llvm-project/llvm/lib/CodeGen/LiveInterval.cpp

807 lines
26 KiB
C++

//===-- LiveInterval.cpp - Live Interval Representation -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveRange and LiveInterval classes. Given some
// numbering of each the machine instructions an interval [i, j) is said to be a
// live interval for register v if there is no instruction with number j' > j
// such that v is live at j' and there is no instruction with number i' < i such
// that v is live at i'. In this implementation intervals can have holes,
// i.e. an interval might look like [1,20), [50,65), [1000,1001). Each
// individual range is represented as an instance of LiveRange, and the whole
// interval is represented as an instance of LiveInterval.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include <algorithm>
using namespace llvm;
// CompEnd - Compare LiveRange ends.
namespace {
struct CompEnd {
bool operator()(const LiveRange &A, const LiveRange &B) const {
return A.end < B.end;
}
};
}
LiveInterval::iterator LiveInterval::find(SlotIndex Pos) {
assert(Pos.isValid() && "Cannot search for an invalid index");
return std::upper_bound(begin(), end(), LiveRange(SlotIndex(), Pos, 0),
CompEnd());
}
/// killedInRange - Return true if the interval has kills in [Start,End).
bool LiveInterval::killedInRange(SlotIndex Start, SlotIndex End) const {
Ranges::const_iterator r =
std::lower_bound(ranges.begin(), ranges.end(), End);
// Now r points to the first interval with start >= End, or ranges.end().
if (r == ranges.begin())
return false;
--r;
// Now r points to the last interval with end <= End.
// r->end is the kill point.
return r->end >= Start && r->end < End;
}
// overlaps - Return true if the intersection of the two live intervals is
// not empty.
//
// An example for overlaps():
//
// 0: A = ...
// 4: B = ...
// 8: C = A + B ;; last use of A
//
// The live intervals should look like:
//
// A = [3, 11)
// B = [7, x)
// C = [11, y)
//
// A->overlaps(C) should return false since we want to be able to join
// A and C.
//
bool LiveInterval::overlapsFrom(const LiveInterval& other,
const_iterator StartPos) const {
assert(!empty() && "empty interval");
const_iterator i = begin();
const_iterator ie = end();
const_iterator j = StartPos;
const_iterator je = other.end();
assert((StartPos->start <= i->start || StartPos == other.begin()) &&
StartPos != other.end() && "Bogus start position hint!");
if (i->start < j->start) {
i = std::upper_bound(i, ie, j->start);
if (i != ranges.begin()) --i;
} else if (j->start < i->start) {
++StartPos;
if (StartPos != other.end() && StartPos->start <= i->start) {
assert(StartPos < other.end() && i < end());
j = std::upper_bound(j, je, i->start);
if (j != other.ranges.begin()) --j;
}
} else {
return true;
}
if (j == je) return false;
while (i != ie) {
if (i->start > j->start) {
std::swap(i, j);
std::swap(ie, je);
}
if (i->end > j->start)
return true;
++i;
}
return false;
}
/// overlaps - Return true if the live interval overlaps a range specified
/// by [Start, End).
bool LiveInterval::overlaps(SlotIndex Start, SlotIndex End) const {
assert(Start < End && "Invalid range");
const_iterator I = std::lower_bound(begin(), end(), End);
return I != begin() && (--I)->end > Start;
}
/// ValNo is dead, remove it. If it is the largest value number, just nuke it
/// (and any other deleted values neighboring it), otherwise mark it as ~1U so
/// it can be nuked later.
void LiveInterval::markValNoForDeletion(VNInfo *ValNo) {
if (ValNo->id == getNumValNums()-1) {
do {
valnos.pop_back();
} while (!valnos.empty() && valnos.back()->isUnused());
} else {
ValNo->setIsUnused(true);
}
}
/// RenumberValues - Renumber all values in order of appearance and delete the
/// remaining unused values.
void LiveInterval::RenumberValues(LiveIntervals &lis) {
SmallPtrSet<VNInfo*, 8> Seen;
bool seenPHIDef = false;
valnos.clear();
for (const_iterator I = begin(), E = end(); I != E; ++I) {
VNInfo *VNI = I->valno;
if (!Seen.insert(VNI))
continue;
assert(!VNI->isUnused() && "Unused valno used by live range");
VNI->id = (unsigned)valnos.size();
valnos.push_back(VNI);
VNI->setHasPHIKill(false);
if (VNI->isPHIDef())
seenPHIDef = true;
}
// Recompute phi kill flags.
if (!seenPHIDef)
return;
for (const_vni_iterator I = vni_begin(), E = vni_end(); I != E; ++I) {
VNInfo *VNI = *I;
if (!VNI->isPHIDef())
continue;
const MachineBasicBlock *PHIBB = lis.getMBBFromIndex(VNI->def);
assert(PHIBB && "No basic block for phi-def");
for (MachineBasicBlock::const_pred_iterator PI = PHIBB->pred_begin(),
PE = PHIBB->pred_end(); PI != PE; ++PI) {
VNInfo *KVNI = getVNInfoAt(lis.getMBBEndIdx(*PI).getPrevSlot());
if (KVNI)
KVNI->setHasPHIKill(true);
}
}
}
/// extendIntervalEndTo - This method is used when we want to extend the range
/// specified by I to end at the specified endpoint. To do this, we should
/// merge and eliminate all ranges that this will overlap with. The iterator is
/// not invalidated.
void LiveInterval::extendIntervalEndTo(Ranges::iterator I, SlotIndex NewEnd) {
assert(I != ranges.end() && "Not a valid interval!");
VNInfo *ValNo = I->valno;
// Search for the first interval that we can't merge with.
Ranges::iterator MergeTo = llvm::next(I);
for (; MergeTo != ranges.end() && NewEnd >= MergeTo->end; ++MergeTo) {
assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
}
// If NewEnd was in the middle of an interval, make sure to get its endpoint.
I->end = std::max(NewEnd, prior(MergeTo)->end);
// Erase any dead ranges.
ranges.erase(llvm::next(I), MergeTo);
// If the newly formed range now touches the range after it and if they have
// the same value number, merge the two ranges into one range.
Ranges::iterator Next = llvm::next(I);
if (Next != ranges.end() && Next->start <= I->end && Next->valno == ValNo) {
I->end = Next->end;
ranges.erase(Next);
}
}
/// extendIntervalStartTo - This method is used when we want to extend the range
/// specified by I to start at the specified endpoint. To do this, we should
/// merge and eliminate all ranges that this will overlap with.
LiveInterval::Ranges::iterator
LiveInterval::extendIntervalStartTo(Ranges::iterator I, SlotIndex NewStart) {
assert(I != ranges.end() && "Not a valid interval!");
VNInfo *ValNo = I->valno;
// Search for the first interval that we can't merge with.
Ranges::iterator MergeTo = I;
do {
if (MergeTo == ranges.begin()) {
I->start = NewStart;
ranges.erase(MergeTo, I);
return I;
}
assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
--MergeTo;
} while (NewStart <= MergeTo->start);
// If we start in the middle of another interval, just delete a range and
// extend that interval.
if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) {
MergeTo->end = I->end;
} else {
// Otherwise, extend the interval right after.
++MergeTo;
MergeTo->start = NewStart;
MergeTo->end = I->end;
}
ranges.erase(llvm::next(MergeTo), llvm::next(I));
return MergeTo;
}
LiveInterval::iterator
LiveInterval::addRangeFrom(LiveRange LR, iterator From) {
SlotIndex Start = LR.start, End = LR.end;
iterator it = std::upper_bound(From, ranges.end(), Start);
// If the inserted interval starts in the middle or right at the end of
// another interval, just extend that interval to contain the range of LR.
if (it != ranges.begin()) {
iterator B = prior(it);
if (LR.valno == B->valno) {
if (B->start <= Start && B->end >= Start) {
extendIntervalEndTo(B, End);
return B;
}
} else {
// Check to make sure that we are not overlapping two live ranges with
// different valno's.
assert(B->end <= Start &&
"Cannot overlap two LiveRanges with differing ValID's"
" (did you def the same reg twice in a MachineInstr?)");
}
}
// Otherwise, if this range ends in the middle of, or right next to, another
// interval, merge it into that interval.
if (it != ranges.end()) {
if (LR.valno == it->valno) {
if (it->start <= End) {
it = extendIntervalStartTo(it, Start);
// If LR is a complete superset of an interval, we may need to grow its
// endpoint as well.
if (End > it->end)
extendIntervalEndTo(it, End);
return it;
}
} else {
// Check to make sure that we are not overlapping two live ranges with
// different valno's.
assert(it->start >= End &&
"Cannot overlap two LiveRanges with differing ValID's");
}
}
// Otherwise, this is just a new range that doesn't interact with anything.
// Insert it.
return ranges.insert(it, LR);
}
/// removeRange - Remove the specified range from this interval. Note that
/// the range must be in a single LiveRange in its entirety.
void LiveInterval::removeRange(SlotIndex Start, SlotIndex End,
bool RemoveDeadValNo) {
// Find the LiveRange containing this span.
Ranges::iterator I = find(Start);
assert(I != ranges.end() && "Range is not in interval!");
assert(I->containsRange(Start, End) && "Range is not entirely in interval!");
// If the span we are removing is at the start of the LiveRange, adjust it.
VNInfo *ValNo = I->valno;
if (I->start == Start) {
if (I->end == End) {
if (RemoveDeadValNo) {
// Check if val# is dead.
bool isDead = true;
for (const_iterator II = begin(), EE = end(); II != EE; ++II)
if (II != I && II->valno == ValNo) {
isDead = false;
break;
}
if (isDead) {
// Now that ValNo is dead, remove it.
markValNoForDeletion(ValNo);
}
}
ranges.erase(I); // Removed the whole LiveRange.
} else
I->start = End;
return;
}
// Otherwise if the span we are removing is at the end of the LiveRange,
// adjust the other way.
if (I->end == End) {
I->end = Start;
return;
}
// Otherwise, we are splitting the LiveRange into two pieces.
SlotIndex OldEnd = I->end;
I->end = Start; // Trim the old interval.
// Insert the new one.
ranges.insert(llvm::next(I), LiveRange(End, OldEnd, ValNo));
}
/// removeValNo - Remove all the ranges defined by the specified value#.
/// Also remove the value# from value# list.
void LiveInterval::removeValNo(VNInfo *ValNo) {
if (empty()) return;
Ranges::iterator I = ranges.end();
Ranges::iterator E = ranges.begin();
do {
--I;
if (I->valno == ValNo)
ranges.erase(I);
} while (I != E);
// Now that ValNo is dead, remove it.
markValNoForDeletion(ValNo);
}
/// findDefinedVNInfo - Find the VNInfo defined by the specified
/// index (register interval).
VNInfo *LiveInterval::findDefinedVNInfoForRegInt(SlotIndex Idx) const {
for (LiveInterval::const_vni_iterator i = vni_begin(), e = vni_end();
i != e; ++i) {
if ((*i)->def == Idx)
return *i;
}
return 0;
}
/// join - Join two live intervals (this, and other) together. This applies
/// mappings to the value numbers in the LHS/RHS intervals as specified. If
/// the intervals are not joinable, this aborts.
void LiveInterval::join(LiveInterval &Other,
const int *LHSValNoAssignments,
const int *RHSValNoAssignments,
SmallVector<VNInfo*, 16> &NewVNInfo,
MachineRegisterInfo *MRI) {
// Determine if any of our live range values are mapped. This is uncommon, so
// we want to avoid the interval scan if not.
bool MustMapCurValNos = false;
unsigned NumVals = getNumValNums();
unsigned NumNewVals = NewVNInfo.size();
for (unsigned i = 0; i != NumVals; ++i) {
unsigned LHSValID = LHSValNoAssignments[i];
if (i != LHSValID ||
(NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i)))
MustMapCurValNos = true;
}
// If we have to apply a mapping to our base interval assignment, rewrite it
// now.
if (MustMapCurValNos) {
// Map the first live range.
iterator OutIt = begin();
OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]];
++OutIt;
for (iterator I = OutIt, E = end(); I != E; ++I) {
OutIt->valno = NewVNInfo[LHSValNoAssignments[I->valno->id]];
// If this live range has the same value # as its immediate predecessor,
// and if they are neighbors, remove one LiveRange. This happens when we
// have [0,3:0)[4,7:1) and map 0/1 onto the same value #.
if (OutIt->valno == (OutIt-1)->valno && (OutIt-1)->end == OutIt->start) {
(OutIt-1)->end = OutIt->end;
} else {
if (I != OutIt) {
OutIt->start = I->start;
OutIt->end = I->end;
}
// Didn't merge, on to the next one.
++OutIt;
}
}
// If we merge some live ranges, chop off the end.
ranges.erase(OutIt, end());
}
// Remember assignements because val# ids are changing.
SmallVector<unsigned, 16> OtherAssignments;
for (iterator I = Other.begin(), E = Other.end(); I != E; ++I)
OtherAssignments.push_back(RHSValNoAssignments[I->valno->id]);
// Update val# info. Renumber them and make sure they all belong to this
// LiveInterval now. Also remove dead val#'s.
unsigned NumValNos = 0;
for (unsigned i = 0; i < NumNewVals; ++i) {
VNInfo *VNI = NewVNInfo[i];
if (VNI) {
if (NumValNos >= NumVals)
valnos.push_back(VNI);
else
valnos[NumValNos] = VNI;
VNI->id = NumValNos++; // Renumber val#.
}
}
if (NumNewVals < NumVals)
valnos.resize(NumNewVals); // shrinkify
// Okay, now insert the RHS live ranges into the LHS.
iterator InsertPos = begin();
unsigned RangeNo = 0;
for (iterator I = Other.begin(), E = Other.end(); I != E; ++I, ++RangeNo) {
// Map the valno in the other live range to the current live range.
I->valno = NewVNInfo[OtherAssignments[RangeNo]];
assert(I->valno && "Adding a dead range?");
InsertPos = addRangeFrom(*I, InsertPos);
}
ComputeJoinedWeight(Other);
}
/// MergeRangesInAsValue - Merge all of the intervals in RHS into this live
/// interval as the specified value number. The LiveRanges in RHS are
/// allowed to overlap with LiveRanges in the current interval, but only if
/// the overlapping LiveRanges have the specified value number.
void LiveInterval::MergeRangesInAsValue(const LiveInterval &RHS,
VNInfo *LHSValNo) {
// TODO: Make this more efficient.
iterator InsertPos = begin();
for (const_iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) {
// Map the valno in the other live range to the current live range.
LiveRange Tmp = *I;
Tmp.valno = LHSValNo;
InsertPos = addRangeFrom(Tmp, InsertPos);
}
}
/// MergeValueInAsValue - Merge all of the live ranges of a specific val#
/// in RHS into this live interval as the specified value number.
/// The LiveRanges in RHS are allowed to overlap with LiveRanges in the
/// current interval, it will replace the value numbers of the overlaped
/// live ranges with the specified value number.
void LiveInterval::MergeValueInAsValue(
const LiveInterval &RHS,
const VNInfo *RHSValNo, VNInfo *LHSValNo) {
SmallVector<VNInfo*, 4> ReplacedValNos;
iterator IP = begin();
for (const_iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) {
assert(I->valno == RHS.getValNumInfo(I->valno->id) && "Bad VNInfo");
if (I->valno != RHSValNo)
continue;
SlotIndex Start = I->start, End = I->end;
IP = std::upper_bound(IP, end(), Start);
// If the start of this range overlaps with an existing liverange, trim it.
if (IP != begin() && IP[-1].end > Start) {
if (IP[-1].valno != LHSValNo) {
ReplacedValNos.push_back(IP[-1].valno);
IP[-1].valno = LHSValNo; // Update val#.
}
Start = IP[-1].end;
// Trimmed away the whole range?
if (Start >= End) continue;
}
// If the end of this range overlaps with an existing liverange, trim it.
if (IP != end() && End > IP->start) {
if (IP->valno != LHSValNo) {
ReplacedValNos.push_back(IP->valno);
IP->valno = LHSValNo; // Update val#.
}
End = IP->start;
// If this trimmed away the whole range, ignore it.
if (Start == End) continue;
}
// Map the valno in the other live range to the current live range.
IP = addRangeFrom(LiveRange(Start, End, LHSValNo), IP);
}
SmallSet<VNInfo*, 4> Seen;
for (unsigned i = 0, e = ReplacedValNos.size(); i != e; ++i) {
VNInfo *V1 = ReplacedValNos[i];
if (Seen.insert(V1)) {
bool isDead = true;
for (const_iterator I = begin(), E = end(); I != E; ++I)
if (I->valno == V1) {
isDead = false;
break;
}
if (isDead) {
// Now that V1 is dead, remove it.
markValNoForDeletion(V1);
}
}
}
}
/// MergeValueNumberInto - This method is called when two value nubmers
/// are found to be equivalent. This eliminates V1, replacing all
/// LiveRanges with the V1 value number with the V2 value number. This can
/// cause merging of V1/V2 values numbers and compaction of the value space.
VNInfo* LiveInterval::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) {
assert(V1 != V2 && "Identical value#'s are always equivalent!");
// This code actually merges the (numerically) larger value number into the
// smaller value number, which is likely to allow us to compactify the value
// space. The only thing we have to be careful of is to preserve the
// instruction that defines the result value.
// Make sure V2 is smaller than V1.
if (V1->id < V2->id) {
V1->copyFrom(*V2);
std::swap(V1, V2);
}
// Merge V1 live ranges into V2.
for (iterator I = begin(); I != end(); ) {
iterator LR = I++;
if (LR->valno != V1) continue; // Not a V1 LiveRange.
// Okay, we found a V1 live range. If it had a previous, touching, V2 live
// range, extend it.
if (LR != begin()) {
iterator Prev = LR-1;
if (Prev->valno == V2 && Prev->end == LR->start) {
Prev->end = LR->end;
// Erase this live-range.
ranges.erase(LR);
I = Prev+1;
LR = Prev;
}
}
// Okay, now we have a V1 or V2 live range that is maximally merged forward.
// Ensure that it is a V2 live-range.
LR->valno = V2;
// If we can merge it into later V2 live ranges, do so now. We ignore any
// following V1 live ranges, as they will be merged in subsequent iterations
// of the loop.
if (I != end()) {
if (I->start == LR->end && I->valno == V2) {
LR->end = I->end;
ranges.erase(I);
I = LR+1;
}
}
}
// Merge the relevant flags.
V2->mergeFlags(V1);
// Now that V1 is dead, remove it.
markValNoForDeletion(V1);
return V2;
}
void LiveInterval::Copy(const LiveInterval &RHS,
MachineRegisterInfo *MRI,
VNInfo::Allocator &VNInfoAllocator) {
ranges.clear();
valnos.clear();
std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(RHS.reg);
MRI->setRegAllocationHint(reg, Hint.first, Hint.second);
weight = RHS.weight;
for (unsigned i = 0, e = RHS.getNumValNums(); i != e; ++i) {
const VNInfo *VNI = RHS.getValNumInfo(i);
createValueCopy(VNI, VNInfoAllocator);
}
for (unsigned i = 0, e = RHS.ranges.size(); i != e; ++i) {
const LiveRange &LR = RHS.ranges[i];
addRange(LiveRange(LR.start, LR.end, getValNumInfo(LR.valno->id)));
}
}
unsigned LiveInterval::getSize() const {
unsigned Sum = 0;
for (const_iterator I = begin(), E = end(); I != E; ++I)
Sum += I->start.distance(I->end);
return Sum;
}
/// ComputeJoinedWeight - Set the weight of a live interval Joined
/// after Other has been merged into it.
void LiveInterval::ComputeJoinedWeight(const LiveInterval &Other) {
// If either of these intervals was spilled, the weight is the
// weight of the non-spilled interval. This can only happen with
// iterative coalescers.
if (Other.weight != HUGE_VALF) {
weight += Other.weight;
}
else if (weight == HUGE_VALF &&
!TargetRegisterInfo::isPhysicalRegister(reg)) {
// Remove this assert if you have an iterative coalescer
assert(0 && "Joining to spilled interval");
weight = Other.weight;
}
else {
// Otherwise the weight stays the same
// Remove this assert if you have an iterative coalescer
assert(0 && "Joining from spilled interval");
}
}
raw_ostream& llvm::operator<<(raw_ostream& os, const LiveRange &LR) {
return os << '[' << LR.start << ',' << LR.end << ':' << LR.valno->id << ")";
}
void LiveRange::dump() const {
dbgs() << *this << "\n";
}
void LiveInterval::print(raw_ostream &OS, const TargetRegisterInfo *TRI) const {
if (isStackSlot())
OS << "SS#" << getStackSlotIndex();
else if (TRI && TargetRegisterInfo::isPhysicalRegister(reg))
OS << TRI->getName(reg);
else
OS << "%reg" << reg;
OS << ',' << weight;
if (empty())
OS << " EMPTY";
else {
OS << " = ";
for (LiveInterval::Ranges::const_iterator I = ranges.begin(),
E = ranges.end(); I != E; ++I) {
OS << *I;
assert(I->valno == getValNumInfo(I->valno->id) && "Bad VNInfo");
}
}
// Print value number info.
if (getNumValNums()) {
OS << " ";
unsigned vnum = 0;
for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e;
++i, ++vnum) {
const VNInfo *vni = *i;
if (vnum) OS << " ";
OS << vnum << "@";
if (vni->isUnused()) {
OS << "x";
} else {
OS << vni->def;
if (vni->isPHIDef())
OS << "-phidef";
if (vni->hasPHIKill())
OS << "-phikill";
if (vni->hasRedefByEC())
OS << "-ec";
}
}
}
}
void LiveInterval::dump() const {
dbgs() << *this << "\n";
}
void LiveRange::print(raw_ostream &os) const {
os << *this;
}
/// ConnectedVNInfoEqClasses - Helper class that can divide VNInfos in a
/// LiveInterval into equivalence clases of connected components. A
/// LiveInterval that has multiple connected components can be broken into
/// multiple LiveIntervals.
void ConnectedVNInfoEqClasses::Connect(unsigned a, unsigned b) {
unsigned eqa = eqClass_[a];
unsigned eqb = eqClass_[b];
if (eqa == eqb)
return;
// Make sure a and b are in the same class while maintaining eqClass_[i] <= i.
if (eqa > eqb)
eqClass_[a] = eqb;
else
eqClass_[b] = eqa;
}
unsigned ConnectedVNInfoEqClasses::Renumber() {
// Assign final class numbers.
// We use the fact that eqClass_[i] == i for class leaders.
// For others, eqClass_[i] points to an earlier value in the same class.
unsigned count = 0;
for (unsigned i = 0, e = eqClass_.size(); i != e; ++i) {
unsigned q = eqClass_[i];
assert(q <= i && "Invariant broken");
eqClass_[i] = q == i ? count++ : eqClass_[q];
}
return count;
}
unsigned ConnectedVNInfoEqClasses::Classify(const LiveInterval *LI) {
// Create initial equivalence classes.
eqClass_.clear();
eqClass_.reserve(LI->getNumValNums());
for (unsigned i = 0, e = LI->getNumValNums(); i != e; ++i)
eqClass_.push_back(i);
// Determine connections.
for (LiveInterval::const_vni_iterator I = LI->vni_begin(), E = LI->vni_end();
I != E; ++I) {
const VNInfo *VNI = *I;
if (VNI->id == eqClass_.size())
eqClass_.push_back(VNI->id);
assert(!VNI->isUnused() && "Cannot handle unused values");
if (VNI->isPHIDef()) {
const MachineBasicBlock *MBB = lis_.getMBBFromIndex(VNI->def);
assert(MBB && "Phi-def has no defining MBB");
// Connect to values live out of predecessors.
for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
PE = MBB->pred_end(); PI != PE; ++PI)
if (const VNInfo *PVNI =
LI->getVNInfoAt(lis_.getMBBEndIdx(*PI).getPrevSlot()))
Connect(VNI->id, PVNI->id);
} else {
// Normal value defined by an instruction. Check for two-addr redef.
// FIXME: This could be coincidental. Should we really check for a tied
// operand constraint?
if (const VNInfo *UVNI = LI->getVNInfoAt(VNI->def.getUseIndex()))
Connect(VNI->id, UVNI->id);
}
}
return Renumber();
}
void ConnectedVNInfoEqClasses::Distribute(LiveInterval *LIV[]) {
assert(LIV[0] && "LIV[0] must be set");
LiveInterval &LI = *LIV[0];
// Check that they likely ran Classify() on LIV[0] first.
assert(eqClass_.size() == LI.getNumValNums() && "Bad classification data");
// First move runs to new intervals.
LiveInterval::iterator J = LI.begin(), E = LI.end();
while (J != E && eqClass_[J->valno->id] == 0)
++J;
for (LiveInterval::iterator I = J; I != E; ++I) {
if (unsigned eq = eqClass_[I->valno->id]) {
assert((LIV[eq]->empty() || LIV[eq]->expiredAt(I->start)) &&
"New intervals should be empty");
LIV[eq]->ranges.push_back(*I);
} else
*J++ = *I;
}
LI.ranges.erase(J, E);
// Transfer VNInfos to their new owners and renumber them.
unsigned j = 0, e = LI.getNumValNums();
while (j != e && eqClass_[j] == 0)
++j;
for (unsigned i = j; i != e; ++i) {
VNInfo *VNI = LI.getValNumInfo(i);
if (unsigned eq = eqClass_[i]) {
VNI->id = LIV[eq]->getNumValNums();
LIV[eq]->valnos.push_back(VNI);
} else {
VNI->id = j;
LI.valnos[j++] = VNI;
}
}
LI.valnos.resize(j);
}