::all_of(ExitingBlocks, [&](BasicBlock *ExitingBB) {
|
|
return DT->dominates(ExitingBB, L->getLoopLatch());
|
|
}));
|
|
|
|
// At this point, ExitingBlocks consists of only those blocks which are
|
|
// predicatable. Given that, we know we have at least one exit we can
|
|
// predicate if the loop is doesn't have side effects and doesn't have any
|
|
// implicit exits (because then our exact BTC isn't actually exact).
|
|
// @Reviewers - As structured, this is O(I^2) for loop nests. Any
|
|
// suggestions on how to improve this? I can obviously bail out for outer
|
|
// loops, but that seems less than ideal. MemorySSA can find memory writes,
|
|
// is that enough for *all* side effects?
|
|
for (BasicBlock *BB : L->blocks())
|
|
for (auto &I : *BB)
|
|
// TODO:isGuaranteedToTransfer
|
|
if (I.mayHaveSideEffects() || I.mayThrow())
|
|
return false;
|
|
|
|
bool Changed = false;
|
|
// Finally, do the actual predication for all predicatable blocks. A couple
|
|
// of notes here:
|
|
// 1) We don't bother to constant fold dominated exits with identical exit
|
|
// counts; that's simply a form of CSE/equality propagation and we leave
|
|
// it for dedicated passes.
|
|
// 2) We insert the comparison at the branch. Hoisting introduces additional
|
|
// legality constraints and we leave that to dedicated logic. We want to
|
|
// predicate even if we can't insert a loop invariant expression as
|
|
// peeling or unrolling will likely reduce the cost of the otherwise loop
|
|
// varying check.
|
|
Rewriter.setInsertPoint(L->getLoopPreheader()->getTerminator());
|
|
IRBuilder<> B(L->getLoopPreheader()->getTerminator());
|
|
Value *ExactBTCV = nullptr; // Lazily generated if needed.
|
|
for (BasicBlock *ExitingBB : ExitingBlocks) {
|
|
const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
|
|
|
|
auto *BI = cast<BranchInst>(ExitingBB->getTerminator());
|
|
Value *NewCond;
|
|
if (ExitCount == ExactBTC) {
|
|
NewCond = L->contains(BI->getSuccessor(0)) ?
|
|
B.getFalse() : B.getTrue();
|
|
} else {
|
|
Value *ECV = Rewriter.expandCodeFor(ExitCount);
|
|
if (!ExactBTCV)
|
|
ExactBTCV = Rewriter.expandCodeFor(ExactBTC);
|
|
Value *RHS = ExactBTCV;
|
|
if (ECV->getType() != RHS->getType()) {
|
|
Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType());
|
|
ECV = B.CreateZExt(ECV, WiderTy);
|
|
RHS = B.CreateZExt(RHS, WiderTy);
|
|
}
|
|
auto Pred = L->contains(BI->getSuccessor(0)) ?
|
|
ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
|
|
NewCond = B.CreateICmp(Pred, ECV, RHS);
|
|
}
|
|
Value *OldCond = BI->getCondition();
|
|
BI->setCondition(NewCond);
|
|
if (OldCond->use_empty())
|
|
DeadInsts.push_back(OldCond);
|
|
Changed = true;
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// IndVarSimplify driver. Manage several subpasses of IV simplification.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool IndVarSimplify::run(Loop *L) {
|
|
// We need (and expect!) the incoming loop to be in LCSSA.
|
|
assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
|
|
"LCSSA required to run indvars!");
|
|
|
|
// If LoopSimplify form is not available, stay out of trouble. Some notes:
|
|
// - LSR currently only supports LoopSimplify-form loops. Indvars'
|
|
// canonicalization can be a pessimization without LSR to "clean up"
|
|
// afterwards.
|
|
// - We depend on having a preheader; in particular,
|
|
// Loop::getCanonicalInductionVariable only supports loops with preheaders,
|
|
// and we're in trouble if we can't find the induction variable even when
|
|
// we've manually inserted one.
|
|
// - LFTR relies on having a single backedge.
|
|
if (!L->isLoopSimplifyForm())
|
|
return false;
|
|
|
|
#ifndef NDEBUG
|
|
// Used below for a consistency check only
|
|
// Note: Since the result returned by ScalarEvolution may depend on the order
|
|
// in which previous results are added to its cache, the call to
|
|
// getBackedgeTakenCount() may change following SCEV queries.
|
|
const SCEV *BackedgeTakenCount;
|
|
if (VerifyIndvars)
|
|
BackedgeTakenCount = SE->getBackedgeTakenCount(L);
|
|
#endif
|
|
|
|
bool Changed = false;
|
|
// If there are any floating-point recurrences, attempt to
|
|
// transform them to use integer recurrences.
|
|
Changed |= rewriteNonIntegerIVs(L);
|
|
|
|
// Create a rewriter object which we'll use to transform the code with.
|
|
SCEVExpander Rewriter(*SE, DL, "indvars");
|
|
#ifndef NDEBUG
|
|
Rewriter.setDebugType(DEBUG_TYPE);
|
|
#endif
|
|
|
|
// Eliminate redundant IV users.
|
|
//
|
|
// Simplification works best when run before other consumers of SCEV. We
|
|
// attempt to avoid evaluating SCEVs for sign/zero extend operations until
|
|
// other expressions involving loop IVs have been evaluated. This helps SCEV
|
|
// set no-wrap flags before normalizing sign/zero extension.
|
|
Rewriter.disableCanonicalMode();
|
|
Changed |= simplifyAndExtend(L, Rewriter, LI);
|
|
|
|
// Check to see if we can compute the final value of any expressions
|
|
// that are recurrent in the loop, and substitute the exit values from the
|
|
// loop into any instructions outside of the loop that use the final values
|
|
// of the current expressions.
|
|
if (ReplaceExitValue != NeverRepl) {
|
|
if (int Rewrites = rewriteLoopExitValues(L, LI, TLI, SE, TTI, Rewriter, DT,
|
|
ReplaceExitValue, DeadInsts)) {
|
|
NumReplaced += Rewrites;
|
|
Changed = true;
|
|
}
|
|
}
|
|
|
|
// Eliminate redundant IV cycles.
|
|
NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
|
|
|
|
// Try to eliminate loop exits based on analyzeable exit counts
|
|
if (optimizeLoopExits(L, Rewriter)) {
|
|
Changed = true;
|
|
// Given we've changed exit counts, notify SCEV
|
|
SE->forgetLoop(L);
|
|
}
|
|
|
|
// Try to form loop invariant tests for loop exits by changing how many
|
|
// iterations of the loop run when that is unobservable.
|
|
if (predicateLoopExits(L, Rewriter)) {
|
|
Changed = true;
|
|
// Given we've changed exit counts, notify SCEV
|
|
SE->forgetLoop(L);
|
|
}
|
|
|
|
// If we have a trip count expression, rewrite the loop's exit condition
|
|
// using it.
|
|
if (!DisableLFTR) {
|
|
BasicBlock *PreHeader = L->getLoopPreheader();
|
|
BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
|
|
|
|
SmallVector<BasicBlock*, 16> ExitingBlocks;
|
|
L->getExitingBlocks(ExitingBlocks);
|
|
for (BasicBlock *ExitingBB : ExitingBlocks) {
|
|
// Can't rewrite non-branch yet.
|
|
if (!isa<BranchInst>(ExitingBB->getTerminator()))
|
|
continue;
|
|
|
|
// If our exitting block exits multiple loops, we can only rewrite the
|
|
// innermost one. Otherwise, we're changing how many times the innermost
|
|
// loop runs before it exits.
|
|
if (LI->getLoopFor(ExitingBB) != L)
|
|
continue;
|
|
|
|
if (!needsLFTR(L, ExitingBB))
|
|
continue;
|
|
|
|
const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
|
|
if (isa<SCEVCouldNotCompute>(ExitCount))
|
|
continue;
|
|
|
|
// This was handled above, but as we form SCEVs, we can sometimes refine
|
|
// existing ones; this allows exit counts to be folded to zero which
|
|
// weren't when optimizeLoopExits saw them. Arguably, we should iterate
|
|
// until stable to handle cases like this better.
|
|
if (ExitCount->isZero())
|
|
continue;
|
|
|
|
PHINode *IndVar = FindLoopCounter(L, ExitingBB, ExitCount, SE, DT);
|
|
if (!IndVar)
|
|
continue;
|
|
|
|
// Avoid high cost expansions. Note: This heuristic is questionable in
|
|
// that our definition of "high cost" is not exactly principled.
|
|
if (Rewriter.isHighCostExpansion(ExitCount, L, SCEVCheapExpansionBudget,
|
|
TTI, PreHeaderBR))
|
|
continue;
|
|
|
|
// Check preconditions for proper SCEVExpander operation. SCEV does not
|
|
// express SCEVExpander's dependencies, such as LoopSimplify. Instead
|
|
// any pass that uses the SCEVExpander must do it. This does not work
|
|
// well for loop passes because SCEVExpander makes assumptions about
|
|
// all loops, while LoopPassManager only forces the current loop to be
|
|
// simplified.
|
|
//
|
|
// FIXME: SCEV expansion has no way to bail out, so the caller must
|
|
// explicitly check any assumptions made by SCEV. Brittle.
|
|
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ExitCount);
|
|
if (!AR || AR->getLoop()->getLoopPreheader())
|
|
Changed |= linearFunctionTestReplace(L, ExitingBB,
|
|
ExitCount, IndVar,
|
|
Rewriter);
|
|
}
|
|
}
|
|
// Clear the rewriter cache, because values that are in the rewriter's cache
|
|
// can be deleted in the loop below, causing the AssertingVH in the cache to
|
|
// trigger.
|
|
Rewriter.clear();
|
|
|
|
// Now that we're done iterating through lists, clean up any instructions
|
|
// which are now dead.
|
|
while (!DeadInsts.empty())
|
|
if (Instruction *Inst =
|
|
dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()))
|
|
Changed |=
|
|
RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI, MSSAU.get());
|
|
|
|
// The Rewriter may not be used from this point on.
|
|
|
|
// Loop-invariant instructions in the preheader that aren't used in the
|
|
// loop may be sunk below the loop to reduce register pressure.
|
|
Changed |= sinkUnusedInvariants(L);
|
|
|
|
// rewriteFirstIterationLoopExitValues does not rely on the computation of
|
|
// trip count and therefore can further simplify exit values in addition to
|
|
// rewriteLoopExitValues.
|
|
Changed |= rewriteFirstIterationLoopExitValues(L);
|
|
|
|
// Clean up dead instructions.
|
|
Changed |= DeleteDeadPHIs(L->getHeader(), TLI, MSSAU.get());
|
|
|
|
// Check a post-condition.
|
|
assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
|
|
"Indvars did not preserve LCSSA!");
|
|
|
|
// Verify that LFTR, and any other change have not interfered with SCEV's
|
|
// ability to compute trip count. We may have *changed* the exit count, but
|
|
// only by reducing it.
|
|
#ifndef NDEBUG
|
|
if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
|
|
SE->forgetLoop(L);
|
|
const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
|
|
if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
|
|
SE->getTypeSizeInBits(NewBECount->getType()))
|
|
NewBECount = SE->getTruncateOrNoop(NewBECount,
|
|
BackedgeTakenCount->getType());
|
|
else
|
|
BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
|
|
NewBECount->getType());
|
|
assert(!SE->isKnownPredicate(ICmpInst::ICMP_ULT, BackedgeTakenCount,
|
|
NewBECount) && "indvars must preserve SCEV");
|
|
}
|
|
if (VerifyMemorySSA && MSSAU)
|
|
MSSAU->getMemorySSA()->verifyMemorySSA();
|
|
#endif
|
|
|
|
return Changed;
|
|
}
|
|
|
|
PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM,
|
|
LoopStandardAnalysisResults &AR,
|
|
LPMUpdater &) {
|
|
Function *F = L.getHeader()->getParent();
|
|
const DataLayout &DL = F->getParent()->getDataLayout();
|
|
|
|
IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI, AR.MSSA);
|
|
if (!IVS.run(&L))
|
|
return PreservedAnalyses::all();
|
|
|
|
auto PA = getLoopPassPreservedAnalyses();
|
|
PA.preserveSet<CFGAnalyses>();
|
|
if (AR.MSSA)
|
|
PA.preserve<MemorySSAAnalysis>();
|
|
return PA;
|
|
}
|
|
|
|
namespace {
|
|
|
|
struct IndVarSimplifyLegacyPass : public LoopPass {
|
|
static char ID; // Pass identification, replacement for typeid
|
|
|
|
IndVarSimplifyLegacyPass() : LoopPass(ID) {
|
|
initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnLoop(Loop *L, LPPassManager &LPM) override {
|
|
if (skipLoop(L))
|
|
return false;
|
|
|
|
auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
|
|
auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
|
|
auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
|
|
auto *TLI = TLIP ? &TLIP->getTLI(*L->getHeader()->getParent()) : nullptr;
|
|
auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
|
|
auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr;
|
|
const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
|
|
auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
|
|
MemorySSA *MSSA = nullptr;
|
|
if (MSSAAnalysis)
|
|
MSSA = &MSSAAnalysis->getMSSA();
|
|
|
|
IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI, MSSA);
|
|
return IVS.run(L);
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesCFG();
|
|
AU.addPreserved<MemorySSAWrapperPass>();
|
|
getLoopAnalysisUsage(AU);
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char IndVarSimplifyLegacyPass::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars",
|
|
"Induction Variable Simplification", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopPass)
|
|
INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars",
|
|
"Induction Variable Simplification", false, false)
|
|
|
|
Pass *llvm::createIndVarSimplifyPass() {
|
|
return new IndVarSimplifyLegacyPass();
|
|
}
|