forked from OSchip/llvm-project
403 lines
16 KiB
C++
403 lines
16 KiB
C++
//===- LoopTiling.cpp --- Loop tiling pass ------------------------------*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a pass to tile loop nests.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Analysis/AffineAnalysis.h"
|
|
#include "mlir/Analysis/AffineStructures.h"
|
|
#include "mlir/Analysis/LoopAnalysis.h"
|
|
#include "mlir/Analysis/Utils.h"
|
|
#include "mlir/Dialect/AffineOps/AffineOps.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/Pass/Pass.h"
|
|
#include "mlir/Transforms/LoopUtils.h"
|
|
#include "mlir/Transforms/Passes.h"
|
|
#include "mlir/Transforms/Utils.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
using namespace mlir;
|
|
|
|
#define DEBUG_TYPE "affine-loop-tile"
|
|
|
|
static llvm::cl::OptionCategory clOptionsCategory(DEBUG_TYPE " options");
|
|
|
|
static llvm::cl::opt<unsigned long long>
|
|
clCacheSizeKiB("tile-cache-size",
|
|
llvm::cl::desc("Set size of cache to tile for in KiB"),
|
|
llvm::cl::cat(clOptionsCategory));
|
|
|
|
// Tile size to use for all loops (overrides -tile-sizes if provided).
|
|
static llvm::cl::opt<unsigned>
|
|
clTileSize("tile-size", llvm::cl::desc("Use this tile size for all loops"),
|
|
llvm::cl::cat(clOptionsCategory));
|
|
|
|
// List of tile sizes. If any of them aren't provided, they are filled with
|
|
// clTileSize / kDefaultTileSize.
|
|
static llvm::cl::list<unsigned> clTileSizes(
|
|
"tile-sizes",
|
|
llvm::cl::desc(
|
|
"List of tile sizes for each perfect nest (overridden by -tile-size)"),
|
|
llvm::cl::ZeroOrMore, llvm::cl::cat(clOptionsCategory));
|
|
|
|
namespace {
|
|
|
|
/// A pass to perform loop tiling on all suitable loop nests of a Function.
|
|
struct LoopTiling : public FunctionPass<LoopTiling> {
|
|
explicit LoopTiling(uint64_t cacheSizeBytes = kDefaultCacheMemCapacity,
|
|
bool avoidMaxMinBounds = true)
|
|
: cacheSizeBytes(cacheSizeBytes), avoidMaxMinBounds(avoidMaxMinBounds) {}
|
|
|
|
void runOnFunction() override;
|
|
void getTileSizes(ArrayRef<AffineForOp> band,
|
|
SmallVectorImpl<unsigned> *tileSizes);
|
|
|
|
// Default tile size if nothing is provided.
|
|
constexpr static unsigned kDefaultTileSize = 4;
|
|
constexpr static uint64_t kDefaultCacheMemCapacity = 512 * 1024UL;
|
|
|
|
// Capacity of the cache to tile for.
|
|
uint64_t cacheSizeBytes;
|
|
// If true, tile sizes are set to avoid max/min in bounds if possible.
|
|
bool avoidMaxMinBounds;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// Creates a pass to perform loop tiling on all suitable loop nests of a
|
|
/// Function.
|
|
std::unique_ptr<OpPassBase<FuncOp>>
|
|
mlir::createLoopTilingPass(uint64_t cacheSizeBytes) {
|
|
return std::make_unique<LoopTiling>(cacheSizeBytes);
|
|
}
|
|
|
|
// Move the loop body of AffineForOp 'src' from 'src' into the specified
|
|
// location in destination's body, ignoring the terminator.
|
|
static inline void moveLoopBody(AffineForOp src, AffineForOp dest,
|
|
Block::iterator loc) {
|
|
auto &insts = src.getBody()->getOperations();
|
|
dest.getBody()->getOperations().splice(loc, insts, insts.begin(),
|
|
std::prev(insts.end()));
|
|
}
|
|
|
|
// Move the loop body of AffineForOp 'src' from 'src' to the start of dest's
|
|
// body.
|
|
static inline void moveLoopBody(AffineForOp src, AffineForOp dest) {
|
|
moveLoopBody(src, dest, dest.getBody()->begin());
|
|
}
|
|
|
|
/// Constructs and sets new loop bounds after tiling for the case of
|
|
/// hyper-rectangular index sets, where the bounds of one dimension do not
|
|
/// depend on other dimensions. Bounds of each dimension can thus be treated
|
|
/// independently, and deriving the new bounds is much simpler and faster
|
|
/// than for the case of tiling arbitrary polyhedral shapes.
|
|
static void
|
|
constructTiledIndexSetHyperRect(MutableArrayRef<AffineForOp> origLoops,
|
|
MutableArrayRef<AffineForOp> newLoops,
|
|
ArrayRef<unsigned> tileSizes) {
|
|
assert(!origLoops.empty());
|
|
assert(origLoops.size() == tileSizes.size());
|
|
|
|
OpBuilder b(origLoops[0].getOperation());
|
|
unsigned width = origLoops.size();
|
|
|
|
// Bounds for tile space loops.
|
|
for (unsigned i = 0; i < width; i++) {
|
|
auto lbOperands = origLoops[i].getLowerBoundOperands();
|
|
auto ubOperands = origLoops[i].getUpperBoundOperands();
|
|
SmallVector<Value, 4> newLbOperands(lbOperands);
|
|
SmallVector<Value, 4> newUbOperands(ubOperands);
|
|
newLoops[i].setLowerBound(newLbOperands, origLoops[i].getLowerBoundMap());
|
|
newLoops[i].setUpperBound(newUbOperands, origLoops[i].getUpperBoundMap());
|
|
newLoops[i].setStep(tileSizes[i]);
|
|
}
|
|
// Bounds for intra-tile loops.
|
|
for (unsigned i = 0; i < width; i++) {
|
|
int64_t largestDiv = getLargestDivisorOfTripCount(origLoops[i]);
|
|
auto mayBeConstantCount = getConstantTripCount(origLoops[i]);
|
|
// The lower bound is just the tile-space loop.
|
|
AffineMap lbMap = b.getDimIdentityMap();
|
|
newLoops[width + i].setLowerBound(
|
|
/*operands=*/newLoops[i].getInductionVar(), lbMap);
|
|
|
|
// Set the upper bound.
|
|
if (mayBeConstantCount.hasValue() &&
|
|
mayBeConstantCount.getValue() < tileSizes[i]) {
|
|
// Trip count is less than tile size; upper bound is the trip count.
|
|
auto ubMap = b.getConstantAffineMap(mayBeConstantCount.getValue());
|
|
newLoops[width + i].setUpperBoundMap(ubMap);
|
|
} else if (largestDiv % tileSizes[i] != 0) {
|
|
// Intra-tile loop ii goes from i to min(i + tileSize, ub_i).
|
|
// Construct the upper bound map; the operands are the original operands
|
|
// with 'i' (tile-space loop) appended to it. The new upper bound map is
|
|
// the original one with an additional expression i + tileSize appended.
|
|
auto ub = origLoops[i].getUpperBound();
|
|
SmallVector<Value, 4> ubOperands;
|
|
ubOperands.reserve(ub.getNumOperands() + 1);
|
|
auto origUbMap = ub.getMap();
|
|
// Add dim operands from original upper bound.
|
|
for (unsigned j = 0, e = origUbMap.getNumDims(); j < e; ++j) {
|
|
ubOperands.push_back(ub.getOperand(j));
|
|
}
|
|
// Add dim operand for new loop upper bound.
|
|
ubOperands.push_back(newLoops[i].getInductionVar());
|
|
// Add symbol operands from original upper bound.
|
|
for (unsigned j = 0, e = origUbMap.getNumSymbols(); j < e; ++j) {
|
|
ubOperands.push_back(ub.getOperand(origUbMap.getNumDims() + j));
|
|
}
|
|
SmallVector<AffineExpr, 4> boundExprs;
|
|
boundExprs.reserve(1 + origUbMap.getNumResults());
|
|
auto dim = b.getAffineDimExpr(origUbMap.getNumDims());
|
|
// The new upper bound map is the original one with an additional
|
|
// expression i + tileSize appended.
|
|
boundExprs.push_back(dim + tileSizes[i]);
|
|
boundExprs.append(origUbMap.getResults().begin(),
|
|
origUbMap.getResults().end());
|
|
auto ubMap = AffineMap::get(origUbMap.getNumDims() + 1,
|
|
origUbMap.getNumSymbols(), boundExprs);
|
|
newLoops[width + i].setUpperBound(/*operands=*/ubOperands, ubMap);
|
|
} else {
|
|
// No need of the min expression.
|
|
auto dim = b.getAffineDimExpr(0);
|
|
auto ubMap = AffineMap::get(1, 0, dim + tileSizes[i]);
|
|
newLoops[width + i].setUpperBound(newLoops[i].getInductionVar(), ubMap);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Tiles the specified band of perfectly nested loops creating tile-space loops
|
|
/// and intra-tile loops. A band is a contiguous set of loops.
|
|
// TODO(bondhugula): handle non hyper-rectangular spaces.
|
|
LogicalResult mlir::tileCodeGen(MutableArrayRef<AffineForOp> band,
|
|
ArrayRef<unsigned> tileSizes) {
|
|
assert(!band.empty());
|
|
assert(band.size() == tileSizes.size() && "Incorrect number of tile sizes");
|
|
|
|
// Check if the supplied for op's are all successively nested.
|
|
for (unsigned i = 1, e = band.size(); i < e; i++) {
|
|
assert(band[i].getParentOp() == band[i - 1].getOperation());
|
|
}
|
|
|
|
auto origLoops = band;
|
|
|
|
AffineForOp rootAffineForOp = origLoops[0];
|
|
auto loc = rootAffineForOp.getLoc();
|
|
// Note that width is at least one since band isn't empty.
|
|
unsigned width = band.size();
|
|
|
|
SmallVector<AffineForOp, 12> newLoops(2 * width);
|
|
AffineForOp innermostPointLoop;
|
|
|
|
// The outermost among the loops as we add more..
|
|
auto *topLoop = rootAffineForOp.getOperation();
|
|
|
|
// Add intra-tile (or point) loops.
|
|
for (unsigned i = 0; i < width; i++) {
|
|
OpBuilder b(topLoop);
|
|
// Loop bounds will be set later.
|
|
auto pointLoop = b.create<AffineForOp>(loc, 0, 0);
|
|
pointLoop.getBody()->getOperations().splice(
|
|
pointLoop.getBody()->begin(), topLoop->getBlock()->getOperations(),
|
|
topLoop);
|
|
newLoops[2 * width - 1 - i] = pointLoop;
|
|
topLoop = pointLoop.getOperation();
|
|
if (i == 0)
|
|
innermostPointLoop = pointLoop;
|
|
}
|
|
|
|
// Add tile space loops;
|
|
for (unsigned i = width; i < 2 * width; i++) {
|
|
OpBuilder b(topLoop);
|
|
// Loop bounds will be set later.
|
|
auto tileSpaceLoop = b.create<AffineForOp>(loc, 0, 0);
|
|
tileSpaceLoop.getBody()->getOperations().splice(
|
|
tileSpaceLoop.getBody()->begin(), topLoop->getBlock()->getOperations(),
|
|
topLoop);
|
|
newLoops[2 * width - i - 1] = tileSpaceLoop;
|
|
topLoop = tileSpaceLoop.getOperation();
|
|
}
|
|
|
|
// Move the loop body of the original nest to the new one.
|
|
moveLoopBody(origLoops[origLoops.size() - 1], innermostPointLoop);
|
|
|
|
SmallVector<Value, 8> origLoopIVs;
|
|
extractForInductionVars(band, &origLoopIVs);
|
|
SmallVector<Optional<Value>, 6> ids(origLoopIVs.begin(), origLoopIVs.end());
|
|
FlatAffineConstraints cst;
|
|
getIndexSet(band, &cst);
|
|
|
|
if (!cst.isHyperRectangular(0, width)) {
|
|
rootAffineForOp.emitError("tiled code generation unimplemented for the "
|
|
"non-hyperrectangular case");
|
|
return failure();
|
|
}
|
|
|
|
constructTiledIndexSetHyperRect(origLoops, newLoops, tileSizes);
|
|
// In this case, the point loop IVs just replace the original ones.
|
|
for (unsigned i = 0; i < width; i++) {
|
|
origLoopIVs[i].replaceAllUsesWith(newLoops[i + width].getInductionVar());
|
|
}
|
|
|
|
// Erase the old loop nest.
|
|
rootAffineForOp.erase();
|
|
|
|
return success();
|
|
}
|
|
|
|
// Identify valid and profitable bands of loops to tile. This is currently just
|
|
// a temporary placeholder to test the mechanics of tiled code generation.
|
|
// Returns all maximal outermost perfect loop nests to tile.
|
|
static void getTileableBands(FuncOp f,
|
|
std::vector<SmallVector<AffineForOp, 6>> *bands) {
|
|
// Get maximal perfect nest of 'affine.for' insts starting from root
|
|
// (inclusive).
|
|
auto getMaximalPerfectLoopNest = [&](AffineForOp root) {
|
|
SmallVector<AffineForOp, 6> band;
|
|
getPerfectlyNestedLoops(band, root);
|
|
bands->push_back(band);
|
|
};
|
|
|
|
for (auto &block : f)
|
|
for (auto &op : block)
|
|
if (auto forOp = dyn_cast<AffineForOp>(op))
|
|
getMaximalPerfectLoopNest(forOp);
|
|
}
|
|
|
|
// Reduce each tile size to the largest divisor of the corresponding trip count
|
|
// (if the trip count is known).
|
|
static void adjustToDivisorsOfTripCounts(ArrayRef<AffineForOp> band,
|
|
SmallVectorImpl<unsigned> *tileSizes) {
|
|
assert(band.size() == tileSizes->size() && "invalid tile size count");
|
|
for (unsigned i = 0, e = band.size(); i < e; i++) {
|
|
unsigned &tSizeAdjusted = (*tileSizes)[i];
|
|
auto mayConst = getConstantTripCount(band[i]);
|
|
if (!mayConst.hasValue())
|
|
continue;
|
|
// Adjust the tile size to largest factor of the trip count less than
|
|
// tSize.
|
|
uint64_t constTripCount = mayConst.getValue();
|
|
if (constTripCount > 1 && tSizeAdjusted > constTripCount / 2)
|
|
tSizeAdjusted = constTripCount / 2;
|
|
while (constTripCount % tSizeAdjusted != 0)
|
|
tSizeAdjusted--;
|
|
}
|
|
}
|
|
|
|
// Returns tile sizes to use. Checks CL options; if none are specified, sets it
|
|
// based on a simple model that looks at the memory footprint and determines
|
|
// tile sizes assuming identity accesses / 1:1 tile size proportional footprint
|
|
// along each of the dimensions being tiled.
|
|
// TODO(mlir-team): evolve this model. Tile size determination is a large area
|
|
// to play with in general.
|
|
void LoopTiling::getTileSizes(ArrayRef<AffineForOp> band,
|
|
SmallVectorImpl<unsigned> *tileSizes) {
|
|
if (band.empty())
|
|
return;
|
|
|
|
tileSizes->resize(band.size());
|
|
|
|
// Use clTileSize for all loops if specified.
|
|
if (clTileSize.getNumOccurrences() > 0) {
|
|
std::fill(tileSizes->begin(), tileSizes->end(), clTileSize);
|
|
return;
|
|
}
|
|
|
|
// Use clTileSizes and fill them with default tile size if it's short.
|
|
if (!clTileSizes.empty()) {
|
|
std::fill(tileSizes->begin(), tileSizes->end(),
|
|
LoopTiling::kDefaultTileSize);
|
|
std::copy(clTileSizes.begin(),
|
|
clTileSizes.begin() + std::min(clTileSizes.size(), band.size()),
|
|
tileSizes->begin());
|
|
return;
|
|
}
|
|
|
|
// The first loop in the band.
|
|
auto rootForOp = band[0];
|
|
(void)rootForOp;
|
|
|
|
// Obtain memory footprint and set tile sizes so that a tile fits in
|
|
// the cache size. This is an approximation with the assumption that the
|
|
// footprint increases with the tile size linearly in that dimension (i.e.,
|
|
// assumes one-to-one access function).
|
|
auto fp = getMemoryFootprintBytes(band[0], 0);
|
|
if (!fp.hasValue()) {
|
|
// Fill with default tile sizes if footprint is unknown.
|
|
std::fill(tileSizes->begin(), tileSizes->end(),
|
|
LoopTiling::kDefaultTileSize);
|
|
if (avoidMaxMinBounds)
|
|
adjustToDivisorsOfTripCounts(band, tileSizes);
|
|
LLVM_DEBUG(
|
|
rootForOp.emitWarning("memory footprint unknown: using default tile "
|
|
"sizes adjusted to trip count divisors"));
|
|
return;
|
|
}
|
|
|
|
// Check how many times larger the cache size is when compared to footprint.
|
|
uint64_t excessFactor = llvm::divideCeil(fp.getValue(), cacheSizeBytes);
|
|
if (excessFactor <= 1) {
|
|
// No need of any tiling - set tile size to 1.
|
|
std::fill(tileSizes->begin(), tileSizes->end(), 1);
|
|
return;
|
|
}
|
|
|
|
// Divide all loops equally in an attempt to reduce footprint.
|
|
// TODO(bondhugula): this is approximate. Ideally, obtain reuse factor /
|
|
// profitability along each dimension and weight tile sizes based on that as
|
|
// one possible approach. Or compute a polynomial in tile sizes and solve for
|
|
// it.
|
|
|
|
// For an n-d tileable band, compute n^th root of the excess.
|
|
unsigned tSize =
|
|
static_cast<unsigned>(floorl(std::pow(excessFactor, 1.0 / band.size())));
|
|
// We'll keep a running product to determine the last tile size better.
|
|
unsigned cumulProductOfTileSizes = 1;
|
|
for (unsigned i = 0, e = band.size(); i < e; i++) {
|
|
if (i < e - 1)
|
|
(*tileSizes)[i] = tSize;
|
|
else
|
|
// Set last tile size to cover the balance.
|
|
(*tileSizes)[i] = std::max(
|
|
1U, static_cast<unsigned>(excessFactor / cumulProductOfTileSizes));
|
|
cumulProductOfTileSizes *= (*tileSizes)[i];
|
|
}
|
|
if (avoidMaxMinBounds)
|
|
adjustToDivisorsOfTripCounts(band, tileSizes);
|
|
}
|
|
|
|
void LoopTiling::runOnFunction() {
|
|
// Override cache size if provided on command line.
|
|
if (clCacheSizeKiB.getNumOccurrences() > 0)
|
|
cacheSizeBytes = clCacheSizeKiB * 1024;
|
|
|
|
// Bands of loops to tile.
|
|
std::vector<SmallVector<AffineForOp, 6>> bands;
|
|
getTileableBands(getFunction(), &bands);
|
|
|
|
for (auto &band : bands) {
|
|
// Set up tile sizes; fill missing tile sizes at the end with default tile
|
|
// size or clTileSize if one was provided.
|
|
SmallVector<unsigned, 6> tileSizes;
|
|
getTileSizes(band, &tileSizes);
|
|
if (llvm::DebugFlag) {
|
|
auto diag = band[0].emitRemark("using tile sizes [");
|
|
for (auto tSize : tileSizes)
|
|
diag << tSize << " ";
|
|
diag << "]\n";
|
|
}
|
|
if (failed(tileCodeGen(band, tileSizes)))
|
|
return signalPassFailure();
|
|
}
|
|
}
|
|
|
|
constexpr unsigned LoopTiling::kDefaultTileSize;
|
|
constexpr uint64_t LoopTiling::kDefaultCacheMemCapacity;
|
|
|
|
static PassRegistration<LoopTiling> pass("affine-loop-tile", "Tile loop nests");
|