llvm-project/llvm/unittests/Transforms/Utils/CloningTest.cpp

1029 lines
34 KiB
C++

//===- Cloning.cpp - Unit tests for the Cloner ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include "gtest/gtest.h"
using namespace llvm;
namespace {
class CloneInstruction : public ::testing::Test {
protected:
void SetUp() override { V = nullptr; }
template <typename T>
T *clone(T *V1) {
Value *V2 = V1->clone();
Orig.insert(V1);
Clones.insert(V2);
return cast<T>(V2);
}
void eraseClones() {
for (Value *V : Clones)
V->deleteValue();
Clones.clear();
}
void TearDown() override {
eraseClones();
for (Value *V : Orig)
V->deleteValue();
Orig.clear();
if (V)
V->deleteValue();
}
SmallPtrSet<Value *, 4> Orig; // Erase on exit
SmallPtrSet<Value *, 4> Clones; // Erase in eraseClones
LLVMContext context;
Value *V;
};
TEST_F(CloneInstruction, OverflowBits) {
V = new Argument(Type::getInt32Ty(context));
BinaryOperator *Add = BinaryOperator::Create(Instruction::Add, V, V);
BinaryOperator *Sub = BinaryOperator::Create(Instruction::Sub, V, V);
BinaryOperator *Mul = BinaryOperator::Create(Instruction::Mul, V, V);
BinaryOperator *AddClone = this->clone(Add);
BinaryOperator *SubClone = this->clone(Sub);
BinaryOperator *MulClone = this->clone(Mul);
EXPECT_FALSE(AddClone->hasNoUnsignedWrap());
EXPECT_FALSE(AddClone->hasNoSignedWrap());
EXPECT_FALSE(SubClone->hasNoUnsignedWrap());
EXPECT_FALSE(SubClone->hasNoSignedWrap());
EXPECT_FALSE(MulClone->hasNoUnsignedWrap());
EXPECT_FALSE(MulClone->hasNoSignedWrap());
eraseClones();
Add->setHasNoUnsignedWrap();
Sub->setHasNoUnsignedWrap();
Mul->setHasNoUnsignedWrap();
AddClone = this->clone(Add);
SubClone = this->clone(Sub);
MulClone = this->clone(Mul);
EXPECT_TRUE(AddClone->hasNoUnsignedWrap());
EXPECT_FALSE(AddClone->hasNoSignedWrap());
EXPECT_TRUE(SubClone->hasNoUnsignedWrap());
EXPECT_FALSE(SubClone->hasNoSignedWrap());
EXPECT_TRUE(MulClone->hasNoUnsignedWrap());
EXPECT_FALSE(MulClone->hasNoSignedWrap());
eraseClones();
Add->setHasNoSignedWrap();
Sub->setHasNoSignedWrap();
Mul->setHasNoSignedWrap();
AddClone = this->clone(Add);
SubClone = this->clone(Sub);
MulClone = this->clone(Mul);
EXPECT_TRUE(AddClone->hasNoUnsignedWrap());
EXPECT_TRUE(AddClone->hasNoSignedWrap());
EXPECT_TRUE(SubClone->hasNoUnsignedWrap());
EXPECT_TRUE(SubClone->hasNoSignedWrap());
EXPECT_TRUE(MulClone->hasNoUnsignedWrap());
EXPECT_TRUE(MulClone->hasNoSignedWrap());
eraseClones();
Add->setHasNoUnsignedWrap(false);
Sub->setHasNoUnsignedWrap(false);
Mul->setHasNoUnsignedWrap(false);
AddClone = this->clone(Add);
SubClone = this->clone(Sub);
MulClone = this->clone(Mul);
EXPECT_FALSE(AddClone->hasNoUnsignedWrap());
EXPECT_TRUE(AddClone->hasNoSignedWrap());
EXPECT_FALSE(SubClone->hasNoUnsignedWrap());
EXPECT_TRUE(SubClone->hasNoSignedWrap());
EXPECT_FALSE(MulClone->hasNoUnsignedWrap());
EXPECT_TRUE(MulClone->hasNoSignedWrap());
}
TEST_F(CloneInstruction, Inbounds) {
V = new Argument(Type::getInt32PtrTy(context));
Constant *Z = Constant::getNullValue(Type::getInt32Ty(context));
std::vector<Value *> ops;
ops.push_back(Z);
GetElementPtrInst *GEP =
GetElementPtrInst::Create(Type::getInt32Ty(context), V, ops);
EXPECT_FALSE(this->clone(GEP)->isInBounds());
GEP->setIsInBounds();
EXPECT_TRUE(this->clone(GEP)->isInBounds());
}
TEST_F(CloneInstruction, Exact) {
V = new Argument(Type::getInt32Ty(context));
BinaryOperator *SDiv = BinaryOperator::Create(Instruction::SDiv, V, V);
EXPECT_FALSE(this->clone(SDiv)->isExact());
SDiv->setIsExact(true);
EXPECT_TRUE(this->clone(SDiv)->isExact());
}
TEST_F(CloneInstruction, Attributes) {
Type *ArgTy1[] = { Type::getInt32PtrTy(context) };
FunctionType *FT1 = FunctionType::get(Type::getVoidTy(context), ArgTy1, false);
Function *F1 = Function::Create(FT1, Function::ExternalLinkage);
BasicBlock *BB = BasicBlock::Create(context, "", F1);
IRBuilder<> Builder(BB);
Builder.CreateRetVoid();
Function *F2 = Function::Create(FT1, Function::ExternalLinkage);
Argument *A = &*F1->arg_begin();
A->addAttr(Attribute::NoCapture);
SmallVector<ReturnInst*, 4> Returns;
ValueToValueMapTy VMap;
VMap[A] = UndefValue::get(A->getType());
CloneFunctionInto(F2, F1, VMap, CloneFunctionChangeType::LocalChangesOnly,
Returns);
EXPECT_FALSE(F2->arg_begin()->hasNoCaptureAttr());
delete F1;
delete F2;
}
TEST_F(CloneInstruction, CallingConvention) {
Type *ArgTy1[] = { Type::getInt32PtrTy(context) };
FunctionType *FT1 = FunctionType::get(Type::getVoidTy(context), ArgTy1, false);
Function *F1 = Function::Create(FT1, Function::ExternalLinkage);
F1->setCallingConv(CallingConv::Cold);
BasicBlock *BB = BasicBlock::Create(context, "", F1);
IRBuilder<> Builder(BB);
Builder.CreateRetVoid();
Function *F2 = Function::Create(FT1, Function::ExternalLinkage);
SmallVector<ReturnInst*, 4> Returns;
ValueToValueMapTy VMap;
VMap[&*F1->arg_begin()] = &*F2->arg_begin();
CloneFunctionInto(F2, F1, VMap, CloneFunctionChangeType::LocalChangesOnly,
Returns);
EXPECT_EQ(CallingConv::Cold, F2->getCallingConv());
delete F1;
delete F2;
}
TEST_F(CloneInstruction, DuplicateInstructionsToSplit) {
Type *ArgTy1[] = {Type::getInt32PtrTy(context)};
FunctionType *FT = FunctionType::get(Type::getVoidTy(context), ArgTy1, false);
V = new Argument(Type::getInt32Ty(context));
Function *F = Function::Create(FT, Function::ExternalLinkage);
BasicBlock *BB1 = BasicBlock::Create(context, "", F);
IRBuilder<> Builder1(BB1);
BasicBlock *BB2 = BasicBlock::Create(context, "", F);
IRBuilder<> Builder2(BB2);
Builder1.CreateBr(BB2);
Instruction *AddInst = cast<Instruction>(Builder2.CreateAdd(V, V));
Instruction *MulInst = cast<Instruction>(Builder2.CreateMul(AddInst, V));
Instruction *SubInst = cast<Instruction>(Builder2.CreateSub(MulInst, V));
Builder2.CreateRetVoid();
// Dummy DTU.
ValueToValueMapTy Mapping;
DomTreeUpdater DTU(DomTreeUpdater::UpdateStrategy::Lazy);
auto Split =
DuplicateInstructionsInSplitBetween(BB2, BB1, SubInst, Mapping, DTU);
EXPECT_TRUE(Split);
EXPECT_EQ(Mapping.size(), 2u);
EXPECT_TRUE(Mapping.find(AddInst) != Mapping.end());
EXPECT_TRUE(Mapping.find(MulInst) != Mapping.end());
auto AddSplit = dyn_cast<Instruction>(Mapping[AddInst]);
EXPECT_TRUE(AddSplit);
EXPECT_EQ(AddSplit->getOperand(0), V);
EXPECT_EQ(AddSplit->getOperand(1), V);
EXPECT_EQ(AddSplit->getParent(), Split);
auto MulSplit = dyn_cast<Instruction>(Mapping[MulInst]);
EXPECT_TRUE(MulSplit);
EXPECT_EQ(MulSplit->getOperand(0), AddSplit);
EXPECT_EQ(MulSplit->getOperand(1), V);
EXPECT_EQ(MulSplit->getParent(), Split);
EXPECT_EQ(AddSplit->getNextNode(), MulSplit);
EXPECT_EQ(MulSplit->getNextNode(), Split->getTerminator());
delete F;
}
TEST_F(CloneInstruction, DuplicateInstructionsToSplitBlocksEq1) {
Type *ArgTy1[] = {Type::getInt32PtrTy(context)};
FunctionType *FT = FunctionType::get(Type::getVoidTy(context), ArgTy1, false);
V = new Argument(Type::getInt32Ty(context));
Function *F = Function::Create(FT, Function::ExternalLinkage);
BasicBlock *BB1 = BasicBlock::Create(context, "", F);
IRBuilder<> Builder1(BB1);
BasicBlock *BB2 = BasicBlock::Create(context, "", F);
IRBuilder<> Builder2(BB2);
Builder1.CreateBr(BB2);
Instruction *AddInst = cast<Instruction>(Builder2.CreateAdd(V, V));
Instruction *MulInst = cast<Instruction>(Builder2.CreateMul(AddInst, V));
Instruction *SubInst = cast<Instruction>(Builder2.CreateSub(MulInst, V));
Builder2.CreateBr(BB2);
// Dummy DTU.
DomTreeUpdater DTU(DomTreeUpdater::UpdateStrategy::Lazy);
ValueToValueMapTy Mapping;
auto Split = DuplicateInstructionsInSplitBetween(
BB2, BB2, BB2->getTerminator(), Mapping, DTU);
EXPECT_TRUE(Split);
EXPECT_EQ(Mapping.size(), 3u);
EXPECT_TRUE(Mapping.find(AddInst) != Mapping.end());
EXPECT_TRUE(Mapping.find(MulInst) != Mapping.end());
EXPECT_TRUE(Mapping.find(SubInst) != Mapping.end());
auto AddSplit = dyn_cast<Instruction>(Mapping[AddInst]);
EXPECT_TRUE(AddSplit);
EXPECT_EQ(AddSplit->getOperand(0), V);
EXPECT_EQ(AddSplit->getOperand(1), V);
EXPECT_EQ(AddSplit->getParent(), Split);
auto MulSplit = dyn_cast<Instruction>(Mapping[MulInst]);
EXPECT_TRUE(MulSplit);
EXPECT_EQ(MulSplit->getOperand(0), AddSplit);
EXPECT_EQ(MulSplit->getOperand(1), V);
EXPECT_EQ(MulSplit->getParent(), Split);
auto SubSplit = dyn_cast<Instruction>(Mapping[SubInst]);
EXPECT_EQ(MulSplit->getNextNode(), SubSplit);
EXPECT_EQ(SubSplit->getNextNode(), Split->getTerminator());
EXPECT_EQ(Split->getSingleSuccessor(), BB2);
EXPECT_EQ(BB2->getSingleSuccessor(), Split);
delete F;
}
TEST_F(CloneInstruction, DuplicateInstructionsToSplitBlocksEq2) {
Type *ArgTy1[] = {Type::getInt32PtrTy(context)};
FunctionType *FT = FunctionType::get(Type::getVoidTy(context), ArgTy1, false);
V = new Argument(Type::getInt32Ty(context));
Function *F = Function::Create(FT, Function::ExternalLinkage);
BasicBlock *BB1 = BasicBlock::Create(context, "", F);
IRBuilder<> Builder1(BB1);
BasicBlock *BB2 = BasicBlock::Create(context, "", F);
IRBuilder<> Builder2(BB2);
Builder1.CreateBr(BB2);
Instruction *AddInst = cast<Instruction>(Builder2.CreateAdd(V, V));
Instruction *MulInst = cast<Instruction>(Builder2.CreateMul(AddInst, V));
Instruction *SubInst = cast<Instruction>(Builder2.CreateSub(MulInst, V));
Builder2.CreateBr(BB2);
// Dummy DTU.
DomTreeUpdater DTU(DomTreeUpdater::UpdateStrategy::Lazy);
ValueToValueMapTy Mapping;
auto Split =
DuplicateInstructionsInSplitBetween(BB2, BB2, SubInst, Mapping, DTU);
EXPECT_TRUE(Split);
EXPECT_EQ(Mapping.size(), 2u);
EXPECT_TRUE(Mapping.find(AddInst) != Mapping.end());
EXPECT_TRUE(Mapping.find(MulInst) != Mapping.end());
auto AddSplit = dyn_cast<Instruction>(Mapping[AddInst]);
EXPECT_TRUE(AddSplit);
EXPECT_EQ(AddSplit->getOperand(0), V);
EXPECT_EQ(AddSplit->getOperand(1), V);
EXPECT_EQ(AddSplit->getParent(), Split);
auto MulSplit = dyn_cast<Instruction>(Mapping[MulInst]);
EXPECT_TRUE(MulSplit);
EXPECT_EQ(MulSplit->getOperand(0), AddSplit);
EXPECT_EQ(MulSplit->getOperand(1), V);
EXPECT_EQ(MulSplit->getParent(), Split);
EXPECT_EQ(MulSplit->getNextNode(), Split->getTerminator());
EXPECT_EQ(Split->getSingleSuccessor(), BB2);
EXPECT_EQ(BB2->getSingleSuccessor(), Split);
delete F;
}
static void runWithLoopInfoAndDominatorTree(
Module &M, StringRef FuncName,
function_ref<void(Function &F, LoopInfo &LI, DominatorTree &DT)> Test) {
auto *F = M.getFunction(FuncName);
ASSERT_NE(F, nullptr) << "Could not find " << FuncName;
DominatorTree DT(*F);
LoopInfo LI(DT);
Test(*F, LI, DT);
}
static std::unique_ptr<Module> parseIR(LLVMContext &C, const char *IR) {
SMDiagnostic Err;
std::unique_ptr<Module> Mod = parseAssemblyString(IR, Err, C);
if (!Mod)
Err.print("CloneLoop", errs());
return Mod;
}
TEST(CloneLoop, CloneLoopNest) {
// Parse the module.
LLVMContext Context;
std::unique_ptr<Module> M = parseIR(
Context,
R"(define void @foo(i32* %A, i32 %ub) {
entry:
%guardcmp = icmp slt i32 0, %ub
br i1 %guardcmp, label %for.outer.preheader, label %for.end
for.outer.preheader:
br label %for.outer
for.outer:
%j = phi i32 [ 0, %for.outer.preheader ], [ %inc.outer, %for.outer.latch ]
br i1 %guardcmp, label %for.inner.preheader, label %for.outer.latch
for.inner.preheader:
br label %for.inner
for.inner:
%i = phi i32 [ 0, %for.inner.preheader ], [ %inc, %for.inner ]
%idxprom = sext i32 %i to i64
%arrayidx = getelementptr inbounds i32, i32* %A, i64 %idxprom
store i32 %i, i32* %arrayidx, align 4
%inc = add nsw i32 %i, 1
%cmp = icmp slt i32 %inc, %ub
br i1 %cmp, label %for.inner, label %for.inner.exit
for.inner.exit:
br label %for.outer.latch
for.outer.latch:
%inc.outer = add nsw i32 %j, 1
%cmp.outer = icmp slt i32 %inc.outer, %ub
br i1 %cmp.outer, label %for.outer, label %for.outer.exit
for.outer.exit:
br label %for.end
for.end:
ret void
})"
);
runWithLoopInfoAndDominatorTree(
*M, "foo", [&](Function &F, LoopInfo &LI, DominatorTree &DT) {
Function::iterator FI = F.begin();
// First basic block is entry - skip it.
BasicBlock *Preheader = &*(++FI);
BasicBlock *Header = &*(++FI);
assert(Header->getName() == "for.outer");
Loop *L = LI.getLoopFor(Header);
EXPECT_NE(L, nullptr);
EXPECT_EQ(Header, L->getHeader());
EXPECT_EQ(Preheader, L->getLoopPreheader());
ValueToValueMapTy VMap;
SmallVector<BasicBlock *, 4> ClonedLoopBlocks;
Loop *NewLoop = cloneLoopWithPreheader(Preheader, Preheader, L, VMap,
"", &LI, &DT, ClonedLoopBlocks);
EXPECT_NE(NewLoop, nullptr);
EXPECT_EQ(NewLoop->getSubLoops().size(), 1u);
Loop::block_iterator BI = NewLoop->block_begin();
EXPECT_TRUE((*BI)->getName().startswith("for.outer"));
EXPECT_TRUE((*(++BI))->getName().startswith("for.inner.preheader"));
EXPECT_TRUE((*(++BI))->getName().startswith("for.inner"));
EXPECT_TRUE((*(++BI))->getName().startswith("for.inner.exit"));
EXPECT_TRUE((*(++BI))->getName().startswith("for.outer.latch"));
});
}
class CloneFunc : public ::testing::Test {
protected:
void SetUp() override {
SetupModule();
CreateOldFunc();
CreateNewFunc();
SetupFinder();
}
void TearDown() override { delete Finder; }
void SetupModule() {
M = new Module("", C);
}
void CreateOldFunc() {
FunctionType* FuncType = FunctionType::get(Type::getVoidTy(C), false);
OldFunc = Function::Create(FuncType, GlobalValue::PrivateLinkage, "f", M);
CreateOldFunctionBodyAndDI();
}
void CreateOldFunctionBodyAndDI() {
DIBuilder DBuilder(*M);
IRBuilder<> IBuilder(C);
// Function DI
auto *File = DBuilder.createFile("filename.c", "/file/dir/");
DITypeRefArray ParamTypes = DBuilder.getOrCreateTypeArray(None);
DISubroutineType *FuncType =
DBuilder.createSubroutineType(ParamTypes);
auto *CU = DBuilder.createCompileUnit(dwarf::DW_LANG_C99,
DBuilder.createFile("filename.c",
"/file/dir"),
"CloneFunc", false, "", 0);
auto *Subprogram = DBuilder.createFunction(
CU, "f", "f", File, 4, FuncType, 3, DINode::FlagZero,
DISubprogram::SPFlagLocalToUnit | DISubprogram::SPFlagDefinition);
OldFunc->setSubprogram(Subprogram);
// Function body
BasicBlock* Entry = BasicBlock::Create(C, "", OldFunc);
IBuilder.SetInsertPoint(Entry);
DebugLoc Loc = DILocation::get(Subprogram->getContext(), 3, 2, Subprogram);
IBuilder.SetCurrentDebugLocation(Loc);
AllocaInst* Alloca = IBuilder.CreateAlloca(IntegerType::getInt32Ty(C));
IBuilder.SetCurrentDebugLocation(
DILocation::get(Subprogram->getContext(), 4, 2, Subprogram));
Value* AllocaContent = IBuilder.getInt32(1);
Instruction* Store = IBuilder.CreateStore(AllocaContent, Alloca);
IBuilder.SetCurrentDebugLocation(
DILocation::get(Subprogram->getContext(), 5, 2, Subprogram));
// Create a local variable around the alloca
auto *IntType = DBuilder.createBasicType("int", 32, dwarf::DW_ATE_signed);
auto *E = DBuilder.createExpression();
auto *Variable =
DBuilder.createAutoVariable(Subprogram, "x", File, 5, IntType, true);
auto *DL = DILocation::get(Subprogram->getContext(), 5, 0, Subprogram);
DBuilder.insertDeclare(Alloca, Variable, E, DL, Store);
DBuilder.insertDbgValueIntrinsic(AllocaContent, Variable, E, DL, Entry);
// Also create an inlined variable.
// Create a distinct struct type that we should not duplicate during
// cloning).
auto *StructType = DICompositeType::getDistinct(
C, dwarf::DW_TAG_structure_type, "some_struct", nullptr, 0, nullptr,
nullptr, 32, 32, 0, DINode::FlagZero, nullptr, 0, nullptr, nullptr);
auto *InlinedSP = DBuilder.createFunction(
CU, "inlined", "inlined", File, 8, FuncType, 9, DINode::FlagZero,
DISubprogram::SPFlagLocalToUnit | DISubprogram::SPFlagDefinition);
auto *InlinedVar =
DBuilder.createAutoVariable(InlinedSP, "inlined", File, 5, StructType, true);
auto *Scope = DBuilder.createLexicalBlock(
DBuilder.createLexicalBlockFile(InlinedSP, File), File, 1, 1);
auto InlinedDL = DILocation::get(
Subprogram->getContext(), 9, 4, Scope,
DILocation::get(Subprogram->getContext(), 5, 2, Subprogram));
IBuilder.SetCurrentDebugLocation(InlinedDL);
DBuilder.insertDeclare(Alloca, InlinedVar, E, InlinedDL, Store);
IBuilder.CreateStore(IBuilder.getInt32(2), Alloca);
// Finalize the debug info.
DBuilder.finalize();
IBuilder.CreateRetVoid();
// Create another, empty, compile unit.
DIBuilder DBuilder2(*M);
DBuilder2.createCompileUnit(dwarf::DW_LANG_C99,
DBuilder.createFile("extra.c", "/file/dir"),
"CloneFunc", false, "", 0);
DBuilder2.finalize();
}
void CreateNewFunc() {
ValueToValueMapTy VMap;
NewFunc = CloneFunction(OldFunc, VMap, nullptr);
}
void SetupFinder() {
Finder = new DebugInfoFinder();
Finder->processModule(*M);
}
LLVMContext C;
Function* OldFunc;
Function* NewFunc;
Module* M;
DebugInfoFinder* Finder;
};
// Test that a new, distinct function was created.
TEST_F(CloneFunc, NewFunctionCreated) {
EXPECT_NE(OldFunc, NewFunc);
}
// Test that a new subprogram entry was added and is pointing to the new
// function, while the original subprogram still points to the old one.
TEST_F(CloneFunc, Subprogram) {
EXPECT_FALSE(verifyModule(*M, &errs()));
EXPECT_EQ(3U, Finder->subprogram_count());
EXPECT_NE(NewFunc->getSubprogram(), OldFunc->getSubprogram());
}
// Test that instructions in the old function still belong to it in the
// metadata, while instruction in the new function belong to the new one.
TEST_F(CloneFunc, InstructionOwnership) {
EXPECT_FALSE(verifyModule(*M));
inst_iterator OldIter = inst_begin(OldFunc);
inst_iterator OldEnd = inst_end(OldFunc);
inst_iterator NewIter = inst_begin(NewFunc);
inst_iterator NewEnd = inst_end(NewFunc);
while (OldIter != OldEnd && NewIter != NewEnd) {
Instruction& OldI = *OldIter;
Instruction& NewI = *NewIter;
EXPECT_NE(&OldI, &NewI);
EXPECT_EQ(OldI.hasMetadata(), NewI.hasMetadata());
if (OldI.hasMetadata()) {
const DebugLoc& OldDL = OldI.getDebugLoc();
const DebugLoc& NewDL = NewI.getDebugLoc();
// Verify that the debug location data is the same
EXPECT_EQ(OldDL.getLine(), NewDL.getLine());
EXPECT_EQ(OldDL.getCol(), NewDL.getCol());
// But that they belong to different functions
auto *OldSubprogram = cast<DISubprogram>(OldDL.getInlinedAtScope());
auto *NewSubprogram = cast<DISubprogram>(NewDL.getInlinedAtScope());
EXPECT_EQ(OldFunc->getSubprogram(), OldSubprogram);
EXPECT_EQ(NewFunc->getSubprogram(), NewSubprogram);
}
++OldIter;
++NewIter;
}
EXPECT_EQ(OldEnd, OldIter);
EXPECT_EQ(NewEnd, NewIter);
}
// Test that the arguments for debug intrinsics in the new function were
// properly cloned
TEST_F(CloneFunc, DebugIntrinsics) {
EXPECT_FALSE(verifyModule(*M));
inst_iterator OldIter = inst_begin(OldFunc);
inst_iterator OldEnd = inst_end(OldFunc);
inst_iterator NewIter = inst_begin(NewFunc);
inst_iterator NewEnd = inst_end(NewFunc);
while (OldIter != OldEnd && NewIter != NewEnd) {
Instruction& OldI = *OldIter;
Instruction& NewI = *NewIter;
if (DbgDeclareInst* OldIntrin = dyn_cast<DbgDeclareInst>(&OldI)) {
DbgDeclareInst* NewIntrin = dyn_cast<DbgDeclareInst>(&NewI);
EXPECT_TRUE(NewIntrin);
// Old address must belong to the old function
EXPECT_EQ(OldFunc, cast<AllocaInst>(OldIntrin->getAddress())->
getParent()->getParent());
// New address must belong to the new function
EXPECT_EQ(NewFunc, cast<AllocaInst>(NewIntrin->getAddress())->
getParent()->getParent());
if (OldIntrin->getDebugLoc()->getInlinedAt()) {
// Inlined variable should refer to the same DILocalVariable as in the
// Old Function
EXPECT_EQ(OldIntrin->getVariable(), NewIntrin->getVariable());
} else {
// Old variable must belong to the old function.
EXPECT_EQ(OldFunc->getSubprogram(),
cast<DISubprogram>(OldIntrin->getVariable()->getScope()));
// New variable must belong to the new function.
EXPECT_EQ(NewFunc->getSubprogram(),
cast<DISubprogram>(NewIntrin->getVariable()->getScope()));
}
} else if (DbgValueInst* OldIntrin = dyn_cast<DbgValueInst>(&OldI)) {
DbgValueInst* NewIntrin = dyn_cast<DbgValueInst>(&NewI);
EXPECT_TRUE(NewIntrin);
if (!OldIntrin->getDebugLoc()->getInlinedAt()) {
// Old variable must belong to the old function.
EXPECT_EQ(OldFunc->getSubprogram(),
cast<DISubprogram>(OldIntrin->getVariable()->getScope()));
// New variable must belong to the new function.
EXPECT_EQ(NewFunc->getSubprogram(),
cast<DISubprogram>(NewIntrin->getVariable()->getScope()));
}
}
++OldIter;
++NewIter;
}
}
static int GetDICompileUnitCount(const Module& M) {
if (const auto* LLVM_DBG_CU = M.getNamedMetadata("llvm.dbg.cu")) {
return LLVM_DBG_CU->getNumOperands();
}
return 0;
}
static bool haveCompileUnitsInCommon(const Module &LHS, const Module &RHS) {
const NamedMDNode *LHSCUs = LHS.getNamedMetadata("llvm.dbg.cu");
if (!LHSCUs)
return false;
const NamedMDNode *RHSCUs = RHS.getNamedMetadata("llvm.dbg.cu");
if (!RHSCUs)
return false;
SmallPtrSet<const MDNode *, 8> Found;
for (int I = 0, E = LHSCUs->getNumOperands(); I != E; ++I)
if (const MDNode *N = LHSCUs->getOperand(I))
Found.insert(N);
for (int I = 0, E = RHSCUs->getNumOperands(); I != E; ++I)
if (const MDNode *N = RHSCUs->getOperand(I))
if (Found.count(N))
return true;
return false;
}
TEST(CloneFunction, CloneEmptyFunction) {
StringRef ImplAssembly = R"(
define void @foo() {
ret void
}
declare void @bar()
)";
LLVMContext Context;
SMDiagnostic Error;
auto ImplModule = parseAssemblyString(ImplAssembly, Error, Context);
EXPECT_TRUE(ImplModule != nullptr);
auto *ImplFunction = ImplModule->getFunction("foo");
EXPECT_TRUE(ImplFunction != nullptr);
auto *DeclFunction = ImplModule->getFunction("bar");
EXPECT_TRUE(DeclFunction != nullptr);
ValueToValueMapTy VMap;
SmallVector<ReturnInst *, 8> Returns;
ClonedCodeInfo CCI;
CloneFunctionInto(ImplFunction, DeclFunction, VMap,
CloneFunctionChangeType::GlobalChanges, Returns, "", &CCI);
EXPECT_FALSE(verifyModule(*ImplModule, &errs()));
EXPECT_FALSE(CCI.ContainsCalls);
EXPECT_FALSE(CCI.ContainsDynamicAllocas);
}
TEST(CloneFunction, CloneFunctionWithInalloca) {
StringRef ImplAssembly = R"(
declare void @a(i32* inalloca(i32))
define void @foo() {
%a = alloca inalloca i32
call void @a(i32* inalloca(i32) %a)
ret void
}
declare void @bar()
)";
LLVMContext Context;
SMDiagnostic Error;
auto ImplModule = parseAssemblyString(ImplAssembly, Error, Context);
EXPECT_TRUE(ImplModule != nullptr);
auto *ImplFunction = ImplModule->getFunction("foo");
EXPECT_TRUE(ImplFunction != nullptr);
auto *DeclFunction = ImplModule->getFunction("bar");
EXPECT_TRUE(DeclFunction != nullptr);
ValueToValueMapTy VMap;
SmallVector<ReturnInst *, 8> Returns;
ClonedCodeInfo CCI;
CloneFunctionInto(DeclFunction, ImplFunction, VMap,
CloneFunctionChangeType::GlobalChanges, Returns, "", &CCI);
EXPECT_FALSE(verifyModule(*ImplModule, &errs()));
EXPECT_TRUE(CCI.ContainsCalls);
EXPECT_TRUE(CCI.ContainsDynamicAllocas);
}
TEST(CloneFunction, CloneFunctionWithSubprograms) {
// Tests that the debug info is duplicated correctly when a DISubprogram
// happens to be one of the operands of the DISubprogram that is being cloned.
// In general, operands of "test" that are distinct should be duplicated,
// but in this case "my_operator" should not be duplicated. If it is
// duplicated, the metadata in the llvm.dbg.declare could end up with
// different duplicates.
StringRef ImplAssembly = R"(
declare void @llvm.dbg.declare(metadata, metadata, metadata)
define void @test() !dbg !5 {
call void @llvm.dbg.declare(metadata i8* undef, metadata !4, metadata !DIExpression()), !dbg !6
ret void
}
declare void @cloned()
!llvm.dbg.cu = !{!0}
!llvm.module.flags = !{!2}
!0 = distinct !DICompileUnit(language: DW_LANG_C99, file: !1)
!1 = !DIFile(filename: "test.cpp", directory: "")
!2 = !{i32 1, !"Debug Info Version", i32 3}
!3 = distinct !DISubprogram(name: "my_operator", scope: !1, unit: !0, retainedNodes: !{!4})
!4 = !DILocalVariable(name: "awaitables", scope: !3)
!5 = distinct !DISubprogram(name: "test", scope: !3, unit: !0)
!6 = !DILocation(line: 55, column: 15, scope: !3, inlinedAt: !7)
!7 = distinct !DILocation(line: 73, column: 14, scope: !5)
)";
LLVMContext Context;
SMDiagnostic Error;
auto ImplModule = parseAssemblyString(ImplAssembly, Error, Context);
EXPECT_TRUE(ImplModule != nullptr);
auto *OldFunc = ImplModule->getFunction("test");
EXPECT_TRUE(OldFunc != nullptr);
auto *NewFunc = ImplModule->getFunction("cloned");
EXPECT_TRUE(NewFunc != nullptr);
ValueToValueMapTy VMap;
SmallVector<ReturnInst *, 8> Returns;
ClonedCodeInfo CCI;
CloneFunctionInto(NewFunc, OldFunc, VMap,
CloneFunctionChangeType::GlobalChanges, Returns, "", &CCI);
// This fails if the scopes in the llvm.dbg.declare variable and location
// aren't the same.
EXPECT_FALSE(verifyModule(*ImplModule, &errs()));
}
TEST(CloneFunction, CloneFunctionToDifferentModule) {
StringRef ImplAssembly = R"(
define void @foo() {
ret void, !dbg !5
}
!llvm.module.flags = !{!0}
!llvm.dbg.cu = !{!2, !6}
!0 = !{i32 1, !"Debug Info Version", i32 3}
!1 = distinct !DISubprogram(unit: !2)
!2 = distinct !DICompileUnit(language: DW_LANG_C99, file: !3)
!3 = !DIFile(filename: "foo.c", directory: "/tmp")
!4 = distinct !DISubprogram(unit: !2)
!5 = !DILocation(line: 4, scope: !1)
!6 = distinct !DICompileUnit(language: DW_LANG_C99, file: !3)
)";
StringRef DeclAssembly = R"(
declare void @foo()
)";
LLVMContext Context;
SMDiagnostic Error;
auto ImplModule = parseAssemblyString(ImplAssembly, Error, Context);
EXPECT_TRUE(ImplModule != nullptr);
// DICompileUnits: !2, !6. Only !2 is reachable from @foo().
EXPECT_TRUE(GetDICompileUnitCount(*ImplModule) == 2);
auto* ImplFunction = ImplModule->getFunction("foo");
EXPECT_TRUE(ImplFunction != nullptr);
auto DeclModule = parseAssemblyString(DeclAssembly, Error, Context);
EXPECT_TRUE(DeclModule != nullptr);
// No DICompileUnits defined here.
EXPECT_TRUE(GetDICompileUnitCount(*DeclModule) == 0);
auto* DeclFunction = DeclModule->getFunction("foo");
EXPECT_TRUE(DeclFunction != nullptr);
ValueToValueMapTy VMap;
VMap[ImplFunction] = DeclFunction;
// No args to map
SmallVector<ReturnInst*, 8> Returns;
CloneFunctionInto(DeclFunction, ImplFunction, VMap,
CloneFunctionChangeType::DifferentModule, Returns);
EXPECT_FALSE(verifyModule(*ImplModule, &errs()));
EXPECT_FALSE(verifyModule(*DeclModule, &errs()));
// DICompileUnit !2 shall be cloned into DeclModule.
EXPECT_TRUE(GetDICompileUnitCount(*DeclModule) == 1);
EXPECT_FALSE(haveCompileUnitsInCommon(*ImplModule, *DeclModule));
}
class CloneModule : public ::testing::Test {
protected:
void SetUp() override {
SetupModule();
CreateOldModule();
CreateNewModule();
}
void SetupModule() { OldM = new Module("", C); }
void CreateOldModule() {
auto *CD = OldM->getOrInsertComdat("comdat");
CD->setSelectionKind(Comdat::ExactMatch);
auto GV = new GlobalVariable(
*OldM, Type::getInt32Ty(C), false, GlobalValue::ExternalLinkage,
ConstantInt::get(Type::getInt32Ty(C), 1), "gv");
GV->addMetadata(LLVMContext::MD_type, *MDNode::get(C, {}));
GV->setComdat(CD);
{
// Add an empty compile unit first that isn't otherwise referenced, to
// confirm that compile units get cloned in the correct order.
DIBuilder EmptyBuilder(*OldM);
auto *File = EmptyBuilder.createFile("empty.c", "/file/dir/");
(void)EmptyBuilder.createCompileUnit(dwarf::DW_LANG_C99, File,
"EmptyUnit", false, "", 0);
EmptyBuilder.finalize();
}
DIBuilder DBuilder(*OldM);
IRBuilder<> IBuilder(C);
auto *FuncType = FunctionType::get(Type::getVoidTy(C), false);
auto *PersFn = Function::Create(FuncType, GlobalValue::ExternalLinkage,
"persfn", OldM);
auto *F =
Function::Create(FuncType, GlobalValue::PrivateLinkage, "f", OldM);
F->setPersonalityFn(PersFn);
F->setComdat(CD);
// Create debug info
auto *File = DBuilder.createFile("filename.c", "/file/dir/");
DITypeRefArray ParamTypes = DBuilder.getOrCreateTypeArray(None);
DISubroutineType *DFuncType = DBuilder.createSubroutineType(ParamTypes);
auto *CU = DBuilder.createCompileUnit(dwarf::DW_LANG_C99,
DBuilder.createFile("filename.c",
"/file/dir"),
"CloneModule", false, "", 0);
// Function DI
auto *Subprogram = DBuilder.createFunction(
CU, "f", "f", File, 4, DFuncType, 3, DINode::FlagZero,
DISubprogram::SPFlagLocalToUnit | DISubprogram::SPFlagDefinition);
F->setSubprogram(Subprogram);
// Create and assign DIGlobalVariableExpression to gv
auto GVExpression = DBuilder.createGlobalVariableExpression(
Subprogram, "gv", "gv", File, 1, DBuilder.createNullPtrType(), false);
GV->addDebugInfo(GVExpression);
// DIGlobalVariableExpression not attached to any global variable
auto Expr = DBuilder.createExpression(
ArrayRef<uint64_t>{dwarf::DW_OP_constu, 42U, dwarf::DW_OP_stack_value});
DBuilder.createGlobalVariableExpression(
Subprogram, "unattached", "unattached", File, 1,
DBuilder.createNullPtrType(), false, true, Expr);
auto *Entry = BasicBlock::Create(C, "", F);
IBuilder.SetInsertPoint(Entry);
IBuilder.CreateRetVoid();
// Finalize the debug info
DBuilder.finalize();
}
void CreateNewModule() { NewM = llvm::CloneModule(*OldM).release(); }
LLVMContext C;
Module *OldM;
Module *NewM;
};
TEST_F(CloneModule, Verify) {
// Confirm the old module is (still) valid.
EXPECT_FALSE(verifyModule(*OldM));
// Check the new module.
EXPECT_FALSE(verifyModule(*NewM));
}
TEST_F(CloneModule, OldModuleUnchanged) {
DebugInfoFinder Finder;
Finder.processModule(*OldM);
EXPECT_EQ(1U, Finder.subprogram_count());
}
TEST_F(CloneModule, Subprogram) {
Function *NewF = NewM->getFunction("f");
DISubprogram *SP = NewF->getSubprogram();
EXPECT_TRUE(SP != nullptr);
EXPECT_EQ(SP->getName(), "f");
EXPECT_EQ(SP->getFile()->getFilename(), "filename.c");
EXPECT_EQ(SP->getLine(), (unsigned)4);
}
TEST_F(CloneModule, GlobalMetadata) {
GlobalVariable *NewGV = NewM->getGlobalVariable("gv");
EXPECT_NE(nullptr, NewGV->getMetadata(LLVMContext::MD_type));
}
TEST_F(CloneModule, GlobalDebugInfo) {
GlobalVariable *NewGV = NewM->getGlobalVariable("gv");
EXPECT_TRUE(NewGV != nullptr);
// Find debug info expression assigned to global
SmallVector<DIGlobalVariableExpression *, 1> GVs;
NewGV->getDebugInfo(GVs);
EXPECT_EQ(GVs.size(), 1U);
DIGlobalVariableExpression *GVExpr = GVs[0];
DIGlobalVariable *GV = GVExpr->getVariable();
EXPECT_TRUE(GV != nullptr);
EXPECT_EQ(GV->getName(), "gv");
EXPECT_EQ(GV->getLine(), 1U);
// Assert that the scope of the debug info attached to
// global variable matches the cloned function.
DISubprogram *SP = NewM->getFunction("f")->getSubprogram();
EXPECT_TRUE(SP != nullptr);
EXPECT_EQ(GV->getScope(), SP);
}
TEST_F(CloneModule, CompileUnit) {
// Find DICompileUnit listed in llvm.dbg.cu
auto *NMD = NewM->getNamedMetadata("llvm.dbg.cu");
EXPECT_TRUE(NMD != nullptr);
EXPECT_EQ(NMD->getNumOperands(), 2U);
EXPECT_FALSE(haveCompileUnitsInCommon(*OldM, *NewM));
// Check that the empty CU is first, even though it's not referenced except
// from named metadata.
DICompileUnit *EmptyCU = dyn_cast<llvm::DICompileUnit>(NMD->getOperand(0));
EXPECT_TRUE(EmptyCU != nullptr);
EXPECT_EQ("EmptyUnit", EmptyCU->getProducer());
// Get the interesting CU.
DICompileUnit *CU = dyn_cast<llvm::DICompileUnit>(NMD->getOperand(1));
EXPECT_TRUE(CU != nullptr);
EXPECT_EQ("CloneModule", CU->getProducer());
// Assert this CU is consistent with the cloned function debug info
DISubprogram *SP = NewM->getFunction("f")->getSubprogram();
EXPECT_TRUE(SP != nullptr);
EXPECT_EQ(SP->getUnit(), CU);
// Check globals listed in CU have the correct scope
DIGlobalVariableExpressionArray GlobalArray = CU->getGlobalVariables();
EXPECT_EQ(GlobalArray.size(), 2U);
for (DIGlobalVariableExpression *GVExpr : GlobalArray) {
DIGlobalVariable *GV = GVExpr->getVariable();
EXPECT_EQ(GV->getScope(), SP);
}
}
TEST_F(CloneModule, Comdat) {
GlobalVariable *NewGV = NewM->getGlobalVariable("gv");
auto *CD = NewGV->getComdat();
ASSERT_NE(nullptr, CD);
EXPECT_EQ("comdat", CD->getName());
EXPECT_EQ(Comdat::ExactMatch, CD->getSelectionKind());
Function *NewF = NewM->getFunction("f");
EXPECT_EQ(CD, NewF->getComdat());
}
}