llvm-project/llvm/lib/Transforms/Scalar/NaryReassociate.cpp

254 lines
9.0 KiB
C++

//===- NaryReassociate.cpp - Reassociate n-ary expressions ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass reassociates n-ary add expressions and eliminates the redundancy
// exposed by the reassociation.
//
// A motivating example:
//
// void foo(int a, int b) {
// bar(a + b);
// bar((a + 2) + b);
// }
//
// An ideal compiler should reassociate (a + 2) + b to (a + b) + 2 and simplify
// the above code to
//
// int t = a + b;
// bar(t);
// bar(t + 2);
//
// However, the Reassociate pass is unable to do that because it processes each
// instruction individually and believes (a + 2) + b is the best form according
// to its rank system.
//
// To address this limitation, NaryReassociate reassociates an expression in a
// form that reuses existing instructions. As a result, NaryReassociate can
// reassociate (a + 2) + b in the example to (a + b) + 2 because it detects that
// (a + b) is computed before.
//
// NaryReassociate works as follows. For every instruction in the form of (a +
// b) + c, it checks whether a + c or b + c is already computed by a dominating
// instruction. If so, it then reassociates (a + b) + c into (a + c) + b or (b +
// c) + a and removes the redundancy accordingly. To efficiently look up whether
// an expression is computed before, we store each instruction seen and its SCEV
// into an SCEV-to-instruction map.
//
// Although the algorithm pattern-matches only ternary additions, it
// automatically handles many >3-ary expressions by walking through the function
// in the depth-first order. For example, given
//
// (a + c) + d
// ((a + b) + c) + d
//
// NaryReassociate first rewrites (a + b) + c to (a + c) + b, and then rewrites
// ((a + c) + b) + d into ((a + c) + d) + b.
//
// Finally, the above dominator-based algorithm may need to be run multiple
// iterations before emitting optimal code. One source of this need is that we
// only split an operand when it is used only once. The above algorithm can
// eliminate an instruction and decrease the usage count of its operands. As a
// result, an instruction that previously had multiple uses may become a
// single-use instruction and thus eligible for split consideration. For
// example,
//
// ac = a + c
// ab = a + b
// abc = ab + c
// ab2 = ab + b
// ab2c = ab2 + c
//
// In the first iteration, we cannot reassociate abc to ac+b because ab is used
// twice. However, we can reassociate ab2c to abc+b in the first iteration. As a
// result, ab2 becomes dead and ab will be used only once in the second
// iteration.
//
// Limitations and TODO items:
//
// 1) We only considers n-ary adds for now. This should be extended and
// generalized.
//
// 2) Besides arithmetic operations, similar reassociation can be applied to
// GEPs. For example, if
// X = &arr[a]
// dominates
// Y = &arr[a + b]
// we may rewrite Y into X + b.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "nary-reassociate"
namespace {
class NaryReassociate : public FunctionPass {
public:
static char ID;
NaryReassociate(): FunctionPass(ID) {
initializeNaryReassociatePass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addPreserved<ScalarEvolution>();
AU.addPreserved<TargetLibraryInfoWrapperPass>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<ScalarEvolution>();
AU.addRequired<TargetLibraryInfoWrapperPass>();
AU.setPreservesCFG();
}
private:
// Runs only one iteration of the dominator-based algorithm. See the header
// comments for why we need multiple iterations.
bool doOneIteration(Function &F);
// Reasssociates I to a better form.
Instruction *tryReassociateAdd(Instruction *I);
// A helper function for tryReassociateAdd. LHS and RHS are explicitly passed.
Instruction *tryReassociateAdd(Value *LHS, Value *RHS, Instruction *I);
// Rewrites I to LHS + RHS if LHS is computed already.
Instruction *tryReassociatedAdd(const SCEV *LHS, Value *RHS, Instruction *I);
DominatorTree *DT;
ScalarEvolution *SE;
TargetLibraryInfo *TLI;
// A lookup table quickly telling which instructions compute the given SCEV.
// Note that there can be multiple instructions at different locations
// computing to the same SCEV, so we map a SCEV to an instruction list. For
// example,
//
// if (p1)
// foo(a + b);
// if (p2)
// bar(a + b);
DenseMap<const SCEV *, SmallVector<Instruction *, 2>> SeenExprs;
};
} // anonymous namespace
char NaryReassociate::ID = 0;
INITIALIZE_PASS_BEGIN(NaryReassociate, "nary-reassociate", "Nary reassociation",
false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(NaryReassociate, "nary-reassociate", "Nary reassociation",
false, false)
FunctionPass *llvm::createNaryReassociatePass() {
return new NaryReassociate();
}
bool NaryReassociate::runOnFunction(Function &F) {
if (skipOptnoneFunction(F))
return false;
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
SE = &getAnalysis<ScalarEvolution>();
TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
bool Changed = false, ChangedInThisIteration;
do {
ChangedInThisIteration = doOneIteration(F);
Changed |= ChangedInThisIteration;
} while (ChangedInThisIteration);
return Changed;
}
bool NaryReassociate::doOneIteration(Function &F) {
bool Changed = false;
SeenExprs.clear();
// Traverse the dominator tree in the depth-first order. This order makes sure
// all bases of a candidate are in Candidates when we process it.
for (auto Node = GraphTraits<DominatorTree *>::nodes_begin(DT);
Node != GraphTraits<DominatorTree *>::nodes_end(DT); ++Node) {
BasicBlock *BB = Node->getBlock();
for (auto I = BB->begin(); I != BB->end(); ++I) {
// Skip vector types which are not SCEVable.
if (I->getOpcode() == Instruction::Add && !I->getType()->isVectorTy()) {
if (Instruction *NewI = tryReassociateAdd(I)) {
Changed = true;
SE->forgetValue(I);
I->replaceAllUsesWith(NewI);
RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
I = NewI;
}
// We should add the rewritten instruction because tryReassociateAdd may
// have invalidated the original one.
SeenExprs[SE->getSCEV(I)].push_back(I);
}
}
}
return Changed;
}
Instruction *NaryReassociate::tryReassociateAdd(Instruction *I) {
Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
if (auto *NewI = tryReassociateAdd(LHS, RHS, I))
return NewI;
if (auto *NewI = tryReassociateAdd(RHS, LHS, I))
return NewI;
return nullptr;
}
Instruction *NaryReassociate::tryReassociateAdd(Value *LHS, Value *RHS,
Instruction *I) {
Value *A = nullptr, *B = nullptr;
// To be conservative, we reassociate I only when it is the only user of A+B.
if (LHS->hasOneUse() && match(LHS, m_Add(m_Value(A), m_Value(B)))) {
// I = (A + B) + RHS
// = (A + RHS) + B or (B + RHS) + A
const SCEV *AExpr = SE->getSCEV(A), *BExpr = SE->getSCEV(B);
const SCEV *RHSExpr = SE->getSCEV(RHS);
if (auto *NewI = tryReassociatedAdd(SE->getAddExpr(AExpr, RHSExpr), B, I))
return NewI;
if (auto *NewI = tryReassociatedAdd(SE->getAddExpr(BExpr, RHSExpr), A, I))
return NewI;
}
return nullptr;
}
Instruction *NaryReassociate::tryReassociatedAdd(const SCEV *LHSExpr,
Value *RHS, Instruction *I) {
auto Pos = SeenExprs.find(LHSExpr);
// Bail out if LHSExpr is not previously seen.
if (Pos == SeenExprs.end())
return nullptr;
auto &LHSCandidates = Pos->second;
// Look for the closest dominator LHS of I that computes LHSExpr, and replace
// I with LHS + RHS.
//
// Because we traverse the dominator tree in the pre-order, a
// candidate that doesn't dominate the current instruction won't dominate any
// future instruction either. Therefore, we pop it out of the stack. This
// optimization makes the algorithm O(n).
while (!LHSCandidates.empty()) {
Instruction *LHS = LHSCandidates.back();
if (DT->dominates(LHS, I)) {
Instruction *NewI = BinaryOperator::CreateAdd(LHS, RHS, "", I);
NewI->takeName(I);
return NewI;
}
LHSCandidates.pop_back();
}
return nullptr;
}