llvm-project/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp

691 lines
26 KiB
C++

//===- PPCInstrInfo.cpp - PowerPC32 Instruction Information -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the PowerPC implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//
#include "PPCInstrInfo.h"
#include "PPC.h"
#include "PPCInstrBuilder.h"
#include "PPCMachineFunctionInfo.h"
#include "PPCTargetMachine.h"
#include "PPCHazardRecognizers.h"
#include "MCTargetDesc/PPCPredicates.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/STLExtras.h"
#define GET_INSTRINFO_CTOR
#include "PPCGenInstrInfo.inc"
namespace llvm {
extern cl::opt<bool> DisablePPC32RS;
extern cl::opt<bool> DisablePPC64RS;
}
using namespace llvm;
PPCInstrInfo::PPCInstrInfo(PPCTargetMachine &tm)
: PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP),
TM(tm), RI(*TM.getSubtargetImpl(), *this) {}
/// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
/// this target when scheduling the DAG.
ScheduleHazardRecognizer *PPCInstrInfo::CreateTargetHazardRecognizer(
const TargetMachine *TM,
const ScheduleDAG *DAG) const {
unsigned Directive = TM->getSubtarget<PPCSubtarget>().getDarwinDirective();
if (Directive == PPC::DIR_440) {
const InstrItineraryData *II = TM->getInstrItineraryData();
return new PPCHazardRecognizer440(II, DAG);
}
return TargetInstrInfoImpl::CreateTargetHazardRecognizer(TM, DAG);
}
/// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
/// to use for this target when scheduling the DAG.
ScheduleHazardRecognizer *PPCInstrInfo::CreateTargetPostRAHazardRecognizer(
const InstrItineraryData *II,
const ScheduleDAG *DAG) const {
unsigned Directive = TM.getSubtarget<PPCSubtarget>().getDarwinDirective();
// Most subtargets use a PPC970 recognizer.
if (Directive != PPC::DIR_440) {
const TargetInstrInfo *TII = TM.getInstrInfo();
assert(TII && "No InstrInfo?");
return new PPCHazardRecognizer970(*TII);
}
return TargetInstrInfoImpl::CreateTargetPostRAHazardRecognizer(II, DAG);
}
unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
int &FrameIndex) const {
switch (MI->getOpcode()) {
default: break;
case PPC::LD:
case PPC::LWZ:
case PPC::LFS:
case PPC::LFD:
if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() &&
MI->getOperand(2).isFI()) {
FrameIndex = MI->getOperand(2).getIndex();
return MI->getOperand(0).getReg();
}
break;
}
return 0;
}
unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
int &FrameIndex) const {
switch (MI->getOpcode()) {
default: break;
case PPC::STD:
case PPC::STW:
case PPC::STFS:
case PPC::STFD:
if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() &&
MI->getOperand(2).isFI()) {
FrameIndex = MI->getOperand(2).getIndex();
return MI->getOperand(0).getReg();
}
break;
}
return 0;
}
// commuteInstruction - We can commute rlwimi instructions, but only if the
// rotate amt is zero. We also have to munge the immediates a bit.
MachineInstr *
PPCInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
MachineFunction &MF = *MI->getParent()->getParent();
// Normal instructions can be commuted the obvious way.
if (MI->getOpcode() != PPC::RLWIMI)
return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
// Cannot commute if it has a non-zero rotate count.
if (MI->getOperand(3).getImm() != 0)
return 0;
// If we have a zero rotate count, we have:
// M = mask(MB,ME)
// Op0 = (Op1 & ~M) | (Op2 & M)
// Change this to:
// M = mask((ME+1)&31, (MB-1)&31)
// Op0 = (Op2 & ~M) | (Op1 & M)
// Swap op1/op2
unsigned Reg0 = MI->getOperand(0).getReg();
unsigned Reg1 = MI->getOperand(1).getReg();
unsigned Reg2 = MI->getOperand(2).getReg();
bool Reg1IsKill = MI->getOperand(1).isKill();
bool Reg2IsKill = MI->getOperand(2).isKill();
bool ChangeReg0 = false;
// If machine instrs are no longer in two-address forms, update
// destination register as well.
if (Reg0 == Reg1) {
// Must be two address instruction!
assert(MI->getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
"Expecting a two-address instruction!");
Reg2IsKill = false;
ChangeReg0 = true;
}
// Masks.
unsigned MB = MI->getOperand(4).getImm();
unsigned ME = MI->getOperand(5).getImm();
if (NewMI) {
// Create a new instruction.
unsigned Reg0 = ChangeReg0 ? Reg2 : MI->getOperand(0).getReg();
bool Reg0IsDead = MI->getOperand(0).isDead();
return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
.addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
.addReg(Reg2, getKillRegState(Reg2IsKill))
.addReg(Reg1, getKillRegState(Reg1IsKill))
.addImm((ME+1) & 31)
.addImm((MB-1) & 31);
}
if (ChangeReg0)
MI->getOperand(0).setReg(Reg2);
MI->getOperand(2).setReg(Reg1);
MI->getOperand(1).setReg(Reg2);
MI->getOperand(2).setIsKill(Reg1IsKill);
MI->getOperand(1).setIsKill(Reg2IsKill);
// Swap the mask around.
MI->getOperand(4).setImm((ME+1) & 31);
MI->getOperand(5).setImm((MB-1) & 31);
return MI;
}
void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI) const {
DebugLoc DL;
BuildMI(MBB, MI, DL, get(PPC::NOP));
}
// Branch analysis.
bool PPCInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
SmallVectorImpl<MachineOperand> &Cond,
bool AllowModify) const {
// If the block has no terminators, it just falls into the block after it.
MachineBasicBlock::iterator I = MBB.end();
if (I == MBB.begin())
return false;
--I;
while (I->isDebugValue()) {
if (I == MBB.begin())
return false;
--I;
}
if (!isUnpredicatedTerminator(I))
return false;
// Get the last instruction in the block.
MachineInstr *LastInst = I;
// If there is only one terminator instruction, process it.
if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
if (LastInst->getOpcode() == PPC::B) {
if (!LastInst->getOperand(0).isMBB())
return true;
TBB = LastInst->getOperand(0).getMBB();
return false;
} else if (LastInst->getOpcode() == PPC::BCC) {
if (!LastInst->getOperand(2).isMBB())
return true;
// Block ends with fall-through condbranch.
TBB = LastInst->getOperand(2).getMBB();
Cond.push_back(LastInst->getOperand(0));
Cond.push_back(LastInst->getOperand(1));
return false;
}
// Otherwise, don't know what this is.
return true;
}
// Get the instruction before it if it's a terminator.
MachineInstr *SecondLastInst = I;
// If there are three terminators, we don't know what sort of block this is.
if (SecondLastInst && I != MBB.begin() &&
isUnpredicatedTerminator(--I))
return true;
// If the block ends with PPC::B and PPC:BCC, handle it.
if (SecondLastInst->getOpcode() == PPC::BCC &&
LastInst->getOpcode() == PPC::B) {
if (!SecondLastInst->getOperand(2).isMBB() ||
!LastInst->getOperand(0).isMBB())
return true;
TBB = SecondLastInst->getOperand(2).getMBB();
Cond.push_back(SecondLastInst->getOperand(0));
Cond.push_back(SecondLastInst->getOperand(1));
FBB = LastInst->getOperand(0).getMBB();
return false;
}
// If the block ends with two PPC:Bs, handle it. The second one is not
// executed, so remove it.
if (SecondLastInst->getOpcode() == PPC::B &&
LastInst->getOpcode() == PPC::B) {
if (!SecondLastInst->getOperand(0).isMBB())
return true;
TBB = SecondLastInst->getOperand(0).getMBB();
I = LastInst;
if (AllowModify)
I->eraseFromParent();
return false;
}
// Otherwise, can't handle this.
return true;
}
unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
MachineBasicBlock::iterator I = MBB.end();
if (I == MBB.begin()) return 0;
--I;
while (I->isDebugValue()) {
if (I == MBB.begin())
return 0;
--I;
}
if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC)
return 0;
// Remove the branch.
I->eraseFromParent();
I = MBB.end();
if (I == MBB.begin()) return 1;
--I;
if (I->getOpcode() != PPC::BCC)
return 1;
// Remove the branch.
I->eraseFromParent();
return 2;
}
unsigned
PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
MachineBasicBlock *FBB,
const SmallVectorImpl<MachineOperand> &Cond,
DebugLoc DL) const {
// Shouldn't be a fall through.
assert(TBB && "InsertBranch must not be told to insert a fallthrough");
assert((Cond.size() == 2 || Cond.size() == 0) &&
"PPC branch conditions have two components!");
// One-way branch.
if (FBB == 0) {
if (Cond.empty()) // Unconditional branch
BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
else // Conditional branch
BuildMI(&MBB, DL, get(PPC::BCC))
.addImm(Cond[0].getImm()).addReg(Cond[1].getReg()).addMBB(TBB);
return 1;
}
// Two-way Conditional Branch.
BuildMI(&MBB, DL, get(PPC::BCC))
.addImm(Cond[0].getImm()).addReg(Cond[1].getReg()).addMBB(TBB);
BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
return 2;
}
void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I, DebugLoc DL,
unsigned DestReg, unsigned SrcReg,
bool KillSrc) const {
unsigned Opc;
if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
Opc = PPC::OR;
else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
Opc = PPC::OR8;
else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
Opc = PPC::FMR;
else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
Opc = PPC::MCRF;
else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
Opc = PPC::VOR;
else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
Opc = PPC::CROR;
else
llvm_unreachable("Impossible reg-to-reg copy");
const MCInstrDesc &MCID = get(Opc);
if (MCID.getNumOperands() == 3)
BuildMI(MBB, I, DL, MCID, DestReg)
.addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
else
BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
}
// This function returns true if a CR spill is necessary and false otherwise.
bool
PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF,
unsigned SrcReg, bool isKill,
int FrameIdx,
const TargetRegisterClass *RC,
SmallVectorImpl<MachineInstr*> &NewMIs) const{
DebugLoc DL;
if (PPC::GPRCRegisterClass->hasSubClassEq(RC)) {
if (SrcReg != PPC::LR) {
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW))
.addReg(SrcReg,
getKillRegState(isKill)),
FrameIdx));
} else {
// FIXME: this spills LR immediately to memory in one step. To do this,
// we use R11, which we know cannot be used in the prolog/epilog. This is
// a hack.
NewMIs.push_back(BuildMI(MF, DL, get(PPC::MFLR), PPC::R11));
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW))
.addReg(PPC::R11,
getKillRegState(isKill)),
FrameIdx));
}
} else if (PPC::G8RCRegisterClass->hasSubClassEq(RC)) {
if (SrcReg != PPC::LR8) {
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD))
.addReg(SrcReg,
getKillRegState(isKill)),
FrameIdx));
} else {
// FIXME: this spills LR immediately to memory in one step. To do this,
// we use X11, which we know cannot be used in the prolog/epilog. This is
// a hack.
NewMIs.push_back(BuildMI(MF, DL, get(PPC::MFLR8), PPC::X11));
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD))
.addReg(PPC::X11,
getKillRegState(isKill)),
FrameIdx));
}
} else if (PPC::F8RCRegisterClass->hasSubClassEq(RC)) {
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD))
.addReg(SrcReg,
getKillRegState(isKill)),
FrameIdx));
} else if (PPC::F4RCRegisterClass->hasSubClassEq(RC)) {
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS))
.addReg(SrcReg,
getKillRegState(isKill)),
FrameIdx));
} else if (PPC::CRRCRegisterClass->hasSubClassEq(RC)) {
if ((!DisablePPC32RS && !TM.getSubtargetImpl()->isPPC64()) ||
(!DisablePPC64RS && TM.getSubtargetImpl()->isPPC64())) {
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR))
.addReg(SrcReg,
getKillRegState(isKill)),
FrameIdx));
return true;
} else {
// FIXME: We need a scatch reg here. The trouble with using R0 is that
// it's possible for the stack frame to be so big the save location is
// out of range of immediate offsets, necessitating another register.
// We hack this on Darwin by reserving R2. It's probably broken on Linux
// at the moment.
bool is64Bit = TM.getSubtargetImpl()->isPPC64();
// We need to store the CR in the low 4-bits of the saved value. First,
// issue a MFCR to save all of the CRBits.
unsigned ScratchReg = TM.getSubtargetImpl()->isDarwinABI() ?
(is64Bit ? PPC::X2 : PPC::R2) :
(is64Bit ? PPC::X0 : PPC::R0);
NewMIs.push_back(BuildMI(MF, DL, get(is64Bit ? PPC::MFCR8pseud :
PPC::MFCRpseud), ScratchReg)
.addReg(SrcReg, getKillRegState(isKill)));
// If the saved register wasn't CR0, shift the bits left so that they are
// in CR0's slot.
if (SrcReg != PPC::CR0) {
unsigned ShiftBits = getPPCRegisterNumbering(SrcReg)*4;
// rlwinm scratch, scratch, ShiftBits, 0, 31.
NewMIs.push_back(BuildMI(MF, DL, get(is64Bit ? PPC::RLWINM8 :
PPC::RLWINM), ScratchReg)
.addReg(ScratchReg).addImm(ShiftBits)
.addImm(0).addImm(31));
}
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(is64Bit ?
PPC::STW8 : PPC::STW))
.addReg(ScratchReg,
getKillRegState(isKill)),
FrameIdx));
}
} else if (PPC::CRBITRCRegisterClass->hasSubClassEq(RC)) {
// FIXME: We use CRi here because there is no mtcrf on a bit. Since the
// backend currently only uses CR1EQ as an individual bit, this should
// not cause any bug. If we need other uses of CR bits, the following
// code may be invalid.
unsigned Reg = 0;
if (SrcReg == PPC::CR0LT || SrcReg == PPC::CR0GT ||
SrcReg == PPC::CR0EQ || SrcReg == PPC::CR0UN)
Reg = PPC::CR0;
else if (SrcReg == PPC::CR1LT || SrcReg == PPC::CR1GT ||
SrcReg == PPC::CR1EQ || SrcReg == PPC::CR1UN)
Reg = PPC::CR1;
else if (SrcReg == PPC::CR2LT || SrcReg == PPC::CR2GT ||
SrcReg == PPC::CR2EQ || SrcReg == PPC::CR2UN)
Reg = PPC::CR2;
else if (SrcReg == PPC::CR3LT || SrcReg == PPC::CR3GT ||
SrcReg == PPC::CR3EQ || SrcReg == PPC::CR3UN)
Reg = PPC::CR3;
else if (SrcReg == PPC::CR4LT || SrcReg == PPC::CR4GT ||
SrcReg == PPC::CR4EQ || SrcReg == PPC::CR4UN)
Reg = PPC::CR4;
else if (SrcReg == PPC::CR5LT || SrcReg == PPC::CR5GT ||
SrcReg == PPC::CR5EQ || SrcReg == PPC::CR5UN)
Reg = PPC::CR5;
else if (SrcReg == PPC::CR6LT || SrcReg == PPC::CR6GT ||
SrcReg == PPC::CR6EQ || SrcReg == PPC::CR6UN)
Reg = PPC::CR6;
else if (SrcReg == PPC::CR7LT || SrcReg == PPC::CR7GT ||
SrcReg == PPC::CR7EQ || SrcReg == PPC::CR7UN)
Reg = PPC::CR7;
return StoreRegToStackSlot(MF, Reg, isKill, FrameIdx,
PPC::CRRCRegisterClass, NewMIs);
} else if (PPC::VRRCRegisterClass->hasSubClassEq(RC)) {
// We don't have indexed addressing for vector loads. Emit:
// R0 = ADDI FI#
// STVX VAL, 0, R0
//
// FIXME: We use R0 here, because it isn't available for RA.
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::ADDI), PPC::R0),
FrameIdx, 0, 0));
NewMIs.push_back(BuildMI(MF, DL, get(PPC::STVX))
.addReg(SrcReg, getKillRegState(isKill))
.addReg(PPC::R0)
.addReg(PPC::R0));
} else {
llvm_unreachable("Unknown regclass!");
}
return false;
}
void
PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned SrcReg, bool isKill, int FrameIdx,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
MachineFunction &MF = *MBB.getParent();
SmallVector<MachineInstr*, 4> NewMIs;
if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs)) {
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
FuncInfo->setSpillsCR();
}
for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
MBB.insert(MI, NewMIs[i]);
const MachineFrameInfo &MFI = *MF.getFrameInfo();
MachineMemOperand *MMO =
MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
MachineMemOperand::MOStore,
MFI.getObjectSize(FrameIdx),
MFI.getObjectAlignment(FrameIdx));
NewMIs.back()->addMemOperand(MF, MMO);
}
bool
PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, DebugLoc DL,
unsigned DestReg, int FrameIdx,
const TargetRegisterClass *RC,
SmallVectorImpl<MachineInstr*> &NewMIs)const{
if (PPC::GPRCRegisterClass->hasSubClassEq(RC)) {
if (DestReg != PPC::LR) {
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ),
DestReg), FrameIdx));
} else {
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ),
PPC::R11), FrameIdx));
NewMIs.push_back(BuildMI(MF, DL, get(PPC::MTLR)).addReg(PPC::R11));
}
} else if (PPC::G8RCRegisterClass->hasSubClassEq(RC)) {
if (DestReg != PPC::LR8) {
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg),
FrameIdx));
} else {
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD),
PPC::X11), FrameIdx));
NewMIs.push_back(BuildMI(MF, DL, get(PPC::MTLR8)).addReg(PPC::X11));
}
} else if (PPC::F8RCRegisterClass->hasSubClassEq(RC)) {
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg),
FrameIdx));
} else if (PPC::F4RCRegisterClass->hasSubClassEq(RC)) {
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg),
FrameIdx));
} else if (PPC::CRRCRegisterClass->hasSubClassEq(RC)) {
if ((!DisablePPC32RS && !TM.getSubtargetImpl()->isPPC64()) ||
(!DisablePPC64RS && TM.getSubtargetImpl()->isPPC64())) {
NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
get(PPC::RESTORE_CR), DestReg)
, FrameIdx));
return true;
} else {
// FIXME: We need a scatch reg here. The trouble with using R0 is that
// it's possible for the stack frame to be so big the save location is
// out of range of immediate offsets, necessitating another register.
// We hack this on Darwin by reserving R2. It's probably broken on Linux
// at the moment.
unsigned ScratchReg = TM.getSubtargetImpl()->isDarwinABI() ?
PPC::R2 : PPC::R0;
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ),
ScratchReg), FrameIdx));
// If the reloaded register isn't CR0, shift the bits right so that they are
// in the right CR's slot.
if (DestReg != PPC::CR0) {
unsigned ShiftBits = getPPCRegisterNumbering(DestReg)*4;
// rlwinm r11, r11, 32-ShiftBits, 0, 31.
NewMIs.push_back(BuildMI(MF, DL, get(PPC::RLWINM), ScratchReg)
.addReg(ScratchReg).addImm(32-ShiftBits).addImm(0)
.addImm(31));
}
NewMIs.push_back(BuildMI(MF, DL, get(TM.getSubtargetImpl()->isPPC64() ?
PPC::MTCRF8 : PPC::MTCRF), DestReg)
.addReg(ScratchReg));
}
} else if (PPC::CRBITRCRegisterClass->hasSubClassEq(RC)) {
unsigned Reg = 0;
if (DestReg == PPC::CR0LT || DestReg == PPC::CR0GT ||
DestReg == PPC::CR0EQ || DestReg == PPC::CR0UN)
Reg = PPC::CR0;
else if (DestReg == PPC::CR1LT || DestReg == PPC::CR1GT ||
DestReg == PPC::CR1EQ || DestReg == PPC::CR1UN)
Reg = PPC::CR1;
else if (DestReg == PPC::CR2LT || DestReg == PPC::CR2GT ||
DestReg == PPC::CR2EQ || DestReg == PPC::CR2UN)
Reg = PPC::CR2;
else if (DestReg == PPC::CR3LT || DestReg == PPC::CR3GT ||
DestReg == PPC::CR3EQ || DestReg == PPC::CR3UN)
Reg = PPC::CR3;
else if (DestReg == PPC::CR4LT || DestReg == PPC::CR4GT ||
DestReg == PPC::CR4EQ || DestReg == PPC::CR4UN)
Reg = PPC::CR4;
else if (DestReg == PPC::CR5LT || DestReg == PPC::CR5GT ||
DestReg == PPC::CR5EQ || DestReg == PPC::CR5UN)
Reg = PPC::CR5;
else if (DestReg == PPC::CR6LT || DestReg == PPC::CR6GT ||
DestReg == PPC::CR6EQ || DestReg == PPC::CR6UN)
Reg = PPC::CR6;
else if (DestReg == PPC::CR7LT || DestReg == PPC::CR7GT ||
DestReg == PPC::CR7EQ || DestReg == PPC::CR7UN)
Reg = PPC::CR7;
return LoadRegFromStackSlot(MF, DL, Reg, FrameIdx,
PPC::CRRCRegisterClass, NewMIs);
} else if (PPC::VRRCRegisterClass->hasSubClassEq(RC)) {
// We don't have indexed addressing for vector loads. Emit:
// R0 = ADDI FI#
// Dest = LVX 0, R0
//
// FIXME: We use R0 here, because it isn't available for RA.
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::ADDI), PPC::R0),
FrameIdx, 0, 0));
NewMIs.push_back(BuildMI(MF, DL, get(PPC::LVX),DestReg).addReg(PPC::R0)
.addReg(PPC::R0));
} else {
llvm_unreachable("Unknown regclass!");
}
return false;
}
void
PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned DestReg, int FrameIdx,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
MachineFunction &MF = *MBB.getParent();
SmallVector<MachineInstr*, 4> NewMIs;
DebugLoc DL;
if (MI != MBB.end()) DL = MI->getDebugLoc();
if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs)) {
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
FuncInfo->setSpillsCR();
}
for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
MBB.insert(MI, NewMIs[i]);
const MachineFrameInfo &MFI = *MF.getFrameInfo();
MachineMemOperand *MMO =
MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
MachineMemOperand::MOLoad,
MFI.getObjectSize(FrameIdx),
MFI.getObjectAlignment(FrameIdx));
NewMIs.back()->addMemOperand(MF, MMO);
}
MachineInstr*
PPCInstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
int FrameIx, uint64_t Offset,
const MDNode *MDPtr,
DebugLoc DL) const {
MachineInstrBuilder MIB = BuildMI(MF, DL, get(PPC::DBG_VALUE));
addFrameReference(MIB, FrameIx, 0, false).addImm(Offset).addMetadata(MDPtr);
return &*MIB;
}
bool PPCInstrInfo::
ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
// Leave the CR# the same, but invert the condition.
Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
return false;
}
/// GetInstSize - Return the number of bytes of code the specified
/// instruction may be. This returns the maximum number of bytes.
///
unsigned PPCInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
switch (MI->getOpcode()) {
case PPC::INLINEASM: { // Inline Asm: Variable size.
const MachineFunction *MF = MI->getParent()->getParent();
const char *AsmStr = MI->getOperand(0).getSymbolName();
return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
}
case PPC::PROLOG_LABEL:
case PPC::EH_LABEL:
case PPC::GC_LABEL:
case PPC::DBG_VALUE:
return 0;
default:
return 4; // PowerPC instructions are all 4 bytes
}
}