forked from OSchip/llvm-project
899 lines
22 KiB
C++
899 lines
22 KiB
C++
//===-- Scalar.cpp --------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "lldb/Utility/Scalar.h"
|
|
#include "lldb/Utility/DataBufferHeap.h"
|
|
#include "lldb/Utility/DataExtractor.h"
|
|
#include "lldb/Utility/Endian.h"
|
|
#include "lldb/Utility/Status.h"
|
|
#include "lldb/Utility/Stream.h"
|
|
#include "lldb/Utility/StreamString.h"
|
|
#include "lldb/lldb-types.h"
|
|
#include "llvm/ADT/APSInt.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
|
|
#include <cinttypes>
|
|
#include <cstdio>
|
|
|
|
using namespace lldb;
|
|
using namespace lldb_private;
|
|
|
|
using llvm::APFloat;
|
|
using llvm::APInt;
|
|
using llvm::APSInt;
|
|
|
|
Scalar::PromotionKey Scalar::GetPromoKey() const {
|
|
switch (m_type) {
|
|
case e_void:
|
|
return PromotionKey{e_void, 0, false};
|
|
case e_int:
|
|
return PromotionKey{e_int, m_integer.getBitWidth(), m_integer.isUnsigned()};
|
|
case e_float:
|
|
return GetFloatPromoKey(m_float.getSemantics());
|
|
}
|
|
llvm_unreachable("Unhandled category!");
|
|
}
|
|
|
|
Scalar::PromotionKey Scalar::GetFloatPromoKey(const llvm::fltSemantics &sem) {
|
|
static const llvm::fltSemantics *const order[] = {
|
|
&APFloat::IEEEsingle(), &APFloat::IEEEdouble(),
|
|
&APFloat::x87DoubleExtended()};
|
|
for (const auto &entry : llvm::enumerate(order)) {
|
|
if (entry.value() == &sem)
|
|
return PromotionKey{e_float, entry.index(), false};
|
|
}
|
|
llvm_unreachable("Unsupported semantics!");
|
|
}
|
|
|
|
// Promote to max type currently follows the ANSI C rule for type promotion in
|
|
// expressions.
|
|
Scalar::Type Scalar::PromoteToMaxType(Scalar &lhs, Scalar &rhs) {
|
|
const auto &Promote = [](Scalar &a, const Scalar &b) {
|
|
switch (b.GetType()) {
|
|
case e_void:
|
|
break;
|
|
case e_int:
|
|
a.IntegralPromote(b.m_integer.getBitWidth(), b.m_integer.isSigned());
|
|
break;
|
|
case e_float:
|
|
a.FloatPromote(b.m_float.getSemantics());
|
|
}
|
|
};
|
|
|
|
PromotionKey lhs_key = lhs.GetPromoKey();
|
|
PromotionKey rhs_key = rhs.GetPromoKey();
|
|
|
|
if (lhs_key > rhs_key)
|
|
Promote(rhs, lhs);
|
|
else if (rhs_key > lhs_key)
|
|
Promote(lhs, rhs);
|
|
|
|
// Make sure our type promotion worked as expected
|
|
if (lhs.GetPromoKey() == rhs.GetPromoKey())
|
|
return lhs.GetType(); // Return the resulting type
|
|
|
|
// Return the void type (zero) if we fail to promote either of the values.
|
|
return Scalar::e_void;
|
|
}
|
|
|
|
bool Scalar::GetData(DataExtractor &data, size_t limit_byte_size) const {
|
|
size_t byte_size = GetByteSize();
|
|
if (byte_size == 0) {
|
|
data.Clear();
|
|
return false;
|
|
}
|
|
auto buffer_up = std::make_unique<DataBufferHeap>(byte_size, 0);
|
|
GetBytes(buffer_up->GetData());
|
|
lldb::offset_t offset = 0;
|
|
|
|
if (limit_byte_size < byte_size) {
|
|
if (endian::InlHostByteOrder() == eByteOrderLittle) {
|
|
// On little endian systems if we want fewer bytes from the current
|
|
// type we just specify fewer bytes since the LSByte is first...
|
|
byte_size = limit_byte_size;
|
|
} else if (endian::InlHostByteOrder() == eByteOrderBig) {
|
|
// On big endian systems if we want fewer bytes from the current type
|
|
// have to advance our initial byte pointer and trim down the number of
|
|
// bytes since the MSByte is first
|
|
offset = byte_size - limit_byte_size;
|
|
byte_size = limit_byte_size;
|
|
}
|
|
}
|
|
|
|
data.SetData(std::move(buffer_up), offset, byte_size);
|
|
data.SetByteOrder(endian::InlHostByteOrder());
|
|
return true;
|
|
}
|
|
|
|
void Scalar::GetBytes(llvm::MutableArrayRef<uint8_t> storage) const {
|
|
assert(storage.size() >= GetByteSize());
|
|
|
|
const auto &store = [&](const llvm::APInt &val) {
|
|
StoreIntToMemory(val, storage.data(), (val.getBitWidth() + 7) / 8);
|
|
};
|
|
switch (m_type) {
|
|
case e_void:
|
|
break;
|
|
case e_int:
|
|
store(m_integer);
|
|
break;
|
|
case e_float:
|
|
store(m_float.bitcastToAPInt());
|
|
break;
|
|
}
|
|
}
|
|
|
|
size_t Scalar::GetByteSize() const {
|
|
switch (m_type) {
|
|
case e_void:
|
|
break;
|
|
case e_int:
|
|
return (m_integer.getBitWidth() / 8);
|
|
case e_float:
|
|
return m_float.bitcastToAPInt().getBitWidth() / 8;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
bool Scalar::IsZero() const {
|
|
switch (m_type) {
|
|
case e_void:
|
|
break;
|
|
case e_int:
|
|
return m_integer.isNullValue();
|
|
case e_float:
|
|
return m_float.isZero();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void Scalar::GetValue(Stream *s, bool show_type) const {
|
|
if (show_type)
|
|
s->Printf("(%s) ", GetTypeAsCString());
|
|
|
|
switch (m_type) {
|
|
case e_void:
|
|
break;
|
|
case e_int:
|
|
s->PutCString(m_integer.toString(10));
|
|
break;
|
|
case e_float:
|
|
llvm::SmallString<24> string;
|
|
m_float.toString(string);
|
|
s->PutCString(string);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void Scalar::TruncOrExtendTo(uint16_t bits, bool sign) {
|
|
m_integer.setIsSigned(sign);
|
|
m_integer = m_integer.extOrTrunc(bits);
|
|
}
|
|
|
|
bool Scalar::IntegralPromote(uint16_t bits, bool sign) {
|
|
switch (m_type) {
|
|
case e_void:
|
|
case e_float:
|
|
break;
|
|
case e_int:
|
|
if (GetPromoKey() > PromotionKey(e_int, bits, !sign))
|
|
break;
|
|
m_integer = m_integer.extOrTrunc(bits);
|
|
m_integer.setIsSigned(sign);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool Scalar::FloatPromote(const llvm::fltSemantics &semantics) {
|
|
bool success = false;
|
|
switch (m_type) {
|
|
case e_void:
|
|
break;
|
|
case e_int:
|
|
m_float = llvm::APFloat(semantics);
|
|
m_float.convertFromAPInt(m_integer, m_integer.isSigned(),
|
|
llvm::APFloat::rmNearestTiesToEven);
|
|
success = true;
|
|
break;
|
|
case e_float:
|
|
if (GetFloatPromoKey(semantics) < GetFloatPromoKey(m_float.getSemantics()))
|
|
break;
|
|
bool ignore;
|
|
success = true;
|
|
m_float.convert(semantics, llvm::APFloat::rmNearestTiesToEven, &ignore);
|
|
}
|
|
|
|
if (success)
|
|
m_type = e_float;
|
|
return success;
|
|
}
|
|
|
|
const char *Scalar::GetValueTypeAsCString(Scalar::Type type) {
|
|
switch (type) {
|
|
case e_void:
|
|
return "void";
|
|
case e_int:
|
|
return "int";
|
|
case e_float:
|
|
return "float";
|
|
}
|
|
return "???";
|
|
}
|
|
|
|
bool Scalar::IsSigned() const {
|
|
switch (m_type) {
|
|
case e_void:
|
|
return false;
|
|
case e_int:
|
|
return m_integer.isSigned();
|
|
case e_float:
|
|
return true;
|
|
}
|
|
llvm_unreachable("Unrecognized type!");
|
|
}
|
|
|
|
bool Scalar::MakeSigned() {
|
|
bool success = false;
|
|
|
|
switch (m_type) {
|
|
case e_void:
|
|
break;
|
|
case e_int:
|
|
m_integer.setIsSigned(true);
|
|
success = true;
|
|
break;
|
|
case e_float:
|
|
success = true;
|
|
break;
|
|
}
|
|
|
|
return success;
|
|
}
|
|
|
|
bool Scalar::MakeUnsigned() {
|
|
bool success = false;
|
|
|
|
switch (m_type) {
|
|
case e_void:
|
|
break;
|
|
case e_int:
|
|
m_integer.setIsUnsigned(true);
|
|
success = true;
|
|
break;
|
|
case e_float:
|
|
success = true;
|
|
break;
|
|
}
|
|
|
|
return success;
|
|
}
|
|
|
|
static llvm::APInt ToAPInt(const llvm::APFloat &f, unsigned bits,
|
|
bool is_unsigned) {
|
|
llvm::APSInt result(bits, is_unsigned);
|
|
bool isExact;
|
|
f.convertToInteger(result, llvm::APFloat::rmTowardZero, &isExact);
|
|
return std::move(result);
|
|
}
|
|
|
|
template <typename T> T Scalar::GetAs(T fail_value) const {
|
|
switch (m_type) {
|
|
case e_void:
|
|
break;
|
|
case e_int: {
|
|
APSInt ext = m_integer.extOrTrunc(sizeof(T) * 8);
|
|
if (ext.isSigned())
|
|
return ext.getSExtValue();
|
|
return ext.getZExtValue();
|
|
}
|
|
case e_float:
|
|
return ToAPInt(m_float, sizeof(T) * 8, std::is_unsigned<T>::value)
|
|
.getSExtValue();
|
|
}
|
|
return fail_value;
|
|
}
|
|
|
|
signed char Scalar::SChar(signed char fail_value) const {
|
|
return GetAs<signed char>(fail_value);
|
|
}
|
|
|
|
unsigned char Scalar::UChar(unsigned char fail_value) const {
|
|
return GetAs<unsigned char>(fail_value);
|
|
}
|
|
|
|
short Scalar::SShort(short fail_value) const {
|
|
return GetAs<short>(fail_value);
|
|
}
|
|
|
|
unsigned short Scalar::UShort(unsigned short fail_value) const {
|
|
return GetAs<unsigned short>(fail_value);
|
|
}
|
|
|
|
int Scalar::SInt(int fail_value) const { return GetAs<int>(fail_value); }
|
|
|
|
unsigned int Scalar::UInt(unsigned int fail_value) const {
|
|
return GetAs<unsigned int>(fail_value);
|
|
}
|
|
|
|
long Scalar::SLong(long fail_value) const { return GetAs<long>(fail_value); }
|
|
|
|
unsigned long Scalar::ULong(unsigned long fail_value) const {
|
|
return GetAs<unsigned long>(fail_value);
|
|
}
|
|
|
|
long long Scalar::SLongLong(long long fail_value) const {
|
|
return GetAs<long long>(fail_value);
|
|
}
|
|
|
|
unsigned long long Scalar::ULongLong(unsigned long long fail_value) const {
|
|
return GetAs<unsigned long long>(fail_value);
|
|
}
|
|
|
|
llvm::APInt Scalar::SInt128(const llvm::APInt &fail_value) const {
|
|
switch (m_type) {
|
|
case e_void:
|
|
break;
|
|
case e_int:
|
|
return m_integer;
|
|
case e_float:
|
|
return ToAPInt(m_float, 128, /*is_unsigned=*/false);
|
|
}
|
|
return fail_value;
|
|
}
|
|
|
|
llvm::APInt Scalar::UInt128(const llvm::APInt &fail_value) const {
|
|
switch (m_type) {
|
|
case e_void:
|
|
break;
|
|
case e_int:
|
|
return m_integer;
|
|
case e_float:
|
|
return ToAPInt(m_float, 128, /*is_unsigned=*/true);
|
|
}
|
|
return fail_value;
|
|
}
|
|
|
|
float Scalar::Float(float fail_value) const {
|
|
switch (m_type) {
|
|
case e_void:
|
|
break;
|
|
case e_int:
|
|
if (m_integer.isSigned())
|
|
return llvm::APIntOps::RoundSignedAPIntToFloat(m_integer);
|
|
return llvm::APIntOps::RoundAPIntToFloat(m_integer);
|
|
|
|
case e_float: {
|
|
APFloat result = m_float;
|
|
bool losesInfo;
|
|
result.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
|
|
&losesInfo);
|
|
return result.convertToFloat();
|
|
}
|
|
}
|
|
return fail_value;
|
|
}
|
|
|
|
double Scalar::Double(double fail_value) const {
|
|
switch (m_type) {
|
|
case e_void:
|
|
break;
|
|
case e_int:
|
|
if (m_integer.isSigned())
|
|
return llvm::APIntOps::RoundSignedAPIntToDouble(m_integer);
|
|
return llvm::APIntOps::RoundAPIntToDouble(m_integer);
|
|
|
|
case e_float: {
|
|
APFloat result = m_float;
|
|
bool losesInfo;
|
|
result.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
|
|
&losesInfo);
|
|
return result.convertToDouble();
|
|
}
|
|
}
|
|
return fail_value;
|
|
}
|
|
|
|
long double Scalar::LongDouble(long double fail_value) const {
|
|
/// No way to get more precision at the moment.
|
|
return static_cast<long double>(Double(fail_value));
|
|
}
|
|
|
|
Scalar &Scalar::operator+=(Scalar rhs) {
|
|
Scalar copy = *this;
|
|
if ((m_type = PromoteToMaxType(copy, rhs)) != Scalar::e_void) {
|
|
switch (m_type) {
|
|
case e_void:
|
|
break;
|
|
case e_int:
|
|
m_integer = copy.m_integer + rhs.m_integer;
|
|
break;
|
|
|
|
case e_float:
|
|
m_float = copy.m_float + rhs.m_float;
|
|
break;
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
Scalar &Scalar::operator<<=(const Scalar &rhs) {
|
|
if (m_type == e_int && rhs.m_type == e_int)
|
|
static_cast<APInt &>(m_integer) <<= rhs.m_integer;
|
|
else
|
|
m_type = e_void;
|
|
return *this;
|
|
}
|
|
|
|
bool Scalar::ShiftRightLogical(const Scalar &rhs) {
|
|
if (m_type == e_int && rhs.m_type == e_int) {
|
|
m_integer = m_integer.lshr(rhs.m_integer);
|
|
return true;
|
|
}
|
|
m_type = e_void;
|
|
return false;
|
|
}
|
|
|
|
Scalar &Scalar::operator>>=(const Scalar &rhs) {
|
|
switch (m_type) {
|
|
case e_void:
|
|
case e_float:
|
|
m_type = e_void;
|
|
break;
|
|
|
|
case e_int:
|
|
switch (rhs.m_type) {
|
|
case e_void:
|
|
case e_float:
|
|
m_type = e_void;
|
|
break;
|
|
case e_int:
|
|
m_integer = m_integer.ashr(rhs.m_integer);
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
Scalar &Scalar::operator&=(const Scalar &rhs) {
|
|
if (m_type == e_int && rhs.m_type == e_int)
|
|
m_integer &= rhs.m_integer;
|
|
else
|
|
m_type = e_void;
|
|
return *this;
|
|
}
|
|
|
|
bool Scalar::AbsoluteValue() {
|
|
switch (m_type) {
|
|
case e_void:
|
|
break;
|
|
|
|
case e_int:
|
|
if (m_integer.isNegative())
|
|
m_integer = -m_integer;
|
|
return true;
|
|
|
|
case e_float:
|
|
m_float.clearSign();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool Scalar::UnaryNegate() {
|
|
switch (m_type) {
|
|
case e_void:
|
|
break;
|
|
case e_int:
|
|
m_integer = -m_integer;
|
|
return true;
|
|
case e_float:
|
|
m_float.changeSign();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool Scalar::OnesComplement() {
|
|
if (m_type == e_int) {
|
|
m_integer = ~m_integer;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
const Scalar lldb_private::operator+(const Scalar &lhs, const Scalar &rhs) {
|
|
Scalar result = lhs;
|
|
result += rhs;
|
|
return result;
|
|
}
|
|
|
|
const Scalar lldb_private::operator-(Scalar lhs, Scalar rhs) {
|
|
Scalar result;
|
|
if ((result.m_type = Scalar::PromoteToMaxType(lhs, rhs)) != Scalar::e_void) {
|
|
switch (result.m_type) {
|
|
case Scalar::e_void:
|
|
break;
|
|
case Scalar::e_int:
|
|
result.m_integer = lhs.m_integer - rhs.m_integer;
|
|
break;
|
|
case Scalar::e_float:
|
|
result.m_float = lhs.m_float - rhs.m_float;
|
|
break;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
const Scalar lldb_private::operator/(Scalar lhs, Scalar rhs) {
|
|
Scalar result;
|
|
if ((result.m_type = Scalar::PromoteToMaxType(lhs, rhs)) != Scalar::e_void &&
|
|
!rhs.IsZero()) {
|
|
switch (result.m_type) {
|
|
case Scalar::e_void:
|
|
break;
|
|
case Scalar::e_int:
|
|
result.m_integer = lhs.m_integer / rhs.m_integer;
|
|
return result;
|
|
case Scalar::e_float:
|
|
result.m_float = lhs.m_float / rhs.m_float;
|
|
return result;
|
|
}
|
|
}
|
|
// For division only, the only way it should make it here is if a promotion
|
|
// failed, or if we are trying to do a divide by zero.
|
|
result.m_type = Scalar::e_void;
|
|
return result;
|
|
}
|
|
|
|
const Scalar lldb_private::operator*(Scalar lhs, Scalar rhs) {
|
|
Scalar result;
|
|
if ((result.m_type = Scalar::PromoteToMaxType(lhs, rhs)) != Scalar::e_void) {
|
|
switch (result.m_type) {
|
|
case Scalar::e_void:
|
|
break;
|
|
case Scalar::e_int:
|
|
result.m_integer = lhs.m_integer * rhs.m_integer;
|
|
break;
|
|
case Scalar::e_float:
|
|
result.m_float = lhs.m_float * rhs.m_float;
|
|
break;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
const Scalar lldb_private::operator&(Scalar lhs, Scalar rhs) {
|
|
Scalar result;
|
|
if ((result.m_type = Scalar::PromoteToMaxType(lhs, rhs)) != Scalar::e_void) {
|
|
if (result.m_type == Scalar::e_int)
|
|
result.m_integer = lhs.m_integer & rhs.m_integer;
|
|
else
|
|
result.m_type = Scalar::e_void;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
const Scalar lldb_private::operator|(Scalar lhs, Scalar rhs) {
|
|
Scalar result;
|
|
if ((result.m_type = Scalar::PromoteToMaxType(lhs, rhs)) != Scalar::e_void) {
|
|
if (result.m_type == Scalar::e_int)
|
|
result.m_integer = lhs.m_integer | rhs.m_integer;
|
|
else
|
|
result.m_type = Scalar::e_void;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
const Scalar lldb_private::operator%(Scalar lhs, Scalar rhs) {
|
|
Scalar result;
|
|
if ((result.m_type = Scalar::PromoteToMaxType(lhs, rhs)) != Scalar::e_void) {
|
|
if (!rhs.IsZero() && result.m_type == Scalar::e_int) {
|
|
result.m_integer = lhs.m_integer % rhs.m_integer;
|
|
return result;
|
|
}
|
|
}
|
|
result.m_type = Scalar::e_void;
|
|
return result;
|
|
}
|
|
|
|
const Scalar lldb_private::operator^(Scalar lhs, Scalar rhs) {
|
|
Scalar result;
|
|
if ((result.m_type = Scalar::PromoteToMaxType(lhs, rhs)) != Scalar::e_void) {
|
|
if (result.m_type == Scalar::e_int)
|
|
result.m_integer = lhs.m_integer ^ rhs.m_integer;
|
|
else
|
|
result.m_type = Scalar::e_void;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
const Scalar lldb_private::operator<<(const Scalar &lhs, const Scalar &rhs) {
|
|
Scalar result = lhs;
|
|
result <<= rhs;
|
|
return result;
|
|
}
|
|
|
|
const Scalar lldb_private::operator>>(const Scalar &lhs, const Scalar &rhs) {
|
|
Scalar result = lhs;
|
|
result >>= rhs;
|
|
return result;
|
|
}
|
|
|
|
Status Scalar::SetValueFromCString(const char *value_str, Encoding encoding,
|
|
size_t byte_size) {
|
|
Status error;
|
|
if (value_str == nullptr || value_str[0] == '\0') {
|
|
error.SetErrorString("Invalid c-string value string.");
|
|
return error;
|
|
}
|
|
switch (encoding) {
|
|
case eEncodingInvalid:
|
|
error.SetErrorString("Invalid encoding.");
|
|
break;
|
|
|
|
case eEncodingSint:
|
|
case eEncodingUint: {
|
|
llvm::StringRef str = value_str;
|
|
bool is_signed = encoding == eEncodingSint;
|
|
bool is_negative = is_signed && str.consume_front("-");
|
|
APInt integer;
|
|
if (str.getAsInteger(0, integer)) {
|
|
error.SetErrorStringWithFormatv(
|
|
"'{0}' is not a valid integer string value", value_str);
|
|
break;
|
|
}
|
|
bool fits;
|
|
if (is_signed) {
|
|
integer = integer.zext(integer.getBitWidth() + 1);
|
|
if (is_negative)
|
|
integer.negate();
|
|
fits = integer.isSignedIntN(byte_size * 8);
|
|
} else
|
|
fits = integer.isIntN(byte_size * 8);
|
|
if (!fits) {
|
|
error.SetErrorStringWithFormatv(
|
|
"value {0} is too large to fit in a {1} byte integer value",
|
|
value_str, byte_size);
|
|
break;
|
|
}
|
|
m_type = e_int;
|
|
m_integer =
|
|
APSInt(std::move(integer), !is_signed).extOrTrunc(8 * byte_size);
|
|
break;
|
|
}
|
|
|
|
case eEncodingIEEE754: {
|
|
// FIXME: It's not possible to unambiguously map a byte size to a floating
|
|
// point type. This function should be refactored to take an explicit
|
|
// semantics argument.
|
|
const llvm::fltSemantics &sem =
|
|
byte_size <= 4 ? APFloat::IEEEsingle()
|
|
: byte_size <= 8 ? APFloat::IEEEdouble()
|
|
: APFloat::x87DoubleExtended();
|
|
APFloat f(sem);
|
|
if (llvm::Expected<APFloat::opStatus> op =
|
|
f.convertFromString(value_str, APFloat::rmNearestTiesToEven)) {
|
|
m_type = e_float;
|
|
m_float = std::move(f);
|
|
} else
|
|
error = op.takeError();
|
|
break;
|
|
}
|
|
|
|
case eEncodingVector:
|
|
error.SetErrorString("vector encoding unsupported.");
|
|
break;
|
|
}
|
|
if (error.Fail())
|
|
m_type = e_void;
|
|
|
|
return error;
|
|
}
|
|
|
|
Status Scalar::SetValueFromData(const DataExtractor &data,
|
|
lldb::Encoding encoding, size_t byte_size) {
|
|
Status error;
|
|
switch (encoding) {
|
|
case lldb::eEncodingInvalid:
|
|
error.SetErrorString("invalid encoding");
|
|
break;
|
|
case lldb::eEncodingVector:
|
|
error.SetErrorString("vector encoding unsupported");
|
|
break;
|
|
case lldb::eEncodingUint:
|
|
case lldb::eEncodingSint: {
|
|
if (data.GetByteSize() < byte_size)
|
|
return Status("insufficient data");
|
|
m_type = e_int;
|
|
m_integer =
|
|
APSInt(APInt::getNullValue(8 * byte_size), encoding == eEncodingUint);
|
|
if (data.GetByteOrder() == endian::InlHostByteOrder()) {
|
|
llvm::LoadIntFromMemory(m_integer, data.GetDataStart(), byte_size);
|
|
} else {
|
|
std::vector<uint8_t> buffer(byte_size);
|
|
std::copy_n(data.GetDataStart(), byte_size, buffer.rbegin());
|
|
llvm::LoadIntFromMemory(m_integer, buffer.data(), byte_size);
|
|
}
|
|
break;
|
|
}
|
|
case lldb::eEncodingIEEE754: {
|
|
lldb::offset_t offset = 0;
|
|
|
|
if (byte_size == sizeof(float))
|
|
operator=(data.GetFloat(&offset));
|
|
else if (byte_size == sizeof(double))
|
|
operator=(data.GetDouble(&offset));
|
|
else if (byte_size == sizeof(long double))
|
|
operator=(data.GetLongDouble(&offset));
|
|
else
|
|
error.SetErrorStringWithFormat("unsupported float byte size: %" PRIu64 "",
|
|
static_cast<uint64_t>(byte_size));
|
|
} break;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
bool Scalar::SignExtend(uint32_t sign_bit_pos) {
|
|
const uint32_t max_bit_pos = GetByteSize() * 8;
|
|
|
|
if (sign_bit_pos < max_bit_pos) {
|
|
switch (m_type) {
|
|
case Scalar::e_void:
|
|
case Scalar::e_float:
|
|
return false;
|
|
|
|
case Scalar::e_int:
|
|
if (max_bit_pos == sign_bit_pos)
|
|
return true;
|
|
else if (sign_bit_pos < (max_bit_pos - 1)) {
|
|
llvm::APInt sign_bit = llvm::APInt::getSignMask(sign_bit_pos + 1);
|
|
llvm::APInt bitwize_and = m_integer & sign_bit;
|
|
if (bitwize_and.getBoolValue()) {
|
|
llvm::APInt mask =
|
|
~(sign_bit) + llvm::APInt(m_integer.getBitWidth(), 1);
|
|
m_integer |= APSInt(std::move(mask), m_integer.isUnsigned());
|
|
}
|
|
return true;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
size_t Scalar::GetAsMemoryData(void *dst, size_t dst_len,
|
|
lldb::ByteOrder dst_byte_order,
|
|
Status &error) const {
|
|
// Get a data extractor that points to the native scalar data
|
|
DataExtractor data;
|
|
if (!GetData(data)) {
|
|
error.SetErrorString("invalid scalar value");
|
|
return 0;
|
|
}
|
|
|
|
const size_t src_len = data.GetByteSize();
|
|
|
|
// Prepare a memory buffer that contains some or all of the register value
|
|
const size_t bytes_copied =
|
|
data.CopyByteOrderedData(0, // src offset
|
|
src_len, // src length
|
|
dst, // dst buffer
|
|
dst_len, // dst length
|
|
dst_byte_order); // dst byte order
|
|
if (bytes_copied == 0)
|
|
error.SetErrorString("failed to copy data");
|
|
|
|
return bytes_copied;
|
|
}
|
|
|
|
bool Scalar::ExtractBitfield(uint32_t bit_size, uint32_t bit_offset) {
|
|
if (bit_size == 0)
|
|
return true;
|
|
|
|
switch (m_type) {
|
|
case Scalar::e_void:
|
|
case Scalar::e_float:
|
|
break;
|
|
|
|
case Scalar::e_int:
|
|
m_integer >>= bit_offset;
|
|
m_integer = m_integer.extOrTrunc(bit_size).extOrTrunc(8 * GetByteSize());
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool lldb_private::operator==(Scalar lhs, Scalar rhs) {
|
|
// If either entry is void then we can just compare the types
|
|
if (lhs.m_type == Scalar::e_void || rhs.m_type == Scalar::e_void)
|
|
return lhs.m_type == rhs.m_type;
|
|
|
|
llvm::APFloat::cmpResult result;
|
|
switch (Scalar::PromoteToMaxType(lhs, rhs)) {
|
|
case Scalar::e_void:
|
|
break;
|
|
case Scalar::e_int:
|
|
return lhs.m_integer == rhs.m_integer;
|
|
case Scalar::e_float:
|
|
result = lhs.m_float.compare(rhs.m_float);
|
|
if (result == llvm::APFloat::cmpEqual)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool lldb_private::operator!=(const Scalar &lhs, const Scalar &rhs) {
|
|
return !(lhs == rhs);
|
|
}
|
|
|
|
bool lldb_private::operator<(Scalar lhs, Scalar rhs) {
|
|
if (lhs.m_type == Scalar::e_void || rhs.m_type == Scalar::e_void)
|
|
return false;
|
|
|
|
llvm::APFloat::cmpResult result;
|
|
switch (Scalar::PromoteToMaxType(lhs, rhs)) {
|
|
case Scalar::e_void:
|
|
break;
|
|
case Scalar::e_int:
|
|
return lhs.m_integer < rhs.m_integer;
|
|
case Scalar::e_float:
|
|
result = lhs.m_float.compare(rhs.m_float);
|
|
if (result == llvm::APFloat::cmpLessThan)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool lldb_private::operator<=(const Scalar &lhs, const Scalar &rhs) {
|
|
return !(rhs < lhs);
|
|
}
|
|
|
|
bool lldb_private::operator>(const Scalar &lhs, const Scalar &rhs) {
|
|
return rhs < lhs;
|
|
}
|
|
|
|
bool lldb_private::operator>=(const Scalar &lhs, const Scalar &rhs) {
|
|
return !(lhs < rhs);
|
|
}
|
|
|
|
bool Scalar::ClearBit(uint32_t bit) {
|
|
switch (m_type) {
|
|
case e_void:
|
|
break;
|
|
case e_int:
|
|
m_integer.clearBit(bit);
|
|
return true;
|
|
case e_float:
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool Scalar::SetBit(uint32_t bit) {
|
|
switch (m_type) {
|
|
case e_void:
|
|
break;
|
|
case e_int:
|
|
m_integer.setBit(bit);
|
|
return true;
|
|
case e_float:
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
llvm::raw_ostream &lldb_private::operator<<(llvm::raw_ostream &os, const Scalar &scalar) {
|
|
StreamString s;
|
|
scalar.GetValue(&s, /*show_type*/ true);
|
|
return os << s.GetString();
|
|
}
|