forked from OSchip/llvm-project
405 lines
15 KiB
C++
405 lines
15 KiB
C++
//===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the MapValue function, which is shared by various parts of
|
|
// the lib/Transforms/Utils library.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Utils/ValueMapper.h"
|
|
#include "llvm/IR/CallSite.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/InlineAsm.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
using namespace llvm;
|
|
|
|
// Out of line method to get vtable etc for class.
|
|
void ValueMapTypeRemapper::anchor() {}
|
|
void ValueMaterializer::anchor() {}
|
|
|
|
Value *llvm::MapValue(const Value *V, ValueToValueMapTy &VM, RemapFlags Flags,
|
|
ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer) {
|
|
ValueToValueMapTy::iterator I = VM.find(V);
|
|
|
|
// If the value already exists in the map, use it.
|
|
if (I != VM.end() && I->second) return I->second;
|
|
|
|
// If we have a materializer and it can materialize a value, use that.
|
|
if (Materializer) {
|
|
if (Value *NewV = Materializer->materializeValueFor(const_cast<Value*>(V)))
|
|
return VM[V] = NewV;
|
|
}
|
|
|
|
// Global values do not need to be seeded into the VM if they
|
|
// are using the identity mapping.
|
|
if (isa<GlobalValue>(V))
|
|
return VM[V] = const_cast<Value*>(V);
|
|
|
|
if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
|
|
// Inline asm may need *type* remapping.
|
|
FunctionType *NewTy = IA->getFunctionType();
|
|
if (TypeMapper) {
|
|
NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy));
|
|
|
|
if (NewTy != IA->getFunctionType())
|
|
V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(),
|
|
IA->hasSideEffects(), IA->isAlignStack());
|
|
}
|
|
|
|
return VM[V] = const_cast<Value*>(V);
|
|
}
|
|
|
|
if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) {
|
|
const Metadata *MD = MDV->getMetadata();
|
|
// If this is a module-level metadata and we know that nothing at the module
|
|
// level is changing, then use an identity mapping.
|
|
if (!isa<LocalAsMetadata>(MD) && (Flags & RF_NoModuleLevelChanges))
|
|
return VM[V] = const_cast<Value *>(V);
|
|
|
|
auto *MappedMD = MapMetadata(MD, VM, Flags, TypeMapper, Materializer);
|
|
if (MD == MappedMD || (!MappedMD && (Flags & RF_IgnoreMissingEntries)))
|
|
return VM[V] = const_cast<Value *>(V);
|
|
|
|
// FIXME: This assert crashes during bootstrap, but I think it should be
|
|
// correct. For now, just match behaviour from before the metadata/value
|
|
// split.
|
|
//
|
|
// assert(MappedMD && "Referenced metadata value not in value map");
|
|
return VM[V] = MetadataAsValue::get(V->getContext(), MappedMD);
|
|
}
|
|
|
|
// Okay, this either must be a constant (which may or may not be mappable) or
|
|
// is something that is not in the mapping table.
|
|
Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V));
|
|
if (!C)
|
|
return nullptr;
|
|
|
|
if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
|
|
Function *F =
|
|
cast<Function>(MapValue(BA->getFunction(), VM, Flags, TypeMapper, Materializer));
|
|
BasicBlock *BB = cast_or_null<BasicBlock>(MapValue(BA->getBasicBlock(), VM,
|
|
Flags, TypeMapper, Materializer));
|
|
return VM[V] = BlockAddress::get(F, BB ? BB : BA->getBasicBlock());
|
|
}
|
|
|
|
// Otherwise, we have some other constant to remap. Start by checking to see
|
|
// if all operands have an identity remapping.
|
|
unsigned OpNo = 0, NumOperands = C->getNumOperands();
|
|
Value *Mapped = nullptr;
|
|
for (; OpNo != NumOperands; ++OpNo) {
|
|
Value *Op = C->getOperand(OpNo);
|
|
Mapped = MapValue(Op, VM, Flags, TypeMapper, Materializer);
|
|
if (Mapped != C) break;
|
|
}
|
|
|
|
// See if the type mapper wants to remap the type as well.
|
|
Type *NewTy = C->getType();
|
|
if (TypeMapper)
|
|
NewTy = TypeMapper->remapType(NewTy);
|
|
|
|
// If the result type and all operands match up, then just insert an identity
|
|
// mapping.
|
|
if (OpNo == NumOperands && NewTy == C->getType())
|
|
return VM[V] = C;
|
|
|
|
// Okay, we need to create a new constant. We've already processed some or
|
|
// all of the operands, set them all up now.
|
|
SmallVector<Constant*, 8> Ops;
|
|
Ops.reserve(NumOperands);
|
|
for (unsigned j = 0; j != OpNo; ++j)
|
|
Ops.push_back(cast<Constant>(C->getOperand(j)));
|
|
|
|
// If one of the operands mismatch, push it and the other mapped operands.
|
|
if (OpNo != NumOperands) {
|
|
Ops.push_back(cast<Constant>(Mapped));
|
|
|
|
// Map the rest of the operands that aren't processed yet.
|
|
for (++OpNo; OpNo != NumOperands; ++OpNo)
|
|
Ops.push_back(MapValue(cast<Constant>(C->getOperand(OpNo)), VM,
|
|
Flags, TypeMapper, Materializer));
|
|
}
|
|
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
|
|
return VM[V] = CE->getWithOperands(Ops, NewTy);
|
|
if (isa<ConstantArray>(C))
|
|
return VM[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops);
|
|
if (isa<ConstantStruct>(C))
|
|
return VM[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops);
|
|
if (isa<ConstantVector>(C))
|
|
return VM[V] = ConstantVector::get(Ops);
|
|
// If this is a no-operand constant, it must be because the type was remapped.
|
|
if (isa<UndefValue>(C))
|
|
return VM[V] = UndefValue::get(NewTy);
|
|
if (isa<ConstantAggregateZero>(C))
|
|
return VM[V] = ConstantAggregateZero::get(NewTy);
|
|
assert(isa<ConstantPointerNull>(C));
|
|
return VM[V] = ConstantPointerNull::get(cast<PointerType>(NewTy));
|
|
}
|
|
|
|
static Metadata *mapToMetadata(ValueToValueMapTy &VM, const Metadata *Key,
|
|
Metadata *Val) {
|
|
VM.MD()[Key].reset(Val);
|
|
return Val;
|
|
}
|
|
|
|
static Metadata *mapToSelf(ValueToValueMapTy &VM, const Metadata *MD) {
|
|
return mapToMetadata(VM, MD, const_cast<Metadata *>(MD));
|
|
}
|
|
|
|
static Metadata *MapMetadataImpl(const Metadata *MD,
|
|
SmallVectorImpl<MDNode *> &Cycles,
|
|
ValueToValueMapTy &VM, RemapFlags Flags,
|
|
ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer);
|
|
|
|
static Metadata *mapMetadataOp(Metadata *Op, SmallVectorImpl<MDNode *> &Cycles,
|
|
ValueToValueMapTy &VM, RemapFlags Flags,
|
|
ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer) {
|
|
if (!Op)
|
|
return nullptr;
|
|
if (Metadata *MappedOp =
|
|
MapMetadataImpl(Op, Cycles, VM, Flags, TypeMapper, Materializer))
|
|
return MappedOp;
|
|
// Use identity map if MappedOp is null and we can ignore missing entries.
|
|
if (Flags & RF_IgnoreMissingEntries)
|
|
return Op;
|
|
|
|
// FIXME: This assert crashes during bootstrap, but I think it should be
|
|
// correct. For now, just match behaviour from before the metadata/value
|
|
// split.
|
|
//
|
|
// llvm_unreachable("Referenced metadata not in value map!");
|
|
return nullptr;
|
|
}
|
|
|
|
/// \brief Remap nodes.
|
|
///
|
|
/// Insert \c NewNode in the value map, and then remap \c OldNode's operands.
|
|
/// Assumes that \c NewNode is already a clone of \c OldNode.
|
|
///
|
|
/// \pre \c NewNode is a clone of \c OldNode.
|
|
static bool remap(const MDNode *OldNode, MDNode *NewNode,
|
|
SmallVectorImpl<MDNode *> &Cycles, ValueToValueMapTy &VM,
|
|
RemapFlags Flags, ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer) {
|
|
assert(OldNode->getNumOperands() == NewNode->getNumOperands() &&
|
|
"Expected nodes to match");
|
|
assert(OldNode->isResolved() && "Expected resolved node");
|
|
assert(!NewNode->isUniqued() && "Expected non-uniqued node");
|
|
|
|
// Map the node upfront so it's available for cyclic references.
|
|
mapToMetadata(VM, OldNode, NewNode);
|
|
bool AnyChanged = false;
|
|
for (unsigned I = 0, E = OldNode->getNumOperands(); I != E; ++I) {
|
|
Metadata *Old = OldNode->getOperand(I);
|
|
assert(NewNode->getOperand(I) == Old &&
|
|
"Expected old operands to already be in place");
|
|
|
|
Metadata *New = mapMetadataOp(OldNode->getOperand(I), Cycles, VM, Flags,
|
|
TypeMapper, Materializer);
|
|
if (Old != New) {
|
|
AnyChanged = true;
|
|
NewNode->replaceOperandWith(I, New);
|
|
}
|
|
}
|
|
|
|
return AnyChanged;
|
|
}
|
|
|
|
/// \brief Map a distinct MDNode.
|
|
///
|
|
/// Distinct nodes are not uniqued, so they must always recreated.
|
|
static Metadata *mapDistinctNode(const MDNode *Node,
|
|
SmallVectorImpl<MDNode *> &Cycles,
|
|
ValueToValueMapTy &VM, RemapFlags Flags,
|
|
ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer) {
|
|
assert(Node->isDistinct() && "Expected distinct node");
|
|
|
|
MDNode *NewMD = MDNode::replaceWithDistinct(Node->clone());
|
|
remap(Node, NewMD, Cycles, VM, Flags, TypeMapper, Materializer);
|
|
|
|
// Track any cycles beneath this node.
|
|
for (Metadata *Op : NewMD->operands())
|
|
if (auto *Node = dyn_cast_or_null<MDNode>(Op))
|
|
if (!Node->isResolved())
|
|
Cycles.push_back(Node);
|
|
|
|
return NewMD;
|
|
}
|
|
|
|
/// \brief Map a uniqued MDNode.
|
|
///
|
|
/// Uniqued nodes may not need to be recreated (they may map to themselves).
|
|
static Metadata *mapUniquedNode(const MDNode *Node,
|
|
SmallVectorImpl<MDNode *> &Cycles,
|
|
ValueToValueMapTy &VM, RemapFlags Flags,
|
|
ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer) {
|
|
assert(Node->isUniqued() && "Expected uniqued node");
|
|
|
|
// Create a temporary node upfront in case we have a metadata cycle.
|
|
auto ClonedMD = Node->clone();
|
|
if (!remap(Node, ClonedMD.get(), Cycles, VM, Flags, TypeMapper, Materializer))
|
|
// No operands changed, so use the identity mapping.
|
|
return mapToSelf(VM, Node);
|
|
|
|
// At least one operand has changed, so uniquify the cloned node.
|
|
return mapToMetadata(VM, Node,
|
|
MDNode::replaceWithUniqued(std::move(ClonedMD)));
|
|
}
|
|
|
|
static Metadata *MapMetadataImpl(const Metadata *MD,
|
|
SmallVectorImpl<MDNode *> &Cycles,
|
|
ValueToValueMapTy &VM, RemapFlags Flags,
|
|
ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer) {
|
|
// If the value already exists in the map, use it.
|
|
if (Metadata *NewMD = VM.MD().lookup(MD).get())
|
|
return NewMD;
|
|
|
|
if (isa<MDString>(MD))
|
|
return mapToSelf(VM, MD);
|
|
|
|
if (isa<ConstantAsMetadata>(MD))
|
|
if ((Flags & RF_NoModuleLevelChanges))
|
|
return mapToSelf(VM, MD);
|
|
|
|
if (const auto *VMD = dyn_cast<ValueAsMetadata>(MD)) {
|
|
Value *MappedV =
|
|
MapValue(VMD->getValue(), VM, Flags, TypeMapper, Materializer);
|
|
if (VMD->getValue() == MappedV ||
|
|
(!MappedV && (Flags & RF_IgnoreMissingEntries)))
|
|
return mapToSelf(VM, MD);
|
|
|
|
// FIXME: This assert crashes during bootstrap, but I think it should be
|
|
// correct. For now, just match behaviour from before the metadata/value
|
|
// split.
|
|
//
|
|
// assert(MappedV && "Referenced metadata not in value map!");
|
|
if (MappedV)
|
|
return mapToMetadata(VM, MD, ValueAsMetadata::get(MappedV));
|
|
return nullptr;
|
|
}
|
|
|
|
// Note: this cast precedes the Flags check so we always get its associated
|
|
// assertion.
|
|
const MDNode *Node = cast<MDNode>(MD);
|
|
|
|
// If this is a module-level metadata and we know that nothing at the
|
|
// module level is changing, then use an identity mapping.
|
|
if (Flags & RF_NoModuleLevelChanges)
|
|
return mapToSelf(VM, MD);
|
|
|
|
// Require resolved nodes whenever metadata might be remapped.
|
|
assert(Node->isResolved() && "Unexpected unresolved node");
|
|
|
|
if (Node->isDistinct())
|
|
return mapDistinctNode(Node, Cycles, VM, Flags, TypeMapper, Materializer);
|
|
|
|
return mapUniquedNode(Node, Cycles, VM, Flags, TypeMapper, Materializer);
|
|
}
|
|
|
|
Metadata *llvm::MapMetadata(const Metadata *MD, ValueToValueMapTy &VM,
|
|
RemapFlags Flags, ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer) {
|
|
SmallVector<MDNode *, 8> Cycles;
|
|
Metadata *NewMD =
|
|
MapMetadataImpl(MD, Cycles, VM, Flags, TypeMapper, Materializer);
|
|
|
|
// Resolve cycles underneath MD.
|
|
if (NewMD && NewMD != MD) {
|
|
if (auto *N = dyn_cast<MDNode>(NewMD))
|
|
if (!N->isResolved())
|
|
N->resolveCycles();
|
|
|
|
for (MDNode *N : Cycles)
|
|
if (!N->isResolved())
|
|
N->resolveCycles();
|
|
} else {
|
|
// Shouldn't get unresolved cycles if nothing was remapped.
|
|
assert(Cycles.empty() && "Expected no unresolved cycles");
|
|
}
|
|
|
|
return NewMD;
|
|
}
|
|
|
|
MDNode *llvm::MapMetadata(const MDNode *MD, ValueToValueMapTy &VM,
|
|
RemapFlags Flags, ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer) {
|
|
return cast<MDNode>(MapMetadata(static_cast<const Metadata *>(MD), VM, Flags,
|
|
TypeMapper, Materializer));
|
|
}
|
|
|
|
/// RemapInstruction - Convert the instruction operands from referencing the
|
|
/// current values into those specified by VMap.
|
|
///
|
|
void llvm::RemapInstruction(Instruction *I, ValueToValueMapTy &VMap,
|
|
RemapFlags Flags, ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer){
|
|
// Remap operands.
|
|
for (User::op_iterator op = I->op_begin(), E = I->op_end(); op != E; ++op) {
|
|
Value *V = MapValue(*op, VMap, Flags, TypeMapper, Materializer);
|
|
// If we aren't ignoring missing entries, assert that something happened.
|
|
if (V)
|
|
*op = V;
|
|
else
|
|
assert((Flags & RF_IgnoreMissingEntries) &&
|
|
"Referenced value not in value map!");
|
|
}
|
|
|
|
// Remap phi nodes' incoming blocks.
|
|
if (PHINode *PN = dyn_cast<PHINode>(I)) {
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
|
|
Value *V = MapValue(PN->getIncomingBlock(i), VMap, Flags);
|
|
// If we aren't ignoring missing entries, assert that something happened.
|
|
if (V)
|
|
PN->setIncomingBlock(i, cast<BasicBlock>(V));
|
|
else
|
|
assert((Flags & RF_IgnoreMissingEntries) &&
|
|
"Referenced block not in value map!");
|
|
}
|
|
}
|
|
|
|
// Remap attached metadata.
|
|
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
|
|
I->getAllMetadata(MDs);
|
|
for (SmallVectorImpl<std::pair<unsigned, MDNode *>>::iterator
|
|
MI = MDs.begin(),
|
|
ME = MDs.end();
|
|
MI != ME; ++MI) {
|
|
MDNode *Old = MI->second;
|
|
MDNode *New = MapMetadata(Old, VMap, Flags, TypeMapper, Materializer);
|
|
if (New != Old)
|
|
I->setMetadata(MI->first, New);
|
|
}
|
|
|
|
if (!TypeMapper)
|
|
return;
|
|
|
|
// If the instruction's type is being remapped, do so now.
|
|
if (auto CS = CallSite(I)) {
|
|
SmallVector<Type *, 3> Tys;
|
|
FunctionType *FTy = CS.getFunctionType();
|
|
Tys.reserve(FTy->getNumParams());
|
|
for (Type *Ty : FTy->params())
|
|
Tys.push_back(TypeMapper->remapType(Ty));
|
|
CS.mutateFunctionType(FunctionType::get(
|
|
TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg()));
|
|
return;
|
|
}
|
|
if (auto *AI = dyn_cast<AllocaInst>(I))
|
|
AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType()));
|
|
I->mutateType(TypeMapper->remapType(I->getType()));
|
|
}
|