llvm-project/llvm/lib/Target/X86/X86ScheduleBtVer2.td

1050 lines
47 KiB
TableGen

//=- X86ScheduleBtVer2.td - X86 BtVer2 (Jaguar) Scheduling ---*- tablegen -*-=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the machine model for AMD btver2 (Jaguar) to support
// instruction scheduling and other instruction cost heuristics. Based off AMD Software
// Optimization Guide for AMD Family 16h Processors & Instruction Latency appendix.
//
//===----------------------------------------------------------------------===//
def BtVer2Model : SchedMachineModel {
// All x86 instructions are modeled as a single micro-op, and btver2 can
// decode 2 instructions per cycle.
let IssueWidth = 2;
let MicroOpBufferSize = 64; // Retire Control Unit
let LoadLatency = 5; // FPU latency (worse case cf Integer 3 cycle latency)
let HighLatency = 25;
let MispredictPenalty = 14; // Minimum branch misdirection penalty
let PostRAScheduler = 1;
// FIXME: SSE4/AVX is unimplemented. This flag is set to allow
// the scheduler to assign a default model to unrecognized opcodes.
let CompleteModel = 0;
}
let SchedModel = BtVer2Model in {
// Jaguar can issue up to 6 micro-ops in one cycle
def JALU0 : ProcResource<1>; // Integer Pipe0: integer ALU0 (also handle FP->INT jam)
def JALU1 : ProcResource<1>; // Integer Pipe1: integer ALU1/MUL/DIV
def JLAGU : ProcResource<1>; // Integer Pipe2: LAGU
def JSAGU : ProcResource<1>; // Integer Pipe3: SAGU (also handles 3-operand LEA)
def JFPU0 : ProcResource<1>; // Vector/FPU Pipe0: VALU0/VIMUL/FPA
def JFPU1 : ProcResource<1>; // Vector/FPU Pipe1: VALU1/STC/FPM
// The Integer PRF for Jaguar is 64 entries, and it holds the architectural and
// speculative version of the 64-bit integer registers.
// Reference: www.realworldtech.com/jaguar/4/
//
// The processor always keeps the different parts of an integer register
// together. An instruction that writes to a part of a register will therefore
// have a false dependence on any previous write to the same register or any
// part of it.
// Reference: Section 21.10 "AMD Bobcat and Jaguar pipeline: Partial register
// access" - Agner Fog's "microarchitecture.pdf".
def JIntegerPRF : RegisterFile<64, [GR64, CCR], [1, 1], [1, 0],
0, // Max moves that can be eliminated per cycle.
1>; // Restrict move elimination to zero regs.
// The Jaguar FP Retire Queue renames SIMD and FP uOps onto a pool of 72 SSE
// registers. Operations on 256-bit data types are cracked into two COPs.
// Reference: www.realworldtech.com/jaguar/4/
// The PRF in the floating point unit can eliminate a move from a MMX or SSE
// register that is know to be zero (i.e. it has been zeroed using a zero-idiom
// dependency breaking instruction, or via VZEROALL).
// Reference: Section 21.8 "AMD Bobcat and Jaguar pipeline: Dependency-breaking
// instructions" - Agner Fog's "microarchitecture.pdf"
def JFpuPRF: RegisterFile<72, [VR64, VR128, VR256], [1, 1, 2], [1, 1, 0],
0, // Max moves that can be eliminated per cycle.
1>; // Restrict move elimination to zero regs.
// The retire control unit (RCU) can track up to 64 macro-ops in-flight. It can
// retire up to two macro-ops per cycle.
// Reference: "Software Optimization Guide for AMD Family 16h Processors"
def JRCU : RetireControlUnit<64, 2>;
// Integer Pipe Scheduler
def JALU01 : ProcResGroup<[JALU0, JALU1]> {
let BufferSize=20;
}
// AGU Pipe Scheduler
def JLSAGU : ProcResGroup<[JLAGU, JSAGU]> {
let BufferSize=12;
}
// Fpu Pipe Scheduler
def JFPU01 : ProcResGroup<[JFPU0, JFPU1]> {
let BufferSize=18;
}
// Functional units
def JDiv : ProcResource<1>; // integer division
def JMul : ProcResource<1>; // integer multiplication
def JVALU0 : ProcResource<1>; // vector integer
def JVALU1 : ProcResource<1>; // vector integer
def JVIMUL : ProcResource<1>; // vector integer multiplication
def JSTC : ProcResource<1>; // vector store/convert
def JFPM : ProcResource<1>; // FP multiplication
def JFPA : ProcResource<1>; // FP addition
// Functional unit groups
def JFPX : ProcResGroup<[JFPA, JFPM]>;
def JVALU : ProcResGroup<[JVALU0, JVALU1]>;
// Integer loads are 3 cycles, so ReadAfterLd registers needn't be available until 3
// cycles after the memory operand.
def : ReadAdvance<ReadAfterLd, 3>;
// Vector loads are 5 cycles, so ReadAfterVec*Ld registers needn't be available until 5
// cycles after the memory operand.
def : ReadAdvance<ReadAfterVecLd, 5>;
def : ReadAdvance<ReadAfterVecXLd, 5>;
def : ReadAdvance<ReadAfterVecYLd, 5>;
/// "Additional 6 cycle transfer operation which moves a floating point
/// operation input value from the integer unit to the floating point unit.
/// Reference: AMDfam16h SOG (Appendix A "Instruction Latencies", Section A.2).
def : ReadAdvance<ReadInt2Fpu, -6>;
// Many SchedWrites are defined in pairs with and without a folded load.
// Instructions with folded loads are usually micro-fused, so they only appear
// as two micro-ops when dispatched by the schedulers.
// This multiclass defines the resource usage for variants with and without
// folded loads.
multiclass JWriteResIntPair<X86FoldableSchedWrite SchedRW,
list<ProcResourceKind> ExePorts,
int Lat, list<int> Res = [], int UOps = 1,
int LoadUOps = 0> {
// Register variant is using a single cycle on ExePort.
def : WriteRes<SchedRW, ExePorts> {
let Latency = Lat;
let ResourceCycles = Res;
let NumMicroOps = UOps;
}
// Memory variant also uses a cycle on JLAGU and adds 3 cycles to the
// latency.
def : WriteRes<SchedRW.Folded, !listconcat([JLAGU], ExePorts)> {
let Latency = !add(Lat, 3);
let ResourceCycles = !if(!empty(Res), [], !listconcat([1], Res));
let NumMicroOps = !add(UOps, LoadUOps);
}
}
multiclass JWriteResFpuPair<X86FoldableSchedWrite SchedRW,
list<ProcResourceKind> ExePorts,
int Lat, list<int> Res = [], int UOps = 1,
int LoadUOps = 0> {
// Register variant is using a single cycle on ExePort.
def : WriteRes<SchedRW, ExePorts> {
let Latency = Lat;
let ResourceCycles = Res;
let NumMicroOps = UOps;
}
// Memory variant also uses a cycle on JLAGU and adds 5 cycles to the
// latency.
def : WriteRes<SchedRW.Folded, !listconcat([JLAGU], ExePorts)> {
let Latency = !add(Lat, 5);
let ResourceCycles = !if(!empty(Res), [], !listconcat([1], Res));
let NumMicroOps = !add(UOps, LoadUOps);
}
}
multiclass JWriteResYMMPair<X86FoldableSchedWrite SchedRW,
list<ProcResourceKind> ExePorts,
int Lat, list<int> Res = [2], int UOps = 2,
int LoadUOps = 0> {
// Register variant is using a single cycle on ExePort.
def : WriteRes<SchedRW, ExePorts> {
let Latency = Lat;
let ResourceCycles = Res;
let NumMicroOps = UOps;
}
// Memory variant also uses 2 cycles on JLAGU and adds 5 cycles to the
// latency.
def : WriteRes<SchedRW.Folded, !listconcat([JLAGU], ExePorts)> {
let Latency = !add(Lat, 5);
let ResourceCycles = !listconcat([2], Res);
let NumMicroOps = !add(UOps, LoadUOps);
}
}
// Instructions that have local forwarding disabled have an extra +1cy latency.
// A folded store needs a cycle on the SAGU for the store data, most RMW
// instructions don't need an extra uop. ALU RMW operations don't seem to
// benefit from STLF, and their observed latency is 6cy. That is the reason why
// this write adds two extra cycles (instead of just 1cy for the store).
defm : X86WriteRes<WriteRMW, [JSAGU], 2, [1], 0>;
////////////////////////////////////////////////////////////////////////////////
// Arithmetic.
////////////////////////////////////////////////////////////////////////////////
defm : JWriteResIntPair<WriteALU, [JALU01], 1>;
defm : JWriteResIntPair<WriteADC, [JALU01], 1, [2]>;
defm : X86WriteRes<WriteBSWAP32, [JALU01], 1, [1], 1>;
defm : X86WriteRes<WriteBSWAP64, [JALU01], 1, [1], 1>;
defm : X86WriteRes<WriteCMPXCHG, [JALU01], 3, [3], 5>;
defm : X86WriteRes<WriteCMPXCHGRMW, [JALU01, JSAGU, JLAGU], 11, [3, 1, 1], 6>;
defm : X86WriteRes<WriteXCHG, [JALU01], 1, [2], 2>;
defm : JWriteResIntPair<WriteIMul8, [JALU1, JMul], 3, [1, 1], 1>;
defm : JWriteResIntPair<WriteIMul16, [JALU1, JMul], 3, [1, 3], 3>;
defm : JWriteResIntPair<WriteIMul16Imm, [JALU1, JMul], 4, [1, 2], 2>;
defm : JWriteResIntPair<WriteIMul16Reg, [JALU1, JMul], 3, [1, 1], 1>;
defm : JWriteResIntPair<WriteIMul32, [JALU1, JMul], 3, [1, 2], 2>;
defm : JWriteResIntPair<WriteIMul32Imm, [JALU1, JMul], 3, [1, 1], 1>;
defm : JWriteResIntPair<WriteIMul32Reg, [JALU1, JMul], 3, [1, 1], 1>;
defm : JWriteResIntPair<WriteIMul64, [JALU1, JMul], 6, [1, 4], 2>;
defm : JWriteResIntPair<WriteIMul64Imm, [JALU1, JMul], 6, [1, 4], 1>;
defm : JWriteResIntPair<WriteIMul64Reg, [JALU1, JMul], 6, [1, 4], 1>;
defm : X86WriteRes<WriteIMulH, [JALU1], 6, [4], 1>;
defm : JWriteResIntPair<WriteDiv8, [JALU1, JDiv], 12, [1, 12], 1>;
defm : JWriteResIntPair<WriteDiv16, [JALU1, JDiv], 17, [1, 17], 2>;
defm : JWriteResIntPair<WriteDiv32, [JALU1, JDiv], 25, [1, 25], 2>;
defm : JWriteResIntPair<WriteDiv64, [JALU1, JDiv], 41, [1, 41], 2>;
defm : JWriteResIntPair<WriteIDiv8, [JALU1, JDiv], 12, [1, 12], 1>;
defm : JWriteResIntPair<WriteIDiv16, [JALU1, JDiv], 17, [1, 17], 2>;
defm : JWriteResIntPair<WriteIDiv32, [JALU1, JDiv], 25, [1, 25], 2>;
defm : JWriteResIntPair<WriteIDiv64, [JALU1, JDiv], 41, [1, 41], 2>;
defm : JWriteResIntPair<WriteCRC32, [JALU01], 3, [4], 3>;
defm : JWriteResIntPair<WriteCMOV, [JALU01], 1>; // Conditional move.
defm : X86WriteRes<WriteFCMOV, [JFPU0, JFPA], 3, [1,1], 1>; // x87 conditional move.
def : WriteRes<WriteSETCC, [JALU01]>; // Setcc.
def : WriteRes<WriteSETCCStore, [JALU01,JSAGU]>;
def : WriteRes<WriteLAHFSAHF, [JALU01]>;
defm : X86WriteRes<WriteBitTest, [JALU01], 1, [1], 1>;
defm : X86WriteRes<WriteBitTestImmLd, [JALU01,JLAGU], 4, [1,1], 1>;
defm : X86WriteRes<WriteBitTestRegLd, [JALU01,JLAGU], 4, [1,1], 5>;
defm : X86WriteRes<WriteBitTestSet, [JALU01], 1, [1], 2>;
defm : X86WriteRes<WriteBitTestSetImmLd, [JALU01,JLAGU], 4, [1,1], 4>;
defm : X86WriteRes<WriteBitTestSetRegLd, [JALU01,JLAGU], 4, [1,1], 8>;
// This is for simple LEAs with one or two input operands.
def : WriteRes<WriteLEA, [JALU01]>;
// Bit counts.
defm : JWriteResIntPair<WriteBSF, [JALU01], 4, [8], 7>;
defm : JWriteResIntPair<WriteBSR, [JALU01], 5, [8], 8>;
defm : JWriteResIntPair<WritePOPCNT, [JALU01], 1>;
defm : JWriteResIntPair<WriteLZCNT, [JALU01], 1>;
defm : JWriteResIntPair<WriteTZCNT, [JALU01], 2, [2], 2>;
// BMI1 BEXTR/BLS, BMI2 BZHI
defm : JWriteResIntPair<WriteBEXTR, [JALU01], 1>;
defm : JWriteResIntPair<WriteBLS, [JALU01], 2, [2], 2>;
defm : X86WriteResPairUnsupported<WriteBZHI>;
////////////////////////////////////////////////////////////////////////////////
// Integer shifts and rotates.
////////////////////////////////////////////////////////////////////////////////
defm : JWriteResIntPair<WriteShift, [JALU01], 1>;
defm : JWriteResIntPair<WriteShiftCL, [JALU01], 1>;
defm : JWriteResIntPair<WriteRotate, [JALU01], 1>;
defm : JWriteResIntPair<WriteRotateCL, [JALU01], 1>;
// SHLD/SHRD.
defm : X86WriteRes<WriteSHDrri, [JALU01], 3, [6], 6>;
defm : X86WriteRes<WriteSHDrrcl,[JALU01], 4, [8], 7>;
defm : X86WriteRes<WriteSHDmri, [JLAGU, JALU01], 9, [1, 22], 8>;
defm : X86WriteRes<WriteSHDmrcl,[JLAGU, JALU01], 9, [1, 22], 8>;
////////////////////////////////////////////////////////////////////////////////
// Loads, stores, and moves, not folded with other operations.
////////////////////////////////////////////////////////////////////////////////
def : WriteRes<WriteLoad, [JLAGU]> { let Latency = 3; }
def : WriteRes<WriteStore, [JSAGU]>;
def : WriteRes<WriteStoreNT, [JSAGU]>;
def : WriteRes<WriteMove, [JALU01]>;
// Load/store MXCSR.
def : WriteRes<WriteLDMXCSR, [JLAGU]> { let Latency = 3; }
def : WriteRes<WriteSTMXCSR, [JSAGU]>;
// Treat misc copies as a move.
def : InstRW<[WriteMove], (instrs COPY)>;
////////////////////////////////////////////////////////////////////////////////
// Idioms that clear a register, like xorps %xmm0, %xmm0.
// These can often bypass execution ports completely.
////////////////////////////////////////////////////////////////////////////////
def : WriteRes<WriteZero, []>;
////////////////////////////////////////////////////////////////////////////////
// Branches don't produce values, so they have no latency, but they still
// consume resources. Indirect branches can fold loads.
////////////////////////////////////////////////////////////////////////////////
defm : JWriteResIntPair<WriteJump, [JALU01], 1>;
////////////////////////////////////////////////////////////////////////////////
// Special case scheduling classes.
////////////////////////////////////////////////////////////////////////////////
def : WriteRes<WriteSystem, [JALU01]> { let Latency = 100; }
def : WriteRes<WriteMicrocoded, [JALU01]> { let Latency = 100; }
def : WriteRes<WriteFence, [JSAGU]>;
// Nops don't have dependencies, so there's no actual latency, but we set this
// to '1' to tell the scheduler that the nop uses an ALU slot for a cycle.
def : WriteRes<WriteNop, [JALU01]> { let Latency = 1; }
def JWriteCMPXCHG8rr : SchedWriteRes<[JALU01]> {
let Latency = 3;
let ResourceCycles = [3];
let NumMicroOps = 3;
}
def JWriteLOCK_CMPXCHG8rm : SchedWriteRes<[JALU01, JLAGU, JSAGU]> {
let Latency = 16;
let ResourceCycles = [3,16,16];
let NumMicroOps = 5;
}
def JWriteLOCK_CMPXCHGrm : SchedWriteRes<[JALU01, JLAGU, JSAGU]> {
let Latency = 17;
let ResourceCycles = [3,17,17];
let NumMicroOps = 6;
}
def JWriteCMPXCHG8rm : SchedWriteRes<[JALU01, JLAGU, JSAGU]> {
let Latency = 11;
let ResourceCycles = [3,1,1];
let NumMicroOps = 5;
}
def JWriteCMPXCHG8B : SchedWriteRes<[JALU01, JLAGU, JSAGU]> {
let Latency = 11;
let ResourceCycles = [3,1,1];
let NumMicroOps = 18;
}
def JWriteCMPXCHG16B : SchedWriteRes<[JALU01, JLAGU, JSAGU]> {
let Latency = 32;
let ResourceCycles = [6,1,1];
let NumMicroOps = 28;
}
def JWriteLOCK_CMPXCHG8B : SchedWriteRes<[JALU01, JLAGU, JSAGU]> {
let Latency = 19;
let ResourceCycles = [3,19,19];
let NumMicroOps = 18;
}
def JWriteLOCK_CMPXCHG16B : SchedWriteRes<[JALU01, JLAGU, JSAGU]> {
let Latency = 38;
let ResourceCycles = [6,38,38];
let NumMicroOps = 28;
}
def JWriteCMPXCHGVariant : SchedWriteVariant<[
SchedVar<MCSchedPredicate<IsAtomicCompareAndSwap8B>, [JWriteLOCK_CMPXCHG8B]>,
SchedVar<MCSchedPredicate<IsAtomicCompareAndSwap16B>, [JWriteLOCK_CMPXCHG16B]>,
SchedVar<MCSchedPredicate<IsAtomicCompareAndSwap_8>, [JWriteLOCK_CMPXCHG8rm]>,
SchedVar<MCSchedPredicate<IsAtomicCompareAndSwap>, [JWriteLOCK_CMPXCHGrm]>,
SchedVar<MCSchedPredicate<IsCompareAndSwap8B>, [JWriteCMPXCHG8B]>,
SchedVar<MCSchedPredicate<IsCompareAndSwap16B>, [JWriteCMPXCHG16B]>,
SchedVar<MCSchedPredicate<IsRegMemCompareAndSwap_8>, [JWriteCMPXCHG8rm]>,
SchedVar<MCSchedPredicate<IsRegMemCompareAndSwap>, [WriteCMPXCHGRMW]>,
SchedVar<MCSchedPredicate<IsRegRegCompareAndSwap_8>, [JWriteCMPXCHG8rr]>,
SchedVar<NoSchedPred, [WriteCMPXCHG]>
]>;
// The first five reads are contributed by the memory load operand.
// We ignore those reads and set a read-advance for the other input operands
// including the implicit read of RAX.
def : InstRW<[JWriteCMPXCHGVariant,
ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault,
ReadAfterLd, ReadAfterLd], (instrs LCMPXCHG8, LCMPXCHG16,
LCMPXCHG32, LCMPXCHG64,
CMPXCHG8rm, CMPXCHG16rm,
CMPXCHG32rm, CMPXCHG64rm)>;
def : InstRW<[JWriteCMPXCHGVariant], (instrs CMPXCHG8rr, CMPXCHG16rr,
CMPXCHG32rr, CMPXCHG64rr)>;
def : InstRW<[JWriteCMPXCHGVariant,
// Ignore reads contributed by the memory operand.
ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault,
// Add a read-advance to every implicit register read.
ReadAfterLd, ReadAfterLd, ReadAfterLd, ReadAfterLd], (instrs LCMPXCHG8B, LCMPXCHG16B,
CMPXCHG8B, CMPXCHG16B)>;
def JWriteLOCK_ALURMW : SchedWriteRes<[JALU01, JLAGU, JSAGU]> {
let Latency = 19;
let ResourceCycles = [1,19,19];
let NumMicroOps = 1;
}
def JWriteLOCK_ALURMWVariant : SchedWriteVariant<[
SchedVar<MCSchedPredicate<CheckLockPrefix>, [JWriteLOCK_ALURMW]>,
SchedVar<NoSchedPred, [WriteALURMW]>
]>;
def : InstRW<[JWriteLOCK_ALURMWVariant], (instrs INC8m, INC16m, INC32m, INC64m,
DEC8m, DEC16m, DEC32m, DEC64m,
NOT8m, NOT16m, NOT32m, NOT64m,
NEG8m, NEG16m, NEG32m, NEG64m)>;
def JWriteXCHG8rr_XADDrr : SchedWriteRes<[JALU01]> {
let Latency = 2;
let ResourceCycles = [3];
let NumMicroOps = 3;
}
def : InstRW<[JWriteXCHG8rr_XADDrr], (instrs XCHG8rr, XADD8rr, XADD16rr,
XADD32rr, XADD64rr)>;
// This write defines the latency of the in/out register operand of a non-atomic
// XADDrm. This is the first of a pair of writes that model non-atomic
// XADDrm instructions (the second write definition is JWriteXADDrm_LdSt_Part).
//
// We need two writes because the instruction latency differs from the output
// register operand latency. In particular, the first write describes the first
// (and only) output register operand of the instruction. However, the
// instruction latency is set to the MAX of all the write latencies. That's why
// a second write is needed in this case (see example below).
//
// Example:
// XADD %ecx, (%rsp) ## Instruction latency: 11cy
// ## ECX write Latency: 3cy
//
// Register ECX becomes available in 3 cycles. That is because the value of ECX
// is exchanged with the value read from the stack pointer, and the load-to-use
// latency is assumed to be 3cy.
def JWriteXADDrm_XCHG_Part : SchedWriteRes<[JALU01]> {
let Latency = 3; // load-to-use latency
let ResourceCycles = [3];
let NumMicroOps = 3;
}
// This write defines the latency of the in/out register operand of an atomic
// XADDrm. This is the first of a sequence of two writes used to model atomic
// XADD instructions. The second write of the sequence is JWriteXCHGrm_LdSt_Part.
//
//
// Example:
// LOCK XADD %ecx, (%rsp) ## Instruction Latency: 16cy
// ## ECX write Latency: 11cy
//
// The value of ECX becomes available only after 11cy from the start of
// execution. This write is used to specifically set that operand latency.
def JWriteLOCK_XADDrm_XCHG_Part : SchedWriteRes<[JALU01]> {
let Latency = 11;
let ResourceCycles = [3];
let NumMicroOps = 3;
}
// This write defines the latency of the in/out register operand of an atomic
// XCHGrm. This write is the first of a sequence of two writes that describe
// atomic XCHG operations. We need two writes because the instruction latency
// differs from the output register write latency. We want to make sure that
// the output register operand becomes visible after 11cy. However, we want to
// set the instruction latency to 16cy.
def JWriteXCHGrm_XCHG_Part : SchedWriteRes<[JALU01]> {
let Latency = 11;
let ResourceCycles = [2];
let NumMicroOps = 2;
}
def JWriteXADDrm_LdSt_Part : SchedWriteRes<[JLAGU, JSAGU]> {
let Latency = 11;
let ResourceCycles = [1, 1];
let NumMicroOps = 1;
}
def JWriteXCHGrm_LdSt_Part : SchedWriteRes<[JLAGU, JSAGU]> {
let Latency = 16;
let ResourceCycles = [16, 16];
let NumMicroOps = 1;
}
def JWriteXADDrm_Part1 : SchedWriteVariant<[
SchedVar<MCSchedPredicate<CheckLockPrefix>, [JWriteLOCK_XADDrm_XCHG_Part]>,
SchedVar<NoSchedPred, [JWriteXADDrm_XCHG_Part]>
]>;
def JWriteXADDrm_Part2 : SchedWriteVariant<[
SchedVar<MCSchedPredicate<CheckLockPrefix>, [JWriteXCHGrm_LdSt_Part]>,
SchedVar<NoSchedPred, [JWriteXADDrm_LdSt_Part]>
]>;
def : InstRW<[JWriteXADDrm_Part1, JWriteXADDrm_Part2, ReadAfterLd],
(instrs XADD8rm, XADD16rm, XADD32rm, XADD64rm,
LXADD8, LXADD16, LXADD32, LXADD64)>;
def : InstRW<[JWriteXCHGrm_XCHG_Part, JWriteXCHGrm_LdSt_Part, ReadAfterLd],
(instrs XCHG8rm, XCHG16rm, XCHG32rm, XCHG64rm)>;
////////////////////////////////////////////////////////////////////////////////
// Floating point. This covers both scalar and vector operations.
////////////////////////////////////////////////////////////////////////////////
defm : X86WriteRes<WriteFLD0, [JFPU1, JSTC], 3, [1,1], 1>;
defm : X86WriteRes<WriteFLD1, [JFPU1, JSTC], 3, [1,1], 1>;
defm : X86WriteRes<WriteFLDC, [JFPU1, JSTC], 3, [1,1], 1>;
defm : X86WriteRes<WriteFLoad, [JLAGU, JFPU01, JFPX], 5, [1, 1, 1], 1>;
defm : X86WriteRes<WriteFLoadX, [JLAGU], 5, [1], 1>;
defm : X86WriteRes<WriteFLoadY, [JLAGU], 5, [2], 2>;
defm : X86WriteRes<WriteFMaskedLoad, [JLAGU, JFPU01, JFPX], 6, [1, 2, 2], 1>;
defm : X86WriteRes<WriteFMaskedLoadY, [JLAGU, JFPU01, JFPX], 6, [2, 4, 4], 2>;
defm : X86WriteRes<WriteFStore, [JSAGU, JFPU1, JSTC], 2, [1, 1, 1], 1>;
defm : X86WriteRes<WriteFStoreX, [JSAGU, JFPU1, JSTC], 1, [1, 1, 1], 1>;
defm : X86WriteRes<WriteFStoreY, [JSAGU, JFPU1, JSTC], 1, [2, 2, 2], 2>;
defm : X86WriteRes<WriteFStoreNT, [JSAGU, JFPU1, JSTC], 3, [1, 1, 1], 1>;
defm : X86WriteRes<WriteFStoreNTX, [JSAGU, JFPU1, JSTC], 3, [1, 1, 1], 1>;
defm : X86WriteRes<WriteFStoreNTY, [JSAGU, JFPU1, JSTC], 3, [2, 2, 2], 1>;
defm : X86WriteRes<WriteFMaskedStore32, [JFPU0, JFPA, JFPU1, JSTC, JLAGU, JSAGU, JALU01], 16, [1,1, 5, 5,4,4,4], 19>;
defm : X86WriteRes<WriteFMaskedStore64, [JFPU0, JFPA, JFPU1, JSTC, JLAGU, JSAGU, JALU01], 13, [1,1, 2, 2,2,2,2], 10>;
defm : X86WriteRes<WriteFMaskedStore32Y, [JFPU0, JFPA, JFPU1, JSTC, JLAGU, JSAGU, JALU01], 22, [1,1,10,10,8,8,8], 36>;
defm : X86WriteRes<WriteFMaskedStore64Y, [JFPU0, JFPA, JFPU1, JSTC, JLAGU, JSAGU, JALU01], 16, [1,1, 4, 4,4,4,4], 18>;
defm : X86WriteRes<WriteFMove, [JFPU01, JFPX], 1, [1, 1], 1>;
defm : X86WriteRes<WriteFMoveX, [JFPU01, JFPX], 1, [1, 1], 1>;
defm : X86WriteRes<WriteFMoveY, [JFPU01, JFPX], 1, [2, 2], 2>;
defm : X86WriteRes<WriteEMMS, [JFPU01, JFPX], 2, [1, 1], 1>;
defm : JWriteResFpuPair<WriteFAdd, [JFPU0, JFPA], 3>;
defm : JWriteResFpuPair<WriteFAddX, [JFPU0, JFPA], 3>;
defm : JWriteResYMMPair<WriteFAddY, [JFPU0, JFPA], 3, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteFAddZ>;
defm : JWriteResFpuPair<WriteFAdd64, [JFPU0, JFPA], 3>;
defm : JWriteResFpuPair<WriteFAdd64X, [JFPU0, JFPA], 3>;
defm : JWriteResYMMPair<WriteFAdd64Y, [JFPU0, JFPA], 3, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteFAdd64Z>;
defm : JWriteResFpuPair<WriteFCmp, [JFPU0, JFPA], 2>;
defm : JWriteResFpuPair<WriteFCmpX, [JFPU0, JFPA], 2>;
defm : JWriteResYMMPair<WriteFCmpY, [JFPU0, JFPA], 2, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteFCmpZ>;
defm : JWriteResFpuPair<WriteFCmp64, [JFPU0, JFPA], 2>;
defm : JWriteResFpuPair<WriteFCmp64X, [JFPU0, JFPA], 2>;
defm : JWriteResYMMPair<WriteFCmp64Y, [JFPU0, JFPA], 2, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteFCmp64Z>;
defm : JWriteResFpuPair<WriteFCom, [JFPU0, JFPA, JALU0], 3>;
defm : JWriteResFpuPair<WriteFComX, [JFPU0, JFPA, JALU0], 3>;
defm : JWriteResFpuPair<WriteFMul, [JFPU1, JFPM], 2>;
defm : JWriteResFpuPair<WriteFMulX, [JFPU1, JFPM], 2>;
defm : JWriteResYMMPair<WriteFMulY, [JFPU1, JFPM], 2, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteFMulZ>;
defm : JWriteResFpuPair<WriteFMul64, [JFPU1, JFPM], 4, [1,2]>;
defm : JWriteResFpuPair<WriteFMul64X, [JFPU1, JFPM], 4, [1,2]>;
defm : JWriteResYMMPair<WriteFMul64Y, [JFPU1, JFPM], 4, [2,4], 2>;
defm : X86WriteResPairUnsupported<WriteFMul64Z>;
defm : X86WriteResPairUnsupported<WriteFMA>;
defm : X86WriteResPairUnsupported<WriteFMAX>;
defm : X86WriteResPairUnsupported<WriteFMAY>;
defm : X86WriteResPairUnsupported<WriteFMAZ>;
defm : JWriteResFpuPair<WriteDPPD, [JFPU1, JFPM, JFPA], 9, [1, 3, 3], 3>;
defm : JWriteResFpuPair<WriteDPPS, [JFPU1, JFPM, JFPA], 11, [1, 3, 3], 5>;
defm : JWriteResYMMPair<WriteDPPSY, [JFPU1, JFPM, JFPA], 12, [2, 6, 6], 10>;
defm : X86WriteResPairUnsupported<WriteDPPSZ>;
defm : JWriteResFpuPair<WriteFRcp, [JFPU1, JFPM], 2>;
defm : JWriteResFpuPair<WriteFRcpX, [JFPU1, JFPM], 2>;
defm : JWriteResYMMPair<WriteFRcpY, [JFPU1, JFPM], 2, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteFRcpZ>;
defm : JWriteResFpuPair<WriteFRsqrt, [JFPU1, JFPM], 2>;
defm : JWriteResFpuPair<WriteFRsqrtX, [JFPU1, JFPM], 2>;
defm : JWriteResYMMPair<WriteFRsqrtY, [JFPU1, JFPM], 2, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteFRsqrtZ>;
defm : JWriteResFpuPair<WriteFDiv, [JFPU1, JFPM], 19, [1, 19]>;
defm : JWriteResFpuPair<WriteFDivX, [JFPU1, JFPM], 19, [1, 19]>;
defm : JWriteResYMMPair<WriteFDivY, [JFPU1, JFPM], 38, [2, 38], 2>;
defm : X86WriteResPairUnsupported<WriteFDivZ>;
defm : JWriteResFpuPair<WriteFDiv64, [JFPU1, JFPM], 19, [1, 19]>;
defm : JWriteResFpuPair<WriteFDiv64X, [JFPU1, JFPM], 19, [1, 19]>;
defm : JWriteResYMMPair<WriteFDiv64Y, [JFPU1, JFPM], 38, [2, 38], 2>;
defm : X86WriteResPairUnsupported<WriteFDiv64Z>;
defm : JWriteResFpuPair<WriteFSqrt, [JFPU1, JFPM], 21, [1, 21]>;
defm : JWriteResFpuPair<WriteFSqrtX, [JFPU1, JFPM], 21, [1, 21]>;
defm : JWriteResYMMPair<WriteFSqrtY, [JFPU1, JFPM], 42, [2, 42], 2>;
defm : X86WriteResPairUnsupported<WriteFSqrtZ>;
defm : JWriteResFpuPair<WriteFSqrt64, [JFPU1, JFPM], 27, [1, 27]>;
defm : JWriteResFpuPair<WriteFSqrt64X, [JFPU1, JFPM], 27, [1, 27]>;
defm : JWriteResYMMPair<WriteFSqrt64Y, [JFPU1, JFPM], 54, [2, 54], 2>;
defm : X86WriteResPairUnsupported<WriteFSqrt64Z>;
defm : JWriteResFpuPair<WriteFSqrt80, [JFPU1, JFPM], 35, [1, 35]>;
defm : JWriteResFpuPair<WriteFSign, [JFPU1, JFPM], 2>;
defm : JWriteResFpuPair<WriteFRnd, [JFPU1, JSTC], 3>;
defm : JWriteResYMMPair<WriteFRndY, [JFPU1, JSTC], 3, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteFRndZ>;
defm : JWriteResFpuPair<WriteFLogic, [JFPU01, JFPX], 1>;
defm : JWriteResYMMPair<WriteFLogicY, [JFPU01, JFPX], 1, [2, 2], 2>;
defm : X86WriteResPairUnsupported<WriteFLogicZ>;
defm : JWriteResFpuPair<WriteFTest, [JFPU0, JFPA, JALU0], 3>;
defm : JWriteResYMMPair<WriteFTestY , [JFPU01, JFPX, JFPA, JALU0], 4, [2, 2, 2, 1], 3>;
defm : X86WriteResPairUnsupported<WriteFTestZ>;
defm : JWriteResFpuPair<WriteFShuffle, [JFPU01, JFPX], 1>;
defm : JWriteResYMMPair<WriteFShuffleY, [JFPU01, JFPX], 1, [2, 2], 2>;
defm : X86WriteResPairUnsupported<WriteFShuffleZ>;
defm : JWriteResFpuPair<WriteFVarShuffle, [JFPU01, JFPX], 3, [1, 4], 3>; // +1cy latency.
defm : JWriteResYMMPair<WriteFVarShuffleY,[JFPU01, JFPX], 4, [2, 6], 6>; // +1cy latency.
defm : X86WriteResPairUnsupported<WriteFVarShuffleZ>;
defm : JWriteResFpuPair<WriteFBlend, [JFPU01, JFPX], 1>;
defm : JWriteResYMMPair<WriteFBlendY, [JFPU01, JFPX], 1, [2, 2], 2>;
defm : X86WriteResPairUnsupported<WriteFBlendZ>;
defm : JWriteResFpuPair<WriteFVarBlend, [JFPU01, JFPX], 2, [4, 4], 3>;
defm : JWriteResYMMPair<WriteFVarBlendY, [JFPU01, JFPX], 3, [6, 6], 6>;
defm : X86WriteResPairUnsupported<WriteFVarBlendZ>;
defm : JWriteResFpuPair<WriteFShuffle256, [JFPU01, JFPX], 1, [2, 2], 2>;
defm : X86WriteResPairUnsupported<WriteFVarShuffle256>;
////////////////////////////////////////////////////////////////////////////////
// Conversions.
////////////////////////////////////////////////////////////////////////////////
defm : JWriteResFpuPair<WriteCvtSS2I, [JFPU1, JSTC, JFPU0, JFPA, JALU0], 7, [1,1,1,1,1], 2>;
defm : JWriteResFpuPair<WriteCvtPS2I, [JFPU1, JSTC], 3, [1,1], 1>;
defm : JWriteResYMMPair<WriteCvtPS2IY, [JFPU1, JSTC], 3, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteCvtPS2IZ>;
defm : JWriteResFpuPair<WriteCvtSD2I, [JFPU1, JSTC, JFPU0, JFPA, JALU0], 7, [1,1,1,1,1], 2>;
defm : JWriteResFpuPair<WriteCvtPD2I, [JFPU1, JSTC], 3, [1,1], 1>;
defm : JWriteResYMMPair<WriteCvtPD2IY, [JFPU1, JSTC, JFPX], 6, [2,2,4], 3>;
defm : X86WriteResPairUnsupported<WriteCvtPD2IZ>;
defm : X86WriteRes<WriteCvtI2SS, [JFPU1, JSTC], 4, [1,1], 2>;
defm : X86WriteRes<WriteCvtI2SSLd, [JLAGU, JFPU1, JSTC], 9, [1,1,1], 1>;
defm : JWriteResFpuPair<WriteCvtI2PS, [JFPU1, JSTC], 3, [1,1], 1>;
defm : JWriteResYMMPair<WriteCvtI2PSY, [JFPU1, JSTC], 3, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteCvtI2PSZ>;
defm : X86WriteRes<WriteCvtI2SD, [JFPU1, JSTC], 4, [1,1], 2>;
defm : X86WriteRes<WriteCvtI2SDLd, [JLAGU, JFPU1, JSTC], 9, [1,1,1], 1>;
defm : JWriteResFpuPair<WriteCvtI2PD, [JFPU1, JSTC], 3, [1,1], 1>;
defm : JWriteResYMMPair<WriteCvtI2PDY, [JFPU1, JSTC], 3, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteCvtI2PDZ>;
defm : JWriteResFpuPair<WriteCvtSS2SD, [JFPU1, JSTC], 7, [1,2], 2>;
defm : JWriteResFpuPair<WriteCvtPS2PD, [JFPU1, JSTC], 2, [1,1], 1>;
defm : JWriteResYMMPair<WriteCvtPS2PDY, [JFPU1, JSTC], 2, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteCvtPS2PDZ>;
defm : JWriteResFpuPair<WriteCvtSD2SS, [JFPU1, JSTC], 7, [1,2], 2>;
defm : JWriteResFpuPair<WriteCvtPD2PS, [JFPU1, JSTC], 3, [1,1], 1>;
defm : JWriteResYMMPair<WriteCvtPD2PSY, [JFPU1, JSTC, JFPX], 6, [2,2,4], 3>;
defm : X86WriteResPairUnsupported<WriteCvtPD2PSZ>;
defm : JWriteResFpuPair<WriteCvtPH2PS, [JFPU1, JSTC], 3, [1,1], 1>;
defm : JWriteResYMMPair<WriteCvtPH2PSY, [JFPU1, JSTC], 3, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteCvtPH2PSZ>;
defm : X86WriteRes<WriteCvtPS2PH, [JFPU1, JSTC], 3, [1,1], 1>;
defm : X86WriteRes<WriteCvtPS2PHY, [JFPU1, JSTC, JFPX], 6, [2,2,2], 3>;
defm : X86WriteResUnsupported<WriteCvtPS2PHZ>;
defm : X86WriteRes<WriteCvtPS2PHSt, [JFPU1, JSTC, JSAGU], 4, [1,1,1], 1>;
defm : X86WriteRes<WriteCvtPS2PHYSt, [JFPU1, JSTC, JFPX, JSAGU], 7, [2,2,2,1], 3>;
defm : X86WriteResUnsupported<WriteCvtPS2PHZSt>;
////////////////////////////////////////////////////////////////////////////////
// Vector integer operations.
////////////////////////////////////////////////////////////////////////////////
defm : X86WriteRes<WriteVecLoad, [JLAGU, JFPU01, JVALU], 5, [1, 1, 1], 1>;
defm : X86WriteRes<WriteVecLoadX, [JLAGU], 5, [1], 1>;
defm : X86WriteRes<WriteVecLoadY, [JLAGU], 5, [2], 2>;
defm : X86WriteRes<WriteVecLoadNT, [JLAGU, JFPU01, JVALU], 5, [1, 1, 1], 1>;
defm : X86WriteRes<WriteVecLoadNTY, [JLAGU, JFPU01, JVALU], 5, [1, 1, 1], 1>;
defm : X86WriteRes<WriteVecMaskedLoad, [JLAGU, JFPU01, JVALU], 6, [1, 2, 2], 1>;
defm : X86WriteRes<WriteVecMaskedLoadY, [JLAGU, JFPU01, JVALU], 6, [2, 4, 4], 2>;
defm : X86WriteRes<WriteVecStore, [JSAGU, JFPU1, JSTC], 2, [1, 1, 1], 1>;
defm : X86WriteRes<WriteVecStoreX, [JSAGU, JFPU1, JSTC], 1, [1, 1, 1], 1>;
defm : X86WriteRes<WriteVecStoreY, [JSAGU, JFPU1, JSTC], 1, [2, 2, 2], 2>;
defm : X86WriteRes<WriteVecStoreNT, [JSAGU, JFPU1, JSTC], 2, [1, 1, 1], 1>;
defm : X86WriteRes<WriteVecStoreNTY, [JSAGU, JFPU1, JSTC], 2, [2, 2, 2], 1>;
defm : X86WriteResUnsupported<WriteVecMaskedStore32>;
defm : X86WriteResUnsupported<WriteVecMaskedStore64>;
defm : X86WriteResUnsupported<WriteVecMaskedStore32Y>;
defm : X86WriteResUnsupported<WriteVecMaskedStore64Y>;
defm : X86WriteRes<WriteVecMove, [JFPU01, JVALU], 1, [1, 1], 1>;
defm : X86WriteRes<WriteVecMoveX, [JFPU01, JVALU], 1, [1, 1], 1>;
defm : X86WriteRes<WriteVecMoveY, [JFPU01, JVALU], 1, [2, 2], 2>;
defm : X86WriteRes<WriteVecMoveToGpr, [JFPU0, JFPA, JALU0], 4, [1, 1, 1], 1>;
defm : X86WriteRes<WriteVecMoveFromGpr, [JFPU01, JFPX], 8, [1, 1], 2>;
defm : JWriteResFpuPair<WriteVecALU, [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WriteVecALUX, [JFPU01, JVALU], 1>;
defm : X86WriteResPairUnsupported<WriteVecALUY>;
defm : X86WriteResPairUnsupported<WriteVecALUZ>;
defm : JWriteResFpuPair<WriteVecShift, [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WriteVecShiftX, [JFPU01, JVALU], 2>; // +1cy latency.
defm : X86WriteResPairUnsupported<WriteVecShiftY>;
defm : X86WriteResPairUnsupported<WriteVecShiftZ>;
defm : JWriteResFpuPair<WriteVecShiftImm, [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WriteVecShiftImmX,[JFPU01, JVALU], 2>; // +1cy latency.
defm : X86WriteResPairUnsupported<WriteVecShiftImmY>;
defm : X86WriteResPairUnsupported<WriteVecShiftImmZ>;
defm : X86WriteResPairUnsupported<WriteVarVecShift>;
defm : X86WriteResPairUnsupported<WriteVarVecShiftY>;
defm : X86WriteResPairUnsupported<WriteVarVecShiftZ>;
defm : JWriteResFpuPair<WriteVecIMul, [JFPU0, JVIMUL], 2>;
defm : JWriteResFpuPair<WriteVecIMulX, [JFPU0, JVIMUL], 2>;
defm : X86WriteResPairUnsupported<WriteVecIMulY>;
defm : X86WriteResPairUnsupported<WriteVecIMulZ>;
defm : JWriteResFpuPair<WritePMULLD, [JFPU0, JFPU01, JVIMUL, JVALU], 4, [2, 1, 2, 1], 3>;
defm : X86WriteResPairUnsupported<WritePMULLDY>;
defm : X86WriteResPairUnsupported<WritePMULLDZ>;
defm : JWriteResFpuPair<WriteMPSAD, [JFPU0, JVIMUL], 3, [1, 2], 3>;
defm : X86WriteResPairUnsupported<WriteMPSADY>;
defm : X86WriteResPairUnsupported<WriteMPSADZ>;
defm : JWriteResFpuPair<WritePSADBW, [JFPU01, JVALU], 2>;
defm : JWriteResFpuPair<WritePSADBWX, [JFPU01, JVALU], 2>;
defm : X86WriteResPairUnsupported<WritePSADBWY>;
defm : X86WriteResPairUnsupported<WritePSADBWZ>;
defm : JWriteResFpuPair<WritePHMINPOS, [JFPU01, JVALU], 2>;
defm : JWriteResFpuPair<WriteShuffle, [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WriteShuffleX, [JFPU01, JVALU], 1>;
defm : X86WriteResPairUnsupported<WriteShuffleY>;
defm : X86WriteResPairUnsupported<WriteShuffleZ>;
defm : JWriteResFpuPair<WriteVarShuffle, [JFPU01, JVALU], 2, [1, 1], 1>;
defm : JWriteResFpuPair<WriteVarShuffleX, [JFPU01, JVALU], 2, [1, 4], 3>;
defm : X86WriteResPairUnsupported<WriteVarShuffleY>;
defm : X86WriteResPairUnsupported<WriteVarShuffleZ>;
defm : JWriteResFpuPair<WriteBlend, [JFPU01, JVALU], 1>;
defm : X86WriteResPairUnsupported<WriteBlendY>;
defm : X86WriteResPairUnsupported<WriteBlendZ>;
defm : JWriteResFpuPair<WriteVarBlend, [JFPU01, JVALU], 2, [4, 4], 3>;
defm : X86WriteResPairUnsupported<WriteVarBlendY>;
defm : X86WriteResPairUnsupported<WriteVarBlendZ>;
defm : JWriteResFpuPair<WriteVecLogic, [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WriteVecLogicX, [JFPU01, JVALU], 1>;
defm : X86WriteResPairUnsupported<WriteVecLogicY>;
defm : X86WriteResPairUnsupported<WriteVecLogicZ>;
defm : JWriteResFpuPair<WriteVecTest, [JFPU0, JFPA, JALU0], 3>;
defm : JWriteResYMMPair<WriteVecTestY, [JFPU01, JFPX, JFPA, JALU0], 4, [2, 2, 2, 1], 3>;
defm : X86WriteResPairUnsupported<WriteVecTestZ>;
defm : X86WriteResPairUnsupported<WriteShuffle256>;
defm : X86WriteResPairUnsupported<WriteVarShuffle256>;
////////////////////////////////////////////////////////////////////////////////
// Vector insert/extract operations.
////////////////////////////////////////////////////////////////////////////////
defm : X86WriteRes<WriteVecInsert, [JFPU01, JVALU], 1, [1,1], 2>;
defm : X86WriteRes<WriteVecInsertLd, [JFPU01, JVALU, JLAGU], 4, [1,1,1], 1>;
defm : X86WriteRes<WriteVecExtract, [JFPU0, JFPA, JALU0], 3, [1,1,1], 1>;
defm : X86WriteRes<WriteVecExtractSt, [JFPU1, JSTC, JSAGU], 3, [1,1,1], 1>;
////////////////////////////////////////////////////////////////////////////////
// SSE42 String instructions.
////////////////////////////////////////////////////////////////////////////////
defm : JWriteResFpuPair<WritePCmpIStrI, [JFPU1, JVALU1, JFPU0, JFPA, JALU0], 7, [2, 2, 1, 1, 1], 3>;
defm : JWriteResFpuPair<WritePCmpIStrM, [JFPU1, JVALU1, JFPU0, JFPA, JALU0], 8, [2, 2, 1, 1, 1], 3>;
defm : JWriteResFpuPair<WritePCmpEStrI, [JFPU1, JSAGU, JLAGU, JVALU, JVALU1, JFPA, JALU0], 14, [1, 2, 2, 6, 4, 1, 1], 9>;
defm : JWriteResFpuPair<WritePCmpEStrM, [JFPU1, JSAGU, JLAGU, JVALU, JVALU1, JFPA, JALU0], 14, [1, 2, 2, 6, 4, 1, 1], 9>;
////////////////////////////////////////////////////////////////////////////////
// MOVMSK Instructions.
////////////////////////////////////////////////////////////////////////////////
def : WriteRes<WriteFMOVMSK, [JFPU0, JFPA, JALU0]> { let Latency = 3; }
def : WriteRes<WriteVecMOVMSK, [JFPU0, JFPA, JALU0]> { let Latency = 3; }
defm : X86WriteResUnsupported<WriteVecMOVMSKY>;
def : WriteRes<WriteMMXMOVMSK, [JFPU0, JFPA, JALU0]> { let Latency = 3; }
////////////////////////////////////////////////////////////////////////////////
// AES Instructions.
////////////////////////////////////////////////////////////////////////////////
defm : JWriteResFpuPair<WriteAESIMC, [JFPU0, JVIMUL], 2>;
defm : JWriteResFpuPair<WriteAESKeyGen, [JFPU0, JVIMUL], 2>;
defm : JWriteResFpuPair<WriteAESDecEnc, [JFPU01, JVALU, JFPU0, JVIMUL], 3, [1,1,1,1], 2>;
////////////////////////////////////////////////////////////////////////////////
// Horizontal add/sub instructions.
////////////////////////////////////////////////////////////////////////////////
defm : JWriteResFpuPair<WriteFHAdd, [JFPU0, JFPA], 4>; // +1cy latency.
defm : JWriteResYMMPair<WriteFHAddY, [JFPU0, JFPA], 4, [2,2], 2>; // +1cy latency.
defm : JWriteResFpuPair<WritePHAdd, [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WritePHAddX, [JFPU01, JVALU], 2>; // +1cy latency.
defm : X86WriteResPairUnsupported<WritePHAddY>;
////////////////////////////////////////////////////////////////////////////////
// Carry-less multiplication instructions.
////////////////////////////////////////////////////////////////////////////////
defm : JWriteResFpuPair<WriteCLMul, [JFPU0, JVIMUL], 2>;
////////////////////////////////////////////////////////////////////////////////
// SSE4A instructions.
////////////////////////////////////////////////////////////////////////////////
def JWriteINSERTQ: SchedWriteRes<[JFPU01, JVALU]> {
let Latency = 2;
let ResourceCycles = [1, 4];
}
def : InstRW<[JWriteINSERTQ], (instrs INSERTQ, INSERTQI)>;
////////////////////////////////////////////////////////////////////////////////
// AVX instructions.
////////////////////////////////////////////////////////////////////////////////
def JWriteVecExtractF128: SchedWriteRes<[JFPU01, JFPX]>;
def : InstRW<[JWriteVecExtractF128], (instrs VEXTRACTF128rr)>;
def JWriteVBROADCASTYLd: SchedWriteRes<[JLAGU, JFPU01, JFPX]> {
let Latency = 6;
let ResourceCycles = [1, 2, 4];
let NumMicroOps = 2;
}
def : InstRW<[JWriteVBROADCASTYLd], (instrs VBROADCASTSDYrm,
VBROADCASTSSYrm,
VBROADCASTF128)>;
def JWriteJVZEROALL: SchedWriteRes<[]> {
let Latency = 90;
let NumMicroOps = 73;
}
def : InstRW<[JWriteJVZEROALL], (instrs VZEROALL)>;
def JWriteJVZEROUPPER: SchedWriteRes<[]> {
let Latency = 46;
let NumMicroOps = 37;
}
def : InstRW<[JWriteJVZEROUPPER], (instrs VZEROUPPER)>;
///////////////////////////////////////////////////////////////////////////////
// SSE2/AVX Store Selected Bytes of Double Quadword - (V)MASKMOVDQ
///////////////////////////////////////////////////////////////////////////////
def JWriteMASKMOVDQU: SchedWriteRes<[JFPU0, JFPA, JFPU1, JSTC, JLAGU, JSAGU, JALU01]> {
let Latency = 34;
let ResourceCycles = [1, 1, 2, 2, 2, 16, 42];
let NumMicroOps = 63;
}
def : InstRW<[JWriteMASKMOVDQU], (instrs MASKMOVDQU, MASKMOVDQU64,
VMASKMOVDQU, VMASKMOVDQU64)>;
///////////////////////////////////////////////////////////////////////////////
// SchedWriteVariant definitions.
///////////////////////////////////////////////////////////////////////////////
def JWriteZeroLatency : SchedWriteRes<[]> {
let Latency = 0;
}
def JWriteZeroIdiomYmm : SchedWriteRes<[JFPU01, JFPX]> {
let NumMicroOps = 2;
}
// Certain instructions that use the same register for both source
// operands do not have a real dependency on the previous contents of the
// register, and thus, do not have to wait before completing. They can be
// optimized out at register renaming stage.
// Reference: Section 10.8 of the "Software Optimization Guide for AMD Family
// 15h Processors".
// Reference: Agner's Fog "The microarchitecture of Intel, AMD and VIA CPUs",
// Section 21.8 [Dependency-breaking instructions].
def JWriteZeroIdiom : SchedWriteVariant<[
SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [JWriteZeroLatency]>,
SchedVar<NoSchedPred, [WriteALU]>
]>;
def : InstRW<[JWriteZeroIdiom], (instrs SUB32rr, SUB64rr,
XOR32rr, XOR64rr)>;
def JWriteFZeroIdiom : SchedWriteVariant<[
SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [JWriteZeroLatency]>,
SchedVar<NoSchedPred, [WriteFLogic]>
]>;
def : InstRW<[JWriteFZeroIdiom], (instrs XORPSrr, VXORPSrr, XORPDrr, VXORPDrr,
ANDNPSrr, VANDNPSrr,
ANDNPDrr, VANDNPDrr)>;
def JWriteFZeroIdiomY : SchedWriteVariant<[
SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [JWriteZeroIdiomYmm]>,
SchedVar<NoSchedPred, [WriteFLogicY]>
]>;
def : InstRW<[JWriteFZeroIdiomY], (instrs VXORPSYrr, VXORPDYrr,
VANDNPSYrr, VANDNPDYrr)>;
def JWriteVZeroIdiomLogic : SchedWriteVariant<[
SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [JWriteZeroLatency]>,
SchedVar<NoSchedPred, [WriteVecLogic]>
]>;
def : InstRW<[JWriteVZeroIdiomLogic], (instrs MMX_PXORirr, MMX_PANDNirr)>;
def JWriteVZeroIdiomLogicX : SchedWriteVariant<[
SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [JWriteZeroLatency]>,
SchedVar<NoSchedPred, [WriteVecLogicX]>
]>;
def : InstRW<[JWriteVZeroIdiomLogicX], (instrs PXORrr, VPXORrr,
PANDNrr, VPANDNrr)>;
def JWriteVZeroIdiomALU : SchedWriteVariant<[
SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [JWriteZeroLatency]>,
SchedVar<NoSchedPred, [WriteVecALU]>
]>;
def : InstRW<[JWriteVZeroIdiomALU], (instrs MMX_PSUBBirr, MMX_PSUBDirr,
MMX_PSUBQirr, MMX_PSUBWirr,
MMX_PSUBSBirr, MMX_PSUBSWirr,
MMX_PSUBUSBirr, MMX_PSUBUSWirr,
MMX_PCMPGTBirr, MMX_PCMPGTDirr,
MMX_PCMPGTWirr)>;
def JWriteVZeroIdiomALUX : SchedWriteVariant<[
SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [JWriteZeroLatency]>,
SchedVar<NoSchedPred, [WriteVecALUX]>
]>;
def : InstRW<[JWriteVZeroIdiomALUX], (instrs PSUBBrr, VPSUBBrr,
PSUBDrr, VPSUBDrr,
PSUBQrr, VPSUBQrr,
PSUBWrr, VPSUBWrr,
PSUBSBrr, VPSUBSBrr,
PSUBSWrr, VPSUBSWrr,
PSUBUSBrr, VPSUBUSBrr,
PSUBUSWrr, VPSUBUSWrr,
PCMPGTBrr, VPCMPGTBrr,
PCMPGTDrr, VPCMPGTDrr,
PCMPGTQrr, VPCMPGTQrr,
PCMPGTWrr, VPCMPGTWrr)>;
def JWriteVPERM2F128 : SchedWriteVariant<[
SchedVar<MCSchedPredicate<ZeroIdiomVPERMPredicate>, [JWriteZeroIdiomYmm]>,
SchedVar<NoSchedPred, [WriteFShuffle256]>
]>;
def : InstRW<[JWriteVPERM2F128], (instrs VPERM2F128rr)>;
// This write is used for slow LEA instructions.
def JWrite3OpsLEA : SchedWriteRes<[JALU1, JSAGU]> {
let Latency = 2;
}
// On Jaguar, a slow LEA is either a 3Ops LEA (base, index, offset), or an LEA
// with a `Scale` value different than 1.
def JSlowLEAPredicate : MCSchedPredicate<
CheckAny<[
// A 3-operand LEA (base, index, offset).
IsThreeOperandsLEAFn,
// An LEA with a "Scale" different than 1.
CheckAll<[
CheckIsImmOperand<2>,
CheckNot<CheckImmOperand<2, 1>>
]>
]>
>;
def JWriteLEA : SchedWriteVariant<[
SchedVar<JSlowLEAPredicate, [JWrite3OpsLEA]>,
SchedVar<NoSchedPred, [WriteLEA]>
]>;
def : InstRW<[JWriteLEA], (instrs LEA32r, LEA64r, LEA64_32r)>;
def JSlowLEA16r : SchedWriteRes<[JALU01]> {
let Latency = 3;
let ResourceCycles = [4];
}
def : InstRW<[JSlowLEA16r], (instrs LEA16r)>;
///////////////////////////////////////////////////////////////////////////////
// Dependency breaking instructions.
///////////////////////////////////////////////////////////////////////////////
def : IsZeroIdiomFunction<[
// GPR Zero-idioms.
DepBreakingClass<[ SUB32rr, SUB64rr, XOR32rr, XOR64rr ], ZeroIdiomPredicate>,
// MMX Zero-idioms.
DepBreakingClass<[
MMX_PXORirr, MMX_PANDNirr, MMX_PSUBBirr,
MMX_PSUBDirr, MMX_PSUBQirr, MMX_PSUBWirr,
MMX_PSUBSBirr, MMX_PSUBSWirr, MMX_PSUBUSBirr, MMX_PSUBUSWirr,
MMX_PCMPGTBirr, MMX_PCMPGTDirr, MMX_PCMPGTWirr
], ZeroIdiomPredicate>,
// SSE Zero-idioms.
DepBreakingClass<[
// fp variants.
XORPSrr, XORPDrr, ANDNPSrr, ANDNPDrr,
// int variants.
PXORrr, PANDNrr,
PSUBBrr, PSUBWrr, PSUBDrr, PSUBQrr,
PSUBSBrr, PSUBSWrr, PSUBUSBrr, PSUBUSWrr,
PCMPGTBrr, PCMPGTDrr, PCMPGTQrr, PCMPGTWrr
], ZeroIdiomPredicate>,
// AVX Zero-idioms.
DepBreakingClass<[
// xmm fp variants.
VXORPSrr, VXORPDrr, VANDNPSrr, VANDNPDrr,
// xmm int variants.
VPXORrr, VPANDNrr,
VPSUBBrr, VPSUBWrr, VPSUBDrr, VPSUBQrr,
VPSUBSBrr, VPSUBSWrr, VPSUBUSBrr, VPSUBUSWrr,
VPCMPGTBrr, VPCMPGTWrr, VPCMPGTDrr, VPCMPGTQrr,
// ymm variants.
VXORPSYrr, VXORPDYrr, VANDNPSYrr, VANDNPDYrr
], ZeroIdiomPredicate>,
DepBreakingClass<[ VPERM2F128rr ], ZeroIdiomVPERMPredicate>
]>;
def : IsDepBreakingFunction<[
// GPR
DepBreakingClass<[ SBB32rr, SBB64rr ], ZeroIdiomPredicate>,
DepBreakingClass<[ CMP32rr, CMP64rr ], CheckSameRegOperand<0, 1> >,
// MMX
DepBreakingClass<[
MMX_PCMPEQBirr, MMX_PCMPEQDirr, MMX_PCMPEQWirr
], ZeroIdiomPredicate>,
// SSE
DepBreakingClass<[
PCMPEQBrr, PCMPEQWrr, PCMPEQDrr, PCMPEQQrr
], ZeroIdiomPredicate>,
// AVX
DepBreakingClass<[
VPCMPEQBrr, VPCMPEQWrr, VPCMPEQDrr, VPCMPEQQrr
], ZeroIdiomPredicate>
]>;
def : IsOptimizableRegisterMove<[
InstructionEquivalenceClass<[
// GPR variants.
MOV32rr, MOV64rr,
// MMX variants.
MMX_MOVQ64rr,
// SSE variants.
MOVAPSrr, MOVUPSrr,
MOVAPDrr, MOVUPDrr,
MOVDQArr, MOVDQUrr,
// AVX variants.
VMOVAPSrr, VMOVUPSrr,
VMOVAPDrr, VMOVUPDrr,
VMOVDQArr, VMOVDQUrr
], TruePred >
]>;
} // SchedModel