forked from OSchip/llvm-project
2627 lines
95 KiB
C++
2627 lines
95 KiB
C++
//===-- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ---------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains support for writing dwarf debug info into asm files.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ByteStreamer.h"
|
|
#include "DwarfDebug.h"
|
|
#include "DIE.h"
|
|
#include "DIEHash.h"
|
|
#include "DwarfUnit.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DIBuilder.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DebugInfo.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/ValueHandle.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCSection.h"
|
|
#include "llvm/MC/MCStreamer.h"
|
|
#include "llvm/MC/MCSymbol.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/Dwarf.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/FormattedStream.h"
|
|
#include "llvm/Support/LEB128.h"
|
|
#include "llvm/Support/MD5.h"
|
|
#include "llvm/Support/Path.h"
|
|
#include "llvm/Support/Timer.h"
|
|
#include "llvm/Target/TargetFrameLowering.h"
|
|
#include "llvm/Target/TargetLoweringObjectFile.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "dwarfdebug"
|
|
|
|
static cl::opt<bool>
|
|
DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden,
|
|
cl::desc("Disable debug info printing"));
|
|
|
|
static cl::opt<bool> UnknownLocations(
|
|
"use-unknown-locations", cl::Hidden,
|
|
cl::desc("Make an absence of debug location information explicit."),
|
|
cl::init(false));
|
|
|
|
static cl::opt<bool>
|
|
GenerateGnuPubSections("generate-gnu-dwarf-pub-sections", cl::Hidden,
|
|
cl::desc("Generate GNU-style pubnames and pubtypes"),
|
|
cl::init(false));
|
|
|
|
static cl::opt<bool> GenerateARangeSection("generate-arange-section",
|
|
cl::Hidden,
|
|
cl::desc("Generate dwarf aranges"),
|
|
cl::init(false));
|
|
|
|
namespace {
|
|
enum DefaultOnOff { Default, Enable, Disable };
|
|
}
|
|
|
|
static cl::opt<DefaultOnOff>
|
|
DwarfAccelTables("dwarf-accel-tables", cl::Hidden,
|
|
cl::desc("Output prototype dwarf accelerator tables."),
|
|
cl::values(clEnumVal(Default, "Default for platform"),
|
|
clEnumVal(Enable, "Enabled"),
|
|
clEnumVal(Disable, "Disabled"), clEnumValEnd),
|
|
cl::init(Default));
|
|
|
|
static cl::opt<DefaultOnOff>
|
|
SplitDwarf("split-dwarf", cl::Hidden,
|
|
cl::desc("Output DWARF5 split debug info."),
|
|
cl::values(clEnumVal(Default, "Default for platform"),
|
|
clEnumVal(Enable, "Enabled"),
|
|
clEnumVal(Disable, "Disabled"), clEnumValEnd),
|
|
cl::init(Default));
|
|
|
|
static cl::opt<DefaultOnOff>
|
|
DwarfPubSections("generate-dwarf-pub-sections", cl::Hidden,
|
|
cl::desc("Generate DWARF pubnames and pubtypes sections"),
|
|
cl::values(clEnumVal(Default, "Default for platform"),
|
|
clEnumVal(Enable, "Enabled"),
|
|
clEnumVal(Disable, "Disabled"), clEnumValEnd),
|
|
cl::init(Default));
|
|
|
|
static cl::opt<unsigned>
|
|
DwarfVersionNumber("dwarf-version", cl::Hidden,
|
|
cl::desc("Generate DWARF for dwarf version."), cl::init(0));
|
|
|
|
static const char *const DWARFGroupName = "DWARF Emission";
|
|
static const char *const DbgTimerName = "DWARF Debug Writer";
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// resolve - Look in the DwarfDebug map for the MDNode that
|
|
/// corresponds to the reference.
|
|
template <typename T> T DbgVariable::resolve(DIRef<T> Ref) const {
|
|
return DD->resolve(Ref);
|
|
}
|
|
|
|
bool DbgVariable::isBlockByrefVariable() const {
|
|
assert(Var.isVariable() && "Invalid complex DbgVariable!");
|
|
return Var.isBlockByrefVariable(DD->getTypeIdentifierMap());
|
|
}
|
|
|
|
DIType DbgVariable::getType() const {
|
|
DIType Ty = Var.getType().resolve(DD->getTypeIdentifierMap());
|
|
// FIXME: isBlockByrefVariable should be reformulated in terms of complex
|
|
// addresses instead.
|
|
if (Var.isBlockByrefVariable(DD->getTypeIdentifierMap())) {
|
|
/* Byref variables, in Blocks, are declared by the programmer as
|
|
"SomeType VarName;", but the compiler creates a
|
|
__Block_byref_x_VarName struct, and gives the variable VarName
|
|
either the struct, or a pointer to the struct, as its type. This
|
|
is necessary for various behind-the-scenes things the compiler
|
|
needs to do with by-reference variables in blocks.
|
|
|
|
However, as far as the original *programmer* is concerned, the
|
|
variable should still have type 'SomeType', as originally declared.
|
|
|
|
The following function dives into the __Block_byref_x_VarName
|
|
struct to find the original type of the variable. This will be
|
|
passed back to the code generating the type for the Debug
|
|
Information Entry for the variable 'VarName'. 'VarName' will then
|
|
have the original type 'SomeType' in its debug information.
|
|
|
|
The original type 'SomeType' will be the type of the field named
|
|
'VarName' inside the __Block_byref_x_VarName struct.
|
|
|
|
NOTE: In order for this to not completely fail on the debugger
|
|
side, the Debug Information Entry for the variable VarName needs to
|
|
have a DW_AT_location that tells the debugger how to unwind through
|
|
the pointers and __Block_byref_x_VarName struct to find the actual
|
|
value of the variable. The function addBlockByrefType does this. */
|
|
DIType subType = Ty;
|
|
uint16_t tag = Ty.getTag();
|
|
|
|
if (tag == dwarf::DW_TAG_pointer_type)
|
|
subType = resolve(DIDerivedType(Ty).getTypeDerivedFrom());
|
|
|
|
DIArray Elements = DICompositeType(subType).getTypeArray();
|
|
for (unsigned i = 0, N = Elements.getNumElements(); i < N; ++i) {
|
|
DIDerivedType DT(Elements.getElement(i));
|
|
if (getName() == DT.getName())
|
|
return (resolve(DT.getTypeDerivedFrom()));
|
|
}
|
|
}
|
|
return Ty;
|
|
}
|
|
|
|
static LLVM_CONSTEXPR DwarfAccelTable::Atom TypeAtoms[] = {
|
|
DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset, dwarf::DW_FORM_data4),
|
|
DwarfAccelTable::Atom(dwarf::DW_ATOM_die_tag, dwarf::DW_FORM_data2),
|
|
DwarfAccelTable::Atom(dwarf::DW_ATOM_type_flags, dwarf::DW_FORM_data1)};
|
|
|
|
DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M)
|
|
: Asm(A), MMI(Asm->MMI), FirstCU(nullptr), PrevLabel(nullptr),
|
|
GlobalRangeCount(0), InfoHolder(A, "info_string", DIEValueAllocator),
|
|
UsedNonDefaultText(false),
|
|
SkeletonHolder(A, "skel_string", DIEValueAllocator),
|
|
AccelNames(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset,
|
|
dwarf::DW_FORM_data4)),
|
|
AccelObjC(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset,
|
|
dwarf::DW_FORM_data4)),
|
|
AccelNamespace(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset,
|
|
dwarf::DW_FORM_data4)),
|
|
AccelTypes(TypeAtoms) {
|
|
|
|
DwarfInfoSectionSym = DwarfAbbrevSectionSym = DwarfStrSectionSym = nullptr;
|
|
DwarfDebugRangeSectionSym = DwarfDebugLocSectionSym = nullptr;
|
|
DwarfLineSectionSym = nullptr;
|
|
DwarfAddrSectionSym = nullptr;
|
|
DwarfAbbrevDWOSectionSym = DwarfStrDWOSectionSym = nullptr;
|
|
FunctionBeginSym = FunctionEndSym = nullptr;
|
|
CurFn = nullptr;
|
|
CurMI = nullptr;
|
|
|
|
// Turn on accelerator tables for Darwin by default, pubnames by
|
|
// default for non-Darwin, and handle split dwarf.
|
|
bool IsDarwin = Triple(A->getTargetTriple()).isOSDarwin();
|
|
|
|
if (DwarfAccelTables == Default)
|
|
HasDwarfAccelTables = IsDarwin;
|
|
else
|
|
HasDwarfAccelTables = DwarfAccelTables == Enable;
|
|
|
|
if (SplitDwarf == Default)
|
|
HasSplitDwarf = false;
|
|
else
|
|
HasSplitDwarf = SplitDwarf == Enable;
|
|
|
|
if (DwarfPubSections == Default)
|
|
HasDwarfPubSections = !IsDarwin;
|
|
else
|
|
HasDwarfPubSections = DwarfPubSections == Enable;
|
|
|
|
DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber
|
|
: MMI->getModule()->getDwarfVersion();
|
|
|
|
{
|
|
NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
|
|
beginModule();
|
|
}
|
|
}
|
|
|
|
// Switch to the specified MCSection and emit an assembler
|
|
// temporary label to it if SymbolStem is specified.
|
|
static MCSymbol *emitSectionSym(AsmPrinter *Asm, const MCSection *Section,
|
|
const char *SymbolStem = nullptr) {
|
|
Asm->OutStreamer.SwitchSection(Section);
|
|
if (!SymbolStem)
|
|
return nullptr;
|
|
|
|
MCSymbol *TmpSym = Asm->GetTempSymbol(SymbolStem);
|
|
Asm->OutStreamer.EmitLabel(TmpSym);
|
|
return TmpSym;
|
|
}
|
|
|
|
static bool isObjCClass(StringRef Name) {
|
|
return Name.startswith("+") || Name.startswith("-");
|
|
}
|
|
|
|
static bool hasObjCCategory(StringRef Name) {
|
|
if (!isObjCClass(Name))
|
|
return false;
|
|
|
|
return Name.find(") ") != StringRef::npos;
|
|
}
|
|
|
|
static void getObjCClassCategory(StringRef In, StringRef &Class,
|
|
StringRef &Category) {
|
|
if (!hasObjCCategory(In)) {
|
|
Class = In.slice(In.find('[') + 1, In.find(' '));
|
|
Category = "";
|
|
return;
|
|
}
|
|
|
|
Class = In.slice(In.find('[') + 1, In.find('('));
|
|
Category = In.slice(In.find('[') + 1, In.find(' '));
|
|
return;
|
|
}
|
|
|
|
static StringRef getObjCMethodName(StringRef In) {
|
|
return In.slice(In.find(' ') + 1, In.find(']'));
|
|
}
|
|
|
|
// Helper for sorting sections into a stable output order.
|
|
static bool SectionSort(const MCSection *A, const MCSection *B) {
|
|
std::string LA = (A ? A->getLabelBeginName() : "");
|
|
std::string LB = (B ? B->getLabelBeginName() : "");
|
|
return LA < LB;
|
|
}
|
|
|
|
// Add the various names to the Dwarf accelerator table names.
|
|
// TODO: Determine whether or not we should add names for programs
|
|
// that do not have a DW_AT_name or DW_AT_linkage_name field - this
|
|
// is only slightly different than the lookup of non-standard ObjC names.
|
|
void DwarfDebug::addSubprogramNames(DISubprogram SP, DIE &Die) {
|
|
if (!SP.isDefinition())
|
|
return;
|
|
addAccelName(SP.getName(), Die);
|
|
|
|
// If the linkage name is different than the name, go ahead and output
|
|
// that as well into the name table.
|
|
if (SP.getLinkageName() != "" && SP.getName() != SP.getLinkageName())
|
|
addAccelName(SP.getLinkageName(), Die);
|
|
|
|
// If this is an Objective-C selector name add it to the ObjC accelerator
|
|
// too.
|
|
if (isObjCClass(SP.getName())) {
|
|
StringRef Class, Category;
|
|
getObjCClassCategory(SP.getName(), Class, Category);
|
|
addAccelObjC(Class, Die);
|
|
if (Category != "")
|
|
addAccelObjC(Category, Die);
|
|
// Also add the base method name to the name table.
|
|
addAccelName(getObjCMethodName(SP.getName()), Die);
|
|
}
|
|
}
|
|
|
|
/// isSubprogramContext - Return true if Context is either a subprogram
|
|
/// or another context nested inside a subprogram.
|
|
bool DwarfDebug::isSubprogramContext(const MDNode *Context) {
|
|
if (!Context)
|
|
return false;
|
|
DIDescriptor D(Context);
|
|
if (D.isSubprogram())
|
|
return true;
|
|
if (D.isType())
|
|
return isSubprogramContext(resolve(DIType(Context).getContext()));
|
|
return false;
|
|
}
|
|
|
|
// Find DIE for the given subprogram and attach appropriate DW_AT_low_pc
|
|
// and DW_AT_high_pc attributes. If there are global variables in this
|
|
// scope then create and insert DIEs for these variables.
|
|
DIE *DwarfDebug::updateSubprogramScopeDIE(DwarfCompileUnit &SPCU,
|
|
DISubprogram SP) {
|
|
DIE *SPDie = SPCU.getDIE(SP);
|
|
|
|
assert(SPDie && "Unable to find subprogram DIE!");
|
|
|
|
// If we're updating an abstract DIE, then we will be adding the children and
|
|
// object pointer later on. But what we don't want to do is process the
|
|
// concrete DIE twice.
|
|
if (DIE *AbsSPDIE = AbstractSPDies.lookup(SP)) {
|
|
// Pick up abstract subprogram DIE.
|
|
SPDie = &SPCU.createAndAddDIE(dwarf::DW_TAG_subprogram, SPCU.getUnitDie());
|
|
SPCU.addDIEEntry(*SPDie, dwarf::DW_AT_abstract_origin, *AbsSPDIE);
|
|
} else {
|
|
DISubprogram SPDecl = SP.getFunctionDeclaration();
|
|
if (!SPDecl.isSubprogram()) {
|
|
// There is not any need to generate specification DIE for a function
|
|
// defined at compile unit level. If a function is defined inside another
|
|
// function then gdb prefers the definition at top level and but does not
|
|
// expect specification DIE in parent function. So avoid creating
|
|
// specification DIE for a function defined inside a function.
|
|
DIScope SPContext = resolve(SP.getContext());
|
|
if (SP.isDefinition() && !SPContext.isCompileUnit() &&
|
|
!SPContext.isFile() && !isSubprogramContext(SPContext)) {
|
|
SPCU.addFlag(*SPDie, dwarf::DW_AT_declaration);
|
|
|
|
// Add arguments.
|
|
DICompositeType SPTy = SP.getType();
|
|
DIArray Args = SPTy.getTypeArray();
|
|
uint16_t SPTag = SPTy.getTag();
|
|
if (SPTag == dwarf::DW_TAG_subroutine_type)
|
|
SPCU.constructSubprogramArguments(*SPDie, Args);
|
|
DIE *SPDeclDie = SPDie;
|
|
SPDie =
|
|
&SPCU.createAndAddDIE(dwarf::DW_TAG_subprogram, SPCU.getUnitDie());
|
|
SPCU.addDIEEntry(*SPDie, dwarf::DW_AT_specification, *SPDeclDie);
|
|
}
|
|
}
|
|
}
|
|
|
|
attachLowHighPC(SPCU, *SPDie, FunctionBeginSym, FunctionEndSym);
|
|
|
|
const TargetRegisterInfo *RI = Asm->TM.getRegisterInfo();
|
|
MachineLocation Location(RI->getFrameRegister(*Asm->MF));
|
|
SPCU.addAddress(*SPDie, dwarf::DW_AT_frame_base, Location);
|
|
|
|
// Add name to the name table, we do this here because we're guaranteed
|
|
// to have concrete versions of our DW_TAG_subprogram nodes.
|
|
addSubprogramNames(SP, *SPDie);
|
|
|
|
return SPDie;
|
|
}
|
|
|
|
/// Check whether we should create a DIE for the given Scope, return true
|
|
/// if we don't create a DIE (the corresponding DIE is null).
|
|
bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) {
|
|
if (Scope->isAbstractScope())
|
|
return false;
|
|
|
|
// We don't create a DIE if there is no Range.
|
|
const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges();
|
|
if (Ranges.empty())
|
|
return true;
|
|
|
|
if (Ranges.size() > 1)
|
|
return false;
|
|
|
|
// We don't create a DIE if we have a single Range and the end label
|
|
// is null.
|
|
SmallVectorImpl<InsnRange>::const_iterator RI = Ranges.begin();
|
|
MCSymbol *End = getLabelAfterInsn(RI->second);
|
|
return !End;
|
|
}
|
|
|
|
static void addSectionLabel(AsmPrinter &Asm, DwarfUnit &U, DIE &D,
|
|
dwarf::Attribute A, const MCSymbol *L,
|
|
const MCSymbol *Sec) {
|
|
if (Asm.MAI->doesDwarfUseRelocationsAcrossSections())
|
|
U.addSectionLabel(D, A, L);
|
|
else
|
|
U.addSectionDelta(D, A, L, Sec);
|
|
}
|
|
|
|
void DwarfDebug::addScopeRangeList(DwarfCompileUnit &TheCU, DIE &ScopeDIE,
|
|
const SmallVectorImpl<InsnRange> &Range) {
|
|
// Emit offset in .debug_range as a relocatable label. emitDIE will handle
|
|
// emitting it appropriately.
|
|
MCSymbol *RangeSym = Asm->GetTempSymbol("debug_ranges", GlobalRangeCount++);
|
|
|
|
// Under fission, ranges are specified by constant offsets relative to the
|
|
// CU's DW_AT_GNU_ranges_base.
|
|
if (useSplitDwarf())
|
|
TheCU.addSectionDelta(ScopeDIE, dwarf::DW_AT_ranges, RangeSym,
|
|
DwarfDebugRangeSectionSym);
|
|
else
|
|
addSectionLabel(*Asm, TheCU, ScopeDIE, dwarf::DW_AT_ranges, RangeSym,
|
|
DwarfDebugRangeSectionSym);
|
|
|
|
RangeSpanList List(RangeSym);
|
|
for (const InsnRange &R : Range) {
|
|
RangeSpan Span(getLabelBeforeInsn(R.first), getLabelAfterInsn(R.second));
|
|
List.addRange(std::move(Span));
|
|
}
|
|
|
|
// Add the range list to the set of ranges to be emitted.
|
|
TheCU.addRangeList(std::move(List));
|
|
}
|
|
|
|
// Construct new DW_TAG_lexical_block for this scope and attach
|
|
// DW_AT_low_pc/DW_AT_high_pc labels.
|
|
std::unique_ptr<DIE>
|
|
DwarfDebug::constructLexicalScopeDIE(DwarfCompileUnit &TheCU,
|
|
LexicalScope *Scope) {
|
|
if (isLexicalScopeDIENull(Scope))
|
|
return nullptr;
|
|
|
|
auto ScopeDIE = make_unique<DIE>(dwarf::DW_TAG_lexical_block);
|
|
if (Scope->isAbstractScope())
|
|
return ScopeDIE;
|
|
|
|
const SmallVectorImpl<InsnRange> &ScopeRanges = Scope->getRanges();
|
|
|
|
// If we have multiple ranges, emit them into the range section.
|
|
if (ScopeRanges.size() > 1) {
|
|
addScopeRangeList(TheCU, *ScopeDIE, ScopeRanges);
|
|
return ScopeDIE;
|
|
}
|
|
|
|
// Construct the address range for this DIE.
|
|
SmallVectorImpl<InsnRange>::const_iterator RI = ScopeRanges.begin();
|
|
MCSymbol *Start = getLabelBeforeInsn(RI->first);
|
|
MCSymbol *End = getLabelAfterInsn(RI->second);
|
|
assert(End && "End label should not be null!");
|
|
|
|
assert(Start->isDefined() && "Invalid starting label for an inlined scope!");
|
|
assert(End->isDefined() && "Invalid end label for an inlined scope!");
|
|
|
|
attachLowHighPC(TheCU, *ScopeDIE, Start, End);
|
|
|
|
return ScopeDIE;
|
|
}
|
|
|
|
// This scope represents inlined body of a function. Construct DIE to
|
|
// represent this concrete inlined copy of the function.
|
|
std::unique_ptr<DIE>
|
|
DwarfDebug::constructInlinedScopeDIE(DwarfCompileUnit &TheCU,
|
|
LexicalScope *Scope) {
|
|
const SmallVectorImpl<InsnRange> &ScopeRanges = Scope->getRanges();
|
|
assert(!ScopeRanges.empty() &&
|
|
"LexicalScope does not have instruction markers!");
|
|
|
|
if (!Scope->getScopeNode())
|
|
return nullptr;
|
|
DIScope DS(Scope->getScopeNode());
|
|
DISubprogram InlinedSP = getDISubprogram(DS);
|
|
DIE *OriginDIE = TheCU.getDIE(InlinedSP);
|
|
if (!OriginDIE) {
|
|
DEBUG(dbgs() << "Unable to find original DIE for an inlined subprogram.");
|
|
return nullptr;
|
|
}
|
|
|
|
auto ScopeDIE = make_unique<DIE>(dwarf::DW_TAG_inlined_subroutine);
|
|
TheCU.addDIEEntry(*ScopeDIE, dwarf::DW_AT_abstract_origin, *OriginDIE);
|
|
|
|
// If we have multiple ranges, emit them into the range section.
|
|
if (ScopeRanges.size() > 1)
|
|
addScopeRangeList(TheCU, *ScopeDIE, ScopeRanges);
|
|
else {
|
|
SmallVectorImpl<InsnRange>::const_iterator RI = ScopeRanges.begin();
|
|
MCSymbol *StartLabel = getLabelBeforeInsn(RI->first);
|
|
MCSymbol *EndLabel = getLabelAfterInsn(RI->second);
|
|
|
|
if (!StartLabel || !EndLabel)
|
|
llvm_unreachable("Unexpected Start and End labels for an inlined scope!");
|
|
|
|
assert(StartLabel->isDefined() &&
|
|
"Invalid starting label for an inlined scope!");
|
|
assert(EndLabel->isDefined() && "Invalid end label for an inlined scope!");
|
|
|
|
attachLowHighPC(TheCU, *ScopeDIE, StartLabel, EndLabel);
|
|
}
|
|
|
|
InlinedSubprogramDIEs.insert(OriginDIE);
|
|
|
|
// Add the call site information to the DIE.
|
|
DILocation DL(Scope->getInlinedAt());
|
|
TheCU.addUInt(*ScopeDIE, dwarf::DW_AT_call_file, None,
|
|
TheCU.getOrCreateSourceID(DL.getFilename(), DL.getDirectory()));
|
|
TheCU.addUInt(*ScopeDIE, dwarf::DW_AT_call_line, None, DL.getLineNumber());
|
|
|
|
// Add name to the name table, we do this here because we're guaranteed
|
|
// to have concrete versions of our DW_TAG_inlined_subprogram nodes.
|
|
addSubprogramNames(InlinedSP, *ScopeDIE);
|
|
|
|
return ScopeDIE;
|
|
}
|
|
|
|
DIE *DwarfDebug::createScopeChildrenDIE(
|
|
DwarfCompileUnit &TheCU, LexicalScope *Scope,
|
|
SmallVectorImpl<std::unique_ptr<DIE>> &Children) {
|
|
DIE *ObjectPointer = nullptr;
|
|
|
|
// Collect arguments for current function.
|
|
if (LScopes.isCurrentFunctionScope(Scope)) {
|
|
for (DbgVariable *ArgDV : CurrentFnArguments)
|
|
if (ArgDV) {
|
|
Children.push_back(
|
|
TheCU.constructVariableDIE(*ArgDV, Scope->isAbstractScope()));
|
|
if (ArgDV->isObjectPointer())
|
|
ObjectPointer = Children.back().get();
|
|
}
|
|
|
|
// If this is a variadic function, add an unspecified parameter.
|
|
DISubprogram SP(Scope->getScopeNode());
|
|
DIArray FnArgs = SP.getType().getTypeArray();
|
|
if (FnArgs.getElement(FnArgs.getNumElements() - 1)
|
|
.isUnspecifiedParameter()) {
|
|
Children.push_back(
|
|
make_unique<DIE>(dwarf::DW_TAG_unspecified_parameters));
|
|
}
|
|
}
|
|
|
|
// Collect lexical scope children first.
|
|
for (DbgVariable *DV : ScopeVariables.lookup(Scope)) {
|
|
Children.push_back(
|
|
TheCU.constructVariableDIE(*DV, Scope->isAbstractScope()));
|
|
if (DV->isObjectPointer())
|
|
ObjectPointer = Children.back().get();
|
|
}
|
|
for (LexicalScope *LS : Scope->getChildren())
|
|
if (std::unique_ptr<DIE> Nested = constructScopeDIE(TheCU, LS))
|
|
Children.push_back(std::move(Nested));
|
|
return ObjectPointer;
|
|
}
|
|
|
|
DIE *DwarfDebug::constructSubprogramScopeDIE(DwarfCompileUnit &TheCU,
|
|
LexicalScope *Scope) {
|
|
assert(Scope && Scope->getScopeNode());
|
|
|
|
DIScope DS(Scope->getScopeNode());
|
|
|
|
assert(!Scope->getInlinedAt());
|
|
assert(DS.isSubprogram());
|
|
|
|
ProcessedSPNodes.insert(DS);
|
|
|
|
SmallVector<std::unique_ptr<DIE>, 8> Children;
|
|
DIE *ScopeDIE;
|
|
|
|
if (Scope->isAbstractScope()) {
|
|
ScopeDIE = TheCU.getDIE(DS);
|
|
// Note down abstract DIE.
|
|
if (ScopeDIE)
|
|
AbstractSPDies.insert(std::make_pair(DS, ScopeDIE));
|
|
else {
|
|
assert(Children.empty() &&
|
|
"We create children only when the scope DIE is not null.");
|
|
return nullptr;
|
|
}
|
|
} else
|
|
ScopeDIE = updateSubprogramScopeDIE(TheCU, DISubprogram(DS));
|
|
|
|
// We create children when the scope DIE is not null.
|
|
if (DIE *ObjectPointer = createScopeChildrenDIE(TheCU, Scope, Children))
|
|
TheCU.addDIEEntry(*ScopeDIE, dwarf::DW_AT_object_pointer, *ObjectPointer);
|
|
|
|
// Add children
|
|
for (auto &I : Children)
|
|
ScopeDIE->addChild(std::move(I));
|
|
|
|
return ScopeDIE;
|
|
}
|
|
|
|
// Construct a DIE for this scope.
|
|
std::unique_ptr<DIE> DwarfDebug::constructScopeDIE(DwarfCompileUnit &TheCU,
|
|
LexicalScope *Scope) {
|
|
if (!Scope || !Scope->getScopeNode())
|
|
return nullptr;
|
|
|
|
DIScope DS(Scope->getScopeNode());
|
|
|
|
assert(Scope->getInlinedAt() ||
|
|
!DS.isSubprogram() && "Only handle inlined subprograms here, use "
|
|
"constructSubprogramScopeDIE for non-inlined "
|
|
"subprograms");
|
|
|
|
SmallVector<std::unique_ptr<DIE>, 8> Children;
|
|
|
|
// We try to create the scope DIE first, then the children DIEs. This will
|
|
// avoid creating un-used children then removing them later when we find out
|
|
// the scope DIE is null.
|
|
std::unique_ptr<DIE> ScopeDIE;
|
|
if (Scope->getInlinedAt()) {
|
|
ScopeDIE = constructInlinedScopeDIE(TheCU, Scope);
|
|
if (!ScopeDIE)
|
|
return nullptr;
|
|
// We create children when the scope DIE is not null.
|
|
createScopeChildrenDIE(TheCU, Scope, Children);
|
|
} else {
|
|
// Early exit when we know the scope DIE is going to be null.
|
|
if (isLexicalScopeDIENull(Scope))
|
|
return nullptr;
|
|
|
|
// We create children here when we know the scope DIE is not going to be
|
|
// null and the children will be added to the scope DIE.
|
|
createScopeChildrenDIE(TheCU, Scope, Children);
|
|
|
|
// There is no need to emit empty lexical block DIE.
|
|
std::pair<ImportedEntityMap::const_iterator,
|
|
ImportedEntityMap::const_iterator> Range =
|
|
std::equal_range(ScopesWithImportedEntities.begin(),
|
|
ScopesWithImportedEntities.end(),
|
|
std::pair<const MDNode *, const MDNode *>(DS, nullptr),
|
|
less_first());
|
|
if (Children.empty() && Range.first == Range.second)
|
|
return nullptr;
|
|
ScopeDIE = constructLexicalScopeDIE(TheCU, Scope);
|
|
assert(ScopeDIE && "Scope DIE should not be null.");
|
|
for (ImportedEntityMap::const_iterator i = Range.first; i != Range.second;
|
|
++i)
|
|
constructImportedEntityDIE(TheCU, i->second, *ScopeDIE);
|
|
}
|
|
|
|
// Add children
|
|
for (auto &I : Children)
|
|
ScopeDIE->addChild(std::move(I));
|
|
|
|
return ScopeDIE;
|
|
}
|
|
|
|
void DwarfDebug::addGnuPubAttributes(DwarfUnit &U, DIE &D) const {
|
|
if (!GenerateGnuPubSections)
|
|
return;
|
|
|
|
U.addFlag(D, dwarf::DW_AT_GNU_pubnames);
|
|
}
|
|
|
|
// Create new DwarfCompileUnit for the given metadata node with tag
|
|
// DW_TAG_compile_unit.
|
|
DwarfCompileUnit &DwarfDebug::constructDwarfCompileUnit(DICompileUnit DIUnit) {
|
|
StringRef FN = DIUnit.getFilename();
|
|
CompilationDir = DIUnit.getDirectory();
|
|
|
|
auto OwnedUnit = make_unique<DwarfCompileUnit>(
|
|
InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder);
|
|
DwarfCompileUnit &NewCU = *OwnedUnit;
|
|
DIE &Die = NewCU.getUnitDie();
|
|
InfoHolder.addUnit(std::move(OwnedUnit));
|
|
|
|
// LTO with assembly output shares a single line table amongst multiple CUs.
|
|
// To avoid the compilation directory being ambiguous, let the line table
|
|
// explicitly describe the directory of all files, never relying on the
|
|
// compilation directory.
|
|
if (!Asm->OutStreamer.hasRawTextSupport() || SingleCU)
|
|
Asm->OutStreamer.getContext().setMCLineTableCompilationDir(
|
|
NewCU.getUniqueID(), CompilationDir);
|
|
|
|
NewCU.addString(Die, dwarf::DW_AT_producer, DIUnit.getProducer());
|
|
NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
|
|
DIUnit.getLanguage());
|
|
NewCU.addString(Die, dwarf::DW_AT_name, FN);
|
|
|
|
if (!useSplitDwarf()) {
|
|
NewCU.initStmtList(DwarfLineSectionSym);
|
|
|
|
// If we're using split dwarf the compilation dir is going to be in the
|
|
// skeleton CU and so we don't need to duplicate it here.
|
|
if (!CompilationDir.empty())
|
|
NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
|
|
|
|
addGnuPubAttributes(NewCU, Die);
|
|
}
|
|
|
|
if (DIUnit.isOptimized())
|
|
NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized);
|
|
|
|
StringRef Flags = DIUnit.getFlags();
|
|
if (!Flags.empty())
|
|
NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags);
|
|
|
|
if (unsigned RVer = DIUnit.getRunTimeVersion())
|
|
NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers,
|
|
dwarf::DW_FORM_data1, RVer);
|
|
|
|
if (!FirstCU)
|
|
FirstCU = &NewCU;
|
|
|
|
if (useSplitDwarf()) {
|
|
NewCU.initSection(Asm->getObjFileLowering().getDwarfInfoDWOSection(),
|
|
DwarfInfoDWOSectionSym);
|
|
NewCU.setSkeleton(constructSkeletonCU(NewCU));
|
|
} else
|
|
NewCU.initSection(Asm->getObjFileLowering().getDwarfInfoSection(),
|
|
DwarfInfoSectionSym);
|
|
|
|
CUMap.insert(std::make_pair(DIUnit, &NewCU));
|
|
CUDieMap.insert(std::make_pair(&Die, &NewCU));
|
|
return NewCU;
|
|
}
|
|
|
|
// Construct subprogram DIE.
|
|
void DwarfDebug::constructSubprogramDIE(DwarfCompileUnit &TheCU,
|
|
const MDNode *N) {
|
|
// FIXME: We should only call this routine once, however, during LTO if a
|
|
// program is defined in multiple CUs we could end up calling it out of
|
|
// beginModule as we walk the CUs.
|
|
|
|
DwarfCompileUnit *&CURef = SPMap[N];
|
|
if (CURef)
|
|
return;
|
|
CURef = &TheCU;
|
|
|
|
DISubprogram SP(N);
|
|
if (!SP.isDefinition())
|
|
// This is a method declaration which will be handled while constructing
|
|
// class type.
|
|
return;
|
|
|
|
DIE &SubprogramDie = *TheCU.getOrCreateSubprogramDIE(SP);
|
|
|
|
// Expose as a global name.
|
|
TheCU.addGlobalName(SP.getName(), SubprogramDie, resolve(SP.getContext()));
|
|
}
|
|
|
|
void DwarfDebug::constructImportedEntityDIE(DwarfCompileUnit &TheCU,
|
|
const MDNode *N) {
|
|
DIImportedEntity Module(N);
|
|
assert(Module.Verify());
|
|
if (DIE *D = TheCU.getOrCreateContextDIE(Module.getContext()))
|
|
constructImportedEntityDIE(TheCU, Module, *D);
|
|
}
|
|
|
|
void DwarfDebug::constructImportedEntityDIE(DwarfCompileUnit &TheCU,
|
|
const MDNode *N, DIE &Context) {
|
|
DIImportedEntity Module(N);
|
|
assert(Module.Verify());
|
|
return constructImportedEntityDIE(TheCU, Module, Context);
|
|
}
|
|
|
|
void DwarfDebug::constructImportedEntityDIE(DwarfCompileUnit &TheCU,
|
|
const DIImportedEntity &Module,
|
|
DIE &Context) {
|
|
assert(Module.Verify() &&
|
|
"Use one of the MDNode * overloads to handle invalid metadata");
|
|
DIE &IMDie = TheCU.createAndAddDIE(Module.getTag(), Context, Module);
|
|
DIE *EntityDie;
|
|
DIDescriptor Entity = resolve(Module.getEntity());
|
|
if (Entity.isNameSpace())
|
|
EntityDie = TheCU.getOrCreateNameSpace(DINameSpace(Entity));
|
|
else if (Entity.isSubprogram())
|
|
EntityDie = TheCU.getOrCreateSubprogramDIE(DISubprogram(Entity));
|
|
else if (Entity.isType())
|
|
EntityDie = TheCU.getOrCreateTypeDIE(DIType(Entity));
|
|
else
|
|
EntityDie = TheCU.getDIE(Entity);
|
|
TheCU.addSourceLine(IMDie, Module.getLineNumber(),
|
|
Module.getContext().getFilename(),
|
|
Module.getContext().getDirectory());
|
|
TheCU.addDIEEntry(IMDie, dwarf::DW_AT_import, *EntityDie);
|
|
StringRef Name = Module.getName();
|
|
if (!Name.empty())
|
|
TheCU.addString(IMDie, dwarf::DW_AT_name, Name);
|
|
}
|
|
|
|
// Emit all Dwarf sections that should come prior to the content. Create
|
|
// global DIEs and emit initial debug info sections. This is invoked by
|
|
// the target AsmPrinter.
|
|
void DwarfDebug::beginModule() {
|
|
if (DisableDebugInfoPrinting)
|
|
return;
|
|
|
|
const Module *M = MMI->getModule();
|
|
|
|
// If module has named metadata anchors then use them, otherwise scan the
|
|
// module using debug info finder to collect debug info.
|
|
NamedMDNode *CU_Nodes = M->getNamedMetadata("llvm.dbg.cu");
|
|
if (!CU_Nodes)
|
|
return;
|
|
TypeIdentifierMap = generateDITypeIdentifierMap(CU_Nodes);
|
|
|
|
// Emit initial sections so we can reference labels later.
|
|
emitSectionLabels();
|
|
|
|
SingleCU = CU_Nodes->getNumOperands() == 1;
|
|
|
|
for (MDNode *N : CU_Nodes->operands()) {
|
|
DICompileUnit CUNode(N);
|
|
DwarfCompileUnit &CU = constructDwarfCompileUnit(CUNode);
|
|
DIArray ImportedEntities = CUNode.getImportedEntities();
|
|
for (unsigned i = 0, e = ImportedEntities.getNumElements(); i != e; ++i)
|
|
ScopesWithImportedEntities.push_back(std::make_pair(
|
|
DIImportedEntity(ImportedEntities.getElement(i)).getContext(),
|
|
ImportedEntities.getElement(i)));
|
|
std::sort(ScopesWithImportedEntities.begin(),
|
|
ScopesWithImportedEntities.end(), less_first());
|
|
DIArray GVs = CUNode.getGlobalVariables();
|
|
for (unsigned i = 0, e = GVs.getNumElements(); i != e; ++i)
|
|
CU.createGlobalVariableDIE(DIGlobalVariable(GVs.getElement(i)));
|
|
DIArray SPs = CUNode.getSubprograms();
|
|
for (unsigned i = 0, e = SPs.getNumElements(); i != e; ++i)
|
|
constructSubprogramDIE(CU, SPs.getElement(i));
|
|
DIArray EnumTypes = CUNode.getEnumTypes();
|
|
for (unsigned i = 0, e = EnumTypes.getNumElements(); i != e; ++i)
|
|
CU.getOrCreateTypeDIE(EnumTypes.getElement(i));
|
|
DIArray RetainedTypes = CUNode.getRetainedTypes();
|
|
for (unsigned i = 0, e = RetainedTypes.getNumElements(); i != e; ++i) {
|
|
DIType Ty(RetainedTypes.getElement(i));
|
|
// The retained types array by design contains pointers to
|
|
// MDNodes rather than DIRefs. Unique them here.
|
|
DIType UniqueTy(resolve(Ty.getRef()));
|
|
CU.getOrCreateTypeDIE(UniqueTy);
|
|
}
|
|
// Emit imported_modules last so that the relevant context is already
|
|
// available.
|
|
for (unsigned i = 0, e = ImportedEntities.getNumElements(); i != e; ++i)
|
|
constructImportedEntityDIE(CU, ImportedEntities.getElement(i));
|
|
}
|
|
|
|
// Tell MMI that we have debug info.
|
|
MMI->setDebugInfoAvailability(true);
|
|
|
|
// Prime section data.
|
|
SectionMap[Asm->getObjFileLowering().getTextSection()];
|
|
}
|
|
|
|
// Attach DW_AT_inline attribute with inlined subprogram DIEs.
|
|
void DwarfDebug::computeInlinedDIEs() {
|
|
// Attach DW_AT_inline attribute with inlined subprogram DIEs.
|
|
for (DIE *ISP : InlinedSubprogramDIEs)
|
|
FirstCU->addUInt(*ISP, dwarf::DW_AT_inline, None, dwarf::DW_INL_inlined);
|
|
|
|
for (const auto &AI : AbstractSPDies) {
|
|
DIE &ISP = *AI.second;
|
|
if (InlinedSubprogramDIEs.count(&ISP))
|
|
continue;
|
|
FirstCU->addUInt(ISP, dwarf::DW_AT_inline, None, dwarf::DW_INL_inlined);
|
|
}
|
|
}
|
|
|
|
// Collect info for variables that were optimized out.
|
|
void DwarfDebug::collectDeadVariables() {
|
|
const Module *M = MMI->getModule();
|
|
|
|
if (NamedMDNode *CU_Nodes = M->getNamedMetadata("llvm.dbg.cu")) {
|
|
for (MDNode *N : CU_Nodes->operands()) {
|
|
DICompileUnit TheCU(N);
|
|
DIArray Subprograms = TheCU.getSubprograms();
|
|
for (unsigned i = 0, e = Subprograms.getNumElements(); i != e; ++i) {
|
|
DISubprogram SP(Subprograms.getElement(i));
|
|
if (ProcessedSPNodes.count(SP) != 0)
|
|
continue;
|
|
if (!SP.isSubprogram())
|
|
continue;
|
|
if (!SP.isDefinition())
|
|
continue;
|
|
DIArray Variables = SP.getVariables();
|
|
if (Variables.getNumElements() == 0)
|
|
continue;
|
|
|
|
// Construct subprogram DIE and add variables DIEs.
|
|
DwarfCompileUnit *SPCU =
|
|
static_cast<DwarfCompileUnit *>(CUMap.lookup(TheCU));
|
|
assert(SPCU && "Unable to find Compile Unit!");
|
|
// FIXME: See the comment in constructSubprogramDIE about duplicate
|
|
// subprogram DIEs.
|
|
constructSubprogramDIE(*SPCU, SP);
|
|
DIE *SPDIE = SPCU->getDIE(SP);
|
|
for (unsigned vi = 0, ve = Variables.getNumElements(); vi != ve; ++vi) {
|
|
DIVariable DV(Variables.getElement(vi));
|
|
if (!DV.isVariable())
|
|
continue;
|
|
DbgVariable NewVar(DV, nullptr, this);
|
|
SPDIE->addChild(SPCU->constructVariableDIE(NewVar, false));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void DwarfDebug::finalizeModuleInfo() {
|
|
// Collect info for variables that were optimized out.
|
|
collectDeadVariables();
|
|
|
|
// Attach DW_AT_inline attribute with inlined subprogram DIEs.
|
|
computeInlinedDIEs();
|
|
|
|
// Handle anything that needs to be done on a per-unit basis after
|
|
// all other generation.
|
|
for (const auto &TheU : getUnits()) {
|
|
// Emit DW_AT_containing_type attribute to connect types with their
|
|
// vtable holding type.
|
|
TheU->constructContainingTypeDIEs();
|
|
|
|
// Add CU specific attributes if we need to add any.
|
|
if (TheU->getUnitDie().getTag() == dwarf::DW_TAG_compile_unit) {
|
|
// If we're splitting the dwarf out now that we've got the entire
|
|
// CU then add the dwo id to it.
|
|
DwarfCompileUnit *SkCU =
|
|
static_cast<DwarfCompileUnit *>(TheU->getSkeleton());
|
|
if (useSplitDwarf()) {
|
|
// Emit a unique identifier for this CU.
|
|
uint64_t ID = DIEHash(Asm).computeCUSignature(TheU->getUnitDie());
|
|
TheU->addUInt(TheU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
|
|
dwarf::DW_FORM_data8, ID);
|
|
SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
|
|
dwarf::DW_FORM_data8, ID);
|
|
|
|
// We don't keep track of which addresses are used in which CU so this
|
|
// is a bit pessimistic under LTO.
|
|
if (!AddrPool.isEmpty())
|
|
addSectionLabel(*Asm, *SkCU, SkCU->getUnitDie(),
|
|
dwarf::DW_AT_GNU_addr_base, DwarfAddrSectionSym,
|
|
DwarfAddrSectionSym);
|
|
if (!TheU->getRangeLists().empty())
|
|
addSectionLabel(*Asm, *SkCU, SkCU->getUnitDie(),
|
|
dwarf::DW_AT_GNU_ranges_base,
|
|
DwarfDebugRangeSectionSym, DwarfDebugRangeSectionSym);
|
|
}
|
|
|
|
// If we have code split among multiple sections or non-contiguous
|
|
// ranges of code then emit a DW_AT_ranges attribute on the unit that will
|
|
// remain in the .o file, otherwise add a DW_AT_low_pc.
|
|
// FIXME: We should use ranges allow reordering of code ala
|
|
// .subsections_via_symbols in mach-o. This would mean turning on
|
|
// ranges for all subprogram DIEs for mach-o.
|
|
DwarfCompileUnit &U =
|
|
SkCU ? *SkCU : static_cast<DwarfCompileUnit &>(*TheU);
|
|
unsigned NumRanges = TheU->getRanges().size();
|
|
if (NumRanges) {
|
|
if (NumRanges > 1) {
|
|
addSectionLabel(*Asm, U, U.getUnitDie(), dwarf::DW_AT_ranges,
|
|
Asm->GetTempSymbol("cu_ranges", U.getUniqueID()),
|
|
DwarfDebugRangeSectionSym);
|
|
|
|
// A DW_AT_low_pc attribute may also be specified in combination with
|
|
// DW_AT_ranges to specify the default base address for use in
|
|
// location lists (see Section 2.6.2) and range lists (see Section
|
|
// 2.17.3).
|
|
U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr,
|
|
0);
|
|
} else {
|
|
RangeSpan &Range = TheU->getRanges().back();
|
|
U.addLocalLabelAddress(U.getUnitDie(), dwarf::DW_AT_low_pc,
|
|
Range.getStart());
|
|
U.addLabelDelta(U.getUnitDie(), dwarf::DW_AT_high_pc, Range.getEnd(),
|
|
Range.getStart());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compute DIE offsets and sizes.
|
|
InfoHolder.computeSizeAndOffsets();
|
|
if (useSplitDwarf())
|
|
SkeletonHolder.computeSizeAndOffsets();
|
|
}
|
|
|
|
void DwarfDebug::endSections() {
|
|
// Filter labels by section.
|
|
for (const SymbolCU &SCU : ArangeLabels) {
|
|
if (SCU.Sym->isInSection()) {
|
|
// Make a note of this symbol and it's section.
|
|
const MCSection *Section = &SCU.Sym->getSection();
|
|
if (!Section->getKind().isMetadata())
|
|
SectionMap[Section].push_back(SCU);
|
|
} else {
|
|
// Some symbols (e.g. common/bss on mach-o) can have no section but still
|
|
// appear in the output. This sucks as we rely on sections to build
|
|
// arange spans. We can do it without, but it's icky.
|
|
SectionMap[nullptr].push_back(SCU);
|
|
}
|
|
}
|
|
|
|
// Build a list of sections used.
|
|
std::vector<const MCSection *> Sections;
|
|
for (const auto &it : SectionMap) {
|
|
const MCSection *Section = it.first;
|
|
Sections.push_back(Section);
|
|
}
|
|
|
|
// Sort the sections into order.
|
|
// This is only done to ensure consistent output order across different runs.
|
|
std::sort(Sections.begin(), Sections.end(), SectionSort);
|
|
|
|
// Add terminating symbols for each section.
|
|
for (unsigned ID = 0, E = Sections.size(); ID != E; ID++) {
|
|
const MCSection *Section = Sections[ID];
|
|
MCSymbol *Sym = nullptr;
|
|
|
|
if (Section) {
|
|
// We can't call MCSection::getLabelEndName, as it's only safe to do so
|
|
// if we know the section name up-front. For user-created sections, the
|
|
// resulting label may not be valid to use as a label. (section names can
|
|
// use a greater set of characters on some systems)
|
|
Sym = Asm->GetTempSymbol("debug_end", ID);
|
|
Asm->OutStreamer.SwitchSection(Section);
|
|
Asm->OutStreamer.EmitLabel(Sym);
|
|
}
|
|
|
|
// Insert a final terminator.
|
|
SectionMap[Section].push_back(SymbolCU(nullptr, Sym));
|
|
}
|
|
}
|
|
|
|
// Emit all Dwarf sections that should come after the content.
|
|
void DwarfDebug::endModule() {
|
|
assert(CurFn == nullptr);
|
|
assert(CurMI == nullptr);
|
|
|
|
if (!FirstCU)
|
|
return;
|
|
|
|
// End any existing sections.
|
|
// TODO: Does this need to happen?
|
|
endSections();
|
|
|
|
// Finalize the debug info for the module.
|
|
finalizeModuleInfo();
|
|
|
|
emitDebugStr();
|
|
|
|
// Emit all the DIEs into a debug info section.
|
|
emitDebugInfo();
|
|
|
|
// Corresponding abbreviations into a abbrev section.
|
|
emitAbbreviations();
|
|
|
|
// Emit info into a debug aranges section.
|
|
if (GenerateARangeSection)
|
|
emitDebugARanges();
|
|
|
|
// Emit info into a debug ranges section.
|
|
emitDebugRanges();
|
|
|
|
if (useSplitDwarf()) {
|
|
emitDebugStrDWO();
|
|
emitDebugInfoDWO();
|
|
emitDebugAbbrevDWO();
|
|
emitDebugLineDWO();
|
|
// Emit DWO addresses.
|
|
AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection());
|
|
emitDebugLocDWO();
|
|
} else
|
|
// Emit info into a debug loc section.
|
|
emitDebugLoc();
|
|
|
|
// Emit info into the dwarf accelerator table sections.
|
|
if (useDwarfAccelTables()) {
|
|
emitAccelNames();
|
|
emitAccelObjC();
|
|
emitAccelNamespaces();
|
|
emitAccelTypes();
|
|
}
|
|
|
|
// Emit the pubnames and pubtypes sections if requested.
|
|
if (HasDwarfPubSections) {
|
|
emitDebugPubNames(GenerateGnuPubSections);
|
|
emitDebugPubTypes(GenerateGnuPubSections);
|
|
}
|
|
|
|
// clean up.
|
|
SPMap.clear();
|
|
|
|
// Reset these for the next Module if we have one.
|
|
FirstCU = nullptr;
|
|
}
|
|
|
|
// Find abstract variable, if any, associated with Var.
|
|
DbgVariable *DwarfDebug::findAbstractVariable(DIVariable &DV,
|
|
DebugLoc ScopeLoc) {
|
|
LLVMContext &Ctx = DV->getContext();
|
|
// More then one inlined variable corresponds to one abstract variable.
|
|
DIVariable Var = cleanseInlinedVariable(DV, Ctx);
|
|
DbgVariable *AbsDbgVariable = AbstractVariables.lookup(Var);
|
|
if (AbsDbgVariable)
|
|
return AbsDbgVariable;
|
|
|
|
LexicalScope *Scope = LScopes.findAbstractScope(ScopeLoc.getScope(Ctx));
|
|
if (!Scope)
|
|
return nullptr;
|
|
|
|
AbsDbgVariable = new DbgVariable(Var, nullptr, this);
|
|
addScopeVariable(Scope, AbsDbgVariable);
|
|
AbstractVariables[Var] = AbsDbgVariable;
|
|
return AbsDbgVariable;
|
|
}
|
|
|
|
// If Var is a current function argument then add it to CurrentFnArguments list.
|
|
bool DwarfDebug::addCurrentFnArgument(DbgVariable *Var, LexicalScope *Scope) {
|
|
if (!LScopes.isCurrentFunctionScope(Scope))
|
|
return false;
|
|
DIVariable DV = Var->getVariable();
|
|
if (DV.getTag() != dwarf::DW_TAG_arg_variable)
|
|
return false;
|
|
unsigned ArgNo = DV.getArgNumber();
|
|
if (ArgNo == 0)
|
|
return false;
|
|
|
|
size_t Size = CurrentFnArguments.size();
|
|
if (Size == 0)
|
|
CurrentFnArguments.resize(CurFn->getFunction()->arg_size());
|
|
// llvm::Function argument size is not good indicator of how many
|
|
// arguments does the function have at source level.
|
|
if (ArgNo > Size)
|
|
CurrentFnArguments.resize(ArgNo * 2);
|
|
CurrentFnArguments[ArgNo - 1] = Var;
|
|
return true;
|
|
}
|
|
|
|
// Collect variable information from side table maintained by MMI.
|
|
void DwarfDebug::collectVariableInfoFromMMITable(
|
|
SmallPtrSet<const MDNode *, 16> &Processed) {
|
|
for (const auto &VI : MMI->getVariableDbgInfo()) {
|
|
if (!VI.Var)
|
|
continue;
|
|
Processed.insert(VI.Var);
|
|
DIVariable DV(VI.Var);
|
|
LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
|
|
|
|
// If variable scope is not found then skip this variable.
|
|
if (!Scope)
|
|
continue;
|
|
|
|
DbgVariable *AbsDbgVariable = findAbstractVariable(DV, VI.Loc);
|
|
DbgVariable *RegVar = new DbgVariable(DV, AbsDbgVariable, this);
|
|
RegVar->setFrameIndex(VI.Slot);
|
|
if (!addCurrentFnArgument(RegVar, Scope))
|
|
addScopeVariable(Scope, RegVar);
|
|
if (AbsDbgVariable)
|
|
AbsDbgVariable->setFrameIndex(VI.Slot);
|
|
}
|
|
}
|
|
|
|
// Return true if debug value, encoded by DBG_VALUE instruction, is in a
|
|
// defined reg.
|
|
static bool isDbgValueInDefinedReg(const MachineInstr *MI) {
|
|
assert(MI->isDebugValue() && "Invalid DBG_VALUE machine instruction!");
|
|
return MI->getNumOperands() == 3 && MI->getOperand(0).isReg() &&
|
|
MI->getOperand(0).getReg() &&
|
|
(MI->getOperand(1).isImm() ||
|
|
(MI->getOperand(1).isReg() && MI->getOperand(1).getReg() == 0U));
|
|
}
|
|
|
|
// Get .debug_loc entry for the instruction range starting at MI.
|
|
static DebugLocEntry::Value getDebugLocValue(const MachineInstr *MI) {
|
|
const MDNode *Var = MI->getDebugVariable();
|
|
|
|
assert(MI->getNumOperands() == 3);
|
|
if (MI->getOperand(0).isReg()) {
|
|
MachineLocation MLoc;
|
|
// If the second operand is an immediate, this is a
|
|
// register-indirect address.
|
|
if (!MI->getOperand(1).isImm())
|
|
MLoc.set(MI->getOperand(0).getReg());
|
|
else
|
|
MLoc.set(MI->getOperand(0).getReg(), MI->getOperand(1).getImm());
|
|
return DebugLocEntry::Value(Var, MLoc);
|
|
}
|
|
if (MI->getOperand(0).isImm())
|
|
return DebugLocEntry::Value(Var, MI->getOperand(0).getImm());
|
|
if (MI->getOperand(0).isFPImm())
|
|
return DebugLocEntry::Value(Var, MI->getOperand(0).getFPImm());
|
|
if (MI->getOperand(0).isCImm())
|
|
return DebugLocEntry::Value(Var, MI->getOperand(0).getCImm());
|
|
|
|
llvm_unreachable("Unexpected 3 operand DBG_VALUE instruction!");
|
|
}
|
|
|
|
// Find variables for each lexical scope.
|
|
void
|
|
DwarfDebug::collectVariableInfo(SmallPtrSet<const MDNode *, 16> &Processed) {
|
|
LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
|
|
DwarfCompileUnit *TheCU = SPMap.lookup(FnScope->getScopeNode());
|
|
|
|
// Grab the variable info that was squirreled away in the MMI side-table.
|
|
collectVariableInfoFromMMITable(Processed);
|
|
|
|
for (const MDNode *Var : UserVariables) {
|
|
if (Processed.count(Var))
|
|
continue;
|
|
|
|
// History contains relevant DBG_VALUE instructions for Var and instructions
|
|
// clobbering it.
|
|
SmallVectorImpl<const MachineInstr *> &History = DbgValues[Var];
|
|
if (History.empty())
|
|
continue;
|
|
const MachineInstr *MInsn = History.front();
|
|
|
|
DIVariable DV(Var);
|
|
LexicalScope *Scope = nullptr;
|
|
if (DV.getTag() == dwarf::DW_TAG_arg_variable &&
|
|
DISubprogram(DV.getContext()).describes(CurFn->getFunction()))
|
|
Scope = LScopes.getCurrentFunctionScope();
|
|
else if (MDNode *IA = DV.getInlinedAt())
|
|
Scope = LScopes.findInlinedScope(DebugLoc::getFromDILocation(IA));
|
|
else
|
|
Scope = LScopes.findLexicalScope(cast<MDNode>(DV->getOperand(1)));
|
|
// If variable scope is not found then skip this variable.
|
|
if (!Scope)
|
|
continue;
|
|
|
|
Processed.insert(DV);
|
|
assert(MInsn->isDebugValue() && "History must begin with debug value");
|
|
DbgVariable *AbsVar = findAbstractVariable(DV, MInsn->getDebugLoc());
|
|
DbgVariable *RegVar = new DbgVariable(DV, AbsVar, this);
|
|
if (!addCurrentFnArgument(RegVar, Scope))
|
|
addScopeVariable(Scope, RegVar);
|
|
if (AbsVar)
|
|
AbsVar->setMInsn(MInsn);
|
|
|
|
// Simplify ranges that are fully coalesced.
|
|
if (History.size() <= 1 ||
|
|
(History.size() == 2 && MInsn->isIdenticalTo(History.back()))) {
|
|
RegVar->setMInsn(MInsn);
|
|
continue;
|
|
}
|
|
|
|
// Handle multiple DBG_VALUE instructions describing one variable.
|
|
RegVar->setDotDebugLocOffset(DotDebugLocEntries.size());
|
|
|
|
DotDebugLocEntries.resize(DotDebugLocEntries.size() + 1);
|
|
DebugLocList &LocList = DotDebugLocEntries.back();
|
|
LocList.Label =
|
|
Asm->GetTempSymbol("debug_loc", DotDebugLocEntries.size() - 1);
|
|
SmallVector<DebugLocEntry, 4> &DebugLoc = LocList.List;
|
|
for (SmallVectorImpl<const MachineInstr *>::const_iterator
|
|
HI = History.begin(),
|
|
HE = History.end();
|
|
HI != HE; ++HI) {
|
|
const MachineInstr *Begin = *HI;
|
|
assert(Begin->isDebugValue() && "Invalid History entry");
|
|
|
|
// Check if DBG_VALUE is truncating a range.
|
|
if (Begin->getNumOperands() > 1 && Begin->getOperand(0).isReg() &&
|
|
!Begin->getOperand(0).getReg())
|
|
continue;
|
|
|
|
// Compute the range for a register location.
|
|
const MCSymbol *FLabel = getLabelBeforeInsn(Begin);
|
|
const MCSymbol *SLabel = nullptr;
|
|
|
|
if (HI + 1 == HE)
|
|
// If Begin is the last instruction in History then its value is valid
|
|
// until the end of the function.
|
|
SLabel = FunctionEndSym;
|
|
else {
|
|
const MachineInstr *End = HI[1];
|
|
DEBUG(dbgs() << "DotDebugLoc Pair:\n"
|
|
<< "\t" << *Begin << "\t" << *End << "\n");
|
|
if (End->isDebugValue())
|
|
SLabel = getLabelBeforeInsn(End);
|
|
else {
|
|
// End is a normal instruction clobbering the range.
|
|
SLabel = getLabelAfterInsn(End);
|
|
assert(SLabel && "Forgot label after clobber instruction");
|
|
++HI;
|
|
}
|
|
}
|
|
|
|
// The value is valid until the next DBG_VALUE or clobber.
|
|
DebugLocEntry Loc(FLabel, SLabel, getDebugLocValue(Begin), TheCU);
|
|
if (DebugLoc.empty() || !DebugLoc.back().Merge(Loc))
|
|
DebugLoc.push_back(std::move(Loc));
|
|
}
|
|
}
|
|
|
|
// Collect info for variables that were optimized out.
|
|
DIArray Variables = DISubprogram(FnScope->getScopeNode()).getVariables();
|
|
for (unsigned i = 0, e = Variables.getNumElements(); i != e; ++i) {
|
|
DIVariable DV(Variables.getElement(i));
|
|
if (!DV || !DV.isVariable() || !Processed.insert(DV))
|
|
continue;
|
|
if (LexicalScope *Scope = LScopes.findLexicalScope(DV.getContext()))
|
|
addScopeVariable(Scope, new DbgVariable(DV, nullptr, this));
|
|
}
|
|
}
|
|
|
|
// Return Label preceding the instruction.
|
|
MCSymbol *DwarfDebug::getLabelBeforeInsn(const MachineInstr *MI) {
|
|
MCSymbol *Label = LabelsBeforeInsn.lookup(MI);
|
|
assert(Label && "Didn't insert label before instruction");
|
|
return Label;
|
|
}
|
|
|
|
// Return Label immediately following the instruction.
|
|
MCSymbol *DwarfDebug::getLabelAfterInsn(const MachineInstr *MI) {
|
|
return LabelsAfterInsn.lookup(MI);
|
|
}
|
|
|
|
// Process beginning of an instruction.
|
|
void DwarfDebug::beginInstruction(const MachineInstr *MI) {
|
|
assert(CurMI == nullptr);
|
|
CurMI = MI;
|
|
// Check if source location changes, but ignore DBG_VALUE locations.
|
|
if (!MI->isDebugValue()) {
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
if (DL != PrevInstLoc && (!DL.isUnknown() || UnknownLocations)) {
|
|
unsigned Flags = 0;
|
|
PrevInstLoc = DL;
|
|
if (DL == PrologEndLoc) {
|
|
Flags |= DWARF2_FLAG_PROLOGUE_END;
|
|
PrologEndLoc = DebugLoc();
|
|
}
|
|
if (PrologEndLoc.isUnknown())
|
|
Flags |= DWARF2_FLAG_IS_STMT;
|
|
|
|
if (!DL.isUnknown()) {
|
|
const MDNode *Scope = DL.getScope(Asm->MF->getFunction()->getContext());
|
|
recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags);
|
|
} else
|
|
recordSourceLine(0, 0, nullptr, 0);
|
|
}
|
|
}
|
|
|
|
// Insert labels where requested.
|
|
DenseMap<const MachineInstr *, MCSymbol *>::iterator I =
|
|
LabelsBeforeInsn.find(MI);
|
|
|
|
// No label needed.
|
|
if (I == LabelsBeforeInsn.end())
|
|
return;
|
|
|
|
// Label already assigned.
|
|
if (I->second)
|
|
return;
|
|
|
|
if (!PrevLabel) {
|
|
PrevLabel = MMI->getContext().CreateTempSymbol();
|
|
Asm->OutStreamer.EmitLabel(PrevLabel);
|
|
}
|
|
I->second = PrevLabel;
|
|
}
|
|
|
|
// Process end of an instruction.
|
|
void DwarfDebug::endInstruction() {
|
|
assert(CurMI != nullptr);
|
|
// Don't create a new label after DBG_VALUE instructions.
|
|
// They don't generate code.
|
|
if (!CurMI->isDebugValue())
|
|
PrevLabel = nullptr;
|
|
|
|
DenseMap<const MachineInstr *, MCSymbol *>::iterator I =
|
|
LabelsAfterInsn.find(CurMI);
|
|
CurMI = nullptr;
|
|
|
|
// No label needed.
|
|
if (I == LabelsAfterInsn.end())
|
|
return;
|
|
|
|
// Label already assigned.
|
|
if (I->second)
|
|
return;
|
|
|
|
// We need a label after this instruction.
|
|
if (!PrevLabel) {
|
|
PrevLabel = MMI->getContext().CreateTempSymbol();
|
|
Asm->OutStreamer.EmitLabel(PrevLabel);
|
|
}
|
|
I->second = PrevLabel;
|
|
}
|
|
|
|
// Each LexicalScope has first instruction and last instruction to mark
|
|
// beginning and end of a scope respectively. Create an inverse map that list
|
|
// scopes starts (and ends) with an instruction. One instruction may start (or
|
|
// end) multiple scopes. Ignore scopes that are not reachable.
|
|
void DwarfDebug::identifyScopeMarkers() {
|
|
SmallVector<LexicalScope *, 4> WorkList;
|
|
WorkList.push_back(LScopes.getCurrentFunctionScope());
|
|
while (!WorkList.empty()) {
|
|
LexicalScope *S = WorkList.pop_back_val();
|
|
|
|
const SmallVectorImpl<LexicalScope *> &Children = S->getChildren();
|
|
if (!Children.empty())
|
|
WorkList.append(Children.begin(), Children.end());
|
|
|
|
if (S->isAbstractScope())
|
|
continue;
|
|
|
|
for (const InsnRange &R : S->getRanges()) {
|
|
assert(R.first && "InsnRange does not have first instruction!");
|
|
assert(R.second && "InsnRange does not have second instruction!");
|
|
requestLabelBeforeInsn(R.first);
|
|
requestLabelAfterInsn(R.second);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Gather pre-function debug information. Assumes being called immediately
|
|
// after the function entry point has been emitted.
|
|
void DwarfDebug::beginFunction(const MachineFunction *MF) {
|
|
CurFn = MF;
|
|
|
|
// If there's no debug info for the function we're not going to do anything.
|
|
if (!MMI->hasDebugInfo())
|
|
return;
|
|
|
|
// Grab the lexical scopes for the function, if we don't have any of those
|
|
// then we're not going to be able to do anything.
|
|
LScopes.initialize(*MF);
|
|
if (LScopes.empty())
|
|
return;
|
|
|
|
assert(UserVariables.empty() && DbgValues.empty() && "Maps weren't cleaned");
|
|
|
|
// Make sure that each lexical scope will have a begin/end label.
|
|
identifyScopeMarkers();
|
|
|
|
// Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function
|
|
// belongs to so that we add to the correct per-cu line table in the
|
|
// non-asm case.
|
|
LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
|
|
DwarfCompileUnit *TheCU = SPMap.lookup(FnScope->getScopeNode());
|
|
assert(TheCU && "Unable to find compile unit!");
|
|
if (Asm->OutStreamer.hasRawTextSupport())
|
|
// Use a single line table if we are generating assembly.
|
|
Asm->OutStreamer.getContext().setDwarfCompileUnitID(0);
|
|
else
|
|
Asm->OutStreamer.getContext().setDwarfCompileUnitID(TheCU->getUniqueID());
|
|
|
|
// Emit a label for the function so that we have a beginning address.
|
|
FunctionBeginSym = Asm->GetTempSymbol("func_begin", Asm->getFunctionNumber());
|
|
// Assumes in correct section after the entry point.
|
|
Asm->OutStreamer.EmitLabel(FunctionBeginSym);
|
|
|
|
const TargetRegisterInfo *TRI = Asm->TM.getRegisterInfo();
|
|
// LiveUserVar - Map physreg numbers to the MDNode they contain.
|
|
std::vector<const MDNode *> LiveUserVar(TRI->getNumRegs());
|
|
|
|
for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); I != E;
|
|
++I) {
|
|
bool AtBlockEntry = true;
|
|
for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
|
|
II != IE; ++II) {
|
|
const MachineInstr *MI = II;
|
|
|
|
if (MI->isDebugValue()) {
|
|
assert(MI->getNumOperands() > 1 && "Invalid machine instruction!");
|
|
|
|
// Keep track of user variables.
|
|
const MDNode *Var = MI->getDebugVariable();
|
|
|
|
// Variable is in a register, we need to check for clobbers.
|
|
if (isDbgValueInDefinedReg(MI))
|
|
LiveUserVar[MI->getOperand(0).getReg()] = Var;
|
|
|
|
// Check the history of this variable.
|
|
SmallVectorImpl<const MachineInstr *> &History = DbgValues[Var];
|
|
if (History.empty()) {
|
|
UserVariables.push_back(Var);
|
|
// The first mention of a function argument gets the FunctionBeginSym
|
|
// label, so arguments are visible when breaking at function entry.
|
|
DIVariable DV(Var);
|
|
if (DV.isVariable() && DV.getTag() == dwarf::DW_TAG_arg_variable &&
|
|
getDISubprogram(DV.getContext()).describes(MF->getFunction()))
|
|
LabelsBeforeInsn[MI] = FunctionBeginSym;
|
|
} else {
|
|
// We have seen this variable before. Try to coalesce DBG_VALUEs.
|
|
const MachineInstr *Prev = History.back();
|
|
if (Prev->isDebugValue()) {
|
|
// Coalesce identical entries at the end of History.
|
|
if (History.size() >= 2 &&
|
|
Prev->isIdenticalTo(History[History.size() - 2])) {
|
|
DEBUG(dbgs() << "Coalescing identical DBG_VALUE entries:\n"
|
|
<< "\t" << *Prev << "\t"
|
|
<< *History[History.size() - 2] << "\n");
|
|
History.pop_back();
|
|
}
|
|
|
|
// Terminate old register assignments that don't reach MI;
|
|
MachineFunction::const_iterator PrevMBB = Prev->getParent();
|
|
if (PrevMBB != I && (!AtBlockEntry || std::next(PrevMBB) != I) &&
|
|
isDbgValueInDefinedReg(Prev)) {
|
|
// Previous register assignment needs to terminate at the end of
|
|
// its basic block.
|
|
MachineBasicBlock::const_iterator LastMI =
|
|
PrevMBB->getLastNonDebugInstr();
|
|
if (LastMI == PrevMBB->end()) {
|
|
// Drop DBG_VALUE for empty range.
|
|
DEBUG(dbgs() << "Dropping DBG_VALUE for empty range:\n"
|
|
<< "\t" << *Prev << "\n");
|
|
History.pop_back();
|
|
} else if (std::next(PrevMBB) != PrevMBB->getParent()->end())
|
|
// Terminate after LastMI.
|
|
History.push_back(LastMI);
|
|
}
|
|
}
|
|
}
|
|
History.push_back(MI);
|
|
} else {
|
|
// Not a DBG_VALUE instruction.
|
|
if (!MI->isPosition())
|
|
AtBlockEntry = false;
|
|
|
|
// First known non-DBG_VALUE and non-frame setup location marks
|
|
// the beginning of the function body.
|
|
if (!MI->getFlag(MachineInstr::FrameSetup) &&
|
|
(PrologEndLoc.isUnknown() && !MI->getDebugLoc().isUnknown()))
|
|
PrologEndLoc = MI->getDebugLoc();
|
|
|
|
// Check if the instruction clobbers any registers with debug vars.
|
|
for (const MachineOperand &MO : MI->operands()) {
|
|
if (!MO.isReg() || !MO.isDef() || !MO.getReg())
|
|
continue;
|
|
for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid();
|
|
++AI) {
|
|
unsigned Reg = *AI;
|
|
const MDNode *Var = LiveUserVar[Reg];
|
|
if (!Var)
|
|
continue;
|
|
// Reg is now clobbered.
|
|
LiveUserVar[Reg] = nullptr;
|
|
|
|
// Was MD last defined by a DBG_VALUE referring to Reg?
|
|
DbgValueHistoryMap::iterator HistI = DbgValues.find(Var);
|
|
if (HistI == DbgValues.end())
|
|
continue;
|
|
SmallVectorImpl<const MachineInstr *> &History = HistI->second;
|
|
if (History.empty())
|
|
continue;
|
|
const MachineInstr *Prev = History.back();
|
|
// Sanity-check: Register assignments are terminated at the end of
|
|
// their block.
|
|
if (!Prev->isDebugValue() || Prev->getParent() != MI->getParent())
|
|
continue;
|
|
// Is the variable still in Reg?
|
|
if (!isDbgValueInDefinedReg(Prev) ||
|
|
Prev->getOperand(0).getReg() != Reg)
|
|
continue;
|
|
// Var is clobbered. Make sure the next instruction gets a label.
|
|
History.push_back(MI);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (auto &I : DbgValues) {
|
|
SmallVectorImpl<const MachineInstr *> &History = I.second;
|
|
if (History.empty())
|
|
continue;
|
|
|
|
// Make sure the final register assignments are terminated.
|
|
const MachineInstr *Prev = History.back();
|
|
if (Prev->isDebugValue() && isDbgValueInDefinedReg(Prev)) {
|
|
const MachineBasicBlock *PrevMBB = Prev->getParent();
|
|
MachineBasicBlock::const_iterator LastMI =
|
|
PrevMBB->getLastNonDebugInstr();
|
|
if (LastMI == PrevMBB->end())
|
|
// Drop DBG_VALUE for empty range.
|
|
History.pop_back();
|
|
else if (PrevMBB != &PrevMBB->getParent()->back()) {
|
|
// Terminate after LastMI.
|
|
History.push_back(LastMI);
|
|
}
|
|
}
|
|
// Request labels for the full history.
|
|
for (const MachineInstr *MI : History) {
|
|
if (MI->isDebugValue())
|
|
requestLabelBeforeInsn(MI);
|
|
else
|
|
requestLabelAfterInsn(MI);
|
|
}
|
|
}
|
|
|
|
PrevInstLoc = DebugLoc();
|
|
PrevLabel = FunctionBeginSym;
|
|
|
|
// Record beginning of function.
|
|
if (!PrologEndLoc.isUnknown()) {
|
|
DebugLoc FnStartDL =
|
|
PrologEndLoc.getFnDebugLoc(MF->getFunction()->getContext());
|
|
recordSourceLine(
|
|
FnStartDL.getLine(), FnStartDL.getCol(),
|
|
FnStartDL.getScope(MF->getFunction()->getContext()),
|
|
// We'd like to list the prologue as "not statements" but GDB behaves
|
|
// poorly if we do that. Revisit this with caution/GDB (7.5+) testing.
|
|
DWARF2_FLAG_IS_STMT);
|
|
}
|
|
}
|
|
|
|
void DwarfDebug::addScopeVariable(LexicalScope *LS, DbgVariable *Var) {
|
|
SmallVectorImpl<DbgVariable *> &Vars = ScopeVariables[LS];
|
|
DIVariable DV = Var->getVariable();
|
|
// Variables with positive arg numbers are parameters.
|
|
if (unsigned ArgNum = DV.getArgNumber()) {
|
|
// Keep all parameters in order at the start of the variable list to ensure
|
|
// function types are correct (no out-of-order parameters)
|
|
//
|
|
// This could be improved by only doing it for optimized builds (unoptimized
|
|
// builds have the right order to begin with), searching from the back (this
|
|
// would catch the unoptimized case quickly), or doing a binary search
|
|
// rather than linear search.
|
|
SmallVectorImpl<DbgVariable *>::iterator I = Vars.begin();
|
|
while (I != Vars.end()) {
|
|
unsigned CurNum = (*I)->getVariable().getArgNumber();
|
|
// A local (non-parameter) variable has been found, insert immediately
|
|
// before it.
|
|
if (CurNum == 0)
|
|
break;
|
|
// A later indexed parameter has been found, insert immediately before it.
|
|
if (CurNum > ArgNum)
|
|
break;
|
|
++I;
|
|
}
|
|
Vars.insert(I, Var);
|
|
return;
|
|
}
|
|
|
|
Vars.push_back(Var);
|
|
}
|
|
|
|
// Gather and emit post-function debug information.
|
|
void DwarfDebug::endFunction(const MachineFunction *MF) {
|
|
// Every beginFunction(MF) call should be followed by an endFunction(MF) call,
|
|
// though the beginFunction may not be called at all.
|
|
// We should handle both cases.
|
|
if (!CurFn)
|
|
CurFn = MF;
|
|
else
|
|
assert(CurFn == MF);
|
|
assert(CurFn != nullptr);
|
|
|
|
if (!MMI->hasDebugInfo() || LScopes.empty()) {
|
|
// If we don't have a lexical scope for this function then there will
|
|
// be a hole in the range information. Keep note of this by setting the
|
|
// previously used section to nullptr.
|
|
PrevSection = nullptr;
|
|
PrevCU = nullptr;
|
|
CurFn = nullptr;
|
|
return;
|
|
}
|
|
|
|
// Define end label for subprogram.
|
|
FunctionEndSym = Asm->GetTempSymbol("func_end", Asm->getFunctionNumber());
|
|
// Assumes in correct section after the entry point.
|
|
Asm->OutStreamer.EmitLabel(FunctionEndSym);
|
|
|
|
// Set DwarfDwarfCompileUnitID in MCContext to default value.
|
|
Asm->OutStreamer.getContext().setDwarfCompileUnitID(0);
|
|
|
|
SmallPtrSet<const MDNode *, 16> ProcessedVars;
|
|
collectVariableInfo(ProcessedVars);
|
|
|
|
LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
|
|
DwarfCompileUnit &TheCU = *SPMap.lookup(FnScope->getScopeNode());
|
|
|
|
// Construct abstract scopes.
|
|
for (LexicalScope *AScope : LScopes.getAbstractScopesList()) {
|
|
DISubprogram SP(AScope->getScopeNode());
|
|
if (SP.isSubprogram()) {
|
|
// Collect info for variables that were optimized out.
|
|
DIArray Variables = SP.getVariables();
|
|
for (unsigned i = 0, e = Variables.getNumElements(); i != e; ++i) {
|
|
DIVariable DV(Variables.getElement(i));
|
|
if (!DV || !DV.isVariable() || !ProcessedVars.insert(DV))
|
|
continue;
|
|
// Check that DbgVariable for DV wasn't created earlier, when
|
|
// findAbstractVariable() was called for inlined instance of DV.
|
|
LLVMContext &Ctx = DV->getContext();
|
|
DIVariable CleanDV = cleanseInlinedVariable(DV, Ctx);
|
|
if (AbstractVariables.lookup(CleanDV))
|
|
continue;
|
|
if (LexicalScope *Scope = LScopes.findAbstractScope(DV.getContext()))
|
|
addScopeVariable(Scope, new DbgVariable(DV, nullptr, this));
|
|
}
|
|
}
|
|
if (ProcessedSPNodes.count(AScope->getScopeNode()) == 0)
|
|
constructSubprogramScopeDIE(TheCU, AScope);
|
|
}
|
|
|
|
DIE &CurFnDIE = *constructSubprogramScopeDIE(TheCU, FnScope);
|
|
if (!CurFn->getTarget().Options.DisableFramePointerElim(*CurFn))
|
|
TheCU.addFlag(CurFnDIE, dwarf::DW_AT_APPLE_omit_frame_ptr);
|
|
|
|
// Add the range of this function to the list of ranges for the CU.
|
|
RangeSpan Span(FunctionBeginSym, FunctionEndSym);
|
|
TheCU.addRange(std::move(Span));
|
|
PrevSection = Asm->getCurrentSection();
|
|
PrevCU = &TheCU;
|
|
|
|
// Clear debug info
|
|
for (auto &I : ScopeVariables)
|
|
DeleteContainerPointers(I.second);
|
|
ScopeVariables.clear();
|
|
DeleteContainerPointers(CurrentFnArguments);
|
|
UserVariables.clear();
|
|
DbgValues.clear();
|
|
AbstractVariables.clear();
|
|
LabelsBeforeInsn.clear();
|
|
LabelsAfterInsn.clear();
|
|
PrevLabel = nullptr;
|
|
CurFn = nullptr;
|
|
}
|
|
|
|
// Register a source line with debug info. Returns the unique label that was
|
|
// emitted and which provides correspondence to the source line list.
|
|
void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S,
|
|
unsigned Flags) {
|
|
StringRef Fn;
|
|
StringRef Dir;
|
|
unsigned Src = 1;
|
|
unsigned Discriminator = 0;
|
|
if (S) {
|
|
DIDescriptor Scope(S);
|
|
|
|
if (Scope.isCompileUnit()) {
|
|
DICompileUnit CU(S);
|
|
Fn = CU.getFilename();
|
|
Dir = CU.getDirectory();
|
|
} else if (Scope.isFile()) {
|
|
DIFile F(S);
|
|
Fn = F.getFilename();
|
|
Dir = F.getDirectory();
|
|
} else if (Scope.isSubprogram()) {
|
|
DISubprogram SP(S);
|
|
Fn = SP.getFilename();
|
|
Dir = SP.getDirectory();
|
|
} else if (Scope.isLexicalBlockFile()) {
|
|
DILexicalBlockFile DBF(S);
|
|
Fn = DBF.getFilename();
|
|
Dir = DBF.getDirectory();
|
|
} else if (Scope.isLexicalBlock()) {
|
|
DILexicalBlock DB(S);
|
|
Fn = DB.getFilename();
|
|
Dir = DB.getDirectory();
|
|
Discriminator = DB.getDiscriminator();
|
|
} else
|
|
llvm_unreachable("Unexpected scope info");
|
|
|
|
unsigned CUID = Asm->OutStreamer.getContext().getDwarfCompileUnitID();
|
|
Src = static_cast<DwarfCompileUnit &>(*InfoHolder.getUnits()[CUID])
|
|
.getOrCreateSourceID(Fn, Dir);
|
|
}
|
|
Asm->OutStreamer.EmitDwarfLocDirective(Src, Line, Col, Flags, 0,
|
|
Discriminator, Fn);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Emit Methods
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Emit initial Dwarf sections with a label at the start of each one.
|
|
void DwarfDebug::emitSectionLabels() {
|
|
const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
|
|
|
|
// Dwarf sections base addresses.
|
|
DwarfInfoSectionSym =
|
|
emitSectionSym(Asm, TLOF.getDwarfInfoSection(), "section_info");
|
|
if (useSplitDwarf())
|
|
DwarfInfoDWOSectionSym =
|
|
emitSectionSym(Asm, TLOF.getDwarfInfoDWOSection(), "section_info_dwo");
|
|
DwarfAbbrevSectionSym =
|
|
emitSectionSym(Asm, TLOF.getDwarfAbbrevSection(), "section_abbrev");
|
|
if (useSplitDwarf())
|
|
DwarfAbbrevDWOSectionSym = emitSectionSym(
|
|
Asm, TLOF.getDwarfAbbrevDWOSection(), "section_abbrev_dwo");
|
|
if (GenerateARangeSection)
|
|
emitSectionSym(Asm, TLOF.getDwarfARangesSection());
|
|
|
|
DwarfLineSectionSym =
|
|
emitSectionSym(Asm, TLOF.getDwarfLineSection(), "section_line");
|
|
if (GenerateGnuPubSections) {
|
|
DwarfGnuPubNamesSectionSym =
|
|
emitSectionSym(Asm, TLOF.getDwarfGnuPubNamesSection());
|
|
DwarfGnuPubTypesSectionSym =
|
|
emitSectionSym(Asm, TLOF.getDwarfGnuPubTypesSection());
|
|
} else if (HasDwarfPubSections) {
|
|
emitSectionSym(Asm, TLOF.getDwarfPubNamesSection());
|
|
emitSectionSym(Asm, TLOF.getDwarfPubTypesSection());
|
|
}
|
|
|
|
DwarfStrSectionSym =
|
|
emitSectionSym(Asm, TLOF.getDwarfStrSection(), "info_string");
|
|
if (useSplitDwarf()) {
|
|
DwarfStrDWOSectionSym =
|
|
emitSectionSym(Asm, TLOF.getDwarfStrDWOSection(), "skel_string");
|
|
DwarfAddrSectionSym =
|
|
emitSectionSym(Asm, TLOF.getDwarfAddrSection(), "addr_sec");
|
|
DwarfDebugLocSectionSym =
|
|
emitSectionSym(Asm, TLOF.getDwarfLocDWOSection(), "skel_loc");
|
|
} else
|
|
DwarfDebugLocSectionSym =
|
|
emitSectionSym(Asm, TLOF.getDwarfLocSection(), "section_debug_loc");
|
|
DwarfDebugRangeSectionSym =
|
|
emitSectionSym(Asm, TLOF.getDwarfRangesSection(), "debug_range");
|
|
}
|
|
|
|
// Recursively emits a debug information entry.
|
|
void DwarfDebug::emitDIE(DIE &Die) {
|
|
// Get the abbreviation for this DIE.
|
|
const DIEAbbrev &Abbrev = Die.getAbbrev();
|
|
|
|
// Emit the code (index) for the abbreviation.
|
|
if (Asm->isVerbose())
|
|
Asm->OutStreamer.AddComment("Abbrev [" + Twine(Abbrev.getNumber()) +
|
|
"] 0x" + Twine::utohexstr(Die.getOffset()) +
|
|
":0x" + Twine::utohexstr(Die.getSize()) + " " +
|
|
dwarf::TagString(Abbrev.getTag()));
|
|
Asm->EmitULEB128(Abbrev.getNumber());
|
|
|
|
const SmallVectorImpl<DIEValue *> &Values = Die.getValues();
|
|
const SmallVectorImpl<DIEAbbrevData> &AbbrevData = Abbrev.getData();
|
|
|
|
// Emit the DIE attribute values.
|
|
for (unsigned i = 0, N = Values.size(); i < N; ++i) {
|
|
dwarf::Attribute Attr = AbbrevData[i].getAttribute();
|
|
dwarf::Form Form = AbbrevData[i].getForm();
|
|
assert(Form && "Too many attributes for DIE (check abbreviation)");
|
|
|
|
if (Asm->isVerbose()) {
|
|
Asm->OutStreamer.AddComment(dwarf::AttributeString(Attr));
|
|
if (Attr == dwarf::DW_AT_accessibility)
|
|
Asm->OutStreamer.AddComment(dwarf::AccessibilityString(
|
|
cast<DIEInteger>(Values[i])->getValue()));
|
|
}
|
|
|
|
// Emit an attribute using the defined form.
|
|
Values[i]->EmitValue(Asm, Form);
|
|
}
|
|
|
|
// Emit the DIE children if any.
|
|
if (Abbrev.hasChildren()) {
|
|
for (auto &Child : Die.getChildren())
|
|
emitDIE(*Child);
|
|
|
|
Asm->OutStreamer.AddComment("End Of Children Mark");
|
|
Asm->EmitInt8(0);
|
|
}
|
|
}
|
|
|
|
// Emit the debug info section.
|
|
void DwarfDebug::emitDebugInfo() {
|
|
DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
|
|
|
|
Holder.emitUnits(this, DwarfAbbrevSectionSym);
|
|
}
|
|
|
|
// Emit the abbreviation section.
|
|
void DwarfDebug::emitAbbreviations() {
|
|
DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
|
|
|
|
Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection());
|
|
}
|
|
|
|
// Emit the last address of the section and the end of the line matrix.
|
|
void DwarfDebug::emitEndOfLineMatrix(unsigned SectionEnd) {
|
|
// Define last address of section.
|
|
Asm->OutStreamer.AddComment("Extended Op");
|
|
Asm->EmitInt8(0);
|
|
|
|
Asm->OutStreamer.AddComment("Op size");
|
|
Asm->EmitInt8(Asm->getDataLayout().getPointerSize() + 1);
|
|
Asm->OutStreamer.AddComment("DW_LNE_set_address");
|
|
Asm->EmitInt8(dwarf::DW_LNE_set_address);
|
|
|
|
Asm->OutStreamer.AddComment("Section end label");
|
|
|
|
Asm->OutStreamer.EmitSymbolValue(
|
|
Asm->GetTempSymbol("section_end", SectionEnd),
|
|
Asm->getDataLayout().getPointerSize());
|
|
|
|
// Mark end of matrix.
|
|
Asm->OutStreamer.AddComment("DW_LNE_end_sequence");
|
|
Asm->EmitInt8(0);
|
|
Asm->EmitInt8(1);
|
|
Asm->EmitInt8(1);
|
|
}
|
|
|
|
// Emit visible names into a hashed accelerator table section.
|
|
void DwarfDebug::emitAccelNames() {
|
|
AccelNames.FinalizeTable(Asm, "Names");
|
|
Asm->OutStreamer.SwitchSection(
|
|
Asm->getObjFileLowering().getDwarfAccelNamesSection());
|
|
MCSymbol *SectionBegin = Asm->GetTempSymbol("names_begin");
|
|
Asm->OutStreamer.EmitLabel(SectionBegin);
|
|
|
|
// Emit the full data.
|
|
AccelNames.Emit(Asm, SectionBegin, &InfoHolder);
|
|
}
|
|
|
|
// Emit objective C classes and categories into a hashed accelerator table
|
|
// section.
|
|
void DwarfDebug::emitAccelObjC() {
|
|
AccelObjC.FinalizeTable(Asm, "ObjC");
|
|
Asm->OutStreamer.SwitchSection(
|
|
Asm->getObjFileLowering().getDwarfAccelObjCSection());
|
|
MCSymbol *SectionBegin = Asm->GetTempSymbol("objc_begin");
|
|
Asm->OutStreamer.EmitLabel(SectionBegin);
|
|
|
|
// Emit the full data.
|
|
AccelObjC.Emit(Asm, SectionBegin, &InfoHolder);
|
|
}
|
|
|
|
// Emit namespace dies into a hashed accelerator table.
|
|
void DwarfDebug::emitAccelNamespaces() {
|
|
AccelNamespace.FinalizeTable(Asm, "namespac");
|
|
Asm->OutStreamer.SwitchSection(
|
|
Asm->getObjFileLowering().getDwarfAccelNamespaceSection());
|
|
MCSymbol *SectionBegin = Asm->GetTempSymbol("namespac_begin");
|
|
Asm->OutStreamer.EmitLabel(SectionBegin);
|
|
|
|
// Emit the full data.
|
|
AccelNamespace.Emit(Asm, SectionBegin, &InfoHolder);
|
|
}
|
|
|
|
// Emit type dies into a hashed accelerator table.
|
|
void DwarfDebug::emitAccelTypes() {
|
|
|
|
AccelTypes.FinalizeTable(Asm, "types");
|
|
Asm->OutStreamer.SwitchSection(
|
|
Asm->getObjFileLowering().getDwarfAccelTypesSection());
|
|
MCSymbol *SectionBegin = Asm->GetTempSymbol("types_begin");
|
|
Asm->OutStreamer.EmitLabel(SectionBegin);
|
|
|
|
// Emit the full data.
|
|
AccelTypes.Emit(Asm, SectionBegin, &InfoHolder);
|
|
}
|
|
|
|
// Public name handling.
|
|
// The format for the various pubnames:
|
|
//
|
|
// dwarf pubnames - offset/name pairs where the offset is the offset into the CU
|
|
// for the DIE that is named.
|
|
//
|
|
// gnu pubnames - offset/index value/name tuples where the offset is the offset
|
|
// into the CU and the index value is computed according to the type of value
|
|
// for the DIE that is named.
|
|
//
|
|
// For type units the offset is the offset of the skeleton DIE. For split dwarf
|
|
// it's the offset within the debug_info/debug_types dwo section, however, the
|
|
// reference in the pubname header doesn't change.
|
|
|
|
/// computeIndexValue - Compute the gdb index value for the DIE and CU.
|
|
static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU,
|
|
const DIE *Die) {
|
|
dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC;
|
|
|
|
// We could have a specification DIE that has our most of our knowledge,
|
|
// look for that now.
|
|
DIEValue *SpecVal = Die->findAttribute(dwarf::DW_AT_specification);
|
|
if (SpecVal) {
|
|
DIE &SpecDIE = cast<DIEEntry>(SpecVal)->getEntry();
|
|
if (SpecDIE.findAttribute(dwarf::DW_AT_external))
|
|
Linkage = dwarf::GIEL_EXTERNAL;
|
|
} else if (Die->findAttribute(dwarf::DW_AT_external))
|
|
Linkage = dwarf::GIEL_EXTERNAL;
|
|
|
|
switch (Die->getTag()) {
|
|
case dwarf::DW_TAG_class_type:
|
|
case dwarf::DW_TAG_structure_type:
|
|
case dwarf::DW_TAG_union_type:
|
|
case dwarf::DW_TAG_enumeration_type:
|
|
return dwarf::PubIndexEntryDescriptor(
|
|
dwarf::GIEK_TYPE, CU->getLanguage() != dwarf::DW_LANG_C_plus_plus
|
|
? dwarf::GIEL_STATIC
|
|
: dwarf::GIEL_EXTERNAL);
|
|
case dwarf::DW_TAG_typedef:
|
|
case dwarf::DW_TAG_base_type:
|
|
case dwarf::DW_TAG_subrange_type:
|
|
return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC);
|
|
case dwarf::DW_TAG_namespace:
|
|
return dwarf::GIEK_TYPE;
|
|
case dwarf::DW_TAG_subprogram:
|
|
return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage);
|
|
case dwarf::DW_TAG_constant:
|
|
case dwarf::DW_TAG_variable:
|
|
return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage);
|
|
case dwarf::DW_TAG_enumerator:
|
|
return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE,
|
|
dwarf::GIEL_STATIC);
|
|
default:
|
|
return dwarf::GIEK_NONE;
|
|
}
|
|
}
|
|
|
|
/// emitDebugPubNames - Emit visible names into a debug pubnames section.
|
|
///
|
|
void DwarfDebug::emitDebugPubNames(bool GnuStyle) {
|
|
const MCSection *PSec =
|
|
GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection()
|
|
: Asm->getObjFileLowering().getDwarfPubNamesSection();
|
|
|
|
emitDebugPubSection(GnuStyle, PSec, "Names", &DwarfUnit::getGlobalNames);
|
|
}
|
|
|
|
void DwarfDebug::emitDebugPubSection(
|
|
bool GnuStyle, const MCSection *PSec, StringRef Name,
|
|
const StringMap<const DIE *> &(DwarfUnit::*Accessor)() const) {
|
|
for (const auto &NU : CUMap) {
|
|
DwarfCompileUnit *TheU = NU.second;
|
|
|
|
const auto &Globals = (TheU->*Accessor)();
|
|
|
|
if (Globals.empty())
|
|
continue;
|
|
|
|
if (auto Skeleton = static_cast<DwarfCompileUnit *>(TheU->getSkeleton()))
|
|
TheU = Skeleton;
|
|
unsigned ID = TheU->getUniqueID();
|
|
|
|
// Start the dwarf pubnames section.
|
|
Asm->OutStreamer.SwitchSection(PSec);
|
|
|
|
// Emit the header.
|
|
Asm->OutStreamer.AddComment("Length of Public " + Name + " Info");
|
|
MCSymbol *BeginLabel = Asm->GetTempSymbol("pub" + Name + "_begin", ID);
|
|
MCSymbol *EndLabel = Asm->GetTempSymbol("pub" + Name + "_end", ID);
|
|
Asm->EmitLabelDifference(EndLabel, BeginLabel, 4);
|
|
|
|
Asm->OutStreamer.EmitLabel(BeginLabel);
|
|
|
|
Asm->OutStreamer.AddComment("DWARF Version");
|
|
Asm->EmitInt16(dwarf::DW_PUBNAMES_VERSION);
|
|
|
|
Asm->OutStreamer.AddComment("Offset of Compilation Unit Info");
|
|
Asm->EmitSectionOffset(TheU->getLabelBegin(), TheU->getSectionSym());
|
|
|
|
Asm->OutStreamer.AddComment("Compilation Unit Length");
|
|
Asm->EmitLabelDifference(TheU->getLabelEnd(), TheU->getLabelBegin(), 4);
|
|
|
|
// Emit the pubnames for this compilation unit.
|
|
for (const auto &GI : Globals) {
|
|
const char *Name = GI.getKeyData();
|
|
const DIE *Entity = GI.second;
|
|
|
|
Asm->OutStreamer.AddComment("DIE offset");
|
|
Asm->EmitInt32(Entity->getOffset());
|
|
|
|
if (GnuStyle) {
|
|
dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity);
|
|
Asm->OutStreamer.AddComment(
|
|
Twine("Kind: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) + ", " +
|
|
dwarf::GDBIndexEntryLinkageString(Desc.Linkage));
|
|
Asm->EmitInt8(Desc.toBits());
|
|
}
|
|
|
|
Asm->OutStreamer.AddComment("External Name");
|
|
Asm->OutStreamer.EmitBytes(StringRef(Name, GI.getKeyLength() + 1));
|
|
}
|
|
|
|
Asm->OutStreamer.AddComment("End Mark");
|
|
Asm->EmitInt32(0);
|
|
Asm->OutStreamer.EmitLabel(EndLabel);
|
|
}
|
|
}
|
|
|
|
void DwarfDebug::emitDebugPubTypes(bool GnuStyle) {
|
|
const MCSection *PSec =
|
|
GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection()
|
|
: Asm->getObjFileLowering().getDwarfPubTypesSection();
|
|
|
|
emitDebugPubSection(GnuStyle, PSec, "Types", &DwarfUnit::getGlobalTypes);
|
|
}
|
|
|
|
// Emit visible names into a debug str section.
|
|
void DwarfDebug::emitDebugStr() {
|
|
DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
|
|
Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection());
|
|
}
|
|
|
|
void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer,
|
|
const DebugLocEntry &Entry) {
|
|
assert(Entry.getValues().size() == 1 &&
|
|
"multi-value entries are not supported yet.");
|
|
const DebugLocEntry::Value Value = Entry.getValues()[0];
|
|
DIVariable DV(Value.getVariable());
|
|
if (Value.isInt()) {
|
|
DIBasicType BTy(resolve(DV.getType()));
|
|
if (BTy.Verify() && (BTy.getEncoding() == dwarf::DW_ATE_signed ||
|
|
BTy.getEncoding() == dwarf::DW_ATE_signed_char)) {
|
|
Streamer.EmitInt8(dwarf::DW_OP_consts, "DW_OP_consts");
|
|
Streamer.EmitSLEB128(Value.getInt());
|
|
} else {
|
|
Streamer.EmitInt8(dwarf::DW_OP_constu, "DW_OP_constu");
|
|
Streamer.EmitULEB128(Value.getInt());
|
|
}
|
|
} else if (Value.isLocation()) {
|
|
MachineLocation Loc = Value.getLoc();
|
|
if (!DV.hasComplexAddress())
|
|
// Regular entry.
|
|
Asm->EmitDwarfRegOp(Streamer, Loc, DV.isIndirect());
|
|
else {
|
|
// Complex address entry.
|
|
unsigned N = DV.getNumAddrElements();
|
|
unsigned i = 0;
|
|
if (N >= 2 && DV.getAddrElement(0) == DIBuilder::OpPlus) {
|
|
if (Loc.getOffset()) {
|
|
i = 2;
|
|
Asm->EmitDwarfRegOp(Streamer, Loc, DV.isIndirect());
|
|
Streamer.EmitInt8(dwarf::DW_OP_deref, "DW_OP_deref");
|
|
Streamer.EmitInt8(dwarf::DW_OP_plus_uconst, "DW_OP_plus_uconst");
|
|
Streamer.EmitSLEB128(DV.getAddrElement(1));
|
|
} else {
|
|
// If first address element is OpPlus then emit
|
|
// DW_OP_breg + Offset instead of DW_OP_reg + Offset.
|
|
MachineLocation TLoc(Loc.getReg(), DV.getAddrElement(1));
|
|
Asm->EmitDwarfRegOp(Streamer, TLoc, DV.isIndirect());
|
|
i = 2;
|
|
}
|
|
} else {
|
|
Asm->EmitDwarfRegOp(Streamer, Loc, DV.isIndirect());
|
|
}
|
|
|
|
// Emit remaining complex address elements.
|
|
for (; i < N; ++i) {
|
|
uint64_t Element = DV.getAddrElement(i);
|
|
if (Element == DIBuilder::OpPlus) {
|
|
Streamer.EmitInt8(dwarf::DW_OP_plus_uconst, "DW_OP_plus_uconst");
|
|
Streamer.EmitULEB128(DV.getAddrElement(++i));
|
|
} else if (Element == DIBuilder::OpDeref) {
|
|
if (!Loc.isReg())
|
|
Streamer.EmitInt8(dwarf::DW_OP_deref, "DW_OP_deref");
|
|
} else
|
|
llvm_unreachable("unknown Opcode found in complex address");
|
|
}
|
|
}
|
|
}
|
|
// else ... ignore constant fp. There is not any good way to
|
|
// to represent them here in dwarf.
|
|
// FIXME: ^
|
|
}
|
|
|
|
void DwarfDebug::emitDebugLocEntryLocation(const DebugLocEntry &Entry) {
|
|
Asm->OutStreamer.AddComment("Loc expr size");
|
|
MCSymbol *begin = Asm->OutStreamer.getContext().CreateTempSymbol();
|
|
MCSymbol *end = Asm->OutStreamer.getContext().CreateTempSymbol();
|
|
Asm->EmitLabelDifference(end, begin, 2);
|
|
Asm->OutStreamer.EmitLabel(begin);
|
|
// Emit the entry.
|
|
APByteStreamer Streamer(*Asm);
|
|
emitDebugLocEntry(Streamer, Entry);
|
|
// Close the range.
|
|
Asm->OutStreamer.EmitLabel(end);
|
|
}
|
|
|
|
// Emit locations into the debug loc section.
|
|
void DwarfDebug::emitDebugLoc() {
|
|
// Start the dwarf loc section.
|
|
Asm->OutStreamer.SwitchSection(
|
|
Asm->getObjFileLowering().getDwarfLocSection());
|
|
unsigned char Size = Asm->getDataLayout().getPointerSize();
|
|
for (const auto &DebugLoc : DotDebugLocEntries) {
|
|
Asm->OutStreamer.EmitLabel(DebugLoc.Label);
|
|
for (const auto &Entry : DebugLoc.List) {
|
|
// Set up the range. This range is relative to the entry point of the
|
|
// compile unit. This is a hard coded 0 for low_pc when we're emitting
|
|
// ranges, or the DW_AT_low_pc on the compile unit otherwise.
|
|
const DwarfCompileUnit *CU = Entry.getCU();
|
|
if (CU->getRanges().size() == 1) {
|
|
// Grab the begin symbol from the first range as our base.
|
|
const MCSymbol *Base = CU->getRanges()[0].getStart();
|
|
Asm->EmitLabelDifference(Entry.getBeginSym(), Base, Size);
|
|
Asm->EmitLabelDifference(Entry.getEndSym(), Base, Size);
|
|
} else {
|
|
Asm->OutStreamer.EmitSymbolValue(Entry.getBeginSym(), Size);
|
|
Asm->OutStreamer.EmitSymbolValue(Entry.getEndSym(), Size);
|
|
}
|
|
|
|
emitDebugLocEntryLocation(Entry);
|
|
}
|
|
Asm->OutStreamer.EmitIntValue(0, Size);
|
|
Asm->OutStreamer.EmitIntValue(0, Size);
|
|
}
|
|
}
|
|
|
|
void DwarfDebug::emitDebugLocDWO() {
|
|
Asm->OutStreamer.SwitchSection(
|
|
Asm->getObjFileLowering().getDwarfLocDWOSection());
|
|
for (const auto &DebugLoc : DotDebugLocEntries) {
|
|
Asm->OutStreamer.EmitLabel(DebugLoc.Label);
|
|
for (const auto &Entry : DebugLoc.List) {
|
|
// Just always use start_length for now - at least that's one address
|
|
// rather than two. We could get fancier and try to, say, reuse an
|
|
// address we know we've emitted elsewhere (the start of the function?
|
|
// The start of the CU or CU subrange that encloses this range?)
|
|
Asm->EmitInt8(dwarf::DW_LLE_start_length_entry);
|
|
unsigned idx = AddrPool.getIndex(Entry.getBeginSym());
|
|
Asm->EmitULEB128(idx);
|
|
Asm->EmitLabelDifference(Entry.getEndSym(), Entry.getBeginSym(), 4);
|
|
|
|
emitDebugLocEntryLocation(Entry);
|
|
}
|
|
Asm->EmitInt8(dwarf::DW_LLE_end_of_list_entry);
|
|
}
|
|
}
|
|
|
|
struct ArangeSpan {
|
|
const MCSymbol *Start, *End;
|
|
};
|
|
|
|
// Emit a debug aranges section, containing a CU lookup for any
|
|
// address we can tie back to a CU.
|
|
void DwarfDebug::emitDebugARanges() {
|
|
// Start the dwarf aranges section.
|
|
Asm->OutStreamer.SwitchSection(
|
|
Asm->getObjFileLowering().getDwarfARangesSection());
|
|
|
|
typedef DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> SpansType;
|
|
|
|
SpansType Spans;
|
|
|
|
// Build a list of sections used.
|
|
std::vector<const MCSection *> Sections;
|
|
for (const auto &it : SectionMap) {
|
|
const MCSection *Section = it.first;
|
|
Sections.push_back(Section);
|
|
}
|
|
|
|
// Sort the sections into order.
|
|
// This is only done to ensure consistent output order across different runs.
|
|
std::sort(Sections.begin(), Sections.end(), SectionSort);
|
|
|
|
// Build a set of address spans, sorted by CU.
|
|
for (const MCSection *Section : Sections) {
|
|
SmallVector<SymbolCU, 8> &List = SectionMap[Section];
|
|
if (List.size() < 2)
|
|
continue;
|
|
|
|
// Sort the symbols by offset within the section.
|
|
std::sort(List.begin(), List.end(),
|
|
[&](const SymbolCU &A, const SymbolCU &B) {
|
|
unsigned IA = A.Sym ? Asm->OutStreamer.GetSymbolOrder(A.Sym) : 0;
|
|
unsigned IB = B.Sym ? Asm->OutStreamer.GetSymbolOrder(B.Sym) : 0;
|
|
|
|
// Symbols with no order assigned should be placed at the end.
|
|
// (e.g. section end labels)
|
|
if (IA == 0)
|
|
return false;
|
|
if (IB == 0)
|
|
return true;
|
|
return IA < IB;
|
|
});
|
|
|
|
// If we have no section (e.g. common), just write out
|
|
// individual spans for each symbol.
|
|
if (!Section) {
|
|
for (const SymbolCU &Cur : List) {
|
|
ArangeSpan Span;
|
|
Span.Start = Cur.Sym;
|
|
Span.End = nullptr;
|
|
if (Cur.CU)
|
|
Spans[Cur.CU].push_back(Span);
|
|
}
|
|
} else {
|
|
// Build spans between each label.
|
|
const MCSymbol *StartSym = List[0].Sym;
|
|
for (size_t n = 1, e = List.size(); n < e; n++) {
|
|
const SymbolCU &Prev = List[n - 1];
|
|
const SymbolCU &Cur = List[n];
|
|
|
|
// Try and build the longest span we can within the same CU.
|
|
if (Cur.CU != Prev.CU) {
|
|
ArangeSpan Span;
|
|
Span.Start = StartSym;
|
|
Span.End = Cur.Sym;
|
|
Spans[Prev.CU].push_back(Span);
|
|
StartSym = Cur.Sym;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned PtrSize = Asm->getDataLayout().getPointerSize();
|
|
|
|
// Build a list of CUs used.
|
|
std::vector<DwarfCompileUnit *> CUs;
|
|
for (const auto &it : Spans) {
|
|
DwarfCompileUnit *CU = it.first;
|
|
CUs.push_back(CU);
|
|
}
|
|
|
|
// Sort the CU list (again, to ensure consistent output order).
|
|
std::sort(CUs.begin(), CUs.end(), [](const DwarfUnit *A, const DwarfUnit *B) {
|
|
return A->getUniqueID() < B->getUniqueID();
|
|
});
|
|
|
|
// Emit an arange table for each CU we used.
|
|
for (DwarfCompileUnit *CU : CUs) {
|
|
std::vector<ArangeSpan> &List = Spans[CU];
|
|
|
|
// Emit size of content not including length itself.
|
|
unsigned ContentSize =
|
|
sizeof(int16_t) + // DWARF ARange version number
|
|
sizeof(int32_t) + // Offset of CU in the .debug_info section
|
|
sizeof(int8_t) + // Pointer Size (in bytes)
|
|
sizeof(int8_t); // Segment Size (in bytes)
|
|
|
|
unsigned TupleSize = PtrSize * 2;
|
|
|
|
// 7.20 in the Dwarf specs requires the table to be aligned to a tuple.
|
|
unsigned Padding =
|
|
OffsetToAlignment(sizeof(int32_t) + ContentSize, TupleSize);
|
|
|
|
ContentSize += Padding;
|
|
ContentSize += (List.size() + 1) * TupleSize;
|
|
|
|
// For each compile unit, write the list of spans it covers.
|
|
Asm->OutStreamer.AddComment("Length of ARange Set");
|
|
Asm->EmitInt32(ContentSize);
|
|
Asm->OutStreamer.AddComment("DWARF Arange version number");
|
|
Asm->EmitInt16(dwarf::DW_ARANGES_VERSION);
|
|
Asm->OutStreamer.AddComment("Offset Into Debug Info Section");
|
|
Asm->EmitSectionOffset(CU->getLocalLabelBegin(), CU->getLocalSectionSym());
|
|
Asm->OutStreamer.AddComment("Address Size (in bytes)");
|
|
Asm->EmitInt8(PtrSize);
|
|
Asm->OutStreamer.AddComment("Segment Size (in bytes)");
|
|
Asm->EmitInt8(0);
|
|
|
|
Asm->OutStreamer.EmitFill(Padding, 0xff);
|
|
|
|
for (const ArangeSpan &Span : List) {
|
|
Asm->EmitLabelReference(Span.Start, PtrSize);
|
|
|
|
// Calculate the size as being from the span start to it's end.
|
|
if (Span.End) {
|
|
Asm->EmitLabelDifference(Span.End, Span.Start, PtrSize);
|
|
} else {
|
|
// For symbols without an end marker (e.g. common), we
|
|
// write a single arange entry containing just that one symbol.
|
|
uint64_t Size = SymSize[Span.Start];
|
|
if (Size == 0)
|
|
Size = 1;
|
|
|
|
Asm->OutStreamer.EmitIntValue(Size, PtrSize);
|
|
}
|
|
}
|
|
|
|
Asm->OutStreamer.AddComment("ARange terminator");
|
|
Asm->OutStreamer.EmitIntValue(0, PtrSize);
|
|
Asm->OutStreamer.EmitIntValue(0, PtrSize);
|
|
}
|
|
}
|
|
|
|
// Emit visible names into a debug ranges section.
|
|
void DwarfDebug::emitDebugRanges() {
|
|
// Start the dwarf ranges section.
|
|
Asm->OutStreamer.SwitchSection(
|
|
Asm->getObjFileLowering().getDwarfRangesSection());
|
|
|
|
// Size for our labels.
|
|
unsigned char Size = Asm->getDataLayout().getPointerSize();
|
|
|
|
// Grab the specific ranges for the compile units in the module.
|
|
for (const auto &I : CUMap) {
|
|
DwarfCompileUnit *TheCU = I.second;
|
|
|
|
// Emit a symbol so we can find the beginning of our ranges.
|
|
Asm->OutStreamer.EmitLabel(TheCU->getLabelRange());
|
|
|
|
// Iterate over the misc ranges for the compile units in the module.
|
|
for (const RangeSpanList &List : TheCU->getRangeLists()) {
|
|
// Emit our symbol so we can find the beginning of the range.
|
|
Asm->OutStreamer.EmitLabel(List.getSym());
|
|
|
|
for (const RangeSpan &Range : List.getRanges()) {
|
|
const MCSymbol *Begin = Range.getStart();
|
|
const MCSymbol *End = Range.getEnd();
|
|
assert(Begin && "Range without a begin symbol?");
|
|
assert(End && "Range without an end symbol?");
|
|
if (TheCU->getRanges().size() == 1) {
|
|
// Grab the begin symbol from the first range as our base.
|
|
const MCSymbol *Base = TheCU->getRanges()[0].getStart();
|
|
Asm->EmitLabelDifference(Begin, Base, Size);
|
|
Asm->EmitLabelDifference(End, Base, Size);
|
|
} else {
|
|
Asm->OutStreamer.EmitSymbolValue(Begin, Size);
|
|
Asm->OutStreamer.EmitSymbolValue(End, Size);
|
|
}
|
|
}
|
|
|
|
// And terminate the list with two 0 values.
|
|
Asm->OutStreamer.EmitIntValue(0, Size);
|
|
Asm->OutStreamer.EmitIntValue(0, Size);
|
|
}
|
|
|
|
// Now emit a range for the CU itself.
|
|
if (TheCU->getRanges().size() > 1) {
|
|
Asm->OutStreamer.EmitLabel(
|
|
Asm->GetTempSymbol("cu_ranges", TheCU->getUniqueID()));
|
|
for (const RangeSpan &Range : TheCU->getRanges()) {
|
|
const MCSymbol *Begin = Range.getStart();
|
|
const MCSymbol *End = Range.getEnd();
|
|
assert(Begin && "Range without a begin symbol?");
|
|
assert(End && "Range without an end symbol?");
|
|
Asm->OutStreamer.EmitSymbolValue(Begin, Size);
|
|
Asm->OutStreamer.EmitSymbolValue(End, Size);
|
|
}
|
|
// And terminate the list with two 0 values.
|
|
Asm->OutStreamer.EmitIntValue(0, Size);
|
|
Asm->OutStreamer.EmitIntValue(0, Size);
|
|
}
|
|
}
|
|
}
|
|
|
|
// DWARF5 Experimental Separate Dwarf emitters.
|
|
|
|
void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die,
|
|
std::unique_ptr<DwarfUnit> NewU) {
|
|
NewU->addLocalString(Die, dwarf::DW_AT_GNU_dwo_name,
|
|
U.getCUNode().getSplitDebugFilename());
|
|
|
|
if (!CompilationDir.empty())
|
|
NewU->addLocalString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
|
|
|
|
addGnuPubAttributes(*NewU, Die);
|
|
|
|
SkeletonHolder.addUnit(std::move(NewU));
|
|
}
|
|
|
|
// This DIE has the following attributes: DW_AT_comp_dir, DW_AT_stmt_list,
|
|
// DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges, DW_AT_dwo_name, DW_AT_dwo_id,
|
|
// DW_AT_addr_base, DW_AT_ranges_base.
|
|
DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) {
|
|
|
|
auto OwnedUnit = make_unique<DwarfCompileUnit>(
|
|
CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder);
|
|
DwarfCompileUnit &NewCU = *OwnedUnit;
|
|
NewCU.initSection(Asm->getObjFileLowering().getDwarfInfoSection(),
|
|
DwarfInfoSectionSym);
|
|
|
|
NewCU.initStmtList(DwarfLineSectionSym);
|
|
|
|
initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit));
|
|
|
|
return NewCU;
|
|
}
|
|
|
|
// This DIE has the following attributes: DW_AT_comp_dir, DW_AT_dwo_name,
|
|
// DW_AT_addr_base.
|
|
DwarfTypeUnit &DwarfDebug::constructSkeletonTU(DwarfTypeUnit &TU) {
|
|
DwarfCompileUnit &CU = static_cast<DwarfCompileUnit &>(
|
|
*SkeletonHolder.getUnits()[TU.getCU().getUniqueID()]);
|
|
|
|
auto OwnedUnit = make_unique<DwarfTypeUnit>(TU.getUniqueID(), CU, Asm, this,
|
|
&SkeletonHolder);
|
|
DwarfTypeUnit &NewTU = *OwnedUnit;
|
|
NewTU.setTypeSignature(TU.getTypeSignature());
|
|
NewTU.setType(nullptr);
|
|
NewTU.initSection(
|
|
Asm->getObjFileLowering().getDwarfTypesSection(TU.getTypeSignature()));
|
|
|
|
initSkeletonUnit(TU, NewTU.getUnitDie(), std::move(OwnedUnit));
|
|
return NewTU;
|
|
}
|
|
|
|
// Emit the .debug_info.dwo section for separated dwarf. This contains the
|
|
// compile units that would normally be in debug_info.
|
|
void DwarfDebug::emitDebugInfoDWO() {
|
|
assert(useSplitDwarf() && "No split dwarf debug info?");
|
|
// Don't pass an abbrev symbol, using a constant zero instead so as not to
|
|
// emit relocations into the dwo file.
|
|
InfoHolder.emitUnits(this, /* AbbrevSymbol */ nullptr);
|
|
}
|
|
|
|
// Emit the .debug_abbrev.dwo section for separated dwarf. This contains the
|
|
// abbreviations for the .debug_info.dwo section.
|
|
void DwarfDebug::emitDebugAbbrevDWO() {
|
|
assert(useSplitDwarf() && "No split dwarf?");
|
|
InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection());
|
|
}
|
|
|
|
void DwarfDebug::emitDebugLineDWO() {
|
|
assert(useSplitDwarf() && "No split dwarf?");
|
|
Asm->OutStreamer.SwitchSection(
|
|
Asm->getObjFileLowering().getDwarfLineDWOSection());
|
|
SplitTypeUnitFileTable.Emit(Asm->OutStreamer);
|
|
}
|
|
|
|
// Emit the .debug_str.dwo section for separated dwarf. This contains the
|
|
// string section and is identical in format to traditional .debug_str
|
|
// sections.
|
|
void DwarfDebug::emitDebugStrDWO() {
|
|
assert(useSplitDwarf() && "No split dwarf?");
|
|
const MCSection *OffSec =
|
|
Asm->getObjFileLowering().getDwarfStrOffDWOSection();
|
|
const MCSymbol *StrSym = DwarfStrSectionSym;
|
|
InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(),
|
|
OffSec, StrSym);
|
|
}
|
|
|
|
MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) {
|
|
if (!useSplitDwarf())
|
|
return nullptr;
|
|
if (SingleCU)
|
|
SplitTypeUnitFileTable.setCompilationDir(CU.getCUNode().getDirectory());
|
|
return &SplitTypeUnitFileTable;
|
|
}
|
|
|
|
static uint64_t makeTypeSignature(StringRef Identifier) {
|
|
MD5 Hash;
|
|
Hash.update(Identifier);
|
|
// ... take the least significant 8 bytes and return those. Our MD5
|
|
// implementation always returns its results in little endian, swap bytes
|
|
// appropriately.
|
|
MD5::MD5Result Result;
|
|
Hash.final(Result);
|
|
return *reinterpret_cast<support::ulittle64_t *>(Result + 8);
|
|
}
|
|
|
|
void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU,
|
|
StringRef Identifier, DIE &RefDie,
|
|
DICompositeType CTy) {
|
|
// Fast path if we're building some type units and one has already used the
|
|
// address pool we know we're going to throw away all this work anyway, so
|
|
// don't bother building dependent types.
|
|
if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed())
|
|
return;
|
|
|
|
const DwarfTypeUnit *&TU = DwarfTypeUnits[CTy];
|
|
if (TU) {
|
|
CU.addDIETypeSignature(RefDie, *TU);
|
|
return;
|
|
}
|
|
|
|
bool TopLevelType = TypeUnitsUnderConstruction.empty();
|
|
AddrPool.resetUsedFlag();
|
|
|
|
auto OwnedUnit =
|
|
make_unique<DwarfTypeUnit>(InfoHolder.getUnits().size(), CU, Asm, this,
|
|
&InfoHolder, getDwoLineTable(CU));
|
|
DwarfTypeUnit &NewTU = *OwnedUnit;
|
|
DIE &UnitDie = NewTU.getUnitDie();
|
|
TU = &NewTU;
|
|
TypeUnitsUnderConstruction.push_back(
|
|
std::make_pair(std::move(OwnedUnit), CTy));
|
|
|
|
NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
|
|
CU.getLanguage());
|
|
|
|
uint64_t Signature = makeTypeSignature(Identifier);
|
|
NewTU.setTypeSignature(Signature);
|
|
|
|
if (!useSplitDwarf())
|
|
CU.applyStmtList(UnitDie);
|
|
|
|
NewTU.initSection(
|
|
useSplitDwarf()
|
|
? Asm->getObjFileLowering().getDwarfTypesDWOSection(Signature)
|
|
: Asm->getObjFileLowering().getDwarfTypesSection(Signature));
|
|
|
|
NewTU.setType(NewTU.createTypeDIE(CTy));
|
|
|
|
if (TopLevelType) {
|
|
auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction);
|
|
TypeUnitsUnderConstruction.clear();
|
|
|
|
// Types referencing entries in the address table cannot be placed in type
|
|
// units.
|
|
if (AddrPool.hasBeenUsed()) {
|
|
|
|
// Remove all the types built while building this type.
|
|
// This is pessimistic as some of these types might not be dependent on
|
|
// the type that used an address.
|
|
for (const auto &TU : TypeUnitsToAdd)
|
|
DwarfTypeUnits.erase(TU.second);
|
|
|
|
// Construct this type in the CU directly.
|
|
// This is inefficient because all the dependent types will be rebuilt
|
|
// from scratch, including building them in type units, discovering that
|
|
// they depend on addresses, throwing them out and rebuilding them.
|
|
CU.constructTypeDIE(RefDie, CTy);
|
|
return;
|
|
}
|
|
|
|
// If the type wasn't dependent on fission addresses, finish adding the type
|
|
// and all its dependent types.
|
|
for (auto &TU : TypeUnitsToAdd) {
|
|
if (useSplitDwarf())
|
|
TU.first->setSkeleton(constructSkeletonTU(*TU.first));
|
|
InfoHolder.addUnit(std::move(TU.first));
|
|
}
|
|
}
|
|
CU.addDIETypeSignature(RefDie, NewTU);
|
|
}
|
|
|
|
void DwarfDebug::attachLowHighPC(DwarfCompileUnit &Unit, DIE &D,
|
|
MCSymbol *Begin, MCSymbol *End) {
|
|
Unit.addLabelAddress(D, dwarf::DW_AT_low_pc, Begin);
|
|
if (DwarfVersion < 4)
|
|
Unit.addLabelAddress(D, dwarf::DW_AT_high_pc, End);
|
|
else
|
|
Unit.addLabelDelta(D, dwarf::DW_AT_high_pc, End, Begin);
|
|
}
|
|
|
|
// Accelerator table mutators - add each name along with its companion
|
|
// DIE to the proper table while ensuring that the name that we're going
|
|
// to reference is in the string table. We do this since the names we
|
|
// add may not only be identical to the names in the DIE.
|
|
void DwarfDebug::addAccelName(StringRef Name, const DIE &Die) {
|
|
if (!useDwarfAccelTables())
|
|
return;
|
|
AccelNames.AddName(Name, InfoHolder.getStringPool().getSymbol(*Asm, Name),
|
|
&Die);
|
|
}
|
|
|
|
void DwarfDebug::addAccelObjC(StringRef Name, const DIE &Die) {
|
|
if (!useDwarfAccelTables())
|
|
return;
|
|
AccelObjC.AddName(Name, InfoHolder.getStringPool().getSymbol(*Asm, Name),
|
|
&Die);
|
|
}
|
|
|
|
void DwarfDebug::addAccelNamespace(StringRef Name, const DIE &Die) {
|
|
if (!useDwarfAccelTables())
|
|
return;
|
|
AccelNamespace.AddName(Name, InfoHolder.getStringPool().getSymbol(*Asm, Name),
|
|
&Die);
|
|
}
|
|
|
|
void DwarfDebug::addAccelType(StringRef Name, const DIE &Die, char Flags) {
|
|
if (!useDwarfAccelTables())
|
|
return;
|
|
AccelTypes.AddName(Name, InfoHolder.getStringPool().getSymbol(*Asm, Name),
|
|
&Die);
|
|
}
|