llvm-project/libc/utils/FPUtil/NormalFloat.h

229 lines
7.0 KiB
C++

//===-- A class to store a normalized floating point number -----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_UTILS_FPUTIL_NORMAL_FLOAT_H
#define LLVM_LIBC_UTILS_FPUTIL_NORMAL_FLOAT_H
#include "FPBits.h"
#include "utils/CPP/TypeTraits.h"
#include <stdint.h>
namespace __llvm_libc {
namespace fputil {
// A class which stores the normalized form of a floating point value.
// The special IEEE-754 bits patterns of Zero, infinity and NaNs are
// are not handled by this class.
//
// A normalized floating point number is of this form:
// (-1)*sign * 2^exponent * <mantissa>
// where <mantissa> is of the form 1.<...>.
template <typename T> struct NormalFloat {
static_assert(
cpp::IsFloatingPointType<T>::Value,
"NormalFloat template parameter has to be a floating point type.");
using UIntType = typename FPBits<T>::UIntType;
static constexpr UIntType one = (UIntType(1) << MantissaWidth<T>::value);
// Unbiased exponent value.
int32_t exponent;
UIntType mantissa;
// We want |UIntType| to have atleast one bit more than the actual mantissa
// bit width to accommodate the implicit 1 value.
static_assert(sizeof(UIntType) * 8 >= MantissaWidth<T>::value + 1,
"Bad type for mantissa in NormalFloat.");
bool sign;
NormalFloat(int32_t e, UIntType m, bool s)
: exponent(e), mantissa(m), sign(s) {
if (mantissa >= one)
return;
unsigned normalizationShift = evaluateNormalizationShift(mantissa);
mantissa = mantissa << normalizationShift;
exponent -= normalizationShift;
}
explicit NormalFloat(T x) { initFromBits(FPBits<T>(x)); }
explicit NormalFloat(FPBits<T> bits) { initFromBits(bits); }
// Compares this normalized number with another normalized number.
// Returns -1 is this number is less than |other|, 0 if this number is equal
// to |other|, and 1 if this number is greater than |other|.
int cmp(const NormalFloat<T> &other) const {
if (sign != other.sign)
return sign ? -1 : 1;
if (exponent > other.exponent) {
return sign ? -1 : 1;
} else if (exponent == other.exponent) {
if (mantissa > other.mantissa)
return sign ? -1 : 1;
else if (mantissa == other.mantissa)
return 0;
else
return sign ? 1 : -1;
} else {
return sign ? 1 : -1;
}
}
// Returns a new normalized floating point number which is equal in value
// to this number multiplied by 2^e. That is:
// new = this * 2^e
NormalFloat<T> mul2(int e) const {
NormalFloat<T> result = *this;
result.exponent += e;
return result;
}
operator T() const {
int biasedExponent = exponent + FPBits<T>::exponentBias;
// Max exponent is of the form 0xFF...E. That is why -2 and not -1.
constexpr int maxExponentValue = (1 << ExponentWidth<T>::value) - 2;
if (biasedExponent > maxExponentValue) {
// TODO: Should infinity with the correct sign be returned?
return FPBits<T>::buildNaN(1);
}
FPBits<T> result(T(0.0));
constexpr int subnormalExponent = -FPBits<T>::exponentBias + 1;
if (exponent < subnormalExponent) {
unsigned shift = subnormalExponent - exponent;
if (shift <= MantissaWidth<T>::value) {
// Generate a subnormal number. Might lead to loss of precision.
result.exponent = 0;
result.mantissa = mantissa >> shift;
result.sign = sign;
return result;
} else {
// TODO: Should zero with the correct sign be returned?
return FPBits<T>::buildNaN(1);
}
}
result.exponent = exponent + FPBits<T>::exponentBias;
result.mantissa = mantissa;
result.sign = sign;
return result;
}
private:
void initFromBits(FPBits<T> bits) {
sign = bits.sign;
if (bits.isInfOrNaN() || bits.isZero()) {
// Ignore special bit patterns. Implementations deal with them separately
// anyway so this should not be a problem.
exponent = 0;
mantissa = 0;
return;
}
// Normalize subnormal numbers.
if (bits.exponent == 0) {
unsigned shift = evaluateNormalizationShift(bits.mantissa);
mantissa = UIntType(bits.mantissa) << shift;
exponent = 1 - FPBits<T>::exponentBias - shift;
} else {
exponent = bits.exponent - FPBits<T>::exponentBias;
mantissa = one | bits.mantissa;
}
}
unsigned evaluateNormalizationShift(UIntType m) {
unsigned shift = 0;
for (; (one & m) == 0 && (shift < MantissaWidth<T>::value);
m <<= 1, ++shift)
;
return shift;
}
};
#if defined(__x86_64__) || defined(__i386__)
template <>
inline void NormalFloat<long double>::initFromBits(FPBits<long double> bits) {
sign = bits.sign;
if (bits.isInfOrNaN() || bits.isZero()) {
// Ignore special bit patterns. Implementations deal with them separately
// anyway so this should not be a problem.
exponent = 0;
mantissa = 0;
return;
}
if (bits.exponent == 0) {
if (bits.implicitBit == 0) {
// Since we ignore zero value, the mantissa in this case is non-zero.
int normalizationShift = evaluateNormalizationShift(bits.mantissa);
exponent = -16382 - normalizationShift;
mantissa = (bits.mantissa << normalizationShift);
} else {
exponent = -16382;
mantissa = one | bits.mantissa;
}
} else {
if (bits.implicitBit == 0) {
// Invalid number so just store 0 similar to a NaN.
exponent = 0;
mantissa = 0;
} else {
exponent = bits.exponent - 16383;
mantissa = one | bits.mantissa;
}
}
}
template <> inline NormalFloat<long double>::operator long double() const {
int biasedExponent = exponent + FPBits<long double>::exponentBias;
// Max exponent is of the form 0xFF...E. That is why -2 and not -1.
constexpr int maxExponentValue = (1 << ExponentWidth<long double>::value) - 2;
if (biasedExponent > maxExponentValue) {
// TODO: Should infinity with the correct sign be returned?
return FPBits<long double>::buildNaN(1);
}
FPBits<long double> result(0.0l);
constexpr int subnormalExponent = -FPBits<long double>::exponentBias + 1;
if (exponent < subnormalExponent) {
unsigned shift = subnormalExponent - exponent;
if (shift <= MantissaWidth<long double>::value) {
// Generate a subnormal number. Might lead to loss of precision.
result.exponent = 0;
result.mantissa = mantissa >> shift;
result.implicitBit = 0;
result.sign = sign;
return result;
} else {
// TODO: Should zero with the correct sign be returned?
return FPBits<long double>::buildNaN(1);
}
}
result.exponent = biasedExponent;
result.mantissa = mantissa;
result.implicitBit = 1;
result.sign = sign;
return result;
}
#endif
} // namespace fputil
} // namespace __llvm_libc
#endif // LLVM_LIBC_UTILS_FPUTIL_NORMAL_FLOAT_H