llvm-project/llvm/lib/Target/ARM/ARMSubtarget.h

466 lines
17 KiB
C++

//===-- ARMSubtarget.h - Define Subtarget for the ARM ----------*- C++ -*--===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the ARM specific subclass of TargetSubtargetInfo.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_ARM_ARMSUBTARGET_H
#define LLVM_LIB_TARGET_ARM_ARMSUBTARGET_H
#include "ARMFrameLowering.h"
#include "ARMISelLowering.h"
#include "ARMInstrInfo.h"
#include "ARMSelectionDAGInfo.h"
#include "ARMSubtarget.h"
#include "MCTargetDesc/ARMMCTargetDesc.h"
#include "Thumb1FrameLowering.h"
#include "Thumb1InstrInfo.h"
#include "Thumb2InstrInfo.h"
#include "llvm/ADT/Triple.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include <string>
#define GET_SUBTARGETINFO_HEADER
#include "ARMGenSubtargetInfo.inc"
namespace llvm {
class GlobalValue;
class StringRef;
class TargetOptions;
class ARMBaseTargetMachine;
class ARMSubtarget : public ARMGenSubtargetInfo {
protected:
enum ARMProcFamilyEnum {
Others, CortexA5, CortexA7, CortexA8, CortexA9, CortexA12, CortexA15,
CortexA17, CortexR4, CortexR4F, CortexR5, Swift, CortexA53, CortexA57, Krait,
};
enum ARMProcClassEnum {
None, AClass, RClass, MClass
};
/// ARMProcFamily - ARM processor family: Cortex-A8, Cortex-A9, and others.
ARMProcFamilyEnum ARMProcFamily;
/// ARMProcClass - ARM processor class: None, AClass, RClass or MClass.
ARMProcClassEnum ARMProcClass;
/// HasV4TOps, HasV5TOps, HasV5TEOps,
/// HasV6Ops, HasV6MOps, HasV6KOps, HasV6T2Ops, HasV7Ops, HasV8Ops -
/// Specify whether target support specific ARM ISA variants.
bool HasV4TOps;
bool HasV5TOps;
bool HasV5TEOps;
bool HasV6Ops;
bool HasV6MOps;
bool HasV6KOps;
bool HasV6T2Ops;
bool HasV7Ops;
bool HasV8Ops;
bool HasV8_1aOps;
/// HasVFPv2, HasVFPv3, HasVFPv4, HasFPARMv8, HasNEON - Specify what
/// floating point ISAs are supported.
bool HasVFPv2;
bool HasVFPv3;
bool HasVFPv4;
bool HasFPARMv8;
bool HasNEON;
/// UseNEONForSinglePrecisionFP - if the NEONFP attribute has been
/// specified. Use the method useNEONForSinglePrecisionFP() to
/// determine if NEON should actually be used.
bool UseNEONForSinglePrecisionFP;
/// UseMulOps - True if non-microcoded fused integer multiply-add and
/// multiply-subtract instructions should be used.
bool UseMulOps;
/// SlowFPVMLx - If the VFP2 / NEON instructions are available, indicates
/// whether the FP VML[AS] instructions are slow (if so, don't use them).
bool SlowFPVMLx;
/// HasVMLxForwarding - If true, NEON has special multiplier accumulator
/// forwarding to allow mul + mla being issued back to back.
bool HasVMLxForwarding;
/// SlowFPBrcc - True if floating point compare + branch is slow.
bool SlowFPBrcc;
/// InThumbMode - True if compiling for Thumb, false for ARM.
bool InThumbMode;
/// UseSoftFloat - True if we're using software floating point features.
bool UseSoftFloat;
/// HasThumb2 - True if Thumb2 instructions are supported.
bool HasThumb2;
/// NoARM - True if subtarget does not support ARM mode execution.
bool NoARM;
/// ReserveR9 - True if R9 is not available as a general purpose register.
bool ReserveR9;
/// NoMovt - True if MOVT / MOVW pairs are not used for materialization of
/// 32-bit imms (including global addresses).
bool NoMovt;
/// SupportsTailCall - True if the OS supports tail call. The dynamic linker
/// must be able to synthesize call stubs for interworking between ARM and
/// Thumb.
bool SupportsTailCall;
/// HasFP16 - True if subtarget supports half-precision FP (We support VFP+HF
/// only so far)
bool HasFP16;
/// HasD16 - True if subtarget is limited to 16 double precision
/// FP registers for VFPv3.
bool HasD16;
/// HasHardwareDivide - True if subtarget supports [su]div
bool HasHardwareDivide;
/// HasHardwareDivideInARM - True if subtarget supports [su]div in ARM mode
bool HasHardwareDivideInARM;
/// HasT2ExtractPack - True if subtarget supports thumb2 extract/pack
/// instructions.
bool HasT2ExtractPack;
/// HasDataBarrier - True if the subtarget supports DMB / DSB data barrier
/// instructions.
bool HasDataBarrier;
/// Pref32BitThumb - If true, codegen would prefer 32-bit Thumb instructions
/// over 16-bit ones.
bool Pref32BitThumb;
/// AvoidCPSRPartialUpdate - If true, codegen would avoid using instructions
/// that partially update CPSR and add false dependency on the previous
/// CPSR setting instruction.
bool AvoidCPSRPartialUpdate;
/// AvoidMOVsShifterOperand - If true, codegen should avoid using flag setting
/// movs with shifter operand (i.e. asr, lsl, lsr).
bool AvoidMOVsShifterOperand;
/// HasRAS - Some processors perform return stack prediction. CodeGen should
/// avoid issue "normal" call instructions to callees which do not return.
bool HasRAS;
/// HasMPExtension - True if the subtarget supports Multiprocessing
/// extension (ARMv7 only).
bool HasMPExtension;
/// HasVirtualization - True if the subtarget supports the Virtualization
/// extension.
bool HasVirtualization;
/// FPOnlySP - If true, the floating point unit only supports single
/// precision.
bool FPOnlySP;
/// If true, the processor supports the Performance Monitor Extensions. These
/// include a generic cycle-counter as well as more fine-grained (often
/// implementation-specific) events.
bool HasPerfMon;
/// HasTrustZone - if true, processor supports TrustZone security extensions
bool HasTrustZone;
/// HasCrypto - if true, processor supports Cryptography extensions
bool HasCrypto;
/// HasCRC - if true, processor supports CRC instructions
bool HasCRC;
/// If true, the instructions "vmov.i32 d0, #0" and "vmov.i32 q0, #0" are
/// particularly effective at zeroing a VFP register.
bool HasZeroCycleZeroing;
/// StrictAlign - If true, the subtarget disallows unaligned memory
/// accesses for some types. For details, see
/// ARMTargetLowering::allowsMisalignedMemoryAccesses().
bool StrictAlign;
/// RestrictIT - If true, the subtarget disallows generation of deprecated IT
/// blocks to conform to ARMv8 rule.
bool RestrictIT;
/// HasDSP - If true, the subtarget supports the DSP (saturating arith
/// and such) instructions.
bool HasDSP;
/// NaCl TRAP instruction is generated instead of the regular TRAP.
bool UseNaClTrap;
/// Generate calls via indirect call instructions.
bool GenLongCalls;
/// Target machine allowed unsafe FP math (such as use of NEON fp)
bool UnsafeFPMath;
/// stackAlignment - The minimum alignment known to hold of the stack frame on
/// entry to the function and which must be maintained by every function.
unsigned stackAlignment;
/// CPUString - String name of used CPU.
std::string CPUString;
/// IsLittle - The target is Little Endian
bool IsLittle;
/// TargetTriple - What processor and OS we're targeting.
Triple TargetTriple;
/// SchedModel - Processor specific instruction costs.
MCSchedModel SchedModel;
/// Selected instruction itineraries (one entry per itinerary class.)
InstrItineraryData InstrItins;
/// Options passed via command line that could influence the target
const TargetOptions &Options;
const ARMBaseTargetMachine &TM;
public:
/// This constructor initializes the data members to match that
/// of the specified triple.
///
ARMSubtarget(const Triple &TT, const std::string &CPU, const std::string &FS,
const ARMBaseTargetMachine &TM, bool IsLittle);
/// getMaxInlineSizeThreshold - Returns the maximum memset / memcpy size
/// that still makes it profitable to inline the call.
unsigned getMaxInlineSizeThreshold() const {
return 64;
}
/// ParseSubtargetFeatures - Parses features string setting specified
/// subtarget options. Definition of function is auto generated by tblgen.
void ParseSubtargetFeatures(StringRef CPU, StringRef FS);
/// initializeSubtargetDependencies - Initializes using a CPU and feature string
/// so that we can use initializer lists for subtarget initialization.
ARMSubtarget &initializeSubtargetDependencies(StringRef CPU, StringRef FS);
const ARMSelectionDAGInfo *getSelectionDAGInfo() const override {
return &TSInfo;
}
const ARMBaseInstrInfo *getInstrInfo() const override {
return InstrInfo.get();
}
const ARMTargetLowering *getTargetLowering() const override {
return &TLInfo;
}
const ARMFrameLowering *getFrameLowering() const override {
return FrameLowering.get();
}
const ARMBaseRegisterInfo *getRegisterInfo() const override {
return &InstrInfo->getRegisterInfo();
}
private:
ARMSelectionDAGInfo TSInfo;
// Either Thumb1FrameLowering or ARMFrameLowering.
std::unique_ptr<ARMFrameLowering> FrameLowering;
// Either Thumb1InstrInfo or Thumb2InstrInfo.
std::unique_ptr<ARMBaseInstrInfo> InstrInfo;
ARMTargetLowering TLInfo;
void initializeEnvironment();
void initSubtargetFeatures(StringRef CPU, StringRef FS);
ARMFrameLowering *initializeFrameLowering(StringRef CPU, StringRef FS);
public:
void computeIssueWidth();
bool hasV4TOps() const { return HasV4TOps; }
bool hasV5TOps() const { return HasV5TOps; }
bool hasV5TEOps() const { return HasV5TEOps; }
bool hasV6Ops() const { return HasV6Ops; }
bool hasV6MOps() const { return HasV6MOps; }
bool hasV6KOps() const { return HasV6KOps; }
bool hasV6T2Ops() const { return HasV6T2Ops; }
bool hasV7Ops() const { return HasV7Ops; }
bool hasV8Ops() const { return HasV8Ops; }
bool hasV8_1aOps() const { return HasV8_1aOps; }
bool isCortexA5() const { return ARMProcFamily == CortexA5; }
bool isCortexA7() const { return ARMProcFamily == CortexA7; }
bool isCortexA8() const { return ARMProcFamily == CortexA8; }
bool isCortexA9() const { return ARMProcFamily == CortexA9; }
bool isCortexA15() const { return ARMProcFamily == CortexA15; }
bool isSwift() const { return ARMProcFamily == Swift; }
bool isCortexM3() const { return CPUString == "cortex-m3"; }
bool isLikeA9() const { return isCortexA9() || isCortexA15() || isKrait(); }
bool isCortexR5() const { return ARMProcFamily == CortexR5; }
bool isKrait() const { return ARMProcFamily == Krait; }
bool hasARMOps() const { return !NoARM; }
bool hasVFP2() const { return HasVFPv2; }
bool hasVFP3() const { return HasVFPv3; }
bool hasVFP4() const { return HasVFPv4; }
bool hasFPARMv8() const { return HasFPARMv8; }
bool hasNEON() const { return HasNEON; }
bool hasCrypto() const { return HasCrypto; }
bool hasCRC() const { return HasCRC; }
bool hasVirtualization() const { return HasVirtualization; }
bool useNEONForSinglePrecisionFP() const {
return hasNEON() && UseNEONForSinglePrecisionFP;
}
bool hasDivide() const { return HasHardwareDivide; }
bool hasDivideInARMMode() const { return HasHardwareDivideInARM; }
bool hasT2ExtractPack() const { return HasT2ExtractPack; }
bool hasDataBarrier() const { return HasDataBarrier; }
bool hasAnyDataBarrier() const {
return HasDataBarrier || (hasV6Ops() && !isThumb());
}
bool useMulOps() const { return UseMulOps; }
bool useFPVMLx() const { return !SlowFPVMLx; }
bool hasVMLxForwarding() const { return HasVMLxForwarding; }
bool isFPBrccSlow() const { return SlowFPBrcc; }
bool isFPOnlySP() const { return FPOnlySP; }
bool hasPerfMon() const { return HasPerfMon; }
bool hasTrustZone() const { return HasTrustZone; }
bool hasZeroCycleZeroing() const { return HasZeroCycleZeroing; }
bool prefers32BitThumb() const { return Pref32BitThumb; }
bool avoidCPSRPartialUpdate() const { return AvoidCPSRPartialUpdate; }
bool avoidMOVsShifterOperand() const { return AvoidMOVsShifterOperand; }
bool hasRAS() const { return HasRAS; }
bool hasMPExtension() const { return HasMPExtension; }
bool hasDSP() const { return HasDSP; }
bool useNaClTrap() const { return UseNaClTrap; }
bool genLongCalls() const { return GenLongCalls; }
bool hasFP16() const { return HasFP16; }
bool hasD16() const { return HasD16; }
const Triple &getTargetTriple() const { return TargetTriple; }
bool isTargetDarwin() const { return TargetTriple.isOSDarwin(); }
bool isTargetIOS() const { return TargetTriple.isiOS(); }
bool isTargetLinux() const { return TargetTriple.isOSLinux(); }
bool isTargetNaCl() const { return TargetTriple.isOSNaCl(); }
bool isTargetNetBSD() const { return TargetTriple.isOSNetBSD(); }
bool isTargetWindows() const { return TargetTriple.isOSWindows(); }
bool isTargetCOFF() const { return TargetTriple.isOSBinFormatCOFF(); }
bool isTargetELF() const { return TargetTriple.isOSBinFormatELF(); }
bool isTargetMachO() const { return TargetTriple.isOSBinFormatMachO(); }
// ARM EABI is the bare-metal EABI described in ARM ABI documents and
// can be accessed via -target arm-none-eabi. This is NOT GNUEABI.
// FIXME: Add a flag for bare-metal for that target and set Triple::EABI
// even for GNUEABI, so we can make a distinction here and still conform to
// the EABI on GNU (and Android) mode. This requires change in Clang, too.
// FIXME: The Darwin exception is temporary, while we move users to
// "*-*-*-macho" triples as quickly as possible.
bool isTargetAEABI() const {
return (TargetTriple.getEnvironment() == Triple::EABI ||
TargetTriple.getEnvironment() == Triple::EABIHF) &&
!isTargetDarwin() && !isTargetWindows();
}
// ARM Targets that support EHABI exception handling standard
// Darwin uses SjLj. Other targets might need more checks.
bool isTargetEHABICompatible() const {
return (TargetTriple.getEnvironment() == Triple::EABI ||
TargetTriple.getEnvironment() == Triple::GNUEABI ||
TargetTriple.getEnvironment() == Triple::EABIHF ||
TargetTriple.getEnvironment() == Triple::GNUEABIHF ||
TargetTriple.getEnvironment() == Triple::Android) &&
!isTargetDarwin() && !isTargetWindows();
}
bool isTargetHardFloat() const {
// FIXME: this is invalid for WindowsCE
return TargetTriple.getEnvironment() == Triple::GNUEABIHF ||
TargetTriple.getEnvironment() == Triple::EABIHF ||
isTargetWindows();
}
bool isTargetAndroid() const {
return TargetTriple.getEnvironment() == Triple::Android;
}
bool isAPCS_ABI() const;
bool isAAPCS_ABI() const;
bool useSoftFloat() const { return UseSoftFloat; }
bool isThumb() const { return InThumbMode; }
bool isThumb1Only() const { return InThumbMode && !HasThumb2; }
bool isThumb2() const { return InThumbMode && HasThumb2; }
bool hasThumb2() const { return HasThumb2; }
bool isMClass() const { return ARMProcClass == MClass; }
bool isRClass() const { return ARMProcClass == RClass; }
bool isAClass() const { return ARMProcClass == AClass; }
bool isR9Reserved() const {
return isTargetMachO() ? (ReserveR9 || !HasV6Ops) : ReserveR9;
}
bool useStride4VFPs(const MachineFunction &MF) const;
bool useMovt(const MachineFunction &MF) const;
bool supportsTailCall() const { return SupportsTailCall; }
bool allowsUnalignedMem() const { return !StrictAlign; }
bool restrictIT() const { return RestrictIT; }
const std::string & getCPUString() const { return CPUString; }
bool isLittle() const { return IsLittle; }
unsigned getMispredictionPenalty() const;
/// This function returns true if the target has sincos() routine in its
/// compiler runtime or math libraries.
bool hasSinCos() const;
/// Returns true if machine scheduler should be enabled.
bool enableMachineScheduler() const override;
/// True for some subtargets at > -O0.
bool enablePostRAScheduler() const override;
// enableAtomicExpand- True if we need to expand our atomics.
bool enableAtomicExpand() const override;
/// getInstrItins - Return the instruction itineraries based on subtarget
/// selection.
const InstrItineraryData *getInstrItineraryData() const override {
return &InstrItins;
}
/// getStackAlignment - Returns the minimum alignment known to hold of the
/// stack frame on entry to the function and which must be maintained by every
/// function for this subtarget.
unsigned getStackAlignment() const { return stackAlignment; }
/// GVIsIndirectSymbol - true if the GV will be accessed via an indirect
/// symbol.
bool GVIsIndirectSymbol(const GlobalValue *GV, Reloc::Model RelocM) const;
/// True if fast-isel is used.
bool useFastISel() const;
};
} // End llvm namespace
#endif // ARMSUBTARGET_H