forked from OSchip/llvm-project
902 lines
32 KiB
C++
902 lines
32 KiB
C++
//===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This contains code to emit Decl nodes as LLVM code.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CGDebugInfo.h"
|
|
#include "CodeGenFunction.h"
|
|
#include "CodeGenModule.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/CharUnits.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "clang/Frontend/CodeGenOptions.h"
|
|
#include "llvm/GlobalVariable.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Type.h"
|
|
using namespace clang;
|
|
using namespace CodeGen;
|
|
|
|
|
|
void CodeGenFunction::EmitDecl(const Decl &D) {
|
|
switch (D.getKind()) {
|
|
case Decl::TranslationUnit:
|
|
case Decl::Namespace:
|
|
case Decl::UnresolvedUsingTypename:
|
|
case Decl::ClassTemplateSpecialization:
|
|
case Decl::ClassTemplatePartialSpecialization:
|
|
case Decl::TemplateTypeParm:
|
|
case Decl::UnresolvedUsingValue:
|
|
case Decl::NonTypeTemplateParm:
|
|
case Decl::CXXMethod:
|
|
case Decl::CXXConstructor:
|
|
case Decl::CXXDestructor:
|
|
case Decl::CXXConversion:
|
|
case Decl::Field:
|
|
case Decl::IndirectField:
|
|
case Decl::ObjCIvar:
|
|
case Decl::ObjCAtDefsField:
|
|
case Decl::ParmVar:
|
|
case Decl::ImplicitParam:
|
|
case Decl::ClassTemplate:
|
|
case Decl::FunctionTemplate:
|
|
case Decl::TypeAliasTemplate:
|
|
case Decl::TemplateTemplateParm:
|
|
case Decl::ObjCMethod:
|
|
case Decl::ObjCCategory:
|
|
case Decl::ObjCProtocol:
|
|
case Decl::ObjCInterface:
|
|
case Decl::ObjCCategoryImpl:
|
|
case Decl::ObjCImplementation:
|
|
case Decl::ObjCProperty:
|
|
case Decl::ObjCCompatibleAlias:
|
|
case Decl::AccessSpec:
|
|
case Decl::LinkageSpec:
|
|
case Decl::ObjCPropertyImpl:
|
|
case Decl::ObjCClass:
|
|
case Decl::ObjCForwardProtocol:
|
|
case Decl::FileScopeAsm:
|
|
case Decl::Friend:
|
|
case Decl::FriendTemplate:
|
|
case Decl::Block:
|
|
assert(0 && "Declaration should not be in declstmts!");
|
|
case Decl::Function: // void X();
|
|
case Decl::Record: // struct/union/class X;
|
|
case Decl::Enum: // enum X;
|
|
case Decl::EnumConstant: // enum ? { X = ? }
|
|
case Decl::CXXRecord: // struct/union/class X; [C++]
|
|
case Decl::Using: // using X; [C++]
|
|
case Decl::UsingShadow:
|
|
case Decl::UsingDirective: // using namespace X; [C++]
|
|
case Decl::NamespaceAlias:
|
|
case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
|
|
case Decl::Label: // __label__ x;
|
|
// None of these decls require codegen support.
|
|
return;
|
|
|
|
case Decl::Var: {
|
|
const VarDecl &VD = cast<VarDecl>(D);
|
|
assert(VD.isLocalVarDecl() &&
|
|
"Should not see file-scope variables inside a function!");
|
|
return EmitVarDecl(VD);
|
|
}
|
|
|
|
case Decl::Typedef: // typedef int X;
|
|
case Decl::TypeAlias: { // using X = int; [C++0x]
|
|
const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
|
|
QualType Ty = TD.getUnderlyingType();
|
|
|
|
if (Ty->isVariablyModifiedType())
|
|
EmitVLASize(Ty);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// EmitVarDecl - This method handles emission of any variable declaration
|
|
/// inside a function, including static vars etc.
|
|
void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
|
|
switch (D.getStorageClass()) {
|
|
case SC_None:
|
|
case SC_Auto:
|
|
case SC_Register:
|
|
return EmitAutoVarDecl(D);
|
|
case SC_Static: {
|
|
llvm::GlobalValue::LinkageTypes Linkage =
|
|
llvm::GlobalValue::InternalLinkage;
|
|
|
|
// If the function definition has some sort of weak linkage, its
|
|
// static variables should also be weak so that they get properly
|
|
// uniqued. We can't do this in C, though, because there's no
|
|
// standard way to agree on which variables are the same (i.e.
|
|
// there's no mangling).
|
|
if (getContext().getLangOptions().CPlusPlus)
|
|
if (llvm::GlobalValue::isWeakForLinker(CurFn->getLinkage()))
|
|
Linkage = CurFn->getLinkage();
|
|
|
|
return EmitStaticVarDecl(D, Linkage);
|
|
}
|
|
case SC_Extern:
|
|
case SC_PrivateExtern:
|
|
// Don't emit it now, allow it to be emitted lazily on its first use.
|
|
return;
|
|
}
|
|
|
|
assert(0 && "Unknown storage class");
|
|
}
|
|
|
|
static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D,
|
|
const char *Separator) {
|
|
CodeGenModule &CGM = CGF.CGM;
|
|
if (CGF.getContext().getLangOptions().CPlusPlus) {
|
|
llvm::StringRef Name = CGM.getMangledName(&D);
|
|
return Name.str();
|
|
}
|
|
|
|
std::string ContextName;
|
|
if (!CGF.CurFuncDecl) {
|
|
// Better be in a block declared in global scope.
|
|
const NamedDecl *ND = cast<NamedDecl>(&D);
|
|
const DeclContext *DC = ND->getDeclContext();
|
|
if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
|
|
MangleBuffer Name;
|
|
CGM.getBlockMangledName(GlobalDecl(), Name, BD);
|
|
ContextName = Name.getString();
|
|
}
|
|
else
|
|
assert(0 && "Unknown context for block static var decl");
|
|
} else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl)) {
|
|
llvm::StringRef Name = CGM.getMangledName(FD);
|
|
ContextName = Name.str();
|
|
} else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl))
|
|
ContextName = CGF.CurFn->getName();
|
|
else
|
|
assert(0 && "Unknown context for static var decl");
|
|
|
|
return ContextName + Separator + D.getNameAsString();
|
|
}
|
|
|
|
llvm::GlobalVariable *
|
|
CodeGenFunction::CreateStaticVarDecl(const VarDecl &D,
|
|
const char *Separator,
|
|
llvm::GlobalValue::LinkageTypes Linkage) {
|
|
QualType Ty = D.getType();
|
|
assert(Ty->isConstantSizeType() && "VLAs can't be static");
|
|
|
|
std::string Name = GetStaticDeclName(*this, D, Separator);
|
|
|
|
const llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty);
|
|
llvm::GlobalVariable *GV =
|
|
new llvm::GlobalVariable(CGM.getModule(), LTy,
|
|
Ty.isConstant(getContext()), Linkage,
|
|
CGM.EmitNullConstant(D.getType()), Name, 0,
|
|
D.isThreadSpecified(),
|
|
CGM.getContext().getTargetAddressSpace(Ty));
|
|
GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
|
|
if (Linkage != llvm::GlobalValue::InternalLinkage)
|
|
GV->setVisibility(CurFn->getVisibility());
|
|
return GV;
|
|
}
|
|
|
|
/// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
|
|
/// global variable that has already been created for it. If the initializer
|
|
/// has a different type than GV does, this may free GV and return a different
|
|
/// one. Otherwise it just returns GV.
|
|
llvm::GlobalVariable *
|
|
CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
|
|
llvm::GlobalVariable *GV) {
|
|
llvm::Constant *Init = CGM.EmitConstantExpr(D.getInit(), D.getType(), this);
|
|
|
|
// If constant emission failed, then this should be a C++ static
|
|
// initializer.
|
|
if (!Init) {
|
|
if (!getContext().getLangOptions().CPlusPlus)
|
|
CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
|
|
else if (Builder.GetInsertBlock()) {
|
|
// Since we have a static initializer, this global variable can't
|
|
// be constant.
|
|
GV->setConstant(false);
|
|
|
|
EmitCXXGuardedInit(D, GV);
|
|
}
|
|
return GV;
|
|
}
|
|
|
|
// The initializer may differ in type from the global. Rewrite
|
|
// the global to match the initializer. (We have to do this
|
|
// because some types, like unions, can't be completely represented
|
|
// in the LLVM type system.)
|
|
if (GV->getType()->getElementType() != Init->getType()) {
|
|
llvm::GlobalVariable *OldGV = GV;
|
|
|
|
GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
|
|
OldGV->isConstant(),
|
|
OldGV->getLinkage(), Init, "",
|
|
/*InsertBefore*/ OldGV,
|
|
D.isThreadSpecified(),
|
|
CGM.getContext().getTargetAddressSpace(D.getType()));
|
|
GV->setVisibility(OldGV->getVisibility());
|
|
|
|
// Steal the name of the old global
|
|
GV->takeName(OldGV);
|
|
|
|
// Replace all uses of the old global with the new global
|
|
llvm::Constant *NewPtrForOldDecl =
|
|
llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
|
|
OldGV->replaceAllUsesWith(NewPtrForOldDecl);
|
|
|
|
// Erase the old global, since it is no longer used.
|
|
OldGV->eraseFromParent();
|
|
}
|
|
|
|
GV->setInitializer(Init);
|
|
return GV;
|
|
}
|
|
|
|
void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
|
|
llvm::GlobalValue::LinkageTypes Linkage) {
|
|
llvm::Value *&DMEntry = LocalDeclMap[&D];
|
|
assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
|
|
|
|
llvm::GlobalVariable *GV = CreateStaticVarDecl(D, ".", Linkage);
|
|
|
|
// Store into LocalDeclMap before generating initializer to handle
|
|
// circular references.
|
|
DMEntry = GV;
|
|
|
|
// We can't have a VLA here, but we can have a pointer to a VLA,
|
|
// even though that doesn't really make any sense.
|
|
// Make sure to evaluate VLA bounds now so that we have them for later.
|
|
if (D.getType()->isVariablyModifiedType())
|
|
EmitVLASize(D.getType());
|
|
|
|
// Local static block variables must be treated as globals as they may be
|
|
// referenced in their RHS initializer block-literal expresion.
|
|
CGM.setStaticLocalDeclAddress(&D, GV);
|
|
|
|
// If this value has an initializer, emit it.
|
|
if (D.getInit())
|
|
GV = AddInitializerToStaticVarDecl(D, GV);
|
|
|
|
GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
|
|
|
|
// FIXME: Merge attribute handling.
|
|
if (const AnnotateAttr *AA = D.getAttr<AnnotateAttr>()) {
|
|
SourceManager &SM = CGM.getContext().getSourceManager();
|
|
llvm::Constant *Ann =
|
|
CGM.EmitAnnotateAttr(GV, AA,
|
|
SM.getInstantiationLineNumber(D.getLocation()));
|
|
CGM.AddAnnotation(Ann);
|
|
}
|
|
|
|
if (const SectionAttr *SA = D.getAttr<SectionAttr>())
|
|
GV->setSection(SA->getName());
|
|
|
|
if (D.hasAttr<UsedAttr>())
|
|
CGM.AddUsedGlobal(GV);
|
|
|
|
// We may have to cast the constant because of the initializer
|
|
// mismatch above.
|
|
//
|
|
// FIXME: It is really dangerous to store this in the map; if anyone
|
|
// RAUW's the GV uses of this constant will be invalid.
|
|
const llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(D.getType());
|
|
const llvm::Type *LPtrTy =
|
|
LTy->getPointerTo(CGM.getContext().getTargetAddressSpace(D.getType()));
|
|
DMEntry = llvm::ConstantExpr::getBitCast(GV, LPtrTy);
|
|
|
|
// Emit global variable debug descriptor for static vars.
|
|
CGDebugInfo *DI = getDebugInfo();
|
|
if (DI) {
|
|
DI->setLocation(D.getLocation());
|
|
DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(GV), &D);
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
struct CallArrayDtor : EHScopeStack::Cleanup {
|
|
CallArrayDtor(const CXXDestructorDecl *Dtor,
|
|
const ConstantArrayType *Type,
|
|
llvm::Value *Loc)
|
|
: Dtor(Dtor), Type(Type), Loc(Loc) {}
|
|
|
|
const CXXDestructorDecl *Dtor;
|
|
const ConstantArrayType *Type;
|
|
llvm::Value *Loc;
|
|
|
|
void Emit(CodeGenFunction &CGF, bool IsForEH) {
|
|
QualType BaseElementTy = CGF.getContext().getBaseElementType(Type);
|
|
const llvm::Type *BasePtr = CGF.ConvertType(BaseElementTy);
|
|
BasePtr = llvm::PointerType::getUnqual(BasePtr);
|
|
llvm::Value *BaseAddrPtr = CGF.Builder.CreateBitCast(Loc, BasePtr);
|
|
CGF.EmitCXXAggrDestructorCall(Dtor, Type, BaseAddrPtr);
|
|
}
|
|
};
|
|
|
|
struct CallVarDtor : EHScopeStack::Cleanup {
|
|
CallVarDtor(const CXXDestructorDecl *Dtor,
|
|
llvm::Value *NRVOFlag,
|
|
llvm::Value *Loc)
|
|
: Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(Loc) {}
|
|
|
|
const CXXDestructorDecl *Dtor;
|
|
llvm::Value *NRVOFlag;
|
|
llvm::Value *Loc;
|
|
|
|
void Emit(CodeGenFunction &CGF, bool IsForEH) {
|
|
// Along the exceptions path we always execute the dtor.
|
|
bool NRVO = !IsForEH && NRVOFlag;
|
|
|
|
llvm::BasicBlock *SkipDtorBB = 0;
|
|
if (NRVO) {
|
|
// If we exited via NRVO, we skip the destructor call.
|
|
llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
|
|
SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
|
|
llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val");
|
|
CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
|
|
CGF.EmitBlock(RunDtorBB);
|
|
}
|
|
|
|
CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
|
|
/*ForVirtualBase=*/false, Loc);
|
|
|
|
if (NRVO) CGF.EmitBlock(SkipDtorBB);
|
|
}
|
|
};
|
|
}
|
|
|
|
namespace {
|
|
struct CallStackRestore : EHScopeStack::Cleanup {
|
|
llvm::Value *Stack;
|
|
CallStackRestore(llvm::Value *Stack) : Stack(Stack) {}
|
|
void Emit(CodeGenFunction &CGF, bool IsForEH) {
|
|
llvm::Value *V = CGF.Builder.CreateLoad(Stack, "tmp");
|
|
llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
|
|
CGF.Builder.CreateCall(F, V);
|
|
}
|
|
};
|
|
|
|
struct CallCleanupFunction : EHScopeStack::Cleanup {
|
|
llvm::Constant *CleanupFn;
|
|
const CGFunctionInfo &FnInfo;
|
|
const VarDecl &Var;
|
|
|
|
CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
|
|
const VarDecl *Var)
|
|
: CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
|
|
|
|
void Emit(CodeGenFunction &CGF, bool IsForEH) {
|
|
DeclRefExpr DRE(const_cast<VarDecl*>(&Var), Var.getType(), VK_LValue,
|
|
SourceLocation());
|
|
// Compute the address of the local variable, in case it's a byref
|
|
// or something.
|
|
llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress();
|
|
|
|
// In some cases, the type of the function argument will be different from
|
|
// the type of the pointer. An example of this is
|
|
// void f(void* arg);
|
|
// __attribute__((cleanup(f))) void *g;
|
|
//
|
|
// To fix this we insert a bitcast here.
|
|
QualType ArgTy = FnInfo.arg_begin()->type;
|
|
llvm::Value *Arg =
|
|
CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
|
|
|
|
CallArgList Args;
|
|
Args.add(RValue::get(Arg),
|
|
CGF.getContext().getPointerType(Var.getType()));
|
|
CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args);
|
|
}
|
|
};
|
|
}
|
|
|
|
|
|
/// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the
|
|
/// non-zero parts of the specified initializer with equal or fewer than
|
|
/// NumStores scalar stores.
|
|
static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init,
|
|
unsigned &NumStores) {
|
|
// Zero and Undef never requires any extra stores.
|
|
if (isa<llvm::ConstantAggregateZero>(Init) ||
|
|
isa<llvm::ConstantPointerNull>(Init) ||
|
|
isa<llvm::UndefValue>(Init))
|
|
return true;
|
|
if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
|
|
isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
|
|
isa<llvm::ConstantExpr>(Init))
|
|
return Init->isNullValue() || NumStores--;
|
|
|
|
// See if we can emit each element.
|
|
if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
|
|
for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
|
|
llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
|
|
if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Anything else is hard and scary.
|
|
return false;
|
|
}
|
|
|
|
/// emitStoresForInitAfterMemset - For inits that
|
|
/// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar
|
|
/// stores that would be required.
|
|
static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc,
|
|
bool isVolatile, CGBuilderTy &Builder) {
|
|
// Zero doesn't require any stores.
|
|
if (isa<llvm::ConstantAggregateZero>(Init) ||
|
|
isa<llvm::ConstantPointerNull>(Init) ||
|
|
isa<llvm::UndefValue>(Init))
|
|
return;
|
|
|
|
if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
|
|
isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
|
|
isa<llvm::ConstantExpr>(Init)) {
|
|
if (!Init->isNullValue())
|
|
Builder.CreateStore(Init, Loc, isVolatile);
|
|
return;
|
|
}
|
|
|
|
assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
|
|
"Unknown value type!");
|
|
|
|
for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
|
|
llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
|
|
if (Elt->isNullValue()) continue;
|
|
|
|
// Otherwise, get a pointer to the element and emit it.
|
|
emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
|
|
isVolatile, Builder);
|
|
}
|
|
}
|
|
|
|
|
|
/// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset
|
|
/// plus some stores to initialize a local variable instead of using a memcpy
|
|
/// from a constant global. It is beneficial to use memset if the global is all
|
|
/// zeros, or mostly zeros and large.
|
|
static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init,
|
|
uint64_t GlobalSize) {
|
|
// If a global is all zeros, always use a memset.
|
|
if (isa<llvm::ConstantAggregateZero>(Init)) return true;
|
|
|
|
|
|
// If a non-zero global is <= 32 bytes, always use a memcpy. If it is large,
|
|
// do it if it will require 6 or fewer scalar stores.
|
|
// TODO: Should budget depends on the size? Avoiding a large global warrants
|
|
// plopping in more stores.
|
|
unsigned StoreBudget = 6;
|
|
uint64_t SizeLimit = 32;
|
|
|
|
return GlobalSize > SizeLimit &&
|
|
canEmitInitWithFewStoresAfterMemset(Init, StoreBudget);
|
|
}
|
|
|
|
|
|
/// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
|
|
/// variable declaration with auto, register, or no storage class specifier.
|
|
/// These turn into simple stack objects, or GlobalValues depending on target.
|
|
void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
|
|
AutoVarEmission emission = EmitAutoVarAlloca(D);
|
|
EmitAutoVarInit(emission);
|
|
EmitAutoVarCleanups(emission);
|
|
}
|
|
|
|
/// EmitAutoVarAlloca - Emit the alloca and debug information for a
|
|
/// local variable. Does not emit initalization or destruction.
|
|
CodeGenFunction::AutoVarEmission
|
|
CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
|
|
QualType Ty = D.getType();
|
|
|
|
AutoVarEmission emission(D);
|
|
|
|
bool isByRef = D.hasAttr<BlocksAttr>();
|
|
emission.IsByRef = isByRef;
|
|
|
|
CharUnits alignment = getContext().getDeclAlign(&D);
|
|
emission.Alignment = alignment;
|
|
|
|
llvm::Value *DeclPtr;
|
|
if (Ty->isConstantSizeType()) {
|
|
if (!Target.useGlobalsForAutomaticVariables()) {
|
|
bool NRVO = getContext().getLangOptions().ElideConstructors &&
|
|
D.isNRVOVariable();
|
|
|
|
// If this value is a POD array or struct with a statically
|
|
// determinable constant initializer, there are optimizations we
|
|
// can do.
|
|
// TODO: we can potentially constant-evaluate non-POD structs and
|
|
// arrays as long as the initialization is trivial (e.g. if they
|
|
// have a non-trivial destructor, but not a non-trivial constructor).
|
|
if (D.getInit() &&
|
|
(Ty->isArrayType() || Ty->isRecordType()) && Ty->isPODType() &&
|
|
D.getInit()->isConstantInitializer(getContext(), false)) {
|
|
|
|
// If the variable's a const type, and it's neither an NRVO
|
|
// candidate nor a __block variable, emit it as a global instead.
|
|
if (CGM.getCodeGenOpts().MergeAllConstants && Ty.isConstQualified() &&
|
|
!NRVO && !isByRef) {
|
|
EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
|
|
|
|
emission.Address = 0; // signal this condition to later callbacks
|
|
assert(emission.wasEmittedAsGlobal());
|
|
return emission;
|
|
}
|
|
|
|
// Otherwise, tell the initialization code that we're in this case.
|
|
emission.IsConstantAggregate = true;
|
|
}
|
|
|
|
// A normal fixed sized variable becomes an alloca in the entry block,
|
|
// unless it's an NRVO variable.
|
|
const llvm::Type *LTy = ConvertTypeForMem(Ty);
|
|
|
|
if (NRVO) {
|
|
// The named return value optimization: allocate this variable in the
|
|
// return slot, so that we can elide the copy when returning this
|
|
// variable (C++0x [class.copy]p34).
|
|
DeclPtr = ReturnValue;
|
|
|
|
if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
|
|
if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) {
|
|
// Create a flag that is used to indicate when the NRVO was applied
|
|
// to this variable. Set it to zero to indicate that NRVO was not
|
|
// applied.
|
|
llvm::Value *Zero = Builder.getFalse();
|
|
llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo");
|
|
EnsureInsertPoint();
|
|
Builder.CreateStore(Zero, NRVOFlag);
|
|
|
|
// Record the NRVO flag for this variable.
|
|
NRVOFlags[&D] = NRVOFlag;
|
|
emission.NRVOFlag = NRVOFlag;
|
|
}
|
|
}
|
|
} else {
|
|
if (isByRef)
|
|
LTy = BuildByRefType(&D);
|
|
|
|
llvm::AllocaInst *Alloc = CreateTempAlloca(LTy);
|
|
Alloc->setName(D.getNameAsString());
|
|
|
|
CharUnits allocaAlignment = alignment;
|
|
if (isByRef)
|
|
allocaAlignment = std::max(allocaAlignment,
|
|
getContext().toCharUnitsFromBits(Target.getPointerAlign(0)));
|
|
Alloc->setAlignment(allocaAlignment.getQuantity());
|
|
DeclPtr = Alloc;
|
|
}
|
|
} else {
|
|
// Targets that don't support recursion emit locals as globals.
|
|
const char *Class =
|
|
D.getStorageClass() == SC_Register ? ".reg." : ".auto.";
|
|
DeclPtr = CreateStaticVarDecl(D, Class,
|
|
llvm::GlobalValue::InternalLinkage);
|
|
}
|
|
|
|
// FIXME: Can this happen?
|
|
if (Ty->isVariablyModifiedType())
|
|
EmitVLASize(Ty);
|
|
} else {
|
|
EnsureInsertPoint();
|
|
|
|
if (!DidCallStackSave) {
|
|
// Save the stack.
|
|
llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack");
|
|
|
|
llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
|
|
llvm::Value *V = Builder.CreateCall(F);
|
|
|
|
Builder.CreateStore(V, Stack);
|
|
|
|
DidCallStackSave = true;
|
|
|
|
// Push a cleanup block and restore the stack there.
|
|
// FIXME: in general circumstances, this should be an EH cleanup.
|
|
EHStack.pushCleanup<CallStackRestore>(NormalCleanup, Stack);
|
|
}
|
|
|
|
// Get the element type.
|
|
const llvm::Type *LElemTy = ConvertTypeForMem(Ty);
|
|
const llvm::Type *LElemPtrTy =
|
|
LElemTy->getPointerTo(CGM.getContext().getTargetAddressSpace(Ty));
|
|
|
|
llvm::Value *VLASize = EmitVLASize(Ty);
|
|
|
|
// Allocate memory for the array.
|
|
llvm::AllocaInst *VLA =
|
|
Builder.CreateAlloca(llvm::Type::getInt8Ty(getLLVMContext()), VLASize, "vla");
|
|
VLA->setAlignment(alignment.getQuantity());
|
|
|
|
DeclPtr = Builder.CreateBitCast(VLA, LElemPtrTy, "tmp");
|
|
}
|
|
|
|
llvm::Value *&DMEntry = LocalDeclMap[&D];
|
|
assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
|
|
DMEntry = DeclPtr;
|
|
emission.Address = DeclPtr;
|
|
|
|
// Emit debug info for local var declaration.
|
|
if (HaveInsertPoint())
|
|
if (CGDebugInfo *DI = getDebugInfo()) {
|
|
DI->setLocation(D.getLocation());
|
|
if (Target.useGlobalsForAutomaticVariables()) {
|
|
DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(DeclPtr), &D);
|
|
} else
|
|
DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder);
|
|
}
|
|
|
|
return emission;
|
|
}
|
|
|
|
/// Determines whether the given __block variable is potentially
|
|
/// captured by the given expression.
|
|
static bool isCapturedBy(const VarDecl &var, const Expr *e) {
|
|
// Skip the most common kinds of expressions that make
|
|
// hierarchy-walking expensive.
|
|
e = e->IgnoreParenCasts();
|
|
|
|
if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
|
|
const BlockDecl *block = be->getBlockDecl();
|
|
for (BlockDecl::capture_const_iterator i = block->capture_begin(),
|
|
e = block->capture_end(); i != e; ++i) {
|
|
if (i->getVariable() == &var)
|
|
return true;
|
|
}
|
|
|
|
// No need to walk into the subexpressions.
|
|
return false;
|
|
}
|
|
|
|
for (Stmt::const_child_range children = e->children(); children; ++children)
|
|
if (isCapturedBy(var, cast<Expr>(*children)))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
|
|
assert(emission.Variable && "emission was not valid!");
|
|
|
|
// If this was emitted as a global constant, we're done.
|
|
if (emission.wasEmittedAsGlobal()) return;
|
|
|
|
const VarDecl &D = *emission.Variable;
|
|
QualType type = D.getType();
|
|
|
|
// If this local has an initializer, emit it now.
|
|
const Expr *Init = D.getInit();
|
|
|
|
// If we are at an unreachable point, we don't need to emit the initializer
|
|
// unless it contains a label.
|
|
if (!HaveInsertPoint()) {
|
|
if (!Init || !ContainsLabel(Init)) return;
|
|
EnsureInsertPoint();
|
|
}
|
|
|
|
// Initialize the structure of a __block variable.
|
|
if (emission.IsByRef)
|
|
emitByrefStructureInit(emission);
|
|
|
|
if (!Init) return;
|
|
|
|
CharUnits alignment = emission.Alignment;
|
|
|
|
// Check whether this is a byref variable that's potentially
|
|
// captured and moved by its own initializer. If so, we'll need to
|
|
// emit the initializer first, then copy into the variable.
|
|
bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init);
|
|
|
|
llvm::Value *Loc =
|
|
capturedByInit ? emission.Address : emission.getObjectAddress(*this);
|
|
|
|
if (!emission.IsConstantAggregate)
|
|
return EmitExprAsInit(Init, &D, Loc, alignment, capturedByInit);
|
|
|
|
// If this is a simple aggregate initialization, we can optimize it
|
|
// in various ways.
|
|
assert(!capturedByInit && "constant init contains a capturing block?");
|
|
|
|
bool isVolatile = type.isVolatileQualified();
|
|
|
|
llvm::Constant *constant = CGM.EmitConstantExpr(D.getInit(), type, this);
|
|
assert(constant != 0 && "Wasn't a simple constant init?");
|
|
|
|
llvm::Value *SizeVal =
|
|
llvm::ConstantInt::get(IntPtrTy,
|
|
getContext().getTypeSizeInChars(type).getQuantity());
|
|
|
|
const llvm::Type *BP = Int8PtrTy;
|
|
if (Loc->getType() != BP)
|
|
Loc = Builder.CreateBitCast(Loc, BP, "tmp");
|
|
|
|
// If the initializer is all or mostly zeros, codegen with memset then do
|
|
// a few stores afterward.
|
|
if (shouldUseMemSetPlusStoresToInitialize(constant,
|
|
CGM.getTargetData().getTypeAllocSize(constant->getType()))) {
|
|
Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
|
|
alignment.getQuantity(), isVolatile);
|
|
if (!constant->isNullValue()) {
|
|
Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo());
|
|
emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder);
|
|
}
|
|
} else {
|
|
// Otherwise, create a temporary global with the initializer then
|
|
// memcpy from the global to the alloca.
|
|
std::string Name = GetStaticDeclName(*this, D, ".");
|
|
llvm::GlobalVariable *GV =
|
|
new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true,
|
|
llvm::GlobalValue::InternalLinkage,
|
|
constant, Name, 0, false, 0);
|
|
GV->setAlignment(alignment.getQuantity());
|
|
GV->setUnnamedAddr(true);
|
|
|
|
llvm::Value *SrcPtr = GV;
|
|
if (SrcPtr->getType() != BP)
|
|
SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp");
|
|
|
|
Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(),
|
|
isVolatile);
|
|
}
|
|
}
|
|
|
|
/// Emit an expression as an initializer for a variable at the given
|
|
/// location. The expression is not necessarily the normal
|
|
/// initializer for the variable, and the address is not necessarily
|
|
/// its normal location.
|
|
///
|
|
/// \param init the initializing expression
|
|
/// \param var the variable to act as if we're initializing
|
|
/// \param loc the address to initialize; its type is a pointer
|
|
/// to the LLVM mapping of the variable's type
|
|
/// \param alignment the alignment of the address
|
|
/// \param capturedByInit true if the variable is a __block variable
|
|
/// whose address is potentially changed by the initializer
|
|
void CodeGenFunction::EmitExprAsInit(const Expr *init,
|
|
const VarDecl *var,
|
|
llvm::Value *loc,
|
|
CharUnits alignment,
|
|
bool capturedByInit) {
|
|
QualType type = var->getType();
|
|
bool isVolatile = type.isVolatileQualified();
|
|
|
|
if (type->isReferenceType()) {
|
|
RValue RV = EmitReferenceBindingToExpr(init, var);
|
|
if (capturedByInit) loc = BuildBlockByrefAddress(loc, var);
|
|
EmitStoreOfScalar(RV.getScalarVal(), loc, false,
|
|
alignment.getQuantity(), type);
|
|
} else if (!hasAggregateLLVMType(type)) {
|
|
llvm::Value *V = EmitScalarExpr(init);
|
|
if (capturedByInit) loc = BuildBlockByrefAddress(loc, var);
|
|
EmitStoreOfScalar(V, loc, isVolatile, alignment.getQuantity(), type);
|
|
} else if (type->isAnyComplexType()) {
|
|
ComplexPairTy complex = EmitComplexExpr(init);
|
|
if (capturedByInit) loc = BuildBlockByrefAddress(loc, var);
|
|
StoreComplexToAddr(complex, loc, isVolatile);
|
|
} else {
|
|
// TODO: how can we delay here if D is captured by its initializer?
|
|
EmitAggExpr(init, AggValueSlot::forAddr(loc, isVolatile, true, false));
|
|
}
|
|
}
|
|
|
|
void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
|
|
assert(emission.Variable && "emission was not valid!");
|
|
|
|
// If this was emitted as a global constant, we're done.
|
|
if (emission.wasEmittedAsGlobal()) return;
|
|
|
|
const VarDecl &D = *emission.Variable;
|
|
|
|
// Handle C++ destruction of variables.
|
|
if (getLangOptions().CPlusPlus) {
|
|
QualType type = D.getType();
|
|
QualType baseType = getContext().getBaseElementType(type);
|
|
if (const RecordType *RT = baseType->getAs<RecordType>()) {
|
|
CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
|
|
if (!ClassDecl->hasTrivialDestructor()) {
|
|
// Note: We suppress the destructor call when the corresponding NRVO
|
|
// flag has been set.
|
|
|
|
// Note that for __block variables, we want to destroy the
|
|
// original stack object, not the possible forwarded object.
|
|
llvm::Value *Loc = emission.getObjectAddress(*this);
|
|
|
|
const CXXDestructorDecl *D = ClassDecl->getDestructor();
|
|
assert(D && "EmitLocalBlockVarDecl - destructor is nul");
|
|
|
|
if (type != baseType) {
|
|
const ConstantArrayType *Array =
|
|
getContext().getAsConstantArrayType(type);
|
|
assert(Array && "types changed without array?");
|
|
EHStack.pushCleanup<CallArrayDtor>(NormalAndEHCleanup,
|
|
D, Array, Loc);
|
|
} else {
|
|
EHStack.pushCleanup<CallVarDtor>(NormalAndEHCleanup,
|
|
D, emission.NRVOFlag, Loc);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Handle the cleanup attribute.
|
|
if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
|
|
const FunctionDecl *FD = CA->getFunctionDecl();
|
|
|
|
llvm::Constant *F = CGM.GetAddrOfFunction(FD);
|
|
assert(F && "Could not find function!");
|
|
|
|
const CGFunctionInfo &Info = CGM.getTypes().getFunctionInfo(FD);
|
|
EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
|
|
}
|
|
|
|
// If this is a block variable, call _Block_object_destroy
|
|
// (on the unforwarded address).
|
|
if (emission.IsByRef)
|
|
enterByrefCleanup(emission);
|
|
}
|
|
|
|
/// Emit an alloca (or GlobalValue depending on target)
|
|
/// for the specified parameter and set up LocalDeclMap.
|
|
void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg,
|
|
unsigned ArgNo) {
|
|
// FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
|
|
assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
|
|
"Invalid argument to EmitParmDecl");
|
|
|
|
Arg->setName(D.getName());
|
|
|
|
// Use better IR generation for certain implicit parameters.
|
|
if (isa<ImplicitParamDecl>(D)) {
|
|
// The only implicit argument a block has is its literal.
|
|
if (BlockInfo) {
|
|
LocalDeclMap[&D] = Arg;
|
|
|
|
if (CGDebugInfo *DI = getDebugInfo()) {
|
|
DI->setLocation(D.getLocation());
|
|
DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, Builder);
|
|
}
|
|
|
|
return;
|
|
}
|
|
}
|
|
|
|
QualType Ty = D.getType();
|
|
|
|
llvm::Value *DeclPtr;
|
|
// If this is an aggregate or variable sized value, reuse the input pointer.
|
|
if (!Ty->isConstantSizeType() ||
|
|
CodeGenFunction::hasAggregateLLVMType(Ty)) {
|
|
DeclPtr = Arg;
|
|
} else {
|
|
// Otherwise, create a temporary to hold the value.
|
|
DeclPtr = CreateMemTemp(Ty, D.getName() + ".addr");
|
|
|
|
// Store the initial value into the alloca.
|
|
EmitStoreOfScalar(Arg, DeclPtr, Ty.isVolatileQualified(),
|
|
getContext().getDeclAlign(&D).getQuantity(), Ty,
|
|
CGM.getTBAAInfo(Ty));
|
|
}
|
|
|
|
llvm::Value *&DMEntry = LocalDeclMap[&D];
|
|
assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
|
|
DMEntry = DeclPtr;
|
|
|
|
// Emit debug info for param declaration.
|
|
if (CGDebugInfo *DI = getDebugInfo()) {
|
|
DI->setLocation(D.getLocation());
|
|
DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder);
|
|
}
|
|
}
|