forked from OSchip/llvm-project
660 lines
22 KiB
C++
660 lines
22 KiB
C++
//===- Signals.cpp - Generic Unix Signals Implementation -----*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines some helpful functions for dealing with the possibility of
|
|
// Unix signals occurring while your program is running.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is extremely careful to only do signal-safe things while in a
|
|
// signal handler. In particular, memory allocation and acquiring a mutex
|
|
// while in a signal handler should never occur. ManagedStatic isn't usable from
|
|
// a signal handler for 2 reasons:
|
|
//
|
|
// 1. Creating a new one allocates.
|
|
// 2. The signal handler could fire while llvm_shutdown is being processed, in
|
|
// which case the ManagedStatic is in an unknown state because it could
|
|
// already have been destroyed, or be in the process of being destroyed.
|
|
//
|
|
// Modifying the behavior of the signal handlers (such as registering new ones)
|
|
// can acquire a mutex, but all this guarantees is that the signal handler
|
|
// behavior is only modified by one thread at a time. A signal handler can still
|
|
// fire while this occurs!
|
|
//
|
|
// Adding work to a signal handler requires lock-freedom (and assume atomics are
|
|
// always lock-free) because the signal handler could fire while new work is
|
|
// being added.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Unix.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Config/config.h"
|
|
#include "llvm/Demangle/Demangle.h"
|
|
#include "llvm/Support/ExitCodes.h"
|
|
#include "llvm/Support/FileSystem.h"
|
|
#include "llvm/Support/FileUtilities.h"
|
|
#include "llvm/Support/Format.h"
|
|
#include "llvm/Support/MemoryBuffer.h"
|
|
#include "llvm/Support/Mutex.h"
|
|
#include "llvm/Support/Program.h"
|
|
#include "llvm/Support/SaveAndRestore.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <string>
|
|
#ifdef HAVE_BACKTRACE
|
|
# include BACKTRACE_HEADER // For backtrace().
|
|
#endif
|
|
#if HAVE_SIGNAL_H
|
|
#include <signal.h>
|
|
#endif
|
|
#if HAVE_SYS_STAT_H
|
|
#include <sys/stat.h>
|
|
#endif
|
|
#if HAVE_DLFCN_H
|
|
#include <dlfcn.h>
|
|
#endif
|
|
#if HAVE_MACH_MACH_H
|
|
#include <mach/mach.h>
|
|
#endif
|
|
#if HAVE_LINK_H
|
|
#include <link.h>
|
|
#endif
|
|
#ifdef HAVE__UNWIND_BACKTRACE
|
|
// FIXME: We should be able to use <unwind.h> for any target that has an
|
|
// _Unwind_Backtrace function, but on FreeBSD the configure test passes
|
|
// despite the function not existing, and on Android, <unwind.h> conflicts
|
|
// with <link.h>.
|
|
#ifdef __GLIBC__
|
|
#include <unwind.h>
|
|
#else
|
|
#undef HAVE__UNWIND_BACKTRACE
|
|
#endif
|
|
#endif
|
|
|
|
using namespace llvm;
|
|
|
|
static RETSIGTYPE SignalHandler(int Sig); // defined below.
|
|
static RETSIGTYPE InfoSignalHandler(int Sig); // defined below.
|
|
|
|
using SignalHandlerFunctionType = void (*)();
|
|
/// The function to call if ctrl-c is pressed.
|
|
static std::atomic<SignalHandlerFunctionType> InterruptFunction =
|
|
ATOMIC_VAR_INIT(nullptr);
|
|
static std::atomic<SignalHandlerFunctionType> InfoSignalFunction =
|
|
ATOMIC_VAR_INIT(nullptr);
|
|
/// The function to call on SIGPIPE (one-time use only).
|
|
static std::atomic<SignalHandlerFunctionType> OneShotPipeSignalFunction =
|
|
ATOMIC_VAR_INIT(nullptr);
|
|
|
|
namespace {
|
|
/// Signal-safe removal of files.
|
|
/// Inserting and erasing from the list isn't signal-safe, but removal of files
|
|
/// themselves is signal-safe. Memory is freed when the head is freed, deletion
|
|
/// is therefore not signal-safe either.
|
|
class FileToRemoveList {
|
|
std::atomic<char *> Filename = ATOMIC_VAR_INIT(nullptr);
|
|
std::atomic<FileToRemoveList *> Next = ATOMIC_VAR_INIT(nullptr);
|
|
|
|
FileToRemoveList() = default;
|
|
// Not signal-safe.
|
|
FileToRemoveList(const std::string &str) : Filename(strdup(str.c_str())) {}
|
|
|
|
public:
|
|
// Not signal-safe.
|
|
~FileToRemoveList() {
|
|
if (FileToRemoveList *N = Next.exchange(nullptr))
|
|
delete N;
|
|
if (char *F = Filename.exchange(nullptr))
|
|
free(F);
|
|
}
|
|
|
|
// Not signal-safe.
|
|
static void insert(std::atomic<FileToRemoveList *> &Head,
|
|
const std::string &Filename) {
|
|
// Insert the new file at the end of the list.
|
|
FileToRemoveList *NewHead = new FileToRemoveList(Filename);
|
|
std::atomic<FileToRemoveList *> *InsertionPoint = &Head;
|
|
FileToRemoveList *OldHead = nullptr;
|
|
while (!InsertionPoint->compare_exchange_strong(OldHead, NewHead)) {
|
|
InsertionPoint = &OldHead->Next;
|
|
OldHead = nullptr;
|
|
}
|
|
}
|
|
|
|
// Not signal-safe.
|
|
static void erase(std::atomic<FileToRemoveList *> &Head,
|
|
const std::string &Filename) {
|
|
// Use a lock to avoid concurrent erase: the comparison would access
|
|
// free'd memory.
|
|
static ManagedStatic<sys::SmartMutex<true>> Lock;
|
|
sys::SmartScopedLock<true> Writer(*Lock);
|
|
|
|
for (FileToRemoveList *Current = Head.load(); Current;
|
|
Current = Current->Next.load()) {
|
|
if (char *OldFilename = Current->Filename.load()) {
|
|
if (OldFilename != Filename)
|
|
continue;
|
|
// Leave an empty filename.
|
|
OldFilename = Current->Filename.exchange(nullptr);
|
|
// The filename might have become null between the time we
|
|
// compared it and we exchanged it.
|
|
if (OldFilename)
|
|
free(OldFilename);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Signal-safe.
|
|
static void removeAllFiles(std::atomic<FileToRemoveList *> &Head) {
|
|
// If cleanup were to occur while we're removing files we'd have a bad time.
|
|
// Make sure we're OK by preventing cleanup from doing anything while we're
|
|
// removing files. If cleanup races with us and we win we'll have a leak,
|
|
// but we won't crash.
|
|
FileToRemoveList *OldHead = Head.exchange(nullptr);
|
|
|
|
for (FileToRemoveList *currentFile = OldHead; currentFile;
|
|
currentFile = currentFile->Next.load()) {
|
|
// If erasing was occuring while we're trying to remove files we'd look
|
|
// at free'd data. Take away the path and put it back when done.
|
|
if (char *path = currentFile->Filename.exchange(nullptr)) {
|
|
// Get the status so we can determine if it's a file or directory. If we
|
|
// can't stat the file, ignore it.
|
|
struct stat buf;
|
|
if (stat(path, &buf) != 0)
|
|
continue;
|
|
|
|
// If this is not a regular file, ignore it. We want to prevent removal
|
|
// of special files like /dev/null, even if the compiler is being run
|
|
// with the super-user permissions.
|
|
if (!S_ISREG(buf.st_mode))
|
|
continue;
|
|
|
|
// Otherwise, remove the file. We ignore any errors here as there is
|
|
// nothing else we can do.
|
|
unlink(path);
|
|
|
|
// We're done removing the file, erasing can safely proceed.
|
|
currentFile->Filename.exchange(path);
|
|
}
|
|
}
|
|
|
|
// We're done removing files, cleanup can safely proceed.
|
|
Head.exchange(OldHead);
|
|
}
|
|
};
|
|
static std::atomic<FileToRemoveList *> FilesToRemove = ATOMIC_VAR_INIT(nullptr);
|
|
|
|
/// Clean up the list in a signal-friendly manner.
|
|
/// Recall that signals can fire during llvm_shutdown. If this occurs we should
|
|
/// either clean something up or nothing at all, but we shouldn't crash!
|
|
struct FilesToRemoveCleanup {
|
|
// Not signal-safe.
|
|
~FilesToRemoveCleanup() {
|
|
FileToRemoveList *Head = FilesToRemove.exchange(nullptr);
|
|
if (Head)
|
|
delete Head;
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
static StringRef Argv0;
|
|
|
|
/// Signals that represent requested termination. There's no bug or failure, or
|
|
/// if there is, it's not our direct responsibility. For whatever reason, our
|
|
/// continued execution is no longer desirable.
|
|
static const int IntSigs[] = {
|
|
SIGHUP, SIGINT, SIGTERM, SIGUSR2
|
|
};
|
|
|
|
/// Signals that represent that we have a bug, and our prompt termination has
|
|
/// been ordered.
|
|
static const int KillSigs[] = {
|
|
SIGILL, SIGTRAP, SIGABRT, SIGFPE, SIGBUS, SIGSEGV, SIGQUIT
|
|
#ifdef SIGSYS
|
|
, SIGSYS
|
|
#endif
|
|
#ifdef SIGXCPU
|
|
, SIGXCPU
|
|
#endif
|
|
#ifdef SIGXFSZ
|
|
, SIGXFSZ
|
|
#endif
|
|
#ifdef SIGEMT
|
|
, SIGEMT
|
|
#endif
|
|
};
|
|
|
|
/// Signals that represent requests for status.
|
|
static const int InfoSigs[] = {
|
|
SIGUSR1
|
|
#ifdef SIGINFO
|
|
, SIGINFO
|
|
#endif
|
|
};
|
|
|
|
static const size_t NumSigs =
|
|
array_lengthof(IntSigs) + array_lengthof(KillSigs) +
|
|
array_lengthof(InfoSigs) + 1 /* SIGPIPE */;
|
|
|
|
|
|
static std::atomic<unsigned> NumRegisteredSignals = ATOMIC_VAR_INIT(0);
|
|
static struct {
|
|
struct sigaction SA;
|
|
int SigNo;
|
|
} RegisteredSignalInfo[NumSigs];
|
|
|
|
#if defined(HAVE_SIGALTSTACK)
|
|
// Hold onto both the old and new alternate signal stack so that it's not
|
|
// reported as a leak. We don't make any attempt to remove our alt signal
|
|
// stack if we remove our signal handlers; that can't be done reliably if
|
|
// someone else is also trying to do the same thing.
|
|
static stack_t OldAltStack;
|
|
static void* NewAltStackPointer;
|
|
|
|
static void CreateSigAltStack() {
|
|
const size_t AltStackSize = MINSIGSTKSZ + 64 * 1024;
|
|
|
|
// If we're executing on the alternate stack, or we already have an alternate
|
|
// signal stack that we're happy with, there's nothing for us to do. Don't
|
|
// reduce the size, some other part of the process might need a larger stack
|
|
// than we do.
|
|
if (sigaltstack(nullptr, &OldAltStack) != 0 ||
|
|
OldAltStack.ss_flags & SS_ONSTACK ||
|
|
(OldAltStack.ss_sp && OldAltStack.ss_size >= AltStackSize))
|
|
return;
|
|
|
|
stack_t AltStack = {};
|
|
AltStack.ss_sp = static_cast<char *>(safe_malloc(AltStackSize));
|
|
NewAltStackPointer = AltStack.ss_sp; // Save to avoid reporting a leak.
|
|
AltStack.ss_size = AltStackSize;
|
|
if (sigaltstack(&AltStack, &OldAltStack) != 0)
|
|
free(AltStack.ss_sp);
|
|
}
|
|
#else
|
|
static void CreateSigAltStack() {}
|
|
#endif
|
|
|
|
static void RegisterHandlers() { // Not signal-safe.
|
|
// The mutex prevents other threads from registering handlers while we're
|
|
// doing it. We also have to protect the handlers and their count because
|
|
// a signal handler could fire while we're registeting handlers.
|
|
static ManagedStatic<sys::SmartMutex<true>> SignalHandlerRegistrationMutex;
|
|
sys::SmartScopedLock<true> Guard(*SignalHandlerRegistrationMutex);
|
|
|
|
// If the handlers are already registered, we're done.
|
|
if (NumRegisteredSignals.load() != 0)
|
|
return;
|
|
|
|
// Create an alternate stack for signal handling. This is necessary for us to
|
|
// be able to reliably handle signals due to stack overflow.
|
|
CreateSigAltStack();
|
|
|
|
enum class SignalKind { IsKill, IsInfo };
|
|
auto registerHandler = [&](int Signal, SignalKind Kind) {
|
|
unsigned Index = NumRegisteredSignals.load();
|
|
assert(Index < array_lengthof(RegisteredSignalInfo) &&
|
|
"Out of space for signal handlers!");
|
|
|
|
struct sigaction NewHandler;
|
|
|
|
switch (Kind) {
|
|
case SignalKind::IsKill:
|
|
NewHandler.sa_handler = SignalHandler;
|
|
NewHandler.sa_flags = SA_NODEFER | SA_RESETHAND | SA_ONSTACK;
|
|
break;
|
|
case SignalKind::IsInfo:
|
|
NewHandler.sa_handler = InfoSignalHandler;
|
|
NewHandler.sa_flags = SA_ONSTACK;
|
|
break;
|
|
}
|
|
sigemptyset(&NewHandler.sa_mask);
|
|
|
|
// Install the new handler, save the old one in RegisteredSignalInfo.
|
|
sigaction(Signal, &NewHandler, &RegisteredSignalInfo[Index].SA);
|
|
RegisteredSignalInfo[Index].SigNo = Signal;
|
|
++NumRegisteredSignals;
|
|
};
|
|
|
|
for (auto S : IntSigs)
|
|
registerHandler(S, SignalKind::IsKill);
|
|
for (auto S : KillSigs)
|
|
registerHandler(S, SignalKind::IsKill);
|
|
if (OneShotPipeSignalFunction)
|
|
registerHandler(SIGPIPE, SignalKind::IsKill);
|
|
for (auto S : InfoSigs)
|
|
registerHandler(S, SignalKind::IsInfo);
|
|
}
|
|
|
|
void sys::unregisterHandlers() {
|
|
// Restore all of the signal handlers to how they were before we showed up.
|
|
for (unsigned i = 0, e = NumRegisteredSignals.load(); i != e; ++i) {
|
|
sigaction(RegisteredSignalInfo[i].SigNo,
|
|
&RegisteredSignalInfo[i].SA, nullptr);
|
|
--NumRegisteredSignals;
|
|
}
|
|
}
|
|
|
|
/// Process the FilesToRemove list.
|
|
static void RemoveFilesToRemove() {
|
|
FileToRemoveList::removeAllFiles(FilesToRemove);
|
|
}
|
|
|
|
void sys::CleanupOnSignal(uintptr_t Context) {
|
|
int Sig = (int)Context;
|
|
|
|
if (llvm::is_contained(InfoSigs, Sig)) {
|
|
InfoSignalHandler(Sig);
|
|
return;
|
|
}
|
|
|
|
RemoveFilesToRemove();
|
|
|
|
if (llvm::is_contained(IntSigs, Sig) || Sig == SIGPIPE)
|
|
return;
|
|
|
|
llvm::sys::RunSignalHandlers();
|
|
}
|
|
|
|
// The signal handler that runs.
|
|
static RETSIGTYPE SignalHandler(int Sig) {
|
|
// Restore the signal behavior to default, so that the program actually
|
|
// crashes when we return and the signal reissues. This also ensures that if
|
|
// we crash in our signal handler that the program will terminate immediately
|
|
// instead of recursing in the signal handler.
|
|
sys::unregisterHandlers();
|
|
|
|
// Unmask all potentially blocked kill signals.
|
|
sigset_t SigMask;
|
|
sigfillset(&SigMask);
|
|
sigprocmask(SIG_UNBLOCK, &SigMask, nullptr);
|
|
|
|
{
|
|
RemoveFilesToRemove();
|
|
|
|
if (Sig == SIGPIPE)
|
|
if (auto OldOneShotPipeFunction =
|
|
OneShotPipeSignalFunction.exchange(nullptr))
|
|
return OldOneShotPipeFunction();
|
|
|
|
bool IsIntSig = llvm::is_contained(IntSigs, Sig);
|
|
if (IsIntSig)
|
|
if (auto OldInterruptFunction = InterruptFunction.exchange(nullptr))
|
|
return OldInterruptFunction();
|
|
|
|
if (Sig == SIGPIPE || IsIntSig) {
|
|
raise(Sig); // Execute the default handler.
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Otherwise if it is a fault (like SEGV) run any handler.
|
|
llvm::sys::RunSignalHandlers();
|
|
|
|
#ifdef __s390__
|
|
// On S/390, certain signals are delivered with PSW Address pointing to
|
|
// *after* the faulting instruction. Simply returning from the signal
|
|
// handler would continue execution after that point, instead of
|
|
// re-raising the signal. Raise the signal manually in those cases.
|
|
if (Sig == SIGILL || Sig == SIGFPE || Sig == SIGTRAP)
|
|
raise(Sig);
|
|
#endif
|
|
}
|
|
|
|
static RETSIGTYPE InfoSignalHandler(int Sig) {
|
|
SaveAndRestore<int> SaveErrnoDuringASignalHandler(errno);
|
|
if (SignalHandlerFunctionType CurrentInfoFunction = InfoSignalFunction)
|
|
CurrentInfoFunction();
|
|
}
|
|
|
|
void llvm::sys::RunInterruptHandlers() {
|
|
RemoveFilesToRemove();
|
|
}
|
|
|
|
void llvm::sys::SetInterruptFunction(void (*IF)()) {
|
|
InterruptFunction.exchange(IF);
|
|
RegisterHandlers();
|
|
}
|
|
|
|
void llvm::sys::SetInfoSignalFunction(void (*Handler)()) {
|
|
InfoSignalFunction.exchange(Handler);
|
|
RegisterHandlers();
|
|
}
|
|
|
|
void llvm::sys::SetOneShotPipeSignalFunction(void (*Handler)()) {
|
|
OneShotPipeSignalFunction.exchange(Handler);
|
|
RegisterHandlers();
|
|
}
|
|
|
|
void llvm::sys::DefaultOneShotPipeSignalHandler() {
|
|
// Send a special return code that drivers can check for, from sysexits.h.
|
|
exit(EX_IOERR);
|
|
}
|
|
|
|
// The public API
|
|
bool llvm::sys::RemoveFileOnSignal(StringRef Filename,
|
|
std::string* ErrMsg) {
|
|
// Ensure that cleanup will occur as soon as one file is added.
|
|
static ManagedStatic<FilesToRemoveCleanup> FilesToRemoveCleanup;
|
|
*FilesToRemoveCleanup;
|
|
FileToRemoveList::insert(FilesToRemove, Filename.str());
|
|
RegisterHandlers();
|
|
return false;
|
|
}
|
|
|
|
// The public API
|
|
void llvm::sys::DontRemoveFileOnSignal(StringRef Filename) {
|
|
FileToRemoveList::erase(FilesToRemove, Filename.str());
|
|
}
|
|
|
|
/// Add a function to be called when a signal is delivered to the process. The
|
|
/// handler can have a cookie passed to it to identify what instance of the
|
|
/// handler it is.
|
|
void llvm::sys::AddSignalHandler(sys::SignalHandlerCallback FnPtr,
|
|
void *Cookie) { // Signal-safe.
|
|
insertSignalHandler(FnPtr, Cookie);
|
|
RegisterHandlers();
|
|
}
|
|
|
|
#if defined(HAVE_BACKTRACE) && ENABLE_BACKTRACES && HAVE_LINK_H && \
|
|
(defined(__linux__) || defined(__FreeBSD__) || \
|
|
defined(__FreeBSD_kernel__) || defined(__NetBSD__))
|
|
struct DlIteratePhdrData {
|
|
void **StackTrace;
|
|
int depth;
|
|
bool first;
|
|
const char **modules;
|
|
intptr_t *offsets;
|
|
const char *main_exec_name;
|
|
};
|
|
|
|
static int dl_iterate_phdr_cb(dl_phdr_info *info, size_t size, void *arg) {
|
|
DlIteratePhdrData *data = (DlIteratePhdrData*)arg;
|
|
const char *name = data->first ? data->main_exec_name : info->dlpi_name;
|
|
data->first = false;
|
|
for (int i = 0; i < info->dlpi_phnum; i++) {
|
|
const auto *phdr = &info->dlpi_phdr[i];
|
|
if (phdr->p_type != PT_LOAD)
|
|
continue;
|
|
intptr_t beg = info->dlpi_addr + phdr->p_vaddr;
|
|
intptr_t end = beg + phdr->p_memsz;
|
|
for (int j = 0; j < data->depth; j++) {
|
|
if (data->modules[j])
|
|
continue;
|
|
intptr_t addr = (intptr_t)data->StackTrace[j];
|
|
if (beg <= addr && addr < end) {
|
|
data->modules[j] = name;
|
|
data->offsets[j] = addr - info->dlpi_addr;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/// If this is an ELF platform, we can find all loaded modules and their virtual
|
|
/// addresses with dl_iterate_phdr.
|
|
static bool findModulesAndOffsets(void **StackTrace, int Depth,
|
|
const char **Modules, intptr_t *Offsets,
|
|
const char *MainExecutableName,
|
|
StringSaver &StrPool) {
|
|
DlIteratePhdrData data = {StackTrace, Depth, true,
|
|
Modules, Offsets, MainExecutableName};
|
|
dl_iterate_phdr(dl_iterate_phdr_cb, &data);
|
|
return true;
|
|
}
|
|
#else
|
|
/// This platform does not have dl_iterate_phdr, so we do not yet know how to
|
|
/// find all loaded DSOs.
|
|
static bool findModulesAndOffsets(void **StackTrace, int Depth,
|
|
const char **Modules, intptr_t *Offsets,
|
|
const char *MainExecutableName,
|
|
StringSaver &StrPool) {
|
|
return false;
|
|
}
|
|
#endif // defined(HAVE_BACKTRACE) && ENABLE_BACKTRACES && ...
|
|
|
|
#if ENABLE_BACKTRACES && defined(HAVE__UNWIND_BACKTRACE)
|
|
static int unwindBacktrace(void **StackTrace, int MaxEntries) {
|
|
if (MaxEntries < 0)
|
|
return 0;
|
|
|
|
// Skip the first frame ('unwindBacktrace' itself).
|
|
int Entries = -1;
|
|
|
|
auto HandleFrame = [&](_Unwind_Context *Context) -> _Unwind_Reason_Code {
|
|
// Apparently we need to detect reaching the end of the stack ourselves.
|
|
void *IP = (void *)_Unwind_GetIP(Context);
|
|
if (!IP)
|
|
return _URC_END_OF_STACK;
|
|
|
|
assert(Entries < MaxEntries && "recursively called after END_OF_STACK?");
|
|
if (Entries >= 0)
|
|
StackTrace[Entries] = IP;
|
|
|
|
if (++Entries == MaxEntries)
|
|
return _URC_END_OF_STACK;
|
|
return _URC_NO_REASON;
|
|
};
|
|
|
|
_Unwind_Backtrace(
|
|
[](_Unwind_Context *Context, void *Handler) {
|
|
return (*static_cast<decltype(HandleFrame) *>(Handler))(Context);
|
|
},
|
|
static_cast<void *>(&HandleFrame));
|
|
return std::max(Entries, 0);
|
|
}
|
|
#endif
|
|
|
|
// In the case of a program crash or fault, print out a stack trace so that the
|
|
// user has an indication of why and where we died.
|
|
//
|
|
// On glibc systems we have the 'backtrace' function, which works nicely, but
|
|
// doesn't demangle symbols.
|
|
void llvm::sys::PrintStackTrace(raw_ostream &OS, int Depth) {
|
|
#if ENABLE_BACKTRACES
|
|
static void *StackTrace[256];
|
|
int depth = 0;
|
|
#if defined(HAVE_BACKTRACE)
|
|
// Use backtrace() to output a backtrace on Linux systems with glibc.
|
|
if (!depth)
|
|
depth = backtrace(StackTrace, static_cast<int>(array_lengthof(StackTrace)));
|
|
#endif
|
|
#if defined(HAVE__UNWIND_BACKTRACE)
|
|
// Try _Unwind_Backtrace() if backtrace() failed.
|
|
if (!depth)
|
|
depth = unwindBacktrace(StackTrace,
|
|
static_cast<int>(array_lengthof(StackTrace)));
|
|
#endif
|
|
if (!depth)
|
|
return;
|
|
// If "Depth" is not provided by the caller, use the return value of
|
|
// backtrace() for printing a symbolized stack trace.
|
|
if (!Depth)
|
|
Depth = depth;
|
|
if (printSymbolizedStackTrace(Argv0, StackTrace, Depth, OS))
|
|
return;
|
|
OS << "Stack dump without symbol names (ensure you have llvm-symbolizer in "
|
|
"your PATH or set the environment var `LLVM_SYMBOLIZER_PATH` to point "
|
|
"to it):\n";
|
|
#if HAVE_DLFCN_H && HAVE_DLADDR
|
|
int width = 0;
|
|
for (int i = 0; i < depth; ++i) {
|
|
Dl_info dlinfo;
|
|
dladdr(StackTrace[i], &dlinfo);
|
|
const char* name = strrchr(dlinfo.dli_fname, '/');
|
|
|
|
int nwidth;
|
|
if (!name) nwidth = strlen(dlinfo.dli_fname);
|
|
else nwidth = strlen(name) - 1;
|
|
|
|
if (nwidth > width) width = nwidth;
|
|
}
|
|
|
|
for (int i = 0; i < depth; ++i) {
|
|
Dl_info dlinfo;
|
|
dladdr(StackTrace[i], &dlinfo);
|
|
|
|
OS << format("%-2d", i);
|
|
|
|
const char* name = strrchr(dlinfo.dli_fname, '/');
|
|
if (!name) OS << format(" %-*s", width, dlinfo.dli_fname);
|
|
else OS << format(" %-*s", width, name+1);
|
|
|
|
OS << format(" %#0*lx", (int)(sizeof(void*) * 2) + 2,
|
|
(unsigned long)StackTrace[i]);
|
|
|
|
if (dlinfo.dli_sname != nullptr) {
|
|
OS << ' ';
|
|
int res;
|
|
char* d = itaniumDemangle(dlinfo.dli_sname, nullptr, nullptr, &res);
|
|
if (!d) OS << dlinfo.dli_sname;
|
|
else OS << d;
|
|
free(d);
|
|
|
|
OS << format(" + %tu", (static_cast<const char*>(StackTrace[i])-
|
|
static_cast<const char*>(dlinfo.dli_saddr)));
|
|
}
|
|
OS << '\n';
|
|
}
|
|
#elif defined(HAVE_BACKTRACE)
|
|
backtrace_symbols_fd(StackTrace, Depth, STDERR_FILENO);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
static void PrintStackTraceSignalHandler(void *) {
|
|
sys::PrintStackTrace(llvm::errs());
|
|
}
|
|
|
|
void llvm::sys::DisableSystemDialogsOnCrash() {}
|
|
|
|
/// When an error signal (such as SIGABRT or SIGSEGV) is delivered to the
|
|
/// process, print a stack trace and then exit.
|
|
void llvm::sys::PrintStackTraceOnErrorSignal(StringRef Argv0,
|
|
bool DisableCrashReporting) {
|
|
::Argv0 = Argv0;
|
|
|
|
AddSignalHandler(PrintStackTraceSignalHandler, nullptr);
|
|
|
|
#if defined(__APPLE__) && ENABLE_CRASH_OVERRIDES
|
|
// Environment variable to disable any kind of crash dialog.
|
|
if (DisableCrashReporting || getenv("LLVM_DISABLE_CRASH_REPORT")) {
|
|
mach_port_t self = mach_task_self();
|
|
|
|
exception_mask_t mask = EXC_MASK_CRASH;
|
|
|
|
kern_return_t ret = task_set_exception_ports(self,
|
|
mask,
|
|
MACH_PORT_NULL,
|
|
EXCEPTION_STATE_IDENTITY | MACH_EXCEPTION_CODES,
|
|
THREAD_STATE_NONE);
|
|
(void)ret;
|
|
}
|
|
#endif
|
|
}
|