forked from OSchip/llvm-project
905 lines
35 KiB
C++
905 lines
35 KiB
C++
//===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements C++ semantic analysis for scope specifiers.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Sema/SemaInternal.h"
|
|
#include "clang/Sema/Lookup.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/NestedNameSpecifier.h"
|
|
#include "clang/Basic/PartialDiagnostic.h"
|
|
#include "clang/Sema/DeclSpec.h"
|
|
#include "TypeLocBuilder.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
using namespace clang;
|
|
|
|
/// \brief Find the current instantiation that associated with the given type.
|
|
static CXXRecordDecl *getCurrentInstantiationOf(QualType T,
|
|
DeclContext *CurContext) {
|
|
if (T.isNull())
|
|
return 0;
|
|
|
|
const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
|
|
if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
|
|
CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
|
|
if (!T->isDependentType())
|
|
return Record;
|
|
|
|
// This may be a member of a class template or class template partial
|
|
// specialization. If it's part of the current semantic context, then it's
|
|
// an injected-class-name;
|
|
for (; !CurContext->isFileContext(); CurContext = CurContext->getParent())
|
|
if (CurContext->Equals(Record))
|
|
return Record;
|
|
|
|
return 0;
|
|
} else if (isa<InjectedClassNameType>(Ty))
|
|
return cast<InjectedClassNameType>(Ty)->getDecl();
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/// \brief Compute the DeclContext that is associated with the given type.
|
|
///
|
|
/// \param T the type for which we are attempting to find a DeclContext.
|
|
///
|
|
/// \returns the declaration context represented by the type T,
|
|
/// or NULL if the declaration context cannot be computed (e.g., because it is
|
|
/// dependent and not the current instantiation).
|
|
DeclContext *Sema::computeDeclContext(QualType T) {
|
|
if (!T->isDependentType())
|
|
if (const TagType *Tag = T->getAs<TagType>())
|
|
return Tag->getDecl();
|
|
|
|
return ::getCurrentInstantiationOf(T, CurContext);
|
|
}
|
|
|
|
/// \brief Compute the DeclContext that is associated with the given
|
|
/// scope specifier.
|
|
///
|
|
/// \param SS the C++ scope specifier as it appears in the source
|
|
///
|
|
/// \param EnteringContext when true, we will be entering the context of
|
|
/// this scope specifier, so we can retrieve the declaration context of a
|
|
/// class template or class template partial specialization even if it is
|
|
/// not the current instantiation.
|
|
///
|
|
/// \returns the declaration context represented by the scope specifier @p SS,
|
|
/// or NULL if the declaration context cannot be computed (e.g., because it is
|
|
/// dependent and not the current instantiation).
|
|
DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
|
|
bool EnteringContext) {
|
|
if (!SS.isSet() || SS.isInvalid())
|
|
return 0;
|
|
|
|
NestedNameSpecifier *NNS
|
|
= static_cast<NestedNameSpecifier *>(SS.getScopeRep());
|
|
if (NNS->isDependent()) {
|
|
// If this nested-name-specifier refers to the current
|
|
// instantiation, return its DeclContext.
|
|
if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
|
|
return Record;
|
|
|
|
if (EnteringContext) {
|
|
const Type *NNSType = NNS->getAsType();
|
|
if (!NNSType) {
|
|
return 0;
|
|
}
|
|
|
|
// Look through type alias templates, per C++0x [temp.dep.type]p1.
|
|
NNSType = Context.getCanonicalType(NNSType);
|
|
if (const TemplateSpecializationType *SpecType
|
|
= NNSType->getAs<TemplateSpecializationType>()) {
|
|
// We are entering the context of the nested name specifier, so try to
|
|
// match the nested name specifier to either a primary class template
|
|
// or a class template partial specialization.
|
|
if (ClassTemplateDecl *ClassTemplate
|
|
= dyn_cast_or_null<ClassTemplateDecl>(
|
|
SpecType->getTemplateName().getAsTemplateDecl())) {
|
|
QualType ContextType
|
|
= Context.getCanonicalType(QualType(SpecType, 0));
|
|
|
|
// If the type of the nested name specifier is the same as the
|
|
// injected class name of the named class template, we're entering
|
|
// into that class template definition.
|
|
QualType Injected
|
|
= ClassTemplate->getInjectedClassNameSpecialization();
|
|
if (Context.hasSameType(Injected, ContextType))
|
|
return ClassTemplate->getTemplatedDecl();
|
|
|
|
// If the type of the nested name specifier is the same as the
|
|
// type of one of the class template's class template partial
|
|
// specializations, we're entering into the definition of that
|
|
// class template partial specialization.
|
|
if (ClassTemplatePartialSpecializationDecl *PartialSpec
|
|
= ClassTemplate->findPartialSpecialization(ContextType))
|
|
return PartialSpec;
|
|
}
|
|
} else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) {
|
|
// The nested name specifier refers to a member of a class template.
|
|
return RecordT->getDecl();
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
switch (NNS->getKind()) {
|
|
case NestedNameSpecifier::Identifier:
|
|
llvm_unreachable("Dependent nested-name-specifier has no DeclContext");
|
|
|
|
case NestedNameSpecifier::Namespace:
|
|
return NNS->getAsNamespace();
|
|
|
|
case NestedNameSpecifier::NamespaceAlias:
|
|
return NNS->getAsNamespaceAlias()->getNamespace();
|
|
|
|
case NestedNameSpecifier::TypeSpec:
|
|
case NestedNameSpecifier::TypeSpecWithTemplate: {
|
|
const TagType *Tag = NNS->getAsType()->getAs<TagType>();
|
|
assert(Tag && "Non-tag type in nested-name-specifier");
|
|
return Tag->getDecl();
|
|
} break;
|
|
|
|
case NestedNameSpecifier::Global:
|
|
return Context.getTranslationUnitDecl();
|
|
}
|
|
|
|
// Required to silence a GCC warning.
|
|
return 0;
|
|
}
|
|
|
|
bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
|
|
if (!SS.isSet() || SS.isInvalid())
|
|
return false;
|
|
|
|
NestedNameSpecifier *NNS
|
|
= static_cast<NestedNameSpecifier *>(SS.getScopeRep());
|
|
return NNS->isDependent();
|
|
}
|
|
|
|
// \brief Determine whether this C++ scope specifier refers to an
|
|
// unknown specialization, i.e., a dependent type that is not the
|
|
// current instantiation.
|
|
bool Sema::isUnknownSpecialization(const CXXScopeSpec &SS) {
|
|
if (!isDependentScopeSpecifier(SS))
|
|
return false;
|
|
|
|
NestedNameSpecifier *NNS
|
|
= static_cast<NestedNameSpecifier *>(SS.getScopeRep());
|
|
return getCurrentInstantiationOf(NNS) == 0;
|
|
}
|
|
|
|
/// \brief If the given nested name specifier refers to the current
|
|
/// instantiation, return the declaration that corresponds to that
|
|
/// current instantiation (C++0x [temp.dep.type]p1).
|
|
///
|
|
/// \param NNS a dependent nested name specifier.
|
|
CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
|
|
assert(getLangOptions().CPlusPlus && "Only callable in C++");
|
|
assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
|
|
|
|
if (!NNS->getAsType())
|
|
return 0;
|
|
|
|
QualType T = QualType(NNS->getAsType(), 0);
|
|
return ::getCurrentInstantiationOf(T, CurContext);
|
|
}
|
|
|
|
/// \brief Require that the context specified by SS be complete.
|
|
///
|
|
/// If SS refers to a type, this routine checks whether the type is
|
|
/// complete enough (or can be made complete enough) for name lookup
|
|
/// into the DeclContext. A type that is not yet completed can be
|
|
/// considered "complete enough" if it is a class/struct/union/enum
|
|
/// that is currently being defined. Or, if we have a type that names
|
|
/// a class template specialization that is not a complete type, we
|
|
/// will attempt to instantiate that class template.
|
|
bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS,
|
|
DeclContext *DC) {
|
|
assert(DC != 0 && "given null context");
|
|
|
|
if (TagDecl *tag = dyn_cast<TagDecl>(DC)) {
|
|
// If this is a dependent type, then we consider it complete.
|
|
if (tag->isDependentContext())
|
|
return false;
|
|
|
|
// If we're currently defining this type, then lookup into the
|
|
// type is okay: don't complain that it isn't complete yet.
|
|
QualType type = Context.getTypeDeclType(tag);
|
|
const TagType *tagType = type->getAs<TagType>();
|
|
if (tagType && tagType->isBeingDefined())
|
|
return false;
|
|
|
|
SourceLocation loc = SS.getLastQualifierNameLoc();
|
|
if (loc.isInvalid()) loc = SS.getRange().getBegin();
|
|
|
|
// The type must be complete.
|
|
if (RequireCompleteType(loc, type,
|
|
PDiag(diag::err_incomplete_nested_name_spec)
|
|
<< SS.getRange())) {
|
|
SS.SetInvalid(SS.getRange());
|
|
return true;
|
|
}
|
|
|
|
// Fixed enum types are complete, but they aren't valid as scopes
|
|
// until we see a definition, so awkwardly pull out this special
|
|
// case.
|
|
if (const EnumType *enumType = dyn_cast_or_null<EnumType>(tagType)) {
|
|
if (!enumType->getDecl()->isCompleteDefinition()) {
|
|
Diag(loc, diag::err_incomplete_nested_name_spec)
|
|
<< type << SS.getRange();
|
|
SS.SetInvalid(SS.getRange());
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Sema::ActOnCXXGlobalScopeSpecifier(Scope *S, SourceLocation CCLoc,
|
|
CXXScopeSpec &SS) {
|
|
SS.MakeGlobal(Context, CCLoc);
|
|
return false;
|
|
}
|
|
|
|
/// \brief Determines whether the given declaration is an valid acceptable
|
|
/// result for name lookup of a nested-name-specifier.
|
|
bool Sema::isAcceptableNestedNameSpecifier(NamedDecl *SD) {
|
|
if (!SD)
|
|
return false;
|
|
|
|
// Namespace and namespace aliases are fine.
|
|
if (isa<NamespaceDecl>(SD) || isa<NamespaceAliasDecl>(SD))
|
|
return true;
|
|
|
|
if (!isa<TypeDecl>(SD))
|
|
return false;
|
|
|
|
// Determine whether we have a class (or, in C++11, an enum) or
|
|
// a typedef thereof. If so, build the nested-name-specifier.
|
|
QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
|
|
if (T->isDependentType())
|
|
return true;
|
|
else if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(SD)) {
|
|
if (TD->getUnderlyingType()->isRecordType() ||
|
|
(Context.getLangOptions().CPlusPlus0x &&
|
|
TD->getUnderlyingType()->isEnumeralType()))
|
|
return true;
|
|
} else if (isa<RecordDecl>(SD) ||
|
|
(Context.getLangOptions().CPlusPlus0x && isa<EnumDecl>(SD)))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// \brief If the given nested-name-specifier begins with a bare identifier
|
|
/// (e.g., Base::), perform name lookup for that identifier as a
|
|
/// nested-name-specifier within the given scope, and return the result of that
|
|
/// name lookup.
|
|
NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
|
|
if (!S || !NNS)
|
|
return 0;
|
|
|
|
while (NNS->getPrefix())
|
|
NNS = NNS->getPrefix();
|
|
|
|
if (NNS->getKind() != NestedNameSpecifier::Identifier)
|
|
return 0;
|
|
|
|
LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
|
|
LookupNestedNameSpecifierName);
|
|
LookupName(Found, S);
|
|
assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
|
|
|
|
if (!Found.isSingleResult())
|
|
return 0;
|
|
|
|
NamedDecl *Result = Found.getFoundDecl();
|
|
if (isAcceptableNestedNameSpecifier(Result))
|
|
return Result;
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool Sema::isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
|
|
SourceLocation IdLoc,
|
|
IdentifierInfo &II,
|
|
ParsedType ObjectTypePtr) {
|
|
QualType ObjectType = GetTypeFromParser(ObjectTypePtr);
|
|
LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName);
|
|
|
|
// Determine where to perform name lookup
|
|
DeclContext *LookupCtx = 0;
|
|
bool isDependent = false;
|
|
if (!ObjectType.isNull()) {
|
|
// This nested-name-specifier occurs in a member access expression, e.g.,
|
|
// x->B::f, and we are looking into the type of the object.
|
|
assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
|
|
LookupCtx = computeDeclContext(ObjectType);
|
|
isDependent = ObjectType->isDependentType();
|
|
} else if (SS.isSet()) {
|
|
// This nested-name-specifier occurs after another nested-name-specifier,
|
|
// so long into the context associated with the prior nested-name-specifier.
|
|
LookupCtx = computeDeclContext(SS, false);
|
|
isDependent = isDependentScopeSpecifier(SS);
|
|
Found.setContextRange(SS.getRange());
|
|
}
|
|
|
|
if (LookupCtx) {
|
|
// Perform "qualified" name lookup into the declaration context we
|
|
// computed, which is either the type of the base of a member access
|
|
// expression or the declaration context associated with a prior
|
|
// nested-name-specifier.
|
|
|
|
// The declaration context must be complete.
|
|
if (!LookupCtx->isDependentContext() &&
|
|
RequireCompleteDeclContext(SS, LookupCtx))
|
|
return false;
|
|
|
|
LookupQualifiedName(Found, LookupCtx);
|
|
} else if (isDependent) {
|
|
return false;
|
|
} else {
|
|
LookupName(Found, S);
|
|
}
|
|
Found.suppressDiagnostics();
|
|
|
|
if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
|
|
return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
|
|
|
|
return false;
|
|
}
|
|
|
|
/// \brief Build a new nested-name-specifier for "identifier::", as described
|
|
/// by ActOnCXXNestedNameSpecifier.
|
|
///
|
|
/// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
|
|
/// that it contains an extra parameter \p ScopeLookupResult, which provides
|
|
/// the result of name lookup within the scope of the nested-name-specifier
|
|
/// that was computed at template definition time.
|
|
///
|
|
/// If ErrorRecoveryLookup is true, then this call is used to improve error
|
|
/// recovery. This means that it should not emit diagnostics, it should
|
|
/// just return true on failure. It also means it should only return a valid
|
|
/// scope if it *knows* that the result is correct. It should not return in a
|
|
/// dependent context, for example. Nor will it extend \p SS with the scope
|
|
/// specifier.
|
|
bool Sema::BuildCXXNestedNameSpecifier(Scope *S,
|
|
IdentifierInfo &Identifier,
|
|
SourceLocation IdentifierLoc,
|
|
SourceLocation CCLoc,
|
|
QualType ObjectType,
|
|
bool EnteringContext,
|
|
CXXScopeSpec &SS,
|
|
NamedDecl *ScopeLookupResult,
|
|
bool ErrorRecoveryLookup) {
|
|
LookupResult Found(*this, &Identifier, IdentifierLoc,
|
|
LookupNestedNameSpecifierName);
|
|
|
|
// Determine where to perform name lookup
|
|
DeclContext *LookupCtx = 0;
|
|
bool isDependent = false;
|
|
if (!ObjectType.isNull()) {
|
|
// This nested-name-specifier occurs in a member access expression, e.g.,
|
|
// x->B::f, and we are looking into the type of the object.
|
|
assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
|
|
LookupCtx = computeDeclContext(ObjectType);
|
|
isDependent = ObjectType->isDependentType();
|
|
} else if (SS.isSet()) {
|
|
// This nested-name-specifier occurs after another nested-name-specifier,
|
|
// so look into the context associated with the prior nested-name-specifier.
|
|
LookupCtx = computeDeclContext(SS, EnteringContext);
|
|
isDependent = isDependentScopeSpecifier(SS);
|
|
Found.setContextRange(SS.getRange());
|
|
}
|
|
|
|
|
|
bool ObjectTypeSearchedInScope = false;
|
|
if (LookupCtx) {
|
|
// Perform "qualified" name lookup into the declaration context we
|
|
// computed, which is either the type of the base of a member access
|
|
// expression or the declaration context associated with a prior
|
|
// nested-name-specifier.
|
|
|
|
// The declaration context must be complete.
|
|
if (!LookupCtx->isDependentContext() &&
|
|
RequireCompleteDeclContext(SS, LookupCtx))
|
|
return true;
|
|
|
|
LookupQualifiedName(Found, LookupCtx);
|
|
|
|
if (!ObjectType.isNull() && Found.empty()) {
|
|
// C++ [basic.lookup.classref]p4:
|
|
// If the id-expression in a class member access is a qualified-id of
|
|
// the form
|
|
//
|
|
// class-name-or-namespace-name::...
|
|
//
|
|
// the class-name-or-namespace-name following the . or -> operator is
|
|
// looked up both in the context of the entire postfix-expression and in
|
|
// the scope of the class of the object expression. If the name is found
|
|
// only in the scope of the class of the object expression, the name
|
|
// shall refer to a class-name. If the name is found only in the
|
|
// context of the entire postfix-expression, the name shall refer to a
|
|
// class-name or namespace-name. [...]
|
|
//
|
|
// Qualified name lookup into a class will not find a namespace-name,
|
|
// so we do not need to diagnose that case specifically. However,
|
|
// this qualified name lookup may find nothing. In that case, perform
|
|
// unqualified name lookup in the given scope (if available) or
|
|
// reconstruct the result from when name lookup was performed at template
|
|
// definition time.
|
|
if (S)
|
|
LookupName(Found, S);
|
|
else if (ScopeLookupResult)
|
|
Found.addDecl(ScopeLookupResult);
|
|
|
|
ObjectTypeSearchedInScope = true;
|
|
}
|
|
} else if (!isDependent) {
|
|
// Perform unqualified name lookup in the current scope.
|
|
LookupName(Found, S);
|
|
}
|
|
|
|
// If we performed lookup into a dependent context and did not find anything,
|
|
// that's fine: just build a dependent nested-name-specifier.
|
|
if (Found.empty() && isDependent &&
|
|
!(LookupCtx && LookupCtx->isRecord() &&
|
|
(!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
|
|
!cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) {
|
|
// Don't speculate if we're just trying to improve error recovery.
|
|
if (ErrorRecoveryLookup)
|
|
return true;
|
|
|
|
// We were not able to compute the declaration context for a dependent
|
|
// base object type or prior nested-name-specifier, so this
|
|
// nested-name-specifier refers to an unknown specialization. Just build
|
|
// a dependent nested-name-specifier.
|
|
SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
|
|
return false;
|
|
}
|
|
|
|
// FIXME: Deal with ambiguities cleanly.
|
|
|
|
if (Found.empty() && !ErrorRecoveryLookup) {
|
|
// We haven't found anything, and we're not recovering from a
|
|
// different kind of error, so look for typos.
|
|
DeclarationName Name = Found.getLookupName();
|
|
TypoCorrection Corrected;
|
|
Found.clear();
|
|
if ((Corrected = CorrectTypo(Found.getLookupNameInfo(),
|
|
Found.getLookupKind(), S, &SS, LookupCtx,
|
|
EnteringContext, CTC_NoKeywords)) &&
|
|
isAcceptableNestedNameSpecifier(Corrected.getCorrectionDecl())) {
|
|
std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
|
|
std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
|
|
if (LookupCtx)
|
|
Diag(Found.getNameLoc(), diag::err_no_member_suggest)
|
|
<< Name << LookupCtx << CorrectedQuotedStr << SS.getRange()
|
|
<< FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
|
|
else
|
|
Diag(Found.getNameLoc(), diag::err_undeclared_var_use_suggest)
|
|
<< Name << CorrectedQuotedStr
|
|
<< FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
|
|
|
|
if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
|
|
Diag(ND->getLocation(), diag::note_previous_decl) << CorrectedQuotedStr;
|
|
Found.addDecl(ND);
|
|
}
|
|
Found.setLookupName(Corrected.getCorrection());
|
|
} else {
|
|
Found.setLookupName(&Identifier);
|
|
}
|
|
}
|
|
|
|
NamedDecl *SD = Found.getAsSingle<NamedDecl>();
|
|
if (isAcceptableNestedNameSpecifier(SD)) {
|
|
if (!ObjectType.isNull() && !ObjectTypeSearchedInScope) {
|
|
// C++ [basic.lookup.classref]p4:
|
|
// [...] If the name is found in both contexts, the
|
|
// class-name-or-namespace-name shall refer to the same entity.
|
|
//
|
|
// We already found the name in the scope of the object. Now, look
|
|
// into the current scope (the scope of the postfix-expression) to
|
|
// see if we can find the same name there. As above, if there is no
|
|
// scope, reconstruct the result from the template instantiation itself.
|
|
NamedDecl *OuterDecl;
|
|
if (S) {
|
|
LookupResult FoundOuter(*this, &Identifier, IdentifierLoc,
|
|
LookupNestedNameSpecifierName);
|
|
LookupName(FoundOuter, S);
|
|
OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
|
|
} else
|
|
OuterDecl = ScopeLookupResult;
|
|
|
|
if (isAcceptableNestedNameSpecifier(OuterDecl) &&
|
|
OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
|
|
(!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
|
|
!Context.hasSameType(
|
|
Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
|
|
Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
|
|
if (ErrorRecoveryLookup)
|
|
return true;
|
|
|
|
Diag(IdentifierLoc,
|
|
diag::err_nested_name_member_ref_lookup_ambiguous)
|
|
<< &Identifier;
|
|
Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
|
|
<< ObjectType;
|
|
Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
|
|
|
|
// Fall through so that we'll pick the name we found in the object
|
|
// type, since that's probably what the user wanted anyway.
|
|
}
|
|
}
|
|
|
|
// If we're just performing this lookup for error-recovery purposes,
|
|
// don't extend the nested-name-specifier. Just return now.
|
|
if (ErrorRecoveryLookup)
|
|
return false;
|
|
|
|
if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) {
|
|
SS.Extend(Context, Namespace, IdentifierLoc, CCLoc);
|
|
return false;
|
|
}
|
|
|
|
if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) {
|
|
SS.Extend(Context, Alias, IdentifierLoc, CCLoc);
|
|
return false;
|
|
}
|
|
|
|
QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
|
|
TypeLocBuilder TLB;
|
|
if (isa<InjectedClassNameType>(T)) {
|
|
InjectedClassNameTypeLoc InjectedTL
|
|
= TLB.push<InjectedClassNameTypeLoc>(T);
|
|
InjectedTL.setNameLoc(IdentifierLoc);
|
|
} else if (isa<RecordType>(T)) {
|
|
RecordTypeLoc RecordTL = TLB.push<RecordTypeLoc>(T);
|
|
RecordTL.setNameLoc(IdentifierLoc);
|
|
} else if (isa<TypedefType>(T)) {
|
|
TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T);
|
|
TypedefTL.setNameLoc(IdentifierLoc);
|
|
} else if (isa<EnumType>(T)) {
|
|
EnumTypeLoc EnumTL = TLB.push<EnumTypeLoc>(T);
|
|
EnumTL.setNameLoc(IdentifierLoc);
|
|
} else if (isa<TemplateTypeParmType>(T)) {
|
|
TemplateTypeParmTypeLoc TemplateTypeTL
|
|
= TLB.push<TemplateTypeParmTypeLoc>(T);
|
|
TemplateTypeTL.setNameLoc(IdentifierLoc);
|
|
} else if (isa<UnresolvedUsingType>(T)) {
|
|
UnresolvedUsingTypeLoc UnresolvedTL
|
|
= TLB.push<UnresolvedUsingTypeLoc>(T);
|
|
UnresolvedTL.setNameLoc(IdentifierLoc);
|
|
} else if (isa<SubstTemplateTypeParmType>(T)) {
|
|
SubstTemplateTypeParmTypeLoc TL
|
|
= TLB.push<SubstTemplateTypeParmTypeLoc>(T);
|
|
TL.setNameLoc(IdentifierLoc);
|
|
} else if (isa<SubstTemplateTypeParmPackType>(T)) {
|
|
SubstTemplateTypeParmPackTypeLoc TL
|
|
= TLB.push<SubstTemplateTypeParmPackTypeLoc>(T);
|
|
TL.setNameLoc(IdentifierLoc);
|
|
} else {
|
|
llvm_unreachable("Unhandled TypeDecl node in nested-name-specifier");
|
|
}
|
|
|
|
if (T->isEnumeralType())
|
|
Diag(IdentifierLoc, diag::warn_cxx98_compat_enum_nested_name_spec);
|
|
|
|
SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
|
|
CCLoc);
|
|
return false;
|
|
}
|
|
|
|
// Otherwise, we have an error case. If we don't want diagnostics, just
|
|
// return an error now.
|
|
if (ErrorRecoveryLookup)
|
|
return true;
|
|
|
|
// If we didn't find anything during our lookup, try again with
|
|
// ordinary name lookup, which can help us produce better error
|
|
// messages.
|
|
if (Found.empty()) {
|
|
Found.clear(LookupOrdinaryName);
|
|
LookupName(Found, S);
|
|
}
|
|
|
|
// In Microsoft mode, if we are within a templated function and we can't
|
|
// resolve Identifier, then extend the SS with Identifier. This will have
|
|
// the effect of resolving Identifier during template instantiation.
|
|
// The goal is to be able to resolve a function call whose
|
|
// nested-name-specifier is located inside a dependent base class.
|
|
// Example:
|
|
//
|
|
// class C {
|
|
// public:
|
|
// static void foo2() { }
|
|
// };
|
|
// template <class T> class A { public: typedef C D; };
|
|
//
|
|
// template <class T> class B : public A<T> {
|
|
// public:
|
|
// void foo() { D::foo2(); }
|
|
// };
|
|
if (getLangOptions().MicrosoftExt) {
|
|
DeclContext *DC = LookupCtx ? LookupCtx : CurContext;
|
|
if (DC->isDependentContext() && DC->isFunctionOrMethod()) {
|
|
SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
unsigned DiagID;
|
|
if (!Found.empty())
|
|
DiagID = diag::err_expected_class_or_namespace;
|
|
else if (SS.isSet()) {
|
|
Diag(IdentifierLoc, diag::err_no_member)
|
|
<< &Identifier << LookupCtx << SS.getRange();
|
|
return true;
|
|
} else
|
|
DiagID = diag::err_undeclared_var_use;
|
|
|
|
if (SS.isSet())
|
|
Diag(IdentifierLoc, DiagID) << &Identifier << SS.getRange();
|
|
else
|
|
Diag(IdentifierLoc, DiagID) << &Identifier;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
|
|
IdentifierInfo &Identifier,
|
|
SourceLocation IdentifierLoc,
|
|
SourceLocation CCLoc,
|
|
ParsedType ObjectType,
|
|
bool EnteringContext,
|
|
CXXScopeSpec &SS) {
|
|
if (SS.isInvalid())
|
|
return true;
|
|
|
|
return BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, CCLoc,
|
|
GetTypeFromParser(ObjectType),
|
|
EnteringContext, SS,
|
|
/*ScopeLookupResult=*/0, false);
|
|
}
|
|
|
|
/// IsInvalidUnlessNestedName - This method is used for error recovery
|
|
/// purposes to determine whether the specified identifier is only valid as
|
|
/// a nested name specifier, for example a namespace name. It is
|
|
/// conservatively correct to always return false from this method.
|
|
///
|
|
/// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
|
|
bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
|
|
IdentifierInfo &Identifier,
|
|
SourceLocation IdentifierLoc,
|
|
SourceLocation ColonLoc,
|
|
ParsedType ObjectType,
|
|
bool EnteringContext) {
|
|
if (SS.isInvalid())
|
|
return false;
|
|
|
|
return !BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, ColonLoc,
|
|
GetTypeFromParser(ObjectType),
|
|
EnteringContext, SS,
|
|
/*ScopeLookupResult=*/0, true);
|
|
}
|
|
|
|
bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
|
|
SourceLocation TemplateLoc,
|
|
CXXScopeSpec &SS,
|
|
TemplateTy Template,
|
|
SourceLocation TemplateNameLoc,
|
|
SourceLocation LAngleLoc,
|
|
ASTTemplateArgsPtr TemplateArgsIn,
|
|
SourceLocation RAngleLoc,
|
|
SourceLocation CCLoc,
|
|
bool EnteringContext) {
|
|
if (SS.isInvalid())
|
|
return true;
|
|
|
|
// Translate the parser's template argument list in our AST format.
|
|
TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
|
|
translateTemplateArguments(TemplateArgsIn, TemplateArgs);
|
|
|
|
if (DependentTemplateName *DTN = Template.get().getAsDependentTemplateName()){
|
|
// Handle a dependent template specialization for which we cannot resolve
|
|
// the template name.
|
|
assert(DTN->getQualifier()
|
|
== static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
|
|
QualType T = Context.getDependentTemplateSpecializationType(ETK_None,
|
|
DTN->getQualifier(),
|
|
DTN->getIdentifier(),
|
|
TemplateArgs);
|
|
|
|
// Create source-location information for this type.
|
|
TypeLocBuilder Builder;
|
|
DependentTemplateSpecializationTypeLoc SpecTL
|
|
= Builder.push<DependentTemplateSpecializationTypeLoc>(T);
|
|
SpecTL.setLAngleLoc(LAngleLoc);
|
|
SpecTL.setRAngleLoc(RAngleLoc);
|
|
SpecTL.setKeywordLoc(SourceLocation());
|
|
SpecTL.setNameLoc(TemplateNameLoc);
|
|
SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
|
|
for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
|
|
SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
|
|
|
|
SS.Extend(Context, TemplateLoc, Builder.getTypeLocInContext(Context, T),
|
|
CCLoc);
|
|
return false;
|
|
}
|
|
|
|
|
|
if (Template.get().getAsOverloadedTemplate() ||
|
|
isa<FunctionTemplateDecl>(Template.get().getAsTemplateDecl())) {
|
|
SourceRange R(TemplateNameLoc, RAngleLoc);
|
|
if (SS.getRange().isValid())
|
|
R.setBegin(SS.getRange().getBegin());
|
|
|
|
Diag(CCLoc, diag::err_non_type_template_in_nested_name_specifier)
|
|
<< Template.get() << R;
|
|
NoteAllFoundTemplates(Template.get());
|
|
return true;
|
|
}
|
|
|
|
// We were able to resolve the template name to an actual template.
|
|
// Build an appropriate nested-name-specifier.
|
|
QualType T = CheckTemplateIdType(Template.get(), TemplateNameLoc,
|
|
TemplateArgs);
|
|
if (T.isNull())
|
|
return true;
|
|
|
|
// Alias template specializations can produce types which are not valid
|
|
// nested name specifiers.
|
|
if (!T->isDependentType() && !T->getAs<TagType>()) {
|
|
Diag(TemplateNameLoc, diag::err_nested_name_spec_non_tag) << T;
|
|
NoteAllFoundTemplates(Template.get());
|
|
return true;
|
|
}
|
|
|
|
// Provide source-location information for the template specialization
|
|
// type.
|
|
TypeLocBuilder Builder;
|
|
TemplateSpecializationTypeLoc SpecTL
|
|
= Builder.push<TemplateSpecializationTypeLoc>(T);
|
|
|
|
SpecTL.setLAngleLoc(LAngleLoc);
|
|
SpecTL.setRAngleLoc(RAngleLoc);
|
|
SpecTL.setTemplateNameLoc(TemplateNameLoc);
|
|
for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
|
|
SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
|
|
|
|
|
|
SS.Extend(Context, TemplateLoc, Builder.getTypeLocInContext(Context, T),
|
|
CCLoc);
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
/// \brief A structure that stores a nested-name-specifier annotation,
|
|
/// including both the nested-name-specifier
|
|
struct NestedNameSpecifierAnnotation {
|
|
NestedNameSpecifier *NNS;
|
|
};
|
|
}
|
|
|
|
void *Sema::SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS) {
|
|
if (SS.isEmpty() || SS.isInvalid())
|
|
return 0;
|
|
|
|
void *Mem = Context.Allocate((sizeof(NestedNameSpecifierAnnotation) +
|
|
SS.location_size()),
|
|
llvm::alignOf<NestedNameSpecifierAnnotation>());
|
|
NestedNameSpecifierAnnotation *Annotation
|
|
= new (Mem) NestedNameSpecifierAnnotation;
|
|
Annotation->NNS = SS.getScopeRep();
|
|
memcpy(Annotation + 1, SS.location_data(), SS.location_size());
|
|
return Annotation;
|
|
}
|
|
|
|
void Sema::RestoreNestedNameSpecifierAnnotation(void *AnnotationPtr,
|
|
SourceRange AnnotationRange,
|
|
CXXScopeSpec &SS) {
|
|
if (!AnnotationPtr) {
|
|
SS.SetInvalid(AnnotationRange);
|
|
return;
|
|
}
|
|
|
|
NestedNameSpecifierAnnotation *Annotation
|
|
= static_cast<NestedNameSpecifierAnnotation *>(AnnotationPtr);
|
|
SS.Adopt(NestedNameSpecifierLoc(Annotation->NNS, Annotation + 1));
|
|
}
|
|
|
|
bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
|
|
assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
|
|
|
|
NestedNameSpecifier *Qualifier =
|
|
static_cast<NestedNameSpecifier*>(SS.getScopeRep());
|
|
|
|
// There are only two places a well-formed program may qualify a
|
|
// declarator: first, when defining a namespace or class member
|
|
// out-of-line, and second, when naming an explicitly-qualified
|
|
// friend function. The latter case is governed by
|
|
// C++03 [basic.lookup.unqual]p10:
|
|
// In a friend declaration naming a member function, a name used
|
|
// in the function declarator and not part of a template-argument
|
|
// in a template-id is first looked up in the scope of the member
|
|
// function's class. If it is not found, or if the name is part of
|
|
// a template-argument in a template-id, the look up is as
|
|
// described for unqualified names in the definition of the class
|
|
// granting friendship.
|
|
// i.e. we don't push a scope unless it's a class member.
|
|
|
|
switch (Qualifier->getKind()) {
|
|
case NestedNameSpecifier::Global:
|
|
case NestedNameSpecifier::Namespace:
|
|
case NestedNameSpecifier::NamespaceAlias:
|
|
// These are always namespace scopes. We never want to enter a
|
|
// namespace scope from anything but a file context.
|
|
return CurContext->getRedeclContext()->isFileContext();
|
|
|
|
case NestedNameSpecifier::Identifier:
|
|
case NestedNameSpecifier::TypeSpec:
|
|
case NestedNameSpecifier::TypeSpecWithTemplate:
|
|
// These are never namespace scopes.
|
|
return true;
|
|
}
|
|
|
|
// Silence bogus warning.
|
|
return false;
|
|
}
|
|
|
|
/// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
|
|
/// scope or nested-name-specifier) is parsed, part of a declarator-id.
|
|
/// After this method is called, according to [C++ 3.4.3p3], names should be
|
|
/// looked up in the declarator-id's scope, until the declarator is parsed and
|
|
/// ActOnCXXExitDeclaratorScope is called.
|
|
/// The 'SS' should be a non-empty valid CXXScopeSpec.
|
|
bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) {
|
|
assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
|
|
|
|
if (SS.isInvalid()) return true;
|
|
|
|
DeclContext *DC = computeDeclContext(SS, true);
|
|
if (!DC) return true;
|
|
|
|
// Before we enter a declarator's context, we need to make sure that
|
|
// it is a complete declaration context.
|
|
if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC))
|
|
return true;
|
|
|
|
EnterDeclaratorContext(S, DC);
|
|
|
|
// Rebuild the nested name specifier for the new scope.
|
|
if (DC->isDependentContext())
|
|
RebuildNestedNameSpecifierInCurrentInstantiation(SS);
|
|
|
|
return false;
|
|
}
|
|
|
|
/// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
|
|
/// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
|
|
/// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
|
|
/// Used to indicate that names should revert to being looked up in the
|
|
/// defining scope.
|
|
void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
|
|
assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
|
|
if (SS.isInvalid())
|
|
return;
|
|
assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
|
|
"exiting declarator scope we never really entered");
|
|
ExitDeclaratorContext(S);
|
|
}
|