llvm-project/llvm/tools/dsymutil/MachODebugMapParser.cpp

241 lines
8.4 KiB
C++

//===- tools/dsymutil/MachODebugMapParser.cpp - Parse STABS debug maps ----===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "BinaryHolder.h"
#include "DebugMap.h"
#include "dsymutil.h"
#include "llvm/Object/MachO.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/raw_ostream.h"
namespace {
using namespace llvm;
using namespace llvm::dsymutil;
using namespace llvm::object;
class MachODebugMapParser {
public:
MachODebugMapParser(StringRef BinaryPath, StringRef PathPrefix = "",
bool Verbose = false)
: BinaryPath(BinaryPath), PathPrefix(PathPrefix),
MainBinaryHolder(Verbose), CurrentObjectHolder(Verbose),
CurrentDebugMapObject(nullptr) {}
/// \brief Parses and returns the DebugMap of the input binary.
/// \returns an error in case the provided BinaryPath doesn't exist
/// or isn't of a supported type.
ErrorOr<std::unique_ptr<DebugMap>> parse();
private:
std::string BinaryPath;
std::string PathPrefix;
/// Owns the MemoryBuffer for the main binary.
BinaryHolder MainBinaryHolder;
/// Map of the binary symbol addresses.
StringMap<uint64_t> MainBinarySymbolAddresses;
StringRef MainBinaryStrings;
/// The constructed DebugMap.
std::unique_ptr<DebugMap> Result;
/// Owns the MemoryBuffer for the currently handled object file.
BinaryHolder CurrentObjectHolder;
/// Map of the currently processed object file symbol addresses.
StringMap<uint64_t> CurrentObjectAddresses;
/// Element of the debug map corresponfing to the current object file.
DebugMapObject *CurrentDebugMapObject;
void switchToNewDebugMapObject(StringRef Filename);
void resetParserState();
uint64_t getMainBinarySymbolAddress(StringRef Name);
void loadMainBinarySymbols();
void loadCurrentObjectFileSymbols();
void handleStabSymbolTableEntry(uint32_t StringIndex, uint8_t Type,
uint8_t SectionIndex, uint16_t Flags,
uint64_t Value);
template <typename STEType> void handleStabDebugMapEntry(const STEType &STE) {
handleStabSymbolTableEntry(STE.n_strx, STE.n_type, STE.n_sect, STE.n_desc,
STE.n_value);
}
};
static void Warning(const Twine &Msg) { errs() << "warning: " + Msg + "\n"; }
}
/// Reset the parser state coresponding to the current object
/// file. This is to be called after an object file is finished
/// processing.
void MachODebugMapParser::resetParserState() {
CurrentObjectAddresses.clear();
CurrentDebugMapObject = nullptr;
}
/// Create a new DebugMapObject. This function resets the state of the
/// parser that was referring to the last object file and sets
/// everything up to add symbols to the new one.
void MachODebugMapParser::switchToNewDebugMapObject(StringRef Filename) {
resetParserState();
SmallString<80> Path(PathPrefix);
sys::path::append(Path, Filename);
auto MachOOrError = CurrentObjectHolder.GetFileAs<MachOObjectFile>(Path);
if (auto Error = MachOOrError.getError()) {
Warning(Twine("cannot open debug object \"") + Path.str() + "\": " +
Error.message() + "\n");
return;
}
loadCurrentObjectFileSymbols();
CurrentDebugMapObject = &Result->addDebugMapObject(Path);
}
static Triple getTriple(const object::MachOObjectFile &Obj) {
Triple TheTriple("unknown-unknown-unknown");
TheTriple.setArch(Triple::ArchType(Obj.getArch()));
TheTriple.setObjectFormat(Triple::MachO);
return TheTriple;
}
/// This main parsing routine tries to open the main binary and if
/// successful iterates over the STAB entries. The real parsing is
/// done in handleStabSymbolTableEntry.
ErrorOr<std::unique_ptr<DebugMap>> MachODebugMapParser::parse() {
auto MainBinOrError = MainBinaryHolder.GetFileAs<MachOObjectFile>(BinaryPath);
if (auto Error = MainBinOrError.getError())
return Error;
const MachOObjectFile &MainBinary = *MainBinOrError;
loadMainBinarySymbols();
Result = make_unique<DebugMap>(getTriple(MainBinary));
MainBinaryStrings = MainBinary.getStringTableData();
for (const SymbolRef &Symbol : MainBinary.symbols()) {
const DataRefImpl &DRI = Symbol.getRawDataRefImpl();
if (MainBinary.is64Bit())
handleStabDebugMapEntry(MainBinary.getSymbol64TableEntry(DRI));
else
handleStabDebugMapEntry(MainBinary.getSymbolTableEntry(DRI));
}
resetParserState();
return std::move(Result);
}
/// Interpret the STAB entries to fill the DebugMap.
void MachODebugMapParser::handleStabSymbolTableEntry(uint32_t StringIndex,
uint8_t Type,
uint8_t SectionIndex,
uint16_t Flags,
uint64_t Value) {
if (!(Type & MachO::N_STAB))
return;
const char *Name = &MainBinaryStrings.data()[StringIndex];
// An N_OSO entry represents the start of a new object file description.
if (Type == MachO::N_OSO)
return switchToNewDebugMapObject(Name);
// If the last N_OSO object file wasn't found,
// CurrentDebugMapObject will be null. Do not update anything
// until we find the next valid N_OSO entry.
if (!CurrentDebugMapObject)
return;
switch (Type) {
case MachO::N_GSYM:
// This is a global variable. We need to query the main binary
// symbol table to find its address as it might not be in the
// debug map (for common symbols).
Value = getMainBinarySymbolAddress(Name);
if (Value == UnknownAddressOrSize)
return;
break;
case MachO::N_FUN:
// Functions are scopes in STABS. They have an end marker that we
// need to ignore.
if (Name[0] == '\0')
return;
break;
case MachO::N_STSYM:
break;
default:
return;
}
auto ObjectSymIt = CurrentObjectAddresses.find(Name);
if (ObjectSymIt == CurrentObjectAddresses.end())
return Warning("could not find object file symbol for symbol " +
Twine(Name));
if (!CurrentDebugMapObject->addSymbol(Name, ObjectSymIt->getValue(), Value))
return Warning(Twine("failed to insert symbol '") + Name +
"' in the debug map.");
}
/// Load the current object file symbols into CurrentObjectAddresses.
void MachODebugMapParser::loadCurrentObjectFileSymbols() {
CurrentObjectAddresses.clear();
for (auto Sym : CurrentObjectHolder.Get().symbols()) {
StringRef Name;
uint64_t Addr;
if (Sym.getAddress(Addr) || Addr == UnknownAddressOrSize ||
Sym.getName(Name))
continue;
CurrentObjectAddresses[Name] = Addr;
}
}
/// Lookup a symbol address in the main binary symbol table. The
/// parser only needs to query common symbols, thus not every symbol's
/// address is available through this function.
uint64_t MachODebugMapParser::getMainBinarySymbolAddress(StringRef Name) {
auto Sym = MainBinarySymbolAddresses.find(Name);
if (Sym == MainBinarySymbolAddresses.end())
return UnknownAddressOrSize;
return Sym->second;
}
/// Load the interesting main binary symbols' addresses into
/// MainBinarySymbolAddresses.
void MachODebugMapParser::loadMainBinarySymbols() {
const MachOObjectFile &MainBinary = MainBinaryHolder.GetAs<MachOObjectFile>();
section_iterator Section = MainBinary.section_end();
for (const auto &Sym : MainBinary.symbols()) {
SymbolRef::Type Type;
// Skip undefined and STAB entries.
if (Sym.getType(Type) || (Type & SymbolRef::ST_Debug) ||
(Type & SymbolRef::ST_Unknown))
continue;
StringRef Name;
uint64_t Addr;
// The only symbols of interest are the global variables. These
// are the only ones that need to be queried because the address
// of common data won't be described in the debug map. All other
// addresses should be fetched for the debug map.
if (Sym.getAddress(Addr) || Addr == UnknownAddressOrSize ||
!(Sym.getFlags() & SymbolRef::SF_Global) || Sym.getSection(Section) ||
Section->isText() || Sym.getName(Name) || Name.size() == 0 ||
Name[0] == '\0')
continue;
MainBinarySymbolAddresses[Name] = Addr;
}
}
namespace llvm {
namespace dsymutil {
llvm::ErrorOr<std::unique_ptr<DebugMap>>
parseDebugMap(StringRef InputFile, StringRef PrependPath, bool Verbose) {
MachODebugMapParser Parser(InputFile, PrependPath, Verbose);
return Parser.parse();
}
}
}