Go to file
Lei Zhang 267483ac70 [mlir][spirv] Support implied extensions and capabilities
In SPIR-V, when a new version is introduced, it is possible some
existing extensions will be incorporated into it so that it becomes
implicitly declared if targeting the new version. This affects
conversion target specification because we need to take this into
account when allowing what extensions to use.

For a capability, it may also implies some other capabilities,
for example, the `Shader` capability implies `Matrix` the capability.
This should also be taken into consideration when preparing the
conversion target: when we specify an capability is allowed, all
its recursively implied capabilities are also allowed.

This commit adds utility functions to query implied extensions for
a given version and implied capabilities for a given capability
and updated SPIRVConversionTarget to use them.

This commit also fixes a bug in availability spec. When a symbol
(op or enum case) can be enabled by an extension, we should drop
it's minimal version requirement. Being enabled by an extension
naturally means the symbol can be used by *any* SPIR-V version
as long as the extension is supported. The grammar still encodes
the 'version' field for such cases, but it should be interpreted
as a different way: rather than meaning a minimal version
requirement, it says the symbol becomes core at that specific
version.

Differential Revision: https://reviews.llvm.org/D72765
2020-01-17 08:01:57 -05:00
clang clang-format: [JS] pragmas for tslint, tsc. 2020-01-17 13:39:05 +01:00
clang-tools-extra Fix Wparentheses warning. NFCI. 2020-01-17 11:26:25 +00:00
compiler-rt scudo: Add initial memory tagging support. 2020-01-16 13:27:49 -08:00
debuginfo-tests Add test for GDB pretty printers. 2020-01-11 09:17:15 +01:00
libc [libc] Add a convenience CMake rule to add testsuites. 2020-01-07 23:04:52 -08:00
libclc libclc: Drop the old python based build system 2019-11-08 09:59:40 -05:00
libcxx [libcxx] Temporarily switch back to pthread backend for Fuchsia 2020-01-16 14:53:08 -08:00
libcxxabi [demangle] Copy back some NFC commits from LLVM 2020-01-09 10:27:24 -08:00
libunwind Bump the trunk major version to 11 2020-01-15 13:38:01 +01:00
lld [LLD][ELF][ARM][AArch64] Only round up ThunkSection Size when large OS. 2020-01-17 10:47:21 +00:00
lldb [lldb] Remove out of order OperatingSystemPython::Terminate call in SystemInitializerFull 2020-01-17 13:02:15 +01:00
llgo IR: Support parsing numeric block ids, and emit them in textual output. 2019-03-22 18:27:13 +00:00
llvm [BasicBlock] fix looping in getPostdominatingDeoptimizeCall 2020-01-17 15:40:02 +03:00
mlir [mlir][spirv] Support implied extensions and capabilities 2020-01-17 08:01:57 -05:00
openmp [OpenMP][Tool] Fix memory leak and double-allocation 2020-01-16 10:05:06 -10:00
parallel-libs Fix typos throughout the license files that somehow I and my reviewers 2019-01-21 09:52:34 +00:00
polly PointerLikeTypeTraits: Standardize NumLowBitsAvailable on static constexpr rather than anonymous enum 2020-01-16 15:30:50 -08:00
pstl Bump the trunk major version to 11 2020-01-15 13:38:01 +01:00
.arcconfig Update monorepo .arcconfig with new project callsign. 2019-01-31 14:34:59 +00:00
.clang-format Add .clang-tidy and .clang-format files to the toplevel of the 2019-01-29 16:43:16 +00:00
.clang-tidy Disable tidy checks with too many hits 2019-02-01 11:20:13 +00:00
.git-blame-ignore-revs Add LLDB reformatting to .git-blame-ignore-revs 2019-09-04 09:31:55 +00:00
.gitignore Add a newline at the end of the file 2019-09-04 06:33:46 +00:00
CONTRIBUTING.md Add contributing info to CONTRIBUTING.md and README.md 2019-12-02 15:47:15 +00:00
README.md Add contributing info to CONTRIBUTING.md and README.md 2019-12-02 15:47:15 +00:00

README.md

The LLVM Compiler Infrastructure

This directory and its subdirectories contain source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and runtime environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from https://llvm.org/docs/GettingStarted.html.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and converts it into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang front end. This component compiles C, C++, Objective C, and Objective C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example workflow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related subprojects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • mkdir build

    • cd build

    • cmake -G <generator> [options] ../llvm

      Some common generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some Common options:

      • -DLLVM_ENABLE_PROJECTS='...' --- semicolon-separated list of the LLVM subprojects you'd like to additionally build. Can include any of: clang, clang-tools-extra, libcxx, libcxxabi, libunwind, lldb, compiler-rt, lld, polly, or debuginfo-tests.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang;libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full pathname of where you want the LLVM tools and libraries to be installed (default /usr/local).

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • Run your build tool of choice!

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate build targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use make -j NNN (NNN is the number of parallel jobs, use e.g. number of CPUs you have.)

    • For more information see CMake

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.