llvm-project/mlir/lib/IR/Operation.cpp

1149 lines
43 KiB
C++

//===- Operation.cpp - Operation support code -----------------------------===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/Operation.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/Diagnostics.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/OpDefinition.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/IR/TypeUtilities.h"
#include "llvm/Support/CommandLine.h"
#include <numeric>
using namespace mlir;
static llvm::cl::opt<bool> printOpOnDiagnostic(
"mlir-print-op-on-diagnostic",
llvm::cl::desc("When a diagnostic is emitted on an operation, also print "
"the operation as an attached note"));
OpAsmParser::~OpAsmParser() {}
//===----------------------------------------------------------------------===//
// OperationName
//===----------------------------------------------------------------------===//
/// Form the OperationName for an op with the specified string. This either is
/// a reference to an AbstractOperation if one is known, or a uniqued Identifier
/// if not.
OperationName::OperationName(StringRef name, MLIRContext *context) {
if (auto *op = AbstractOperation::lookup(name, context))
representation = op;
else
representation = Identifier::get(name, context);
}
/// Return the name of the dialect this operation is registered to.
StringRef OperationName::getDialect() const {
return getStringRef().split('.').first;
}
/// Return the name of this operation. This always succeeds.
StringRef OperationName::getStringRef() const {
if (auto *op = representation.dyn_cast<const AbstractOperation *>())
return op->name;
return representation.get<Identifier>().strref();
}
const AbstractOperation *OperationName::getAbstractOperation() const {
return representation.dyn_cast<const AbstractOperation *>();
}
OperationName OperationName::getFromOpaquePointer(void *pointer) {
return OperationName(RepresentationUnion::getFromOpaqueValue(pointer));
}
//===----------------------------------------------------------------------===//
// Operation
//===----------------------------------------------------------------------===//
/// Create a new Operation with the specific fields.
Operation *Operation::create(Location location, OperationName name,
ArrayRef<Type> resultTypes,
ArrayRef<Value> operands,
ArrayRef<NamedAttribute> attributes,
ArrayRef<Block *> successors, unsigned numRegions,
bool resizableOperandList) {
return create(location, name, resultTypes, operands,
NamedAttributeList(attributes), successors, numRegions,
resizableOperandList);
}
/// Create a new Operation from operation state.
Operation *Operation::create(const OperationState &state) {
return Operation::create(state.location, state.name, state.types,
state.operands, NamedAttributeList(state.attributes),
state.successors, state.regions,
state.resizableOperandList);
}
/// Create a new Operation with the specific fields.
Operation *Operation::create(Location location, OperationName name,
ArrayRef<Type> resultTypes,
ArrayRef<Value> operands,
NamedAttributeList attributes,
ArrayRef<Block *> successors, RegionRange regions,
bool resizableOperandList) {
unsigned numRegions = regions.size();
Operation *op = create(location, name, resultTypes, operands, attributes,
successors, numRegions, resizableOperandList);
for (unsigned i = 0; i < numRegions; ++i)
if (regions[i])
op->getRegion(i).takeBody(*regions[i]);
return op;
}
/// Overload of create that takes an existing NamedAttributeList to avoid
/// unnecessarily uniquing a list of attributes.
Operation *Operation::create(Location location, OperationName name,
ArrayRef<Type> resultTypes,
ArrayRef<Value> operands,
NamedAttributeList attributes,
ArrayRef<Block *> successors, unsigned numRegions,
bool resizableOperandList) {
unsigned numSuccessors = successors.size();
// We only need to allocate additional memory for a subset of results.
unsigned numTrailingResults = OpResult::getNumTrailing(resultTypes.size());
// Input operands are nullptr-separated for each successor, the null operands
// aren't actually stored.
unsigned numOperands = operands.size() - numSuccessors;
// Compute the byte size for the operation and the operand storage.
auto byteSize = totalSizeToAlloc<detail::TrailingOpResult, BlockOperand,
Region, detail::OperandStorage>(
numTrailingResults, numSuccessors, numRegions,
/*detail::OperandStorage*/ 1);
byteSize += llvm::alignTo(detail::OperandStorage::additionalAllocSize(
numOperands, resizableOperandList),
alignof(Operation));
void *rawMem = malloc(byteSize);
// Create the new Operation.
auto op = ::new (rawMem) Operation(location, name, resultTypes, numSuccessors,
numRegions, attributes);
assert((numSuccessors == 0 || !op->isKnownNonTerminator()) &&
"unexpected successors in a non-terminator operation");
// Initialize the trailing results.
if (LLVM_UNLIKELY(numTrailingResults > 0)) {
// We initialize the trailing results with their result number. This makes
// 'getResultNumber' checks much more efficient. The main purpose for these
// results is to give an anchor to the main operation anyways, so this is
// purely an optimization.
auto *trailingResultIt = op->getTrailingObjects<detail::TrailingOpResult>();
for (unsigned i = 0; i != numTrailingResults; ++i, ++trailingResultIt)
trailingResultIt->trailingResultNumber = i;
}
// Initialize the regions.
for (unsigned i = 0; i != numRegions; ++i)
new (&op->getRegion(i)) Region(op);
// Initialize the results and operands.
new (&op->getOperandStorage())
detail::OperandStorage(numOperands, resizableOperandList);
auto opOperands = op->getOpOperands();
// Initialize normal operands.
unsigned operandIt = 0, operandE = operands.size();
unsigned nextOperand = 0;
for (; operandIt != operandE; ++operandIt) {
// Null operands are used as sentinels between successor operand lists. If
// we encounter one here, break and handle the successor operands lists
// separately below.
if (!operands[operandIt])
break;
new (&opOperands[nextOperand++]) OpOperand(op, operands[operandIt]);
}
unsigned currentSuccNum = 0;
if (operandIt == operandE) {
// Verify that the amount of sentinel operands is equivalent to the number
// of successors.
assert(currentSuccNum == numSuccessors);
return op;
}
assert(!op->isKnownNonTerminator() &&
"Unexpected nullptr in operand list when creating non-terminator.");
auto instBlockOperands = op->getBlockOperands();
unsigned *succOperandCount = nullptr;
for (; operandIt != operandE; ++operandIt) {
// If we encounter a sentinel branch to the next operand update the count
// variable.
if (!operands[operandIt]) {
assert(currentSuccNum < numSuccessors);
new (&instBlockOperands[currentSuccNum])
BlockOperand(op, successors[currentSuccNum]);
succOperandCount =
&instBlockOperands[currentSuccNum].numSuccessorOperands;
++currentSuccNum;
continue;
}
new (&opOperands[nextOperand++]) OpOperand(op, operands[operandIt]);
++(*succOperandCount);
}
// Verify that the amount of sentinel operands is equivalent to the number of
// successors.
assert(currentSuccNum == numSuccessors);
return op;
}
Operation::Operation(Location location, OperationName name,
ArrayRef<Type> resultTypes, unsigned numSuccessors,
unsigned numRegions, const NamedAttributeList &attributes)
: location(location), numSuccs(numSuccessors), numRegions(numRegions),
hasSingleResult(false), name(name), attrs(attributes) {
if (!resultTypes.empty()) {
// If there is a single result it is stored in-place, otherwise use a tuple.
hasSingleResult = resultTypes.size() == 1;
if (hasSingleResult)
resultType = resultTypes.front();
else
resultType = TupleType::get(resultTypes, location->getContext());
}
}
// Operations are deleted through the destroy() member because they are
// allocated via malloc.
Operation::~Operation() {
assert(block == nullptr && "operation destroyed but still in a block");
// Explicitly run the destructors for the operands and results.
getOperandStorage().~OperandStorage();
// Explicitly run the destructors for the successors.
for (auto &successor : getBlockOperands())
successor.~BlockOperand();
// Explicitly destroy the regions.
for (auto &region : getRegions())
region.~Region();
}
/// Destroy this operation or one of its subclasses.
void Operation::destroy() {
this->~Operation();
free(this);
}
/// Return the context this operation is associated with.
MLIRContext *Operation::getContext() { return location->getContext(); }
/// Return the dialect this operation is associated with, or nullptr if the
/// associated dialect is not registered.
Dialect *Operation::getDialect() {
if (auto *abstractOp = getAbstractOperation())
return &abstractOp->dialect;
// If this operation hasn't been registered or doesn't have abstract
// operation, try looking up the dialect name in the context.
return getContext()->getRegisteredDialect(getName().getDialect());
}
Region *Operation::getParentRegion() {
return block ? block->getParent() : nullptr;
}
Operation *Operation::getParentOp() {
return block ? block->getParentOp() : nullptr;
}
/// Return true if this operation is a proper ancestor of the `other`
/// operation.
bool Operation::isProperAncestor(Operation *other) {
while ((other = other->getParentOp()))
if (this == other)
return true;
return false;
}
/// Replace any uses of 'from' with 'to' within this operation.
void Operation::replaceUsesOfWith(Value from, Value to) {
if (from == to)
return;
for (auto &operand : getOpOperands())
if (operand.get() == from)
operand.set(to);
}
/// Replace the current operands of this operation with the ones provided in
/// 'operands'. If the operands list is not resizable, the size of 'operands'
/// must be less than or equal to the current number of operands.
void Operation::setOperands(ValueRange operands) {
getOperandStorage().setOperands(this, operands);
}
//===----------------------------------------------------------------------===//
// Diagnostics
//===----------------------------------------------------------------------===//
/// Emit an error about fatal conditions with this operation, reporting up to
/// any diagnostic handlers that may be listening.
InFlightDiagnostic Operation::emitError(const Twine &message) {
InFlightDiagnostic diag = mlir::emitError(getLoc(), message);
if (printOpOnDiagnostic) {
// Print out the operation explicitly here so that we can print the generic
// form.
// TODO(riverriddle) It would be nice if we could instead provide the
// specific printing flags when adding the operation as an argument to the
// diagnostic.
std::string printedOp;
{
llvm::raw_string_ostream os(printedOp);
print(os, OpPrintingFlags().printGenericOpForm().useLocalScope());
}
diag.attachNote(getLoc()) << "see current operation: " << printedOp;
}
return diag;
}
/// Emit a warning about this operation, reporting up to any diagnostic
/// handlers that may be listening.
InFlightDiagnostic Operation::emitWarning(const Twine &message) {
InFlightDiagnostic diag = mlir::emitWarning(getLoc(), message);
if (printOpOnDiagnostic)
diag.attachNote(getLoc()) << "see current operation: " << *this;
return diag;
}
/// Emit a remark about this operation, reporting up to any diagnostic
/// handlers that may be listening.
InFlightDiagnostic Operation::emitRemark(const Twine &message) {
InFlightDiagnostic diag = mlir::emitRemark(getLoc(), message);
if (printOpOnDiagnostic)
diag.attachNote(getLoc()) << "see current operation: " << *this;
return diag;
}
//===----------------------------------------------------------------------===//
// Operation Ordering
//===----------------------------------------------------------------------===//
constexpr unsigned Operation::kInvalidOrderIdx;
constexpr unsigned Operation::kOrderStride;
/// Given an operation 'other' that is within the same parent block, return
/// whether the current operation is before 'other' in the operation list
/// of the parent block.
/// Note: This function has an average complexity of O(1), but worst case may
/// take O(N) where N is the number of operations within the parent block.
bool Operation::isBeforeInBlock(Operation *other) {
assert(block && "Operations without parent blocks have no order.");
assert(other && other->block == block &&
"Expected other operation to have the same parent block.");
// If the order of the block is already invalid, directly recompute the
// parent.
if (!block->isOpOrderValid()) {
block->recomputeOpOrder();
} else {
// Update the order either operation if necessary.
updateOrderIfNecessary();
other->updateOrderIfNecessary();
}
return orderIndex < other->orderIndex;
}
/// Update the order index of this operation of this operation if necessary,
/// potentially recomputing the order of the parent block.
void Operation::updateOrderIfNecessary() {
assert(block && "expected valid parent");
// If the order is valid for this operation there is nothing to do.
if (hasValidOrder())
return;
Operation *blockFront = &block->front();
Operation *blockBack = &block->back();
// This method is expected to only be invoked on blocks with more than one
// operation.
assert(blockFront != blockBack && "expected more than one operation");
// If the operation is at the end of the block.
if (this == blockBack) {
Operation *prevNode = getPrevNode();
if (!prevNode->hasValidOrder())
return block->recomputeOpOrder();
// Add the stride to the previous operation.
orderIndex = prevNode->orderIndex + kOrderStride;
return;
}
// If this is the first operation try to use the next operation to compute the
// ordering.
if (this == blockFront) {
Operation *nextNode = getNextNode();
if (!nextNode->hasValidOrder())
return block->recomputeOpOrder();
// There is no order to give this operation.
if (nextNode->orderIndex == 0)
return block->recomputeOpOrder();
// If we can't use the stride, just take the middle value left. This is safe
// because we know there is at least one valid index to assign to.
if (nextNode->orderIndex <= kOrderStride)
orderIndex = (nextNode->orderIndex / 2);
else
orderIndex = kOrderStride;
return;
}
// Otherwise, this operation is between two others. Place this operation in
// the middle of the previous and next if possible.
Operation *prevNode = getPrevNode(), *nextNode = getNextNode();
if (!prevNode->hasValidOrder() || !nextNode->hasValidOrder())
return block->recomputeOpOrder();
unsigned prevOrder = prevNode->orderIndex, nextOrder = nextNode->orderIndex;
// Check to see if there is a valid order between the two.
if (prevOrder + 1 == nextOrder)
return block->recomputeOpOrder();
orderIndex = prevOrder + 1 + ((nextOrder - prevOrder) / 2);
}
//===----------------------------------------------------------------------===//
// ilist_traits for Operation
//===----------------------------------------------------------------------===//
auto llvm::ilist_detail::SpecificNodeAccess<
typename llvm::ilist_detail::compute_node_options<
::mlir::Operation>::type>::getNodePtr(pointer N) -> node_type * {
return NodeAccess::getNodePtr<OptionsT>(N);
}
auto llvm::ilist_detail::SpecificNodeAccess<
typename llvm::ilist_detail::compute_node_options<
::mlir::Operation>::type>::getNodePtr(const_pointer N)
-> const node_type * {
return NodeAccess::getNodePtr<OptionsT>(N);
}
auto llvm::ilist_detail::SpecificNodeAccess<
typename llvm::ilist_detail::compute_node_options<
::mlir::Operation>::type>::getValuePtr(node_type *N) -> pointer {
return NodeAccess::getValuePtr<OptionsT>(N);
}
auto llvm::ilist_detail::SpecificNodeAccess<
typename llvm::ilist_detail::compute_node_options<
::mlir::Operation>::type>::getValuePtr(const node_type *N)
-> const_pointer {
return NodeAccess::getValuePtr<OptionsT>(N);
}
void llvm::ilist_traits<::mlir::Operation>::deleteNode(Operation *op) {
op->destroy();
}
Block *llvm::ilist_traits<::mlir::Operation>::getContainingBlock() {
size_t Offset(size_t(&((Block *)nullptr->*Block::getSublistAccess(nullptr))));
iplist<Operation> *Anchor(static_cast<iplist<Operation> *>(this));
return reinterpret_cast<Block *>(reinterpret_cast<char *>(Anchor) - Offset);
}
/// This is a trait method invoked when a operation is added to a block. We
/// keep the block pointer up to date.
void llvm::ilist_traits<::mlir::Operation>::addNodeToList(Operation *op) {
assert(!op->getBlock() && "already in a operation block!");
op->block = getContainingBlock();
// Invalidate the order on the operation.
op->orderIndex = Operation::kInvalidOrderIdx;
}
/// This is a trait method invoked when a operation is removed from a block.
/// We keep the block pointer up to date.
void llvm::ilist_traits<::mlir::Operation>::removeNodeFromList(Operation *op) {
assert(op->block && "not already in a operation block!");
op->block = nullptr;
}
/// This is a trait method invoked when a operation is moved from one block
/// to another. We keep the block pointer up to date.
void llvm::ilist_traits<::mlir::Operation>::transferNodesFromList(
ilist_traits<Operation> &otherList, op_iterator first, op_iterator last) {
Block *curParent = getContainingBlock();
// Invalidate the ordering of the parent block.
curParent->invalidateOpOrder();
// If we are transferring operations within the same block, the block
// pointer doesn't need to be updated.
if (curParent == otherList.getContainingBlock())
return;
// Update the 'block' member of each operation.
for (; first != last; ++first)
first->block = curParent;
}
/// Remove this operation (and its descendants) from its Block and delete
/// all of them.
void Operation::erase() {
if (auto *parent = getBlock())
parent->getOperations().erase(this);
else
destroy();
}
/// Unlink this operation from its current block and insert it right before
/// `existingOp` which may be in the same or another block in the same
/// function.
void Operation::moveBefore(Operation *existingOp) {
moveBefore(existingOp->getBlock(), existingOp->getIterator());
}
/// Unlink this operation from its current basic block and insert it right
/// before `iterator` in the specified basic block.
void Operation::moveBefore(Block *block,
llvm::iplist<Operation>::iterator iterator) {
block->getOperations().splice(iterator, getBlock()->getOperations(),
getIterator());
}
/// This drops all operand uses from this operation, which is an essential
/// step in breaking cyclic dependences between references when they are to
/// be deleted.
void Operation::dropAllReferences() {
for (auto &op : getOpOperands())
op.drop();
for (auto &region : getRegions())
region.dropAllReferences();
for (auto &dest : getBlockOperands())
dest.drop();
}
/// This drops all uses of any values defined by this operation or its nested
/// regions, wherever they are located.
void Operation::dropAllDefinedValueUses() {
dropAllUses();
for (auto &region : getRegions())
for (auto &block : region)
block.dropAllDefinedValueUses();
}
/// Return the number of results held by this operation.
unsigned Operation::getNumResults() {
if (!resultType)
return 0;
return hasSingleResult ? 1 : resultType.cast<TupleType>().size();
}
void Operation::setSuccessor(Block *block, unsigned index) {
assert(index < getNumSuccessors());
getBlockOperands()[index].set(block);
}
auto Operation::getNonSuccessorOperands() -> operand_range {
return getOperands().take_front(hasSuccessors() ? getSuccessorOperandIndex(0)
: getNumOperands());
}
/// Get the index of the first operand of the successor at the provided
/// index.
unsigned Operation::getSuccessorOperandIndex(unsigned index) {
assert(!isKnownNonTerminator() && "only terminators may have successors");
assert(index < getNumSuccessors());
// Count the number of operands for each of the successors after, and
// including, the one at 'index'. This is based upon the assumption that all
// non successor operands are placed at the beginning of the operand list.
auto blockOperands = getBlockOperands().drop_front(index);
unsigned postSuccessorOpCount =
std::accumulate(blockOperands.begin(), blockOperands.end(), 0u,
[](unsigned cur, const BlockOperand &operand) {
return cur + operand.numSuccessorOperands;
});
return getNumOperands() - postSuccessorOpCount;
}
Optional<std::pair<unsigned, unsigned>>
Operation::decomposeSuccessorOperandIndex(unsigned operandIndex) {
assert(!isKnownNonTerminator() && "only terminators may have successors");
assert(operandIndex < getNumOperands());
unsigned currentOperandIndex = getNumOperands();
auto blockOperands = getBlockOperands();
for (unsigned i = 0, e = getNumSuccessors(); i < e; i++) {
unsigned successorIndex = e - i - 1;
currentOperandIndex -= blockOperands[successorIndex].numSuccessorOperands;
if (currentOperandIndex <= operandIndex)
return std::make_pair(successorIndex, operandIndex - currentOperandIndex);
}
return None;
}
auto Operation::getSuccessorOperands(unsigned index) -> operand_range {
unsigned succOperandIndex = getSuccessorOperandIndex(index);
return getOperands().slice(succOperandIndex, getNumSuccessorOperands(index));
}
/// Attempt to fold this operation using the Op's registered foldHook.
LogicalResult Operation::fold(ArrayRef<Attribute> operands,
SmallVectorImpl<OpFoldResult> &results) {
// If we have a registered operation definition matching this one, use it to
// try to constant fold the operation.
auto *abstractOp = getAbstractOperation();
if (abstractOp && succeeded(abstractOp->foldHook(this, operands, results)))
return success();
// Otherwise, fall back on the dialect hook to handle it.
Dialect *dialect = getDialect();
if (!dialect)
return failure();
SmallVector<Attribute, 8> constants;
if (failed(dialect->constantFoldHook(this, operands, constants)))
return failure();
results.assign(constants.begin(), constants.end());
return success();
}
/// Emit an error with the op name prefixed, like "'dim' op " which is
/// convenient for verifiers.
InFlightDiagnostic Operation::emitOpError(const Twine &message) {
return emitError() << "'" << getName() << "' op " << message;
}
//===----------------------------------------------------------------------===//
// Operation Cloning
//===----------------------------------------------------------------------===//
/// Create a deep copy of this operation but keep the operation regions empty.
/// Operands are remapped using `mapper` (if present), and `mapper` is updated
/// to contain the results.
Operation *Operation::cloneWithoutRegions(BlockAndValueMapping &mapper) {
SmallVector<Value, 8> operands;
SmallVector<Block *, 2> successors;
operands.reserve(getNumOperands() + getNumSuccessors());
if (getNumSuccessors() == 0) {
// Non-branching operations can just add all the operands.
for (auto opValue : getOperands())
operands.push_back(mapper.lookupOrDefault(opValue));
} else {
// We add the operands separated by nullptr's for each successor.
unsigned firstSuccOperand =
getNumSuccessors() ? getSuccessorOperandIndex(0) : getNumOperands();
auto opOperands = getOpOperands();
unsigned i = 0;
for (; i != firstSuccOperand; ++i)
operands.push_back(mapper.lookupOrDefault(opOperands[i].get()));
successors.reserve(getNumSuccessors());
for (unsigned succ = 0, e = getNumSuccessors(); succ != e; ++succ) {
successors.push_back(mapper.lookupOrDefault(getSuccessor(succ)));
// Add sentinel to delineate successor operands.
operands.push_back(nullptr);
// Remap the successors operands.
for (auto operand : getSuccessorOperands(succ))
operands.push_back(mapper.lookupOrDefault(operand));
}
}
SmallVector<Type, 8> resultTypes(getResultTypes());
unsigned numRegions = getNumRegions();
auto *newOp =
Operation::create(getLoc(), getName(), resultTypes, operands, attrs,
successors, numRegions, hasResizableOperandsList());
// Remember the mapping of any results.
for (unsigned i = 0, e = getNumResults(); i != e; ++i)
mapper.map(getResult(i), newOp->getResult(i));
return newOp;
}
Operation *Operation::cloneWithoutRegions() {
BlockAndValueMapping mapper;
return cloneWithoutRegions(mapper);
}
/// Create a deep copy of this operation, remapping any operands that use
/// values outside of the operation using the map that is provided (leaving
/// them alone if no entry is present). Replaces references to cloned
/// sub-operations to the corresponding operation that is copied, and adds
/// those mappings to the map.
Operation *Operation::clone(BlockAndValueMapping &mapper) {
auto *newOp = cloneWithoutRegions(mapper);
// Clone the regions.
for (unsigned i = 0; i != numRegions; ++i)
getRegion(i).cloneInto(&newOp->getRegion(i), mapper);
return newOp;
}
Operation *Operation::clone() {
BlockAndValueMapping mapper;
return clone(mapper);
}
//===----------------------------------------------------------------------===//
// OpState trait class.
//===----------------------------------------------------------------------===//
// The fallback for the parser is to reject the custom assembly form.
ParseResult OpState::parse(OpAsmParser &parser, OperationState &result) {
return parser.emitError(parser.getNameLoc(), "has no custom assembly form");
}
// The fallback for the printer is to print in the generic assembly form.
void OpState::print(OpAsmPrinter &p) { p.printGenericOp(getOperation()); }
/// Emit an error about fatal conditions with this operation, reporting up to
/// any diagnostic handlers that may be listening.
InFlightDiagnostic OpState::emitError(const Twine &message) {
return getOperation()->emitError(message);
}
/// Emit an error with the op name prefixed, like "'dim' op " which is
/// convenient for verifiers.
InFlightDiagnostic OpState::emitOpError(const Twine &message) {
return getOperation()->emitOpError(message);
}
/// Emit a warning about this operation, reporting up to any diagnostic
/// handlers that may be listening.
InFlightDiagnostic OpState::emitWarning(const Twine &message) {
return getOperation()->emitWarning(message);
}
/// Emit a remark about this operation, reporting up to any diagnostic
/// handlers that may be listening.
InFlightDiagnostic OpState::emitRemark(const Twine &message) {
return getOperation()->emitRemark(message);
}
//===----------------------------------------------------------------------===//
// Op Trait implementations
//===----------------------------------------------------------------------===//
LogicalResult OpTrait::impl::verifyZeroOperands(Operation *op) {
if (op->getNumOperands() != 0)
return op->emitOpError() << "requires zero operands";
return success();
}
LogicalResult OpTrait::impl::verifyOneOperand(Operation *op) {
if (op->getNumOperands() != 1)
return op->emitOpError() << "requires a single operand";
return success();
}
LogicalResult OpTrait::impl::verifyNOperands(Operation *op,
unsigned numOperands) {
if (op->getNumOperands() != numOperands) {
return op->emitOpError() << "expected " << numOperands
<< " operands, but found " << op->getNumOperands();
}
return success();
}
LogicalResult OpTrait::impl::verifyAtLeastNOperands(Operation *op,
unsigned numOperands) {
if (op->getNumOperands() < numOperands)
return op->emitOpError()
<< "expected " << numOperands << " or more operands";
return success();
}
/// If this is a vector type, or a tensor type, return the scalar element type
/// that it is built around, otherwise return the type unmodified.
static Type getTensorOrVectorElementType(Type type) {
if (auto vec = type.dyn_cast<VectorType>())
return vec.getElementType();
// Look through tensor<vector<...>> to find the underlying element type.
if (auto tensor = type.dyn_cast<TensorType>())
return getTensorOrVectorElementType(tensor.getElementType());
return type;
}
LogicalResult OpTrait::impl::verifyOperandsAreIntegerLike(Operation *op) {
for (auto opType : op->getOperandTypes()) {
auto type = getTensorOrVectorElementType(opType);
if (!type.isIntOrIndex())
return op->emitOpError() << "requires an integer or index type";
}
return success();
}
LogicalResult OpTrait::impl::verifyOperandsAreFloatLike(Operation *op) {
for (auto opType : op->getOperandTypes()) {
auto type = getTensorOrVectorElementType(opType);
if (!type.isa<FloatType>())
return op->emitOpError("requires a float type");
}
return success();
}
LogicalResult OpTrait::impl::verifySameTypeOperands(Operation *op) {
// Zero or one operand always have the "same" type.
unsigned nOperands = op->getNumOperands();
if (nOperands < 2)
return success();
auto type = op->getOperand(0).getType();
for (auto opType : llvm::drop_begin(op->getOperandTypes(), 1))
if (opType != type)
return op->emitOpError() << "requires all operands to have the same type";
return success();
}
LogicalResult OpTrait::impl::verifyZeroResult(Operation *op) {
if (op->getNumResults() != 0)
return op->emitOpError() << "requires zero results";
return success();
}
LogicalResult OpTrait::impl::verifyOneResult(Operation *op) {
if (op->getNumResults() != 1)
return op->emitOpError() << "requires one result";
return success();
}
LogicalResult OpTrait::impl::verifyNResults(Operation *op,
unsigned numOperands) {
if (op->getNumResults() != numOperands)
return op->emitOpError() << "expected " << numOperands << " results";
return success();
}
LogicalResult OpTrait::impl::verifyAtLeastNResults(Operation *op,
unsigned numOperands) {
if (op->getNumResults() < numOperands)
return op->emitOpError()
<< "expected " << numOperands << " or more results";
return success();
}
LogicalResult OpTrait::impl::verifySameOperandsShape(Operation *op) {
if (failed(verifyAtLeastNOperands(op, 1)))
return failure();
auto type = op->getOperand(0).getType();
for (auto opType : llvm::drop_begin(op->getOperandTypes(), 1)) {
if (failed(verifyCompatibleShape(opType, type)))
return op->emitOpError() << "requires the same shape for all operands";
}
return success();
}
LogicalResult OpTrait::impl::verifySameOperandsAndResultShape(Operation *op) {
if (failed(verifyAtLeastNOperands(op, 1)) ||
failed(verifyAtLeastNResults(op, 1)))
return failure();
auto type = op->getOperand(0).getType();
for (auto resultType : op->getResultTypes()) {
if (failed(verifyCompatibleShape(resultType, type)))
return op->emitOpError()
<< "requires the same shape for all operands and results";
}
for (auto opType : llvm::drop_begin(op->getOperandTypes(), 1)) {
if (failed(verifyCompatibleShape(opType, type)))
return op->emitOpError()
<< "requires the same shape for all operands and results";
}
return success();
}
LogicalResult OpTrait::impl::verifySameOperandsElementType(Operation *op) {
if (failed(verifyAtLeastNOperands(op, 1)))
return failure();
auto elementType = getElementTypeOrSelf(op->getOperand(0));
for (auto operand : llvm::drop_begin(op->getOperands(), 1)) {
if (getElementTypeOrSelf(operand) != elementType)
return op->emitOpError("requires the same element type for all operands");
}
return success();
}
LogicalResult
OpTrait::impl::verifySameOperandsAndResultElementType(Operation *op) {
if (failed(verifyAtLeastNOperands(op, 1)) ||
failed(verifyAtLeastNResults(op, 1)))
return failure();
auto elementType = getElementTypeOrSelf(op->getResult(0));
// Verify result element type matches first result's element type.
for (auto result : llvm::drop_begin(op->getResults(), 1)) {
if (getElementTypeOrSelf(result) != elementType)
return op->emitOpError(
"requires the same element type for all operands and results");
}
// Verify operand's element type matches first result's element type.
for (auto operand : op->getOperands()) {
if (getElementTypeOrSelf(operand) != elementType)
return op->emitOpError(
"requires the same element type for all operands and results");
}
return success();
}
LogicalResult OpTrait::impl::verifySameOperandsAndResultType(Operation *op) {
if (failed(verifyAtLeastNOperands(op, 1)) ||
failed(verifyAtLeastNResults(op, 1)))
return failure();
auto type = op->getResult(0).getType();
auto elementType = getElementTypeOrSelf(type);
for (auto resultType : llvm::drop_begin(op->getResultTypes(), 1)) {
if (getElementTypeOrSelf(resultType) != elementType ||
failed(verifyCompatibleShape(resultType, type)))
return op->emitOpError()
<< "requires the same type for all operands and results";
}
for (auto opType : op->getOperandTypes()) {
if (getElementTypeOrSelf(opType) != elementType ||
failed(verifyCompatibleShape(opType, type)))
return op->emitOpError()
<< "requires the same type for all operands and results";
}
return success();
}
static LogicalResult verifySuccessor(Operation *op, unsigned succNo) {
Operation::operand_range operands = op->getSuccessorOperands(succNo);
unsigned operandCount = op->getNumSuccessorOperands(succNo);
Block *destBB = op->getSuccessor(succNo);
if (operandCount != destBB->getNumArguments())
return op->emitError() << "branch has " << operandCount
<< " operands for successor #" << succNo
<< ", but target block has "
<< destBB->getNumArguments();
auto operandIt = operands.begin();
for (unsigned i = 0, e = operandCount; i != e; ++i, ++operandIt) {
if ((*operandIt).getType() != destBB->getArgument(i).getType())
return op->emitError() << "type mismatch for bb argument #" << i
<< " of successor #" << succNo;
}
return success();
}
static LogicalResult verifyTerminatorSuccessors(Operation *op) {
auto *parent = op->getParentRegion();
// Verify that the operands lines up with the BB arguments in the successor.
for (unsigned i = 0, e = op->getNumSuccessors(); i != e; ++i) {
auto *succ = op->getSuccessor(i);
if (succ->getParent() != parent)
return op->emitError("reference to block defined in another region");
if (failed(verifySuccessor(op, i)))
return failure();
}
return success();
}
LogicalResult OpTrait::impl::verifyIsTerminator(Operation *op) {
Block *block = op->getBlock();
// Verify that the operation is at the end of the respective parent block.
if (!block || &block->back() != op)
return op->emitOpError("must be the last operation in the parent block");
// Verify the state of the successor blocks.
if (op->getNumSuccessors() != 0 && failed(verifyTerminatorSuccessors(op)))
return failure();
return success();
}
LogicalResult OpTrait::impl::verifyResultsAreBoolLike(Operation *op) {
for (auto resultType : op->getResultTypes()) {
auto elementType = getTensorOrVectorElementType(resultType);
bool isBoolType = elementType.isInteger(1);
if (!isBoolType)
return op->emitOpError() << "requires a bool result type";
}
return success();
}
LogicalResult OpTrait::impl::verifyResultsAreFloatLike(Operation *op) {
for (auto resultType : op->getResultTypes())
if (!getTensorOrVectorElementType(resultType).isa<FloatType>())
return op->emitOpError() << "requires a floating point type";
return success();
}
LogicalResult OpTrait::impl::verifyResultsAreIntegerLike(Operation *op) {
for (auto resultType : op->getResultTypes())
if (!getTensorOrVectorElementType(resultType).isIntOrIndex())
return op->emitOpError() << "requires an integer or index type";
return success();
}
static LogicalResult verifyValueSizeAttr(Operation *op, StringRef attrName,
bool isOperand) {
auto sizeAttr = op->getAttrOfType<DenseIntElementsAttr>(attrName);
if (!sizeAttr)
return op->emitOpError("requires 1D vector attribute '") << attrName << "'";
auto sizeAttrType = sizeAttr.getType().dyn_cast<VectorType>();
if (!sizeAttrType || sizeAttrType.getRank() != 1)
return op->emitOpError("requires 1D vector attribute '") << attrName << "'";
if (llvm::any_of(sizeAttr.getIntValues(), [](const APInt &element) {
return !element.isNonNegative();
}))
return op->emitOpError("'")
<< attrName << "' attribute cannot have negative elements";
size_t totalCount = std::accumulate(
sizeAttr.begin(), sizeAttr.end(), 0,
[](unsigned all, APInt one) { return all + one.getZExtValue(); });
if (isOperand && totalCount != op->getNumOperands())
return op->emitOpError("operand count (")
<< op->getNumOperands() << ") does not match with the total size ("
<< totalCount << ") specified in attribute '" << attrName << "'";
else if (!isOperand && totalCount != op->getNumResults())
return op->emitOpError("result count (")
<< op->getNumResults() << ") does not match with the total size ("
<< totalCount << ") specified in attribute '" << attrName << "'";
return success();
}
LogicalResult OpTrait::impl::verifyOperandSizeAttr(Operation *op,
StringRef attrName) {
return verifyValueSizeAttr(op, attrName, /*isOperand=*/true);
}
LogicalResult OpTrait::impl::verifyResultSizeAttr(Operation *op,
StringRef attrName) {
return verifyValueSizeAttr(op, attrName, /*isOperand=*/false);
}
//===----------------------------------------------------------------------===//
// BinaryOp implementation
//===----------------------------------------------------------------------===//
// These functions are out-of-line implementations of the methods in BinaryOp,
// which avoids them being template instantiated/duplicated.
void impl::buildBinaryOp(Builder *builder, OperationState &result, Value lhs,
Value rhs) {
assert(lhs.getType() == rhs.getType());
result.addOperands({lhs, rhs});
result.types.push_back(lhs.getType());
}
ParseResult impl::parseOneResultSameOperandTypeOp(OpAsmParser &parser,
OperationState &result) {
SmallVector<OpAsmParser::OperandType, 2> ops;
Type type;
return failure(parser.parseOperandList(ops) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(type) ||
parser.resolveOperands(ops, type, result.operands) ||
parser.addTypeToList(type, result.types));
}
void impl::printOneResultOp(Operation *op, OpAsmPrinter &p) {
assert(op->getNumResults() == 1 && "op should have one result");
// If not all the operand and result types are the same, just use the
// generic assembly form to avoid omitting information in printing.
auto resultType = op->getResult(0).getType();
if (llvm::any_of(op->getOperandTypes(),
[&](Type type) { return type != resultType; })) {
p.printGenericOp(op);
return;
}
p << op->getName() << ' ';
p.printOperands(op->getOperands());
p.printOptionalAttrDict(op->getAttrs());
// Now we can output only one type for all operands and the result.
p << " : " << resultType;
}
//===----------------------------------------------------------------------===//
// CastOp implementation
//===----------------------------------------------------------------------===//
void impl::buildCastOp(Builder *builder, OperationState &result, Value source,
Type destType) {
result.addOperands(source);
result.addTypes(destType);
}
ParseResult impl::parseCastOp(OpAsmParser &parser, OperationState &result) {
OpAsmParser::OperandType srcInfo;
Type srcType, dstType;
return failure(parser.parseOperand(srcInfo) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(srcType) ||
parser.resolveOperand(srcInfo, srcType, result.operands) ||
parser.parseKeywordType("to", dstType) ||
parser.addTypeToList(dstType, result.types));
}
void impl::printCastOp(Operation *op, OpAsmPrinter &p) {
p << op->getName() << ' ' << op->getOperand(0);
p.printOptionalAttrDict(op->getAttrs());
p << " : " << op->getOperand(0).getType() << " to "
<< op->getResult(0).getType();
}
Value impl::foldCastOp(Operation *op) {
// Identity cast
if (op->getOperand(0).getType() == op->getResult(0).getType())
return op->getOperand(0);
return nullptr;
}
//===----------------------------------------------------------------------===//
// Misc. utils
//===----------------------------------------------------------------------===//
/// Insert an operation, generated by `buildTerminatorOp`, at the end of the
/// region's only block if it does not have a terminator already. If the region
/// is empty, insert a new block first. `buildTerminatorOp` should return the
/// terminator operation to insert.
void impl::ensureRegionTerminator(
Region &region, Location loc,
function_ref<Operation *()> buildTerminatorOp) {
if (region.empty())
region.push_back(new Block);
Block &block = region.back();
if (!block.empty() && block.back().isKnownTerminator())
return;
block.push_back(buildTerminatorOp());
}