forked from OSchip/llvm-project
1149 lines
43 KiB
C++
1149 lines
43 KiB
C++
//===- Operation.cpp - Operation support code -----------------------------===//
|
|
//
|
|
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/IR/Operation.h"
|
|
#include "mlir/IR/BlockAndValueMapping.h"
|
|
#include "mlir/IR/Diagnostics.h"
|
|
#include "mlir/IR/Dialect.h"
|
|
#include "mlir/IR/Function.h"
|
|
#include "mlir/IR/MLIRContext.h"
|
|
#include "mlir/IR/OpDefinition.h"
|
|
#include "mlir/IR/OpImplementation.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "mlir/IR/StandardTypes.h"
|
|
#include "mlir/IR/TypeUtilities.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include <numeric>
|
|
|
|
using namespace mlir;
|
|
|
|
static llvm::cl::opt<bool> printOpOnDiagnostic(
|
|
"mlir-print-op-on-diagnostic",
|
|
llvm::cl::desc("When a diagnostic is emitted on an operation, also print "
|
|
"the operation as an attached note"));
|
|
|
|
OpAsmParser::~OpAsmParser() {}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// OperationName
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Form the OperationName for an op with the specified string. This either is
|
|
/// a reference to an AbstractOperation if one is known, or a uniqued Identifier
|
|
/// if not.
|
|
OperationName::OperationName(StringRef name, MLIRContext *context) {
|
|
if (auto *op = AbstractOperation::lookup(name, context))
|
|
representation = op;
|
|
else
|
|
representation = Identifier::get(name, context);
|
|
}
|
|
|
|
/// Return the name of the dialect this operation is registered to.
|
|
StringRef OperationName::getDialect() const {
|
|
return getStringRef().split('.').first;
|
|
}
|
|
|
|
/// Return the name of this operation. This always succeeds.
|
|
StringRef OperationName::getStringRef() const {
|
|
if (auto *op = representation.dyn_cast<const AbstractOperation *>())
|
|
return op->name;
|
|
return representation.get<Identifier>().strref();
|
|
}
|
|
|
|
const AbstractOperation *OperationName::getAbstractOperation() const {
|
|
return representation.dyn_cast<const AbstractOperation *>();
|
|
}
|
|
|
|
OperationName OperationName::getFromOpaquePointer(void *pointer) {
|
|
return OperationName(RepresentationUnion::getFromOpaqueValue(pointer));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Operation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Create a new Operation with the specific fields.
|
|
Operation *Operation::create(Location location, OperationName name,
|
|
ArrayRef<Type> resultTypes,
|
|
ArrayRef<Value> operands,
|
|
ArrayRef<NamedAttribute> attributes,
|
|
ArrayRef<Block *> successors, unsigned numRegions,
|
|
bool resizableOperandList) {
|
|
return create(location, name, resultTypes, operands,
|
|
NamedAttributeList(attributes), successors, numRegions,
|
|
resizableOperandList);
|
|
}
|
|
|
|
/// Create a new Operation from operation state.
|
|
Operation *Operation::create(const OperationState &state) {
|
|
return Operation::create(state.location, state.name, state.types,
|
|
state.operands, NamedAttributeList(state.attributes),
|
|
state.successors, state.regions,
|
|
state.resizableOperandList);
|
|
}
|
|
|
|
/// Create a new Operation with the specific fields.
|
|
Operation *Operation::create(Location location, OperationName name,
|
|
ArrayRef<Type> resultTypes,
|
|
ArrayRef<Value> operands,
|
|
NamedAttributeList attributes,
|
|
ArrayRef<Block *> successors, RegionRange regions,
|
|
bool resizableOperandList) {
|
|
unsigned numRegions = regions.size();
|
|
Operation *op = create(location, name, resultTypes, operands, attributes,
|
|
successors, numRegions, resizableOperandList);
|
|
for (unsigned i = 0; i < numRegions; ++i)
|
|
if (regions[i])
|
|
op->getRegion(i).takeBody(*regions[i]);
|
|
return op;
|
|
}
|
|
|
|
/// Overload of create that takes an existing NamedAttributeList to avoid
|
|
/// unnecessarily uniquing a list of attributes.
|
|
Operation *Operation::create(Location location, OperationName name,
|
|
ArrayRef<Type> resultTypes,
|
|
ArrayRef<Value> operands,
|
|
NamedAttributeList attributes,
|
|
ArrayRef<Block *> successors, unsigned numRegions,
|
|
bool resizableOperandList) {
|
|
unsigned numSuccessors = successors.size();
|
|
|
|
// We only need to allocate additional memory for a subset of results.
|
|
unsigned numTrailingResults = OpResult::getNumTrailing(resultTypes.size());
|
|
|
|
// Input operands are nullptr-separated for each successor, the null operands
|
|
// aren't actually stored.
|
|
unsigned numOperands = operands.size() - numSuccessors;
|
|
|
|
// Compute the byte size for the operation and the operand storage.
|
|
auto byteSize = totalSizeToAlloc<detail::TrailingOpResult, BlockOperand,
|
|
Region, detail::OperandStorage>(
|
|
numTrailingResults, numSuccessors, numRegions,
|
|
/*detail::OperandStorage*/ 1);
|
|
byteSize += llvm::alignTo(detail::OperandStorage::additionalAllocSize(
|
|
numOperands, resizableOperandList),
|
|
alignof(Operation));
|
|
void *rawMem = malloc(byteSize);
|
|
|
|
// Create the new Operation.
|
|
auto op = ::new (rawMem) Operation(location, name, resultTypes, numSuccessors,
|
|
numRegions, attributes);
|
|
|
|
assert((numSuccessors == 0 || !op->isKnownNonTerminator()) &&
|
|
"unexpected successors in a non-terminator operation");
|
|
|
|
// Initialize the trailing results.
|
|
if (LLVM_UNLIKELY(numTrailingResults > 0)) {
|
|
// We initialize the trailing results with their result number. This makes
|
|
// 'getResultNumber' checks much more efficient. The main purpose for these
|
|
// results is to give an anchor to the main operation anyways, so this is
|
|
// purely an optimization.
|
|
auto *trailingResultIt = op->getTrailingObjects<detail::TrailingOpResult>();
|
|
for (unsigned i = 0; i != numTrailingResults; ++i, ++trailingResultIt)
|
|
trailingResultIt->trailingResultNumber = i;
|
|
}
|
|
|
|
// Initialize the regions.
|
|
for (unsigned i = 0; i != numRegions; ++i)
|
|
new (&op->getRegion(i)) Region(op);
|
|
|
|
// Initialize the results and operands.
|
|
new (&op->getOperandStorage())
|
|
detail::OperandStorage(numOperands, resizableOperandList);
|
|
auto opOperands = op->getOpOperands();
|
|
|
|
// Initialize normal operands.
|
|
unsigned operandIt = 0, operandE = operands.size();
|
|
unsigned nextOperand = 0;
|
|
for (; operandIt != operandE; ++operandIt) {
|
|
// Null operands are used as sentinels between successor operand lists. If
|
|
// we encounter one here, break and handle the successor operands lists
|
|
// separately below.
|
|
if (!operands[operandIt])
|
|
break;
|
|
new (&opOperands[nextOperand++]) OpOperand(op, operands[operandIt]);
|
|
}
|
|
|
|
unsigned currentSuccNum = 0;
|
|
if (operandIt == operandE) {
|
|
// Verify that the amount of sentinel operands is equivalent to the number
|
|
// of successors.
|
|
assert(currentSuccNum == numSuccessors);
|
|
return op;
|
|
}
|
|
|
|
assert(!op->isKnownNonTerminator() &&
|
|
"Unexpected nullptr in operand list when creating non-terminator.");
|
|
auto instBlockOperands = op->getBlockOperands();
|
|
unsigned *succOperandCount = nullptr;
|
|
|
|
for (; operandIt != operandE; ++operandIt) {
|
|
// If we encounter a sentinel branch to the next operand update the count
|
|
// variable.
|
|
if (!operands[operandIt]) {
|
|
assert(currentSuccNum < numSuccessors);
|
|
|
|
new (&instBlockOperands[currentSuccNum])
|
|
BlockOperand(op, successors[currentSuccNum]);
|
|
succOperandCount =
|
|
&instBlockOperands[currentSuccNum].numSuccessorOperands;
|
|
++currentSuccNum;
|
|
continue;
|
|
}
|
|
new (&opOperands[nextOperand++]) OpOperand(op, operands[operandIt]);
|
|
++(*succOperandCount);
|
|
}
|
|
|
|
// Verify that the amount of sentinel operands is equivalent to the number of
|
|
// successors.
|
|
assert(currentSuccNum == numSuccessors);
|
|
|
|
return op;
|
|
}
|
|
|
|
Operation::Operation(Location location, OperationName name,
|
|
ArrayRef<Type> resultTypes, unsigned numSuccessors,
|
|
unsigned numRegions, const NamedAttributeList &attributes)
|
|
: location(location), numSuccs(numSuccessors), numRegions(numRegions),
|
|
hasSingleResult(false), name(name), attrs(attributes) {
|
|
if (!resultTypes.empty()) {
|
|
// If there is a single result it is stored in-place, otherwise use a tuple.
|
|
hasSingleResult = resultTypes.size() == 1;
|
|
if (hasSingleResult)
|
|
resultType = resultTypes.front();
|
|
else
|
|
resultType = TupleType::get(resultTypes, location->getContext());
|
|
}
|
|
}
|
|
|
|
// Operations are deleted through the destroy() member because they are
|
|
// allocated via malloc.
|
|
Operation::~Operation() {
|
|
assert(block == nullptr && "operation destroyed but still in a block");
|
|
|
|
// Explicitly run the destructors for the operands and results.
|
|
getOperandStorage().~OperandStorage();
|
|
|
|
// Explicitly run the destructors for the successors.
|
|
for (auto &successor : getBlockOperands())
|
|
successor.~BlockOperand();
|
|
|
|
// Explicitly destroy the regions.
|
|
for (auto ®ion : getRegions())
|
|
region.~Region();
|
|
}
|
|
|
|
/// Destroy this operation or one of its subclasses.
|
|
void Operation::destroy() {
|
|
this->~Operation();
|
|
free(this);
|
|
}
|
|
|
|
/// Return the context this operation is associated with.
|
|
MLIRContext *Operation::getContext() { return location->getContext(); }
|
|
|
|
/// Return the dialect this operation is associated with, or nullptr if the
|
|
/// associated dialect is not registered.
|
|
Dialect *Operation::getDialect() {
|
|
if (auto *abstractOp = getAbstractOperation())
|
|
return &abstractOp->dialect;
|
|
|
|
// If this operation hasn't been registered or doesn't have abstract
|
|
// operation, try looking up the dialect name in the context.
|
|
return getContext()->getRegisteredDialect(getName().getDialect());
|
|
}
|
|
|
|
Region *Operation::getParentRegion() {
|
|
return block ? block->getParent() : nullptr;
|
|
}
|
|
|
|
Operation *Operation::getParentOp() {
|
|
return block ? block->getParentOp() : nullptr;
|
|
}
|
|
|
|
/// Return true if this operation is a proper ancestor of the `other`
|
|
/// operation.
|
|
bool Operation::isProperAncestor(Operation *other) {
|
|
while ((other = other->getParentOp()))
|
|
if (this == other)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// Replace any uses of 'from' with 'to' within this operation.
|
|
void Operation::replaceUsesOfWith(Value from, Value to) {
|
|
if (from == to)
|
|
return;
|
|
for (auto &operand : getOpOperands())
|
|
if (operand.get() == from)
|
|
operand.set(to);
|
|
}
|
|
|
|
/// Replace the current operands of this operation with the ones provided in
|
|
/// 'operands'. If the operands list is not resizable, the size of 'operands'
|
|
/// must be less than or equal to the current number of operands.
|
|
void Operation::setOperands(ValueRange operands) {
|
|
getOperandStorage().setOperands(this, operands);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Diagnostics
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Emit an error about fatal conditions with this operation, reporting up to
|
|
/// any diagnostic handlers that may be listening.
|
|
InFlightDiagnostic Operation::emitError(const Twine &message) {
|
|
InFlightDiagnostic diag = mlir::emitError(getLoc(), message);
|
|
if (printOpOnDiagnostic) {
|
|
// Print out the operation explicitly here so that we can print the generic
|
|
// form.
|
|
// TODO(riverriddle) It would be nice if we could instead provide the
|
|
// specific printing flags when adding the operation as an argument to the
|
|
// diagnostic.
|
|
std::string printedOp;
|
|
{
|
|
llvm::raw_string_ostream os(printedOp);
|
|
print(os, OpPrintingFlags().printGenericOpForm().useLocalScope());
|
|
}
|
|
diag.attachNote(getLoc()) << "see current operation: " << printedOp;
|
|
}
|
|
return diag;
|
|
}
|
|
|
|
/// Emit a warning about this operation, reporting up to any diagnostic
|
|
/// handlers that may be listening.
|
|
InFlightDiagnostic Operation::emitWarning(const Twine &message) {
|
|
InFlightDiagnostic diag = mlir::emitWarning(getLoc(), message);
|
|
if (printOpOnDiagnostic)
|
|
diag.attachNote(getLoc()) << "see current operation: " << *this;
|
|
return diag;
|
|
}
|
|
|
|
/// Emit a remark about this operation, reporting up to any diagnostic
|
|
/// handlers that may be listening.
|
|
InFlightDiagnostic Operation::emitRemark(const Twine &message) {
|
|
InFlightDiagnostic diag = mlir::emitRemark(getLoc(), message);
|
|
if (printOpOnDiagnostic)
|
|
diag.attachNote(getLoc()) << "see current operation: " << *this;
|
|
return diag;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Operation Ordering
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
constexpr unsigned Operation::kInvalidOrderIdx;
|
|
constexpr unsigned Operation::kOrderStride;
|
|
|
|
/// Given an operation 'other' that is within the same parent block, return
|
|
/// whether the current operation is before 'other' in the operation list
|
|
/// of the parent block.
|
|
/// Note: This function has an average complexity of O(1), but worst case may
|
|
/// take O(N) where N is the number of operations within the parent block.
|
|
bool Operation::isBeforeInBlock(Operation *other) {
|
|
assert(block && "Operations without parent blocks have no order.");
|
|
assert(other && other->block == block &&
|
|
"Expected other operation to have the same parent block.");
|
|
// If the order of the block is already invalid, directly recompute the
|
|
// parent.
|
|
if (!block->isOpOrderValid()) {
|
|
block->recomputeOpOrder();
|
|
} else {
|
|
// Update the order either operation if necessary.
|
|
updateOrderIfNecessary();
|
|
other->updateOrderIfNecessary();
|
|
}
|
|
|
|
return orderIndex < other->orderIndex;
|
|
}
|
|
|
|
/// Update the order index of this operation of this operation if necessary,
|
|
/// potentially recomputing the order of the parent block.
|
|
void Operation::updateOrderIfNecessary() {
|
|
assert(block && "expected valid parent");
|
|
|
|
// If the order is valid for this operation there is nothing to do.
|
|
if (hasValidOrder())
|
|
return;
|
|
Operation *blockFront = &block->front();
|
|
Operation *blockBack = &block->back();
|
|
|
|
// This method is expected to only be invoked on blocks with more than one
|
|
// operation.
|
|
assert(blockFront != blockBack && "expected more than one operation");
|
|
|
|
// If the operation is at the end of the block.
|
|
if (this == blockBack) {
|
|
Operation *prevNode = getPrevNode();
|
|
if (!prevNode->hasValidOrder())
|
|
return block->recomputeOpOrder();
|
|
|
|
// Add the stride to the previous operation.
|
|
orderIndex = prevNode->orderIndex + kOrderStride;
|
|
return;
|
|
}
|
|
|
|
// If this is the first operation try to use the next operation to compute the
|
|
// ordering.
|
|
if (this == blockFront) {
|
|
Operation *nextNode = getNextNode();
|
|
if (!nextNode->hasValidOrder())
|
|
return block->recomputeOpOrder();
|
|
// There is no order to give this operation.
|
|
if (nextNode->orderIndex == 0)
|
|
return block->recomputeOpOrder();
|
|
|
|
// If we can't use the stride, just take the middle value left. This is safe
|
|
// because we know there is at least one valid index to assign to.
|
|
if (nextNode->orderIndex <= kOrderStride)
|
|
orderIndex = (nextNode->orderIndex / 2);
|
|
else
|
|
orderIndex = kOrderStride;
|
|
return;
|
|
}
|
|
|
|
// Otherwise, this operation is between two others. Place this operation in
|
|
// the middle of the previous and next if possible.
|
|
Operation *prevNode = getPrevNode(), *nextNode = getNextNode();
|
|
if (!prevNode->hasValidOrder() || !nextNode->hasValidOrder())
|
|
return block->recomputeOpOrder();
|
|
unsigned prevOrder = prevNode->orderIndex, nextOrder = nextNode->orderIndex;
|
|
|
|
// Check to see if there is a valid order between the two.
|
|
if (prevOrder + 1 == nextOrder)
|
|
return block->recomputeOpOrder();
|
|
orderIndex = prevOrder + 1 + ((nextOrder - prevOrder) / 2);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ilist_traits for Operation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
auto llvm::ilist_detail::SpecificNodeAccess<
|
|
typename llvm::ilist_detail::compute_node_options<
|
|
::mlir::Operation>::type>::getNodePtr(pointer N) -> node_type * {
|
|
return NodeAccess::getNodePtr<OptionsT>(N);
|
|
}
|
|
|
|
auto llvm::ilist_detail::SpecificNodeAccess<
|
|
typename llvm::ilist_detail::compute_node_options<
|
|
::mlir::Operation>::type>::getNodePtr(const_pointer N)
|
|
-> const node_type * {
|
|
return NodeAccess::getNodePtr<OptionsT>(N);
|
|
}
|
|
|
|
auto llvm::ilist_detail::SpecificNodeAccess<
|
|
typename llvm::ilist_detail::compute_node_options<
|
|
::mlir::Operation>::type>::getValuePtr(node_type *N) -> pointer {
|
|
return NodeAccess::getValuePtr<OptionsT>(N);
|
|
}
|
|
|
|
auto llvm::ilist_detail::SpecificNodeAccess<
|
|
typename llvm::ilist_detail::compute_node_options<
|
|
::mlir::Operation>::type>::getValuePtr(const node_type *N)
|
|
-> const_pointer {
|
|
return NodeAccess::getValuePtr<OptionsT>(N);
|
|
}
|
|
|
|
void llvm::ilist_traits<::mlir::Operation>::deleteNode(Operation *op) {
|
|
op->destroy();
|
|
}
|
|
|
|
Block *llvm::ilist_traits<::mlir::Operation>::getContainingBlock() {
|
|
size_t Offset(size_t(&((Block *)nullptr->*Block::getSublistAccess(nullptr))));
|
|
iplist<Operation> *Anchor(static_cast<iplist<Operation> *>(this));
|
|
return reinterpret_cast<Block *>(reinterpret_cast<char *>(Anchor) - Offset);
|
|
}
|
|
|
|
/// This is a trait method invoked when a operation is added to a block. We
|
|
/// keep the block pointer up to date.
|
|
void llvm::ilist_traits<::mlir::Operation>::addNodeToList(Operation *op) {
|
|
assert(!op->getBlock() && "already in a operation block!");
|
|
op->block = getContainingBlock();
|
|
|
|
// Invalidate the order on the operation.
|
|
op->orderIndex = Operation::kInvalidOrderIdx;
|
|
}
|
|
|
|
/// This is a trait method invoked when a operation is removed from a block.
|
|
/// We keep the block pointer up to date.
|
|
void llvm::ilist_traits<::mlir::Operation>::removeNodeFromList(Operation *op) {
|
|
assert(op->block && "not already in a operation block!");
|
|
op->block = nullptr;
|
|
}
|
|
|
|
/// This is a trait method invoked when a operation is moved from one block
|
|
/// to another. We keep the block pointer up to date.
|
|
void llvm::ilist_traits<::mlir::Operation>::transferNodesFromList(
|
|
ilist_traits<Operation> &otherList, op_iterator first, op_iterator last) {
|
|
Block *curParent = getContainingBlock();
|
|
|
|
// Invalidate the ordering of the parent block.
|
|
curParent->invalidateOpOrder();
|
|
|
|
// If we are transferring operations within the same block, the block
|
|
// pointer doesn't need to be updated.
|
|
if (curParent == otherList.getContainingBlock())
|
|
return;
|
|
|
|
// Update the 'block' member of each operation.
|
|
for (; first != last; ++first)
|
|
first->block = curParent;
|
|
}
|
|
|
|
/// Remove this operation (and its descendants) from its Block and delete
|
|
/// all of them.
|
|
void Operation::erase() {
|
|
if (auto *parent = getBlock())
|
|
parent->getOperations().erase(this);
|
|
else
|
|
destroy();
|
|
}
|
|
|
|
/// Unlink this operation from its current block and insert it right before
|
|
/// `existingOp` which may be in the same or another block in the same
|
|
/// function.
|
|
void Operation::moveBefore(Operation *existingOp) {
|
|
moveBefore(existingOp->getBlock(), existingOp->getIterator());
|
|
}
|
|
|
|
/// Unlink this operation from its current basic block and insert it right
|
|
/// before `iterator` in the specified basic block.
|
|
void Operation::moveBefore(Block *block,
|
|
llvm::iplist<Operation>::iterator iterator) {
|
|
block->getOperations().splice(iterator, getBlock()->getOperations(),
|
|
getIterator());
|
|
}
|
|
|
|
/// This drops all operand uses from this operation, which is an essential
|
|
/// step in breaking cyclic dependences between references when they are to
|
|
/// be deleted.
|
|
void Operation::dropAllReferences() {
|
|
for (auto &op : getOpOperands())
|
|
op.drop();
|
|
|
|
for (auto ®ion : getRegions())
|
|
region.dropAllReferences();
|
|
|
|
for (auto &dest : getBlockOperands())
|
|
dest.drop();
|
|
}
|
|
|
|
/// This drops all uses of any values defined by this operation or its nested
|
|
/// regions, wherever they are located.
|
|
void Operation::dropAllDefinedValueUses() {
|
|
dropAllUses();
|
|
|
|
for (auto ®ion : getRegions())
|
|
for (auto &block : region)
|
|
block.dropAllDefinedValueUses();
|
|
}
|
|
|
|
/// Return the number of results held by this operation.
|
|
unsigned Operation::getNumResults() {
|
|
if (!resultType)
|
|
return 0;
|
|
return hasSingleResult ? 1 : resultType.cast<TupleType>().size();
|
|
}
|
|
|
|
void Operation::setSuccessor(Block *block, unsigned index) {
|
|
assert(index < getNumSuccessors());
|
|
getBlockOperands()[index].set(block);
|
|
}
|
|
|
|
auto Operation::getNonSuccessorOperands() -> operand_range {
|
|
return getOperands().take_front(hasSuccessors() ? getSuccessorOperandIndex(0)
|
|
: getNumOperands());
|
|
}
|
|
|
|
/// Get the index of the first operand of the successor at the provided
|
|
/// index.
|
|
unsigned Operation::getSuccessorOperandIndex(unsigned index) {
|
|
assert(!isKnownNonTerminator() && "only terminators may have successors");
|
|
assert(index < getNumSuccessors());
|
|
|
|
// Count the number of operands for each of the successors after, and
|
|
// including, the one at 'index'. This is based upon the assumption that all
|
|
// non successor operands are placed at the beginning of the operand list.
|
|
auto blockOperands = getBlockOperands().drop_front(index);
|
|
unsigned postSuccessorOpCount =
|
|
std::accumulate(blockOperands.begin(), blockOperands.end(), 0u,
|
|
[](unsigned cur, const BlockOperand &operand) {
|
|
return cur + operand.numSuccessorOperands;
|
|
});
|
|
return getNumOperands() - postSuccessorOpCount;
|
|
}
|
|
|
|
Optional<std::pair<unsigned, unsigned>>
|
|
Operation::decomposeSuccessorOperandIndex(unsigned operandIndex) {
|
|
assert(!isKnownNonTerminator() && "only terminators may have successors");
|
|
assert(operandIndex < getNumOperands());
|
|
unsigned currentOperandIndex = getNumOperands();
|
|
auto blockOperands = getBlockOperands();
|
|
for (unsigned i = 0, e = getNumSuccessors(); i < e; i++) {
|
|
unsigned successorIndex = e - i - 1;
|
|
currentOperandIndex -= blockOperands[successorIndex].numSuccessorOperands;
|
|
if (currentOperandIndex <= operandIndex)
|
|
return std::make_pair(successorIndex, operandIndex - currentOperandIndex);
|
|
}
|
|
return None;
|
|
}
|
|
|
|
auto Operation::getSuccessorOperands(unsigned index) -> operand_range {
|
|
unsigned succOperandIndex = getSuccessorOperandIndex(index);
|
|
return getOperands().slice(succOperandIndex, getNumSuccessorOperands(index));
|
|
}
|
|
|
|
/// Attempt to fold this operation using the Op's registered foldHook.
|
|
LogicalResult Operation::fold(ArrayRef<Attribute> operands,
|
|
SmallVectorImpl<OpFoldResult> &results) {
|
|
// If we have a registered operation definition matching this one, use it to
|
|
// try to constant fold the operation.
|
|
auto *abstractOp = getAbstractOperation();
|
|
if (abstractOp && succeeded(abstractOp->foldHook(this, operands, results)))
|
|
return success();
|
|
|
|
// Otherwise, fall back on the dialect hook to handle it.
|
|
Dialect *dialect = getDialect();
|
|
if (!dialect)
|
|
return failure();
|
|
|
|
SmallVector<Attribute, 8> constants;
|
|
if (failed(dialect->constantFoldHook(this, operands, constants)))
|
|
return failure();
|
|
results.assign(constants.begin(), constants.end());
|
|
return success();
|
|
}
|
|
|
|
/// Emit an error with the op name prefixed, like "'dim' op " which is
|
|
/// convenient for verifiers.
|
|
InFlightDiagnostic Operation::emitOpError(const Twine &message) {
|
|
return emitError() << "'" << getName() << "' op " << message;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Operation Cloning
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Create a deep copy of this operation but keep the operation regions empty.
|
|
/// Operands are remapped using `mapper` (if present), and `mapper` is updated
|
|
/// to contain the results.
|
|
Operation *Operation::cloneWithoutRegions(BlockAndValueMapping &mapper) {
|
|
SmallVector<Value, 8> operands;
|
|
SmallVector<Block *, 2> successors;
|
|
|
|
operands.reserve(getNumOperands() + getNumSuccessors());
|
|
|
|
if (getNumSuccessors() == 0) {
|
|
// Non-branching operations can just add all the operands.
|
|
for (auto opValue : getOperands())
|
|
operands.push_back(mapper.lookupOrDefault(opValue));
|
|
} else {
|
|
// We add the operands separated by nullptr's for each successor.
|
|
unsigned firstSuccOperand =
|
|
getNumSuccessors() ? getSuccessorOperandIndex(0) : getNumOperands();
|
|
auto opOperands = getOpOperands();
|
|
|
|
unsigned i = 0;
|
|
for (; i != firstSuccOperand; ++i)
|
|
operands.push_back(mapper.lookupOrDefault(opOperands[i].get()));
|
|
|
|
successors.reserve(getNumSuccessors());
|
|
for (unsigned succ = 0, e = getNumSuccessors(); succ != e; ++succ) {
|
|
successors.push_back(mapper.lookupOrDefault(getSuccessor(succ)));
|
|
|
|
// Add sentinel to delineate successor operands.
|
|
operands.push_back(nullptr);
|
|
|
|
// Remap the successors operands.
|
|
for (auto operand : getSuccessorOperands(succ))
|
|
operands.push_back(mapper.lookupOrDefault(operand));
|
|
}
|
|
}
|
|
|
|
SmallVector<Type, 8> resultTypes(getResultTypes());
|
|
unsigned numRegions = getNumRegions();
|
|
auto *newOp =
|
|
Operation::create(getLoc(), getName(), resultTypes, operands, attrs,
|
|
successors, numRegions, hasResizableOperandsList());
|
|
|
|
// Remember the mapping of any results.
|
|
for (unsigned i = 0, e = getNumResults(); i != e; ++i)
|
|
mapper.map(getResult(i), newOp->getResult(i));
|
|
|
|
return newOp;
|
|
}
|
|
|
|
Operation *Operation::cloneWithoutRegions() {
|
|
BlockAndValueMapping mapper;
|
|
return cloneWithoutRegions(mapper);
|
|
}
|
|
|
|
/// Create a deep copy of this operation, remapping any operands that use
|
|
/// values outside of the operation using the map that is provided (leaving
|
|
/// them alone if no entry is present). Replaces references to cloned
|
|
/// sub-operations to the corresponding operation that is copied, and adds
|
|
/// those mappings to the map.
|
|
Operation *Operation::clone(BlockAndValueMapping &mapper) {
|
|
auto *newOp = cloneWithoutRegions(mapper);
|
|
|
|
// Clone the regions.
|
|
for (unsigned i = 0; i != numRegions; ++i)
|
|
getRegion(i).cloneInto(&newOp->getRegion(i), mapper);
|
|
|
|
return newOp;
|
|
}
|
|
|
|
Operation *Operation::clone() {
|
|
BlockAndValueMapping mapper;
|
|
return clone(mapper);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// OpState trait class.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// The fallback for the parser is to reject the custom assembly form.
|
|
ParseResult OpState::parse(OpAsmParser &parser, OperationState &result) {
|
|
return parser.emitError(parser.getNameLoc(), "has no custom assembly form");
|
|
}
|
|
|
|
// The fallback for the printer is to print in the generic assembly form.
|
|
void OpState::print(OpAsmPrinter &p) { p.printGenericOp(getOperation()); }
|
|
|
|
/// Emit an error about fatal conditions with this operation, reporting up to
|
|
/// any diagnostic handlers that may be listening.
|
|
InFlightDiagnostic OpState::emitError(const Twine &message) {
|
|
return getOperation()->emitError(message);
|
|
}
|
|
|
|
/// Emit an error with the op name prefixed, like "'dim' op " which is
|
|
/// convenient for verifiers.
|
|
InFlightDiagnostic OpState::emitOpError(const Twine &message) {
|
|
return getOperation()->emitOpError(message);
|
|
}
|
|
|
|
/// Emit a warning about this operation, reporting up to any diagnostic
|
|
/// handlers that may be listening.
|
|
InFlightDiagnostic OpState::emitWarning(const Twine &message) {
|
|
return getOperation()->emitWarning(message);
|
|
}
|
|
|
|
/// Emit a remark about this operation, reporting up to any diagnostic
|
|
/// handlers that may be listening.
|
|
InFlightDiagnostic OpState::emitRemark(const Twine &message) {
|
|
return getOperation()->emitRemark(message);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Op Trait implementations
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult OpTrait::impl::verifyZeroOperands(Operation *op) {
|
|
if (op->getNumOperands() != 0)
|
|
return op->emitOpError() << "requires zero operands";
|
|
return success();
|
|
}
|
|
|
|
LogicalResult OpTrait::impl::verifyOneOperand(Operation *op) {
|
|
if (op->getNumOperands() != 1)
|
|
return op->emitOpError() << "requires a single operand";
|
|
return success();
|
|
}
|
|
|
|
LogicalResult OpTrait::impl::verifyNOperands(Operation *op,
|
|
unsigned numOperands) {
|
|
if (op->getNumOperands() != numOperands) {
|
|
return op->emitOpError() << "expected " << numOperands
|
|
<< " operands, but found " << op->getNumOperands();
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult OpTrait::impl::verifyAtLeastNOperands(Operation *op,
|
|
unsigned numOperands) {
|
|
if (op->getNumOperands() < numOperands)
|
|
return op->emitOpError()
|
|
<< "expected " << numOperands << " or more operands";
|
|
return success();
|
|
}
|
|
|
|
/// If this is a vector type, or a tensor type, return the scalar element type
|
|
/// that it is built around, otherwise return the type unmodified.
|
|
static Type getTensorOrVectorElementType(Type type) {
|
|
if (auto vec = type.dyn_cast<VectorType>())
|
|
return vec.getElementType();
|
|
|
|
// Look through tensor<vector<...>> to find the underlying element type.
|
|
if (auto tensor = type.dyn_cast<TensorType>())
|
|
return getTensorOrVectorElementType(tensor.getElementType());
|
|
return type;
|
|
}
|
|
|
|
LogicalResult OpTrait::impl::verifyOperandsAreIntegerLike(Operation *op) {
|
|
for (auto opType : op->getOperandTypes()) {
|
|
auto type = getTensorOrVectorElementType(opType);
|
|
if (!type.isIntOrIndex())
|
|
return op->emitOpError() << "requires an integer or index type";
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult OpTrait::impl::verifyOperandsAreFloatLike(Operation *op) {
|
|
for (auto opType : op->getOperandTypes()) {
|
|
auto type = getTensorOrVectorElementType(opType);
|
|
if (!type.isa<FloatType>())
|
|
return op->emitOpError("requires a float type");
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult OpTrait::impl::verifySameTypeOperands(Operation *op) {
|
|
// Zero or one operand always have the "same" type.
|
|
unsigned nOperands = op->getNumOperands();
|
|
if (nOperands < 2)
|
|
return success();
|
|
|
|
auto type = op->getOperand(0).getType();
|
|
for (auto opType : llvm::drop_begin(op->getOperandTypes(), 1))
|
|
if (opType != type)
|
|
return op->emitOpError() << "requires all operands to have the same type";
|
|
return success();
|
|
}
|
|
|
|
LogicalResult OpTrait::impl::verifyZeroResult(Operation *op) {
|
|
if (op->getNumResults() != 0)
|
|
return op->emitOpError() << "requires zero results";
|
|
return success();
|
|
}
|
|
|
|
LogicalResult OpTrait::impl::verifyOneResult(Operation *op) {
|
|
if (op->getNumResults() != 1)
|
|
return op->emitOpError() << "requires one result";
|
|
return success();
|
|
}
|
|
|
|
LogicalResult OpTrait::impl::verifyNResults(Operation *op,
|
|
unsigned numOperands) {
|
|
if (op->getNumResults() != numOperands)
|
|
return op->emitOpError() << "expected " << numOperands << " results";
|
|
return success();
|
|
}
|
|
|
|
LogicalResult OpTrait::impl::verifyAtLeastNResults(Operation *op,
|
|
unsigned numOperands) {
|
|
if (op->getNumResults() < numOperands)
|
|
return op->emitOpError()
|
|
<< "expected " << numOperands << " or more results";
|
|
return success();
|
|
}
|
|
|
|
LogicalResult OpTrait::impl::verifySameOperandsShape(Operation *op) {
|
|
if (failed(verifyAtLeastNOperands(op, 1)))
|
|
return failure();
|
|
|
|
auto type = op->getOperand(0).getType();
|
|
for (auto opType : llvm::drop_begin(op->getOperandTypes(), 1)) {
|
|
if (failed(verifyCompatibleShape(opType, type)))
|
|
return op->emitOpError() << "requires the same shape for all operands";
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult OpTrait::impl::verifySameOperandsAndResultShape(Operation *op) {
|
|
if (failed(verifyAtLeastNOperands(op, 1)) ||
|
|
failed(verifyAtLeastNResults(op, 1)))
|
|
return failure();
|
|
|
|
auto type = op->getOperand(0).getType();
|
|
for (auto resultType : op->getResultTypes()) {
|
|
if (failed(verifyCompatibleShape(resultType, type)))
|
|
return op->emitOpError()
|
|
<< "requires the same shape for all operands and results";
|
|
}
|
|
for (auto opType : llvm::drop_begin(op->getOperandTypes(), 1)) {
|
|
if (failed(verifyCompatibleShape(opType, type)))
|
|
return op->emitOpError()
|
|
<< "requires the same shape for all operands and results";
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult OpTrait::impl::verifySameOperandsElementType(Operation *op) {
|
|
if (failed(verifyAtLeastNOperands(op, 1)))
|
|
return failure();
|
|
auto elementType = getElementTypeOrSelf(op->getOperand(0));
|
|
|
|
for (auto operand : llvm::drop_begin(op->getOperands(), 1)) {
|
|
if (getElementTypeOrSelf(operand) != elementType)
|
|
return op->emitOpError("requires the same element type for all operands");
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult
|
|
OpTrait::impl::verifySameOperandsAndResultElementType(Operation *op) {
|
|
if (failed(verifyAtLeastNOperands(op, 1)) ||
|
|
failed(verifyAtLeastNResults(op, 1)))
|
|
return failure();
|
|
|
|
auto elementType = getElementTypeOrSelf(op->getResult(0));
|
|
|
|
// Verify result element type matches first result's element type.
|
|
for (auto result : llvm::drop_begin(op->getResults(), 1)) {
|
|
if (getElementTypeOrSelf(result) != elementType)
|
|
return op->emitOpError(
|
|
"requires the same element type for all operands and results");
|
|
}
|
|
|
|
// Verify operand's element type matches first result's element type.
|
|
for (auto operand : op->getOperands()) {
|
|
if (getElementTypeOrSelf(operand) != elementType)
|
|
return op->emitOpError(
|
|
"requires the same element type for all operands and results");
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult OpTrait::impl::verifySameOperandsAndResultType(Operation *op) {
|
|
if (failed(verifyAtLeastNOperands(op, 1)) ||
|
|
failed(verifyAtLeastNResults(op, 1)))
|
|
return failure();
|
|
|
|
auto type = op->getResult(0).getType();
|
|
auto elementType = getElementTypeOrSelf(type);
|
|
for (auto resultType : llvm::drop_begin(op->getResultTypes(), 1)) {
|
|
if (getElementTypeOrSelf(resultType) != elementType ||
|
|
failed(verifyCompatibleShape(resultType, type)))
|
|
return op->emitOpError()
|
|
<< "requires the same type for all operands and results";
|
|
}
|
|
for (auto opType : op->getOperandTypes()) {
|
|
if (getElementTypeOrSelf(opType) != elementType ||
|
|
failed(verifyCompatibleShape(opType, type)))
|
|
return op->emitOpError()
|
|
<< "requires the same type for all operands and results";
|
|
}
|
|
return success();
|
|
}
|
|
|
|
static LogicalResult verifySuccessor(Operation *op, unsigned succNo) {
|
|
Operation::operand_range operands = op->getSuccessorOperands(succNo);
|
|
unsigned operandCount = op->getNumSuccessorOperands(succNo);
|
|
Block *destBB = op->getSuccessor(succNo);
|
|
if (operandCount != destBB->getNumArguments())
|
|
return op->emitError() << "branch has " << operandCount
|
|
<< " operands for successor #" << succNo
|
|
<< ", but target block has "
|
|
<< destBB->getNumArguments();
|
|
|
|
auto operandIt = operands.begin();
|
|
for (unsigned i = 0, e = operandCount; i != e; ++i, ++operandIt) {
|
|
if ((*operandIt).getType() != destBB->getArgument(i).getType())
|
|
return op->emitError() << "type mismatch for bb argument #" << i
|
|
<< " of successor #" << succNo;
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
static LogicalResult verifyTerminatorSuccessors(Operation *op) {
|
|
auto *parent = op->getParentRegion();
|
|
|
|
// Verify that the operands lines up with the BB arguments in the successor.
|
|
for (unsigned i = 0, e = op->getNumSuccessors(); i != e; ++i) {
|
|
auto *succ = op->getSuccessor(i);
|
|
if (succ->getParent() != parent)
|
|
return op->emitError("reference to block defined in another region");
|
|
if (failed(verifySuccessor(op, i)))
|
|
return failure();
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult OpTrait::impl::verifyIsTerminator(Operation *op) {
|
|
Block *block = op->getBlock();
|
|
// Verify that the operation is at the end of the respective parent block.
|
|
if (!block || &block->back() != op)
|
|
return op->emitOpError("must be the last operation in the parent block");
|
|
|
|
// Verify the state of the successor blocks.
|
|
if (op->getNumSuccessors() != 0 && failed(verifyTerminatorSuccessors(op)))
|
|
return failure();
|
|
return success();
|
|
}
|
|
|
|
LogicalResult OpTrait::impl::verifyResultsAreBoolLike(Operation *op) {
|
|
for (auto resultType : op->getResultTypes()) {
|
|
auto elementType = getTensorOrVectorElementType(resultType);
|
|
bool isBoolType = elementType.isInteger(1);
|
|
if (!isBoolType)
|
|
return op->emitOpError() << "requires a bool result type";
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult OpTrait::impl::verifyResultsAreFloatLike(Operation *op) {
|
|
for (auto resultType : op->getResultTypes())
|
|
if (!getTensorOrVectorElementType(resultType).isa<FloatType>())
|
|
return op->emitOpError() << "requires a floating point type";
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult OpTrait::impl::verifyResultsAreIntegerLike(Operation *op) {
|
|
for (auto resultType : op->getResultTypes())
|
|
if (!getTensorOrVectorElementType(resultType).isIntOrIndex())
|
|
return op->emitOpError() << "requires an integer or index type";
|
|
return success();
|
|
}
|
|
|
|
static LogicalResult verifyValueSizeAttr(Operation *op, StringRef attrName,
|
|
bool isOperand) {
|
|
auto sizeAttr = op->getAttrOfType<DenseIntElementsAttr>(attrName);
|
|
if (!sizeAttr)
|
|
return op->emitOpError("requires 1D vector attribute '") << attrName << "'";
|
|
|
|
auto sizeAttrType = sizeAttr.getType().dyn_cast<VectorType>();
|
|
if (!sizeAttrType || sizeAttrType.getRank() != 1)
|
|
return op->emitOpError("requires 1D vector attribute '") << attrName << "'";
|
|
|
|
if (llvm::any_of(sizeAttr.getIntValues(), [](const APInt &element) {
|
|
return !element.isNonNegative();
|
|
}))
|
|
return op->emitOpError("'")
|
|
<< attrName << "' attribute cannot have negative elements";
|
|
|
|
size_t totalCount = std::accumulate(
|
|
sizeAttr.begin(), sizeAttr.end(), 0,
|
|
[](unsigned all, APInt one) { return all + one.getZExtValue(); });
|
|
|
|
if (isOperand && totalCount != op->getNumOperands())
|
|
return op->emitOpError("operand count (")
|
|
<< op->getNumOperands() << ") does not match with the total size ("
|
|
<< totalCount << ") specified in attribute '" << attrName << "'";
|
|
else if (!isOperand && totalCount != op->getNumResults())
|
|
return op->emitOpError("result count (")
|
|
<< op->getNumResults() << ") does not match with the total size ("
|
|
<< totalCount << ") specified in attribute '" << attrName << "'";
|
|
return success();
|
|
}
|
|
|
|
LogicalResult OpTrait::impl::verifyOperandSizeAttr(Operation *op,
|
|
StringRef attrName) {
|
|
return verifyValueSizeAttr(op, attrName, /*isOperand=*/true);
|
|
}
|
|
|
|
LogicalResult OpTrait::impl::verifyResultSizeAttr(Operation *op,
|
|
StringRef attrName) {
|
|
return verifyValueSizeAttr(op, attrName, /*isOperand=*/false);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BinaryOp implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// These functions are out-of-line implementations of the methods in BinaryOp,
|
|
// which avoids them being template instantiated/duplicated.
|
|
|
|
void impl::buildBinaryOp(Builder *builder, OperationState &result, Value lhs,
|
|
Value rhs) {
|
|
assert(lhs.getType() == rhs.getType());
|
|
result.addOperands({lhs, rhs});
|
|
result.types.push_back(lhs.getType());
|
|
}
|
|
|
|
ParseResult impl::parseOneResultSameOperandTypeOp(OpAsmParser &parser,
|
|
OperationState &result) {
|
|
SmallVector<OpAsmParser::OperandType, 2> ops;
|
|
Type type;
|
|
return failure(parser.parseOperandList(ops) ||
|
|
parser.parseOptionalAttrDict(result.attributes) ||
|
|
parser.parseColonType(type) ||
|
|
parser.resolveOperands(ops, type, result.operands) ||
|
|
parser.addTypeToList(type, result.types));
|
|
}
|
|
|
|
void impl::printOneResultOp(Operation *op, OpAsmPrinter &p) {
|
|
assert(op->getNumResults() == 1 && "op should have one result");
|
|
|
|
// If not all the operand and result types are the same, just use the
|
|
// generic assembly form to avoid omitting information in printing.
|
|
auto resultType = op->getResult(0).getType();
|
|
if (llvm::any_of(op->getOperandTypes(),
|
|
[&](Type type) { return type != resultType; })) {
|
|
p.printGenericOp(op);
|
|
return;
|
|
}
|
|
|
|
p << op->getName() << ' ';
|
|
p.printOperands(op->getOperands());
|
|
p.printOptionalAttrDict(op->getAttrs());
|
|
// Now we can output only one type for all operands and the result.
|
|
p << " : " << resultType;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CastOp implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void impl::buildCastOp(Builder *builder, OperationState &result, Value source,
|
|
Type destType) {
|
|
result.addOperands(source);
|
|
result.addTypes(destType);
|
|
}
|
|
|
|
ParseResult impl::parseCastOp(OpAsmParser &parser, OperationState &result) {
|
|
OpAsmParser::OperandType srcInfo;
|
|
Type srcType, dstType;
|
|
return failure(parser.parseOperand(srcInfo) ||
|
|
parser.parseOptionalAttrDict(result.attributes) ||
|
|
parser.parseColonType(srcType) ||
|
|
parser.resolveOperand(srcInfo, srcType, result.operands) ||
|
|
parser.parseKeywordType("to", dstType) ||
|
|
parser.addTypeToList(dstType, result.types));
|
|
}
|
|
|
|
void impl::printCastOp(Operation *op, OpAsmPrinter &p) {
|
|
p << op->getName() << ' ' << op->getOperand(0);
|
|
p.printOptionalAttrDict(op->getAttrs());
|
|
p << " : " << op->getOperand(0).getType() << " to "
|
|
<< op->getResult(0).getType();
|
|
}
|
|
|
|
Value impl::foldCastOp(Operation *op) {
|
|
// Identity cast
|
|
if (op->getOperand(0).getType() == op->getResult(0).getType())
|
|
return op->getOperand(0);
|
|
return nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Misc. utils
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Insert an operation, generated by `buildTerminatorOp`, at the end of the
|
|
/// region's only block if it does not have a terminator already. If the region
|
|
/// is empty, insert a new block first. `buildTerminatorOp` should return the
|
|
/// terminator operation to insert.
|
|
void impl::ensureRegionTerminator(
|
|
Region ®ion, Location loc,
|
|
function_ref<Operation *()> buildTerminatorOp) {
|
|
if (region.empty())
|
|
region.push_back(new Block);
|
|
|
|
Block &block = region.back();
|
|
if (!block.empty() && block.back().isKnownTerminator())
|
|
return;
|
|
|
|
block.push_back(buildTerminatorOp());
|
|
}
|