forked from OSchip/llvm-project
393 lines
15 KiB
C++
393 lines
15 KiB
C++
//===- Set.cpp - MLIR PresburgerSet Class ---------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Analysis/PresburgerSet.h"
|
|
#include "mlir/Analysis/Presburger/Simplex.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallBitVector.h"
|
|
|
|
using namespace mlir;
|
|
|
|
PresburgerSet::PresburgerSet(const FlatAffineConstraints &fac)
|
|
: nDim(fac.getNumDimIds()), nSym(fac.getNumSymbolIds()) {
|
|
unionFACInPlace(fac);
|
|
}
|
|
|
|
unsigned PresburgerSet::getNumFACs() const {
|
|
return flatAffineConstraints.size();
|
|
}
|
|
|
|
unsigned PresburgerSet::getNumDims() const { return nDim; }
|
|
|
|
unsigned PresburgerSet::getNumSyms() const { return nSym; }
|
|
|
|
ArrayRef<FlatAffineConstraints>
|
|
PresburgerSet::getAllFlatAffineConstraints() const {
|
|
return flatAffineConstraints;
|
|
}
|
|
|
|
const FlatAffineConstraints &
|
|
PresburgerSet::getFlatAffineConstraints(unsigned index) const {
|
|
assert(index < flatAffineConstraints.size() && "index out of bounds!");
|
|
return flatAffineConstraints[index];
|
|
}
|
|
|
|
/// Assert that the FlatAffineConstraints and PresburgerSet live in
|
|
/// compatible spaces.
|
|
static void assertDimensionsCompatible(const FlatAffineConstraints &fac,
|
|
const PresburgerSet &set) {
|
|
assert(fac.getNumDimIds() == set.getNumDims() &&
|
|
"Number of dimensions of the FlatAffineConstraints and PresburgerSet"
|
|
"do not match!");
|
|
assert(fac.getNumSymbolIds() == set.getNumSyms() &&
|
|
"Number of symbols of the FlatAffineConstraints and PresburgerSet"
|
|
"do not match!");
|
|
}
|
|
|
|
/// Assert that the two PresburgerSets live in compatible spaces.
|
|
static void assertDimensionsCompatible(const PresburgerSet &setA,
|
|
const PresburgerSet &setB) {
|
|
assert(setA.getNumDims() == setB.getNumDims() &&
|
|
"Number of dimensions of the PresburgerSets do not match!");
|
|
assert(setA.getNumSyms() == setB.getNumSyms() &&
|
|
"Number of symbols of the PresburgerSets do not match!");
|
|
}
|
|
|
|
/// Mutate this set, turning it into the union of this set and the given
|
|
/// FlatAffineConstraints.
|
|
void PresburgerSet::unionFACInPlace(const FlatAffineConstraints &fac) {
|
|
assertDimensionsCompatible(fac, *this);
|
|
flatAffineConstraints.push_back(fac);
|
|
}
|
|
|
|
/// Mutate this set, turning it into the union of this set and the given set.
|
|
///
|
|
/// This is accomplished by simply adding all the FACs of the given set to this
|
|
/// set.
|
|
void PresburgerSet::unionSetInPlace(const PresburgerSet &set) {
|
|
assertDimensionsCompatible(set, *this);
|
|
for (const FlatAffineConstraints &fac : set.flatAffineConstraints)
|
|
unionFACInPlace(fac);
|
|
}
|
|
|
|
/// Return the union of this set and the given set.
|
|
PresburgerSet PresburgerSet::unionSet(const PresburgerSet &set) const {
|
|
assertDimensionsCompatible(set, *this);
|
|
PresburgerSet result = *this;
|
|
result.unionSetInPlace(set);
|
|
return result;
|
|
}
|
|
|
|
/// A point is contained in the union iff any of the parts contain the point.
|
|
bool PresburgerSet::containsPoint(ArrayRef<int64_t> point) const {
|
|
for (const FlatAffineConstraints &fac : flatAffineConstraints) {
|
|
if (fac.containsPoint(point))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
PresburgerSet PresburgerSet::getUniverse(unsigned nDim, unsigned nSym) {
|
|
PresburgerSet result(nDim, nSym);
|
|
result.unionFACInPlace(FlatAffineConstraints::getUniverse(nDim, nSym));
|
|
return result;
|
|
}
|
|
|
|
PresburgerSet PresburgerSet::getEmptySet(unsigned nDim, unsigned nSym) {
|
|
return PresburgerSet(nDim, nSym);
|
|
}
|
|
|
|
// Return the intersection of this set with the given set.
|
|
//
|
|
// We directly compute (S_1 or S_2 ...) and (T_1 or T_2 ...)
|
|
// as (S_1 and T_1) or (S_1 and T_2) or ...
|
|
//
|
|
// If S_i or T_j have local variables, then S_i and T_j contains the local
|
|
// variables of both.
|
|
PresburgerSet PresburgerSet::intersect(const PresburgerSet &set) const {
|
|
assertDimensionsCompatible(set, *this);
|
|
|
|
PresburgerSet result(nDim, nSym);
|
|
for (const FlatAffineConstraints &csA : flatAffineConstraints) {
|
|
for (const FlatAffineConstraints &csB : set.flatAffineConstraints) {
|
|
FlatAffineConstraints csACopy = csA, csBCopy = csB;
|
|
csACopy.mergeLocalIds(csBCopy);
|
|
csACopy.append(std::move(csBCopy));
|
|
if (!csACopy.isEmpty())
|
|
result.unionFACInPlace(std::move(csACopy));
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/// Return `coeffs` with all the elements negated.
|
|
static SmallVector<int64_t, 8> getNegatedCoeffs(ArrayRef<int64_t> coeffs) {
|
|
SmallVector<int64_t, 8> negatedCoeffs;
|
|
negatedCoeffs.reserve(coeffs.size());
|
|
for (int64_t coeff : coeffs)
|
|
negatedCoeffs.emplace_back(-coeff);
|
|
return negatedCoeffs;
|
|
}
|
|
|
|
/// Return the complement of the given inequality.
|
|
///
|
|
/// The complement of a_1 x_1 + ... + a_n x_ + c >= 0 is
|
|
/// a_1 x_1 + ... + a_n x_ + c < 0, i.e., -a_1 x_1 - ... - a_n x_ - c - 1 >= 0,
|
|
/// since all the variables are constrained to be integers.
|
|
static SmallVector<int64_t, 8> getComplementIneq(ArrayRef<int64_t> ineq) {
|
|
SmallVector<int64_t, 8> coeffs;
|
|
coeffs.reserve(ineq.size());
|
|
for (int64_t coeff : ineq)
|
|
coeffs.emplace_back(-coeff);
|
|
--coeffs.back();
|
|
return coeffs;
|
|
}
|
|
|
|
/// Return the set difference b \ s and accumulate the result into `result`.
|
|
/// `simplex` must correspond to b.
|
|
///
|
|
/// In the following, U denotes union, ^ denotes intersection, \ denotes set
|
|
/// difference and ~ denotes complement.
|
|
/// Let b be the FlatAffineConstraints and s = (U_i s_i) be the set. We want
|
|
/// b \ (U_i s_i).
|
|
///
|
|
/// Let s_i = ^_j s_ij, where each s_ij is a single inequality. To compute
|
|
/// b \ s_i = b ^ ~s_i, we partition s_i based on the first violated inequality:
|
|
/// ~s_i = (~s_i1) U (s_i1 ^ ~s_i2) U (s_i1 ^ s_i2 ^ ~s_i3) U ...
|
|
/// And the required result is (b ^ ~s_i1) U (b ^ s_i1 ^ ~s_i2) U ...
|
|
/// We recurse by subtracting U_{j > i} S_j from each of these parts and
|
|
/// returning the union of the results. Each equality is handled as a
|
|
/// conjunction of two inequalities.
|
|
///
|
|
/// Note that the same approach works even if an inequality involves a floor
|
|
/// division. For example, the complement of x <= 7*floor(x/7) is still
|
|
/// x > 7*floor(x/7). Since b \ s_i contains the inequalities of both b and s_i
|
|
/// (or the complements of those inequalities), b \ s_i may contain the
|
|
/// divisions present in both b and s_i. Therefore, we need to add the local
|
|
/// division variables of both b and s_i to each part in the result. This means
|
|
/// adding the local variables of both b and s_i, as well as the corresponding
|
|
/// division inequalities to each part. Since the division inequalities are
|
|
/// added to each part, we can skip the parts where the complement of any
|
|
/// division inequality is added, as these parts will become empty anyway.
|
|
///
|
|
/// As a heuristic, we try adding all the constraints and check if simplex
|
|
/// says that the intersection is empty. If it is, then subtracting this FAC is
|
|
/// a no-op and we just skip it. Also, in the process we find out that some
|
|
/// constraints are redundant. These redundant constraints are ignored.
|
|
///
|
|
/// b and simplex are callee saved, i.e., their values on return are
|
|
/// semantically equivalent to their values when the function is called.
|
|
static void subtractRecursively(FlatAffineConstraints &b, Simplex &simplex,
|
|
const PresburgerSet &s, unsigned i,
|
|
PresburgerSet &result) {
|
|
if (i == s.getNumFACs()) {
|
|
result.unionFACInPlace(b);
|
|
return;
|
|
}
|
|
FlatAffineConstraints sI = s.getFlatAffineConstraints(i);
|
|
unsigned bInitNumLocals = b.getNumLocalIds();
|
|
|
|
// Find out which inequalities of sI correspond to division inequalities for
|
|
// the local variables of sI.
|
|
std::vector<llvm::Optional<std::pair<unsigned, unsigned>>> repr(
|
|
sI.getNumLocalIds());
|
|
sI.getLocalReprs(repr);
|
|
|
|
// Add sI's locals to b, after b's locals. Also add b's locals to sI, before
|
|
// sI's locals.
|
|
b.mergeLocalIds(sI);
|
|
|
|
// Mark which inequalities of sI are division inequalities and add all such
|
|
// inequalities to b.
|
|
llvm::SmallBitVector isDivInequality(sI.getNumInequalities());
|
|
for (Optional<std::pair<unsigned, unsigned>> &maybePair : repr) {
|
|
assert(maybePair &&
|
|
"Subtraction is not supported when a representation of the local "
|
|
"variables of the subtrahend cannot be found!");
|
|
|
|
b.addInequality(sI.getInequality(maybePair->first));
|
|
b.addInequality(sI.getInequality(maybePair->second));
|
|
|
|
assert(maybePair->first != maybePair->second &&
|
|
"Upper and lower bounds must be different inequalities!");
|
|
isDivInequality[maybePair->first] = true;
|
|
isDivInequality[maybePair->second] = true;
|
|
}
|
|
|
|
unsigned initialSnapshot = simplex.getSnapshot();
|
|
unsigned offset = simplex.getNumConstraints();
|
|
unsigned numLocalsAdded = b.getNumLocalIds() - bInitNumLocals;
|
|
simplex.appendVariable(numLocalsAdded);
|
|
|
|
unsigned snapshotBeforeIntersect = simplex.getSnapshot();
|
|
simplex.intersectFlatAffineConstraints(sI);
|
|
|
|
if (simplex.isEmpty()) {
|
|
/// b ^ s_i is empty, so b \ s_i = b. We move directly to i + 1.
|
|
simplex.rollback(initialSnapshot);
|
|
b.removeIdRange(FlatAffineConstraints::IdKind::Local, bInitNumLocals,
|
|
b.getNumLocalIds());
|
|
subtractRecursively(b, simplex, s, i + 1, result);
|
|
return;
|
|
}
|
|
|
|
simplex.detectRedundant();
|
|
|
|
// Equalities are added to simplex as a pair of inequalities.
|
|
unsigned totalNewSimplexInequalities =
|
|
2 * sI.getNumEqualities() + sI.getNumInequalities();
|
|
llvm::SmallBitVector isMarkedRedundant(totalNewSimplexInequalities);
|
|
for (unsigned j = 0; j < totalNewSimplexInequalities; j++)
|
|
isMarkedRedundant[j] = simplex.isMarkedRedundant(offset + j);
|
|
|
|
simplex.rollback(snapshotBeforeIntersect);
|
|
|
|
// Recurse with the part b ^ ~ineq. Note that b is modified throughout
|
|
// subtractRecursively. At the time this function is called, the current b is
|
|
// actually equal to b ^ s_i1 ^ s_i2 ^ ... ^ s_ij, and ineq is the next
|
|
// inequality, s_{i,j+1}. This function recurses into the next level i + 1
|
|
// with the part b ^ s_i1 ^ s_i2 ^ ... ^ s_ij ^ ~s_{i,j+1}.
|
|
auto recurseWithInequality = [&, i](ArrayRef<int64_t> ineq) {
|
|
size_t snapshot = simplex.getSnapshot();
|
|
b.addInequality(ineq);
|
|
simplex.addInequality(ineq);
|
|
subtractRecursively(b, simplex, s, i + 1, result);
|
|
b.removeInequality(b.getNumInequalities() - 1);
|
|
simplex.rollback(snapshot);
|
|
};
|
|
|
|
// For each inequality ineq, we first recurse with the part where ineq
|
|
// is not satisfied, and then add the ineq to b and simplex because
|
|
// ineq must be satisfied by all later parts.
|
|
auto processInequality = [&](ArrayRef<int64_t> ineq) {
|
|
recurseWithInequality(getComplementIneq(ineq));
|
|
b.addInequality(ineq);
|
|
simplex.addInequality(ineq);
|
|
};
|
|
|
|
// processInequality appends some additional constraints to b. We want to
|
|
// rollback b to its initial state before returning, which we will do by
|
|
// removing all constraints beyond the original number of inequalities
|
|
// and equalities, so we store these counts first.
|
|
unsigned bInitNumIneqs = b.getNumInequalities();
|
|
unsigned bInitNumEqs = b.getNumEqualities();
|
|
|
|
// Process all the inequalities, ignoring redundant inequalities and division
|
|
// inequalities. The result is correct whether or not we ignore these, but
|
|
// ignoring them makes the result simpler.
|
|
for (unsigned j = 0, e = sI.getNumInequalities(); j < e; j++) {
|
|
if (isMarkedRedundant[j])
|
|
continue;
|
|
if (isDivInequality[j])
|
|
continue;
|
|
processInequality(sI.getInequality(j));
|
|
}
|
|
|
|
offset = sI.getNumInequalities();
|
|
for (unsigned j = 0, e = sI.getNumEqualities(); j < e; ++j) {
|
|
ArrayRef<int64_t> coeffs = sI.getEquality(j);
|
|
// For each equality, process the positive and negative inequalities that
|
|
// make up this equality. If Simplex found an inequality to be redundant, we
|
|
// skip it as above to make the result simpler. Divisions are always
|
|
// represented in terms of inequalities and not equalities, so we do not
|
|
// check for division inequalities here.
|
|
if (!isMarkedRedundant[offset + 2 * j])
|
|
processInequality(coeffs);
|
|
if (!isMarkedRedundant[offset + 2 * j + 1])
|
|
processInequality(getNegatedCoeffs(coeffs));
|
|
}
|
|
|
|
// Rollback b and simplex to their initial states.
|
|
b.removeIdRange(FlatAffineConstraints::IdKind::Local, bInitNumLocals,
|
|
b.getNumLocalIds());
|
|
b.removeInequalityRange(bInitNumIneqs, b.getNumInequalities());
|
|
b.removeEqualityRange(bInitNumEqs, b.getNumEqualities());
|
|
|
|
simplex.rollback(initialSnapshot);
|
|
}
|
|
|
|
/// Return the set difference fac \ set.
|
|
///
|
|
/// The FAC here is modified in subtractRecursively, so it cannot be a const
|
|
/// reference even though it is restored to its original state before returning
|
|
/// from that function.
|
|
PresburgerSet PresburgerSet::getSetDifference(FlatAffineConstraints fac,
|
|
const PresburgerSet &set) {
|
|
assertDimensionsCompatible(fac, set);
|
|
if (fac.isEmptyByGCDTest())
|
|
return PresburgerSet::getEmptySet(fac.getNumDimIds(),
|
|
fac.getNumSymbolIds());
|
|
|
|
PresburgerSet result(fac.getNumDimIds(), fac.getNumSymbolIds());
|
|
Simplex simplex(fac);
|
|
subtractRecursively(fac, simplex, set, 0, result);
|
|
return result;
|
|
}
|
|
|
|
/// Return the complement of this set.
|
|
PresburgerSet PresburgerSet::complement() const {
|
|
return getSetDifference(
|
|
FlatAffineConstraints::getUniverse(getNumDims(), getNumSyms()), *this);
|
|
}
|
|
|
|
/// Return the result of subtract the given set from this set, i.e.,
|
|
/// return `this \ set`.
|
|
PresburgerSet PresburgerSet::subtract(const PresburgerSet &set) const {
|
|
assertDimensionsCompatible(set, *this);
|
|
PresburgerSet result(nDim, nSym);
|
|
// We compute (U_i t_i) \ (U_i set_i) as U_i (t_i \ V_i set_i).
|
|
for (const FlatAffineConstraints &fac : flatAffineConstraints)
|
|
result.unionSetInPlace(getSetDifference(fac, set));
|
|
return result;
|
|
}
|
|
|
|
/// Two sets S and T are equal iff S contains T and T contains S.
|
|
/// By "S contains T", we mean that S is a superset of or equal to T.
|
|
///
|
|
/// S contains T iff T \ S is empty, since if T \ S contains a
|
|
/// point then this is a point that is contained in T but not S.
|
|
///
|
|
/// Therefore, S is equal to T iff S \ T and T \ S are both empty.
|
|
bool PresburgerSet::isEqual(const PresburgerSet &set) const {
|
|
assertDimensionsCompatible(set, *this);
|
|
return this->subtract(set).isIntegerEmpty() &&
|
|
set.subtract(*this).isIntegerEmpty();
|
|
}
|
|
|
|
/// Return true if all the sets in the union are known to be integer empty,
|
|
/// false otherwise.
|
|
bool PresburgerSet::isIntegerEmpty() const {
|
|
// The set is empty iff all of the disjuncts are empty.
|
|
for (const FlatAffineConstraints &fac : flatAffineConstraints) {
|
|
if (!fac.isIntegerEmpty())
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool PresburgerSet::findIntegerSample(SmallVectorImpl<int64_t> &sample) {
|
|
// A sample exists iff any of the disjuncts contains a sample.
|
|
for (const FlatAffineConstraints &fac : flatAffineConstraints) {
|
|
if (Optional<SmallVector<int64_t, 8>> opt = fac.findIntegerSample()) {
|
|
sample = std::move(*opt);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void PresburgerSet::print(raw_ostream &os) const {
|
|
os << getNumFACs() << " FlatAffineConstraints:\n";
|
|
for (const FlatAffineConstraints &fac : flatAffineConstraints) {
|
|
fac.print(os);
|
|
os << '\n';
|
|
}
|
|
}
|
|
|
|
void PresburgerSet::dump() const { print(llvm::errs()); }
|