forked from OSchip/llvm-project
1980 lines
81 KiB
C++
1980 lines
81 KiB
C++
//===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This contains code to emit OpenMP nodes as LLVM code.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CGOpenMPRuntime.h"
|
|
#include "CodeGenFunction.h"
|
|
#include "CodeGenModule.h"
|
|
#include "TargetInfo.h"
|
|
#include "clang/AST/Stmt.h"
|
|
#include "clang/AST/StmtOpenMP.h"
|
|
using namespace clang;
|
|
using namespace CodeGen;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// OpenMP Directive Emission
|
|
//===----------------------------------------------------------------------===//
|
|
void CodeGenFunction::EmitOMPAggregateAssign(
|
|
llvm::Value *DestAddr, llvm::Value *SrcAddr, QualType OriginalType,
|
|
const llvm::function_ref<void(llvm::Value *, llvm::Value *)> &CopyGen) {
|
|
// Perform element-by-element initialization.
|
|
QualType ElementTy;
|
|
auto SrcBegin = SrcAddr;
|
|
auto DestBegin = DestAddr;
|
|
auto ArrayTy = OriginalType->getAsArrayTypeUnsafe();
|
|
auto NumElements = emitArrayLength(ArrayTy, ElementTy, DestBegin);
|
|
// Cast from pointer to array type to pointer to single element.
|
|
SrcBegin = Builder.CreatePointerBitCastOrAddrSpaceCast(SrcBegin,
|
|
DestBegin->getType());
|
|
auto DestEnd = Builder.CreateGEP(DestBegin, NumElements);
|
|
// The basic structure here is a while-do loop.
|
|
auto BodyBB = createBasicBlock("omp.arraycpy.body");
|
|
auto DoneBB = createBasicBlock("omp.arraycpy.done");
|
|
auto IsEmpty =
|
|
Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty");
|
|
Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
|
|
|
|
// Enter the loop body, making that address the current address.
|
|
auto EntryBB = Builder.GetInsertBlock();
|
|
EmitBlock(BodyBB);
|
|
auto SrcElementCurrent =
|
|
Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast");
|
|
SrcElementCurrent->addIncoming(SrcBegin, EntryBB);
|
|
auto DestElementCurrent = Builder.CreatePHI(DestBegin->getType(), 2,
|
|
"omp.arraycpy.destElementPast");
|
|
DestElementCurrent->addIncoming(DestBegin, EntryBB);
|
|
|
|
// Emit copy.
|
|
CopyGen(DestElementCurrent, SrcElementCurrent);
|
|
|
|
// Shift the address forward by one element.
|
|
auto DestElementNext = Builder.CreateConstGEP1_32(
|
|
DestElementCurrent, /*Idx0=*/1, "omp.arraycpy.dest.element");
|
|
auto SrcElementNext = Builder.CreateConstGEP1_32(
|
|
SrcElementCurrent, /*Idx0=*/1, "omp.arraycpy.src.element");
|
|
// Check whether we've reached the end.
|
|
auto Done =
|
|
Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
|
|
Builder.CreateCondBr(Done, DoneBB, BodyBB);
|
|
DestElementCurrent->addIncoming(DestElementNext, Builder.GetInsertBlock());
|
|
SrcElementCurrent->addIncoming(SrcElementNext, Builder.GetInsertBlock());
|
|
|
|
// Done.
|
|
EmitBlock(DoneBB, /*IsFinished=*/true);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPCopy(CodeGenFunction &CGF,
|
|
QualType OriginalType, llvm::Value *DestAddr,
|
|
llvm::Value *SrcAddr, const VarDecl *DestVD,
|
|
const VarDecl *SrcVD, const Expr *Copy) {
|
|
if (OriginalType->isArrayType()) {
|
|
auto *BO = dyn_cast<BinaryOperator>(Copy);
|
|
if (BO && BO->getOpcode() == BO_Assign) {
|
|
// Perform simple memcpy for simple copying.
|
|
CGF.EmitAggregateAssign(DestAddr, SrcAddr, OriginalType);
|
|
} else {
|
|
// For arrays with complex element types perform element by element
|
|
// copying.
|
|
CGF.EmitOMPAggregateAssign(
|
|
DestAddr, SrcAddr, OriginalType,
|
|
[&CGF, Copy, SrcVD, DestVD](llvm::Value *DestElement,
|
|
llvm::Value *SrcElement) {
|
|
// Working with the single array element, so have to remap
|
|
// destination and source variables to corresponding array
|
|
// elements.
|
|
CodeGenFunction::OMPPrivateScope Remap(CGF);
|
|
Remap.addPrivate(DestVD, [DestElement]() -> llvm::Value *{
|
|
return DestElement;
|
|
});
|
|
Remap.addPrivate(
|
|
SrcVD, [SrcElement]() -> llvm::Value *{ return SrcElement; });
|
|
(void)Remap.Privatize();
|
|
CGF.EmitIgnoredExpr(Copy);
|
|
});
|
|
}
|
|
} else {
|
|
// Remap pseudo source variable to private copy.
|
|
CodeGenFunction::OMPPrivateScope Remap(CGF);
|
|
Remap.addPrivate(SrcVD, [SrcAddr]() -> llvm::Value *{ return SrcAddr; });
|
|
Remap.addPrivate(DestVD, [DestAddr]() -> llvm::Value *{ return DestAddr; });
|
|
(void)Remap.Privatize();
|
|
// Emit copying of the whole variable.
|
|
CGF.EmitIgnoredExpr(Copy);
|
|
}
|
|
}
|
|
|
|
bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
|
|
OMPPrivateScope &PrivateScope) {
|
|
llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate;
|
|
for (auto &&I = D.getClausesOfKind(OMPC_firstprivate); I; ++I) {
|
|
auto *C = cast<OMPFirstprivateClause>(*I);
|
|
auto IRef = C->varlist_begin();
|
|
auto InitsRef = C->inits().begin();
|
|
for (auto IInit : C->private_copies()) {
|
|
auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
|
|
if (EmittedAsFirstprivate.count(OrigVD) == 0) {
|
|
EmittedAsFirstprivate.insert(OrigVD);
|
|
auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
|
|
auto *VDInit = cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl());
|
|
bool IsRegistered;
|
|
DeclRefExpr DRE(
|
|
const_cast<VarDecl *>(OrigVD),
|
|
/*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup(
|
|
OrigVD) != nullptr,
|
|
(*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
|
|
auto *OriginalAddr = EmitLValue(&DRE).getAddress();
|
|
QualType Type = OrigVD->getType();
|
|
if (Type->isArrayType()) {
|
|
// Emit VarDecl with copy init for arrays.
|
|
// Get the address of the original variable captured in current
|
|
// captured region.
|
|
IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> llvm::Value *{
|
|
auto Emission = EmitAutoVarAlloca(*VD);
|
|
auto *Init = VD->getInit();
|
|
if (!isa<CXXConstructExpr>(Init) || isTrivialInitializer(Init)) {
|
|
// Perform simple memcpy.
|
|
EmitAggregateAssign(Emission.getAllocatedAddress(), OriginalAddr,
|
|
Type);
|
|
} else {
|
|
EmitOMPAggregateAssign(
|
|
Emission.getAllocatedAddress(), OriginalAddr, Type,
|
|
[this, VDInit, Init](llvm::Value *DestElement,
|
|
llvm::Value *SrcElement) {
|
|
// Clean up any temporaries needed by the initialization.
|
|
RunCleanupsScope InitScope(*this);
|
|
// Emit initialization for single element.
|
|
LocalDeclMap[VDInit] = SrcElement;
|
|
EmitAnyExprToMem(Init, DestElement,
|
|
Init->getType().getQualifiers(),
|
|
/*IsInitializer*/ false);
|
|
LocalDeclMap.erase(VDInit);
|
|
});
|
|
}
|
|
EmitAutoVarCleanups(Emission);
|
|
return Emission.getAllocatedAddress();
|
|
});
|
|
} else {
|
|
IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> llvm::Value *{
|
|
// Emit private VarDecl with copy init.
|
|
// Remap temp VDInit variable to the address of the original
|
|
// variable
|
|
// (for proper handling of captured global variables).
|
|
LocalDeclMap[VDInit] = OriginalAddr;
|
|
EmitDecl(*VD);
|
|
LocalDeclMap.erase(VDInit);
|
|
return GetAddrOfLocalVar(VD);
|
|
});
|
|
}
|
|
assert(IsRegistered &&
|
|
"firstprivate var already registered as private");
|
|
// Silence the warning about unused variable.
|
|
(void)IsRegistered;
|
|
}
|
|
++IRef, ++InitsRef;
|
|
}
|
|
}
|
|
return !EmittedAsFirstprivate.empty();
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPPrivateClause(
|
|
const OMPExecutableDirective &D,
|
|
CodeGenFunction::OMPPrivateScope &PrivateScope) {
|
|
llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
|
|
for (auto &&I = D.getClausesOfKind(OMPC_private); I; ++I) {
|
|
auto *C = cast<OMPPrivateClause>(*I);
|
|
auto IRef = C->varlist_begin();
|
|
for (auto IInit : C->private_copies()) {
|
|
auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
|
|
if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
|
|
auto VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
|
|
bool IsRegistered =
|
|
PrivateScope.addPrivate(OrigVD, [&]() -> llvm::Value *{
|
|
// Emit private VarDecl with copy init.
|
|
EmitDecl(*VD);
|
|
return GetAddrOfLocalVar(VD);
|
|
});
|
|
assert(IsRegistered && "private var already registered as private");
|
|
// Silence the warning about unused variable.
|
|
(void)IsRegistered;
|
|
}
|
|
++IRef;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) {
|
|
// threadprivate_var1 = master_threadprivate_var1;
|
|
// operator=(threadprivate_var2, master_threadprivate_var2);
|
|
// ...
|
|
// __kmpc_barrier(&loc, global_tid);
|
|
llvm::DenseSet<const VarDecl *> CopiedVars;
|
|
llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr;
|
|
for (auto &&I = D.getClausesOfKind(OMPC_copyin); I; ++I) {
|
|
auto *C = cast<OMPCopyinClause>(*I);
|
|
auto IRef = C->varlist_begin();
|
|
auto ISrcRef = C->source_exprs().begin();
|
|
auto IDestRef = C->destination_exprs().begin();
|
|
for (auto *AssignOp : C->assignment_ops()) {
|
|
auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
|
|
QualType Type = VD->getType();
|
|
if (CopiedVars.insert(VD->getCanonicalDecl()).second) {
|
|
// Get the address of the master variable.
|
|
auto *MasterAddr = VD->isStaticLocal()
|
|
? CGM.getStaticLocalDeclAddress(VD)
|
|
: CGM.GetAddrOfGlobal(VD);
|
|
// Get the address of the threadprivate variable.
|
|
auto *PrivateAddr = EmitLValue(*IRef).getAddress();
|
|
if (CopiedVars.size() == 1) {
|
|
// At first check if current thread is a master thread. If it is, no
|
|
// need to copy data.
|
|
CopyBegin = createBasicBlock("copyin.not.master");
|
|
CopyEnd = createBasicBlock("copyin.not.master.end");
|
|
Builder.CreateCondBr(
|
|
Builder.CreateICmpNE(
|
|
Builder.CreatePtrToInt(MasterAddr, CGM.IntPtrTy),
|
|
Builder.CreatePtrToInt(PrivateAddr, CGM.IntPtrTy)),
|
|
CopyBegin, CopyEnd);
|
|
EmitBlock(CopyBegin);
|
|
}
|
|
auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
|
|
auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
|
|
EmitOMPCopy(*this, Type, PrivateAddr, MasterAddr, DestVD, SrcVD,
|
|
AssignOp);
|
|
}
|
|
++IRef;
|
|
++ISrcRef;
|
|
++IDestRef;
|
|
}
|
|
}
|
|
if (CopyEnd) {
|
|
// Exit out of copying procedure for non-master thread.
|
|
EmitBlock(CopyEnd, /*IsFinished=*/true);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool CodeGenFunction::EmitOMPLastprivateClauseInit(
|
|
const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) {
|
|
bool HasAtLeastOneLastprivate = false;
|
|
llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
|
|
for (auto &&I = D.getClausesOfKind(OMPC_lastprivate); I; ++I) {
|
|
HasAtLeastOneLastprivate = true;
|
|
auto *C = cast<OMPLastprivateClause>(*I);
|
|
auto IRef = C->varlist_begin();
|
|
auto IDestRef = C->destination_exprs().begin();
|
|
for (auto *IInit : C->private_copies()) {
|
|
// Keep the address of the original variable for future update at the end
|
|
// of the loop.
|
|
auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
|
|
if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) {
|
|
auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
|
|
PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() -> llvm::Value *{
|
|
DeclRefExpr DRE(
|
|
const_cast<VarDecl *>(OrigVD),
|
|
/*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup(
|
|
OrigVD) != nullptr,
|
|
(*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
|
|
return EmitLValue(&DRE).getAddress();
|
|
});
|
|
// Check if the variable is also a firstprivate: in this case IInit is
|
|
// not generated. Initialization of this variable will happen in codegen
|
|
// for 'firstprivate' clause.
|
|
if (IInit) {
|
|
auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
|
|
bool IsRegistered =
|
|
PrivateScope.addPrivate(OrigVD, [&]() -> llvm::Value *{
|
|
// Emit private VarDecl with copy init.
|
|
EmitDecl(*VD);
|
|
return GetAddrOfLocalVar(VD);
|
|
});
|
|
assert(IsRegistered &&
|
|
"lastprivate var already registered as private");
|
|
(void)IsRegistered;
|
|
}
|
|
}
|
|
++IRef, ++IDestRef;
|
|
}
|
|
}
|
|
return HasAtLeastOneLastprivate;
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPLastprivateClauseFinal(
|
|
const OMPExecutableDirective &D, llvm::Value *IsLastIterCond) {
|
|
// Emit following code:
|
|
// if (<IsLastIterCond>) {
|
|
// orig_var1 = private_orig_var1;
|
|
// ...
|
|
// orig_varn = private_orig_varn;
|
|
// }
|
|
auto *ThenBB = createBasicBlock(".omp.lastprivate.then");
|
|
auto *DoneBB = createBasicBlock(".omp.lastprivate.done");
|
|
Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB);
|
|
EmitBlock(ThenBB);
|
|
llvm::DenseMap<const Decl *, const Expr *> LoopCountersAndUpdates;
|
|
const Expr *LastIterVal = nullptr;
|
|
const Expr *IVExpr = nullptr;
|
|
const Expr *IncExpr = nullptr;
|
|
if (auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) {
|
|
LastIterVal =
|
|
cast<VarDecl>(cast<DeclRefExpr>(LoopDirective->getUpperBoundVariable())
|
|
->getDecl())
|
|
->getAnyInitializer();
|
|
IVExpr = LoopDirective->getIterationVariable();
|
|
IncExpr = LoopDirective->getInc();
|
|
auto IUpdate = LoopDirective->updates().begin();
|
|
for (auto *E : LoopDirective->counters()) {
|
|
auto *D = cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl();
|
|
LoopCountersAndUpdates[D] = *IUpdate;
|
|
++IUpdate;
|
|
}
|
|
}
|
|
{
|
|
llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
|
|
bool FirstLCV = true;
|
|
for (auto &&I = D.getClausesOfKind(OMPC_lastprivate); I; ++I) {
|
|
auto *C = cast<OMPLastprivateClause>(*I);
|
|
auto IRef = C->varlist_begin();
|
|
auto ISrcRef = C->source_exprs().begin();
|
|
auto IDestRef = C->destination_exprs().begin();
|
|
for (auto *AssignOp : C->assignment_ops()) {
|
|
auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
|
|
QualType Type = PrivateVD->getType();
|
|
auto *CanonicalVD = PrivateVD->getCanonicalDecl();
|
|
if (AlreadyEmittedVars.insert(CanonicalVD).second) {
|
|
// If lastprivate variable is a loop control variable for loop-based
|
|
// directive, update its value before copyin back to original
|
|
// variable.
|
|
if (auto *UpExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) {
|
|
if (FirstLCV) {
|
|
EmitAnyExprToMem(LastIterVal, EmitLValue(IVExpr).getAddress(),
|
|
IVExpr->getType().getQualifiers(),
|
|
/*IsInitializer=*/false);
|
|
EmitIgnoredExpr(IncExpr);
|
|
FirstLCV = false;
|
|
}
|
|
EmitIgnoredExpr(UpExpr);
|
|
}
|
|
auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
|
|
auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
|
|
// Get the address of the original variable.
|
|
auto *OriginalAddr = GetAddrOfLocalVar(DestVD);
|
|
// Get the address of the private variable.
|
|
auto *PrivateAddr = GetAddrOfLocalVar(PrivateVD);
|
|
EmitOMPCopy(*this, Type, OriginalAddr, PrivateAddr, DestVD, SrcVD,
|
|
AssignOp);
|
|
}
|
|
++IRef;
|
|
++ISrcRef;
|
|
++IDestRef;
|
|
}
|
|
}
|
|
}
|
|
EmitBlock(DoneBB, /*IsFinished=*/true);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPReductionClauseInit(
|
|
const OMPExecutableDirective &D,
|
|
CodeGenFunction::OMPPrivateScope &PrivateScope) {
|
|
for (auto &&I = D.getClausesOfKind(OMPC_reduction); I; ++I) {
|
|
auto *C = cast<OMPReductionClause>(*I);
|
|
auto ILHS = C->lhs_exprs().begin();
|
|
auto IRHS = C->rhs_exprs().begin();
|
|
for (auto IRef : C->varlists()) {
|
|
auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl());
|
|
auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
|
|
auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
|
|
// Store the address of the original variable associated with the LHS
|
|
// implicit variable.
|
|
PrivateScope.addPrivate(LHSVD, [this, OrigVD, IRef]() -> llvm::Value *{
|
|
DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
|
|
CapturedStmtInfo->lookup(OrigVD) != nullptr,
|
|
IRef->getType(), VK_LValue, IRef->getExprLoc());
|
|
return EmitLValue(&DRE).getAddress();
|
|
});
|
|
// Emit reduction copy.
|
|
bool IsRegistered =
|
|
PrivateScope.addPrivate(OrigVD, [this, PrivateVD]() -> llvm::Value *{
|
|
// Emit private VarDecl with reduction init.
|
|
EmitDecl(*PrivateVD);
|
|
return GetAddrOfLocalVar(PrivateVD);
|
|
});
|
|
assert(IsRegistered && "private var already registered as private");
|
|
// Silence the warning about unused variable.
|
|
(void)IsRegistered;
|
|
++ILHS, ++IRHS;
|
|
}
|
|
}
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPReductionClauseFinal(
|
|
const OMPExecutableDirective &D) {
|
|
llvm::SmallVector<const Expr *, 8> LHSExprs;
|
|
llvm::SmallVector<const Expr *, 8> RHSExprs;
|
|
llvm::SmallVector<const Expr *, 8> ReductionOps;
|
|
bool HasAtLeastOneReduction = false;
|
|
for (auto &&I = D.getClausesOfKind(OMPC_reduction); I; ++I) {
|
|
HasAtLeastOneReduction = true;
|
|
auto *C = cast<OMPReductionClause>(*I);
|
|
LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
|
|
RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
|
|
ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end());
|
|
}
|
|
if (HasAtLeastOneReduction) {
|
|
// Emit nowait reduction if nowait clause is present or directive is a
|
|
// parallel directive (it always has implicit barrier).
|
|
CGM.getOpenMPRuntime().emitReduction(
|
|
*this, D.getLocEnd(), LHSExprs, RHSExprs, ReductionOps,
|
|
D.getSingleClause(OMPC_nowait) ||
|
|
isOpenMPParallelDirective(D.getDirectiveKind()));
|
|
}
|
|
}
|
|
|
|
static void emitCommonOMPParallelDirective(CodeGenFunction &CGF,
|
|
const OMPExecutableDirective &S,
|
|
const RegionCodeGenTy &CodeGen) {
|
|
auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
|
|
auto CapturedStruct = CGF.GenerateCapturedStmtArgument(*CS);
|
|
auto OutlinedFn = CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction(
|
|
S, *CS->getCapturedDecl()->param_begin(), CodeGen);
|
|
if (auto C = S.getSingleClause(OMPC_num_threads)) {
|
|
CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
|
|
auto NumThreadsClause = cast<OMPNumThreadsClause>(C);
|
|
auto NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(),
|
|
/*IgnoreResultAssign*/ true);
|
|
CGF.CGM.getOpenMPRuntime().emitNumThreadsClause(
|
|
CGF, NumThreads, NumThreadsClause->getLocStart());
|
|
}
|
|
const Expr *IfCond = nullptr;
|
|
if (auto C = S.getSingleClause(OMPC_if)) {
|
|
IfCond = cast<OMPIfClause>(C)->getCondition();
|
|
}
|
|
CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getLocStart(), OutlinedFn,
|
|
CapturedStruct, IfCond);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) {
|
|
LexicalScope Scope(*this, S.getSourceRange());
|
|
// Emit parallel region as a standalone region.
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF) {
|
|
OMPPrivateScope PrivateScope(CGF);
|
|
bool Copyins = CGF.EmitOMPCopyinClause(S);
|
|
bool Firstprivates = CGF.EmitOMPFirstprivateClause(S, PrivateScope);
|
|
if (Copyins || Firstprivates) {
|
|
// Emit implicit barrier to synchronize threads and avoid data races on
|
|
// initialization of firstprivate variables or propagation master's thread
|
|
// values of threadprivate variables to local instances of that variables
|
|
// of all other implicit threads.
|
|
CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(),
|
|
OMPD_unknown);
|
|
}
|
|
CGF.EmitOMPPrivateClause(S, PrivateScope);
|
|
CGF.EmitOMPReductionClauseInit(S, PrivateScope);
|
|
(void)PrivateScope.Privatize();
|
|
CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
|
|
CGF.EmitOMPReductionClauseFinal(S);
|
|
// Emit implicit barrier at the end of the 'parallel' directive.
|
|
CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(),
|
|
OMPD_unknown);
|
|
};
|
|
emitCommonOMPParallelDirective(*this, S, CodeGen);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &S,
|
|
bool SeparateIter) {
|
|
RunCleanupsScope BodyScope(*this);
|
|
// Update counters values on current iteration.
|
|
for (auto I : S.updates()) {
|
|
EmitIgnoredExpr(I);
|
|
}
|
|
// Update the linear variables.
|
|
for (auto &&I = S.getClausesOfKind(OMPC_linear); I; ++I) {
|
|
auto *C = cast<OMPLinearClause>(*I);
|
|
for (auto U : C->updates()) {
|
|
EmitIgnoredExpr(U);
|
|
}
|
|
}
|
|
|
|
// On a continue in the body, jump to the end.
|
|
auto Continue = getJumpDestInCurrentScope("omp.body.continue");
|
|
BreakContinueStack.push_back(BreakContinue(JumpDest(), Continue));
|
|
// Emit loop body.
|
|
EmitStmt(S.getBody());
|
|
// The end (updates/cleanups).
|
|
EmitBlock(Continue.getBlock());
|
|
BreakContinueStack.pop_back();
|
|
if (SeparateIter) {
|
|
// TODO: Update lastprivates if the SeparateIter flag is true.
|
|
// This will be implemented in a follow-up OMPLastprivateClause patch, but
|
|
// result should be still correct without it, as we do not make these
|
|
// variables private yet.
|
|
}
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPInnerLoop(
|
|
const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
|
|
const Expr *IncExpr,
|
|
const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
|
|
const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen) {
|
|
auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end");
|
|
|
|
// Start the loop with a block that tests the condition.
|
|
auto CondBlock = createBasicBlock("omp.inner.for.cond");
|
|
EmitBlock(CondBlock);
|
|
LoopStack.push(CondBlock);
|
|
|
|
// If there are any cleanups between here and the loop-exit scope,
|
|
// create a block to stage a loop exit along.
|
|
auto ExitBlock = LoopExit.getBlock();
|
|
if (RequiresCleanup)
|
|
ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup");
|
|
|
|
auto LoopBody = createBasicBlock("omp.inner.for.body");
|
|
|
|
// Emit condition.
|
|
EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S));
|
|
if (ExitBlock != LoopExit.getBlock()) {
|
|
EmitBlock(ExitBlock);
|
|
EmitBranchThroughCleanup(LoopExit);
|
|
}
|
|
|
|
EmitBlock(LoopBody);
|
|
incrementProfileCounter(&S);
|
|
|
|
// Create a block for the increment.
|
|
auto Continue = getJumpDestInCurrentScope("omp.inner.for.inc");
|
|
BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
|
|
|
|
BodyGen(*this);
|
|
|
|
// Emit "IV = IV + 1" and a back-edge to the condition block.
|
|
EmitBlock(Continue.getBlock());
|
|
EmitIgnoredExpr(IncExpr);
|
|
PostIncGen(*this);
|
|
BreakContinueStack.pop_back();
|
|
EmitBranch(CondBlock);
|
|
LoopStack.pop();
|
|
// Emit the fall-through block.
|
|
EmitBlock(LoopExit.getBlock());
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPSimdFinal(const OMPLoopDirective &S) {
|
|
auto IC = S.counters().begin();
|
|
for (auto F : S.finals()) {
|
|
auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl());
|
|
if (LocalDeclMap.lookup(OrigVD)) {
|
|
DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
|
|
CapturedStmtInfo->lookup(OrigVD) != nullptr,
|
|
(*IC)->getType(), VK_LValue, (*IC)->getExprLoc());
|
|
auto *OrigAddr = EmitLValue(&DRE).getAddress();
|
|
OMPPrivateScope VarScope(*this);
|
|
VarScope.addPrivate(OrigVD,
|
|
[OrigAddr]() -> llvm::Value *{ return OrigAddr; });
|
|
(void)VarScope.Privatize();
|
|
EmitIgnoredExpr(F);
|
|
}
|
|
++IC;
|
|
}
|
|
// Emit the final values of the linear variables.
|
|
for (auto &&I = S.getClausesOfKind(OMPC_linear); I; ++I) {
|
|
auto *C = cast<OMPLinearClause>(*I);
|
|
auto IC = C->varlist_begin();
|
|
for (auto F : C->finals()) {
|
|
auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl());
|
|
DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
|
|
CapturedStmtInfo->lookup(OrigVD) != nullptr,
|
|
(*IC)->getType(), VK_LValue, (*IC)->getExprLoc());
|
|
auto *OrigAddr = EmitLValue(&DRE).getAddress();
|
|
OMPPrivateScope VarScope(*this);
|
|
VarScope.addPrivate(OrigVD,
|
|
[OrigAddr]() -> llvm::Value *{ return OrigAddr; });
|
|
(void)VarScope.Privatize();
|
|
EmitIgnoredExpr(F);
|
|
++IC;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void EmitOMPAlignedClause(CodeGenFunction &CGF, CodeGenModule &CGM,
|
|
const OMPAlignedClause &Clause) {
|
|
unsigned ClauseAlignment = 0;
|
|
if (auto AlignmentExpr = Clause.getAlignment()) {
|
|
auto AlignmentCI =
|
|
cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr));
|
|
ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue());
|
|
}
|
|
for (auto E : Clause.varlists()) {
|
|
unsigned Alignment = ClauseAlignment;
|
|
if (Alignment == 0) {
|
|
// OpenMP [2.8.1, Description]
|
|
// If no optional parameter is specified, implementation-defined default
|
|
// alignments for SIMD instructions on the target platforms are assumed.
|
|
Alignment = CGM.getTargetCodeGenInfo().getOpenMPSimdDefaultAlignment(
|
|
E->getType());
|
|
}
|
|
assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) &&
|
|
"alignment is not power of 2");
|
|
if (Alignment != 0) {
|
|
llvm::Value *PtrValue = CGF.EmitScalarExpr(E);
|
|
CGF.EmitAlignmentAssumption(PtrValue, Alignment);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void EmitPrivateLoopCounters(CodeGenFunction &CGF,
|
|
CodeGenFunction::OMPPrivateScope &LoopScope,
|
|
ArrayRef<Expr *> Counters) {
|
|
for (auto *E : Counters) {
|
|
auto VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
|
|
(void)LoopScope.addPrivate(VD, [&]() -> llvm::Value *{
|
|
// Emit var without initialization.
|
|
auto VarEmission = CGF.EmitAutoVarAlloca(*VD);
|
|
CGF.EmitAutoVarCleanups(VarEmission);
|
|
return VarEmission.getAllocatedAddress();
|
|
});
|
|
}
|
|
}
|
|
|
|
static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S,
|
|
const Expr *Cond, llvm::BasicBlock *TrueBlock,
|
|
llvm::BasicBlock *FalseBlock, uint64_t TrueCount) {
|
|
CodeGenFunction::OMPPrivateScope PreCondScope(CGF);
|
|
EmitPrivateLoopCounters(CGF, PreCondScope, S.counters());
|
|
const VarDecl *IVDecl =
|
|
cast<VarDecl>(cast<DeclRefExpr>(S.getIterationVariable())->getDecl());
|
|
bool IsRegistered = PreCondScope.addPrivate(IVDecl, [&]() -> llvm::Value *{
|
|
// Emit var without initialization.
|
|
auto VarEmission = CGF.EmitAutoVarAlloca(*IVDecl);
|
|
CGF.EmitAutoVarCleanups(VarEmission);
|
|
return VarEmission.getAllocatedAddress();
|
|
});
|
|
assert(IsRegistered && "counter already registered as private");
|
|
// Silence the warning about unused variable.
|
|
(void)IsRegistered;
|
|
(void)PreCondScope.Privatize();
|
|
// Initialize internal counter to 0 to calculate initial values of real
|
|
// counters.
|
|
LValue IV = CGF.EmitLValue(S.getIterationVariable());
|
|
CGF.EmitStoreOfScalar(
|
|
llvm::ConstantInt::getNullValue(
|
|
IV.getAddress()->getType()->getPointerElementType()),
|
|
CGF.EmitLValue(S.getIterationVariable()), /*isInit=*/true);
|
|
// Get initial values of real counters.
|
|
for (auto I : S.updates()) {
|
|
CGF.EmitIgnoredExpr(I);
|
|
}
|
|
// Check that loop is executed at least one time.
|
|
CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount);
|
|
}
|
|
|
|
static void
|
|
EmitPrivateLinearVars(CodeGenFunction &CGF, const OMPExecutableDirective &D,
|
|
CodeGenFunction::OMPPrivateScope &PrivateScope) {
|
|
for (auto &&I = D.getClausesOfKind(OMPC_linear); I; ++I) {
|
|
auto *C = cast<OMPLinearClause>(*I);
|
|
for (auto *E : C->varlists()) {
|
|
auto VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
|
|
bool IsRegistered = PrivateScope.addPrivate(VD, [&]()->llvm::Value * {
|
|
// Emit var without initialization.
|
|
auto VarEmission = CGF.EmitAutoVarAlloca(*VD);
|
|
CGF.EmitAutoVarCleanups(VarEmission);
|
|
return VarEmission.getAllocatedAddress();
|
|
});
|
|
assert(IsRegistered && "linear var already registered as private");
|
|
// Silence the warning about unused variable.
|
|
(void)IsRegistered;
|
|
}
|
|
}
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) {
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF) {
|
|
// Pragma 'simd' code depends on presence of 'lastprivate'.
|
|
// If present, we have to separate last iteration of the loop:
|
|
//
|
|
// if (PreCond) {
|
|
// for (IV in 0..LastIteration-1) BODY;
|
|
// BODY with updates of lastprivate vars;
|
|
// <Final counter/linear vars updates>;
|
|
// }
|
|
//
|
|
// otherwise (when there's no lastprivate):
|
|
//
|
|
// if (PreCond) {
|
|
// for (IV in 0..LastIteration) BODY;
|
|
// <Final counter/linear vars updates>;
|
|
// }
|
|
//
|
|
|
|
// Emit: if (PreCond) - begin.
|
|
// If the condition constant folds and can be elided, avoid emitting the
|
|
// whole loop.
|
|
bool CondConstant;
|
|
llvm::BasicBlock *ContBlock = nullptr;
|
|
if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
|
|
if (!CondConstant)
|
|
return;
|
|
} else {
|
|
auto *ThenBlock = CGF.createBasicBlock("simd.if.then");
|
|
ContBlock = CGF.createBasicBlock("simd.if.end");
|
|
emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
|
|
CGF.getProfileCount(&S));
|
|
CGF.EmitBlock(ThenBlock);
|
|
CGF.incrementProfileCounter(&S);
|
|
}
|
|
// Walk clauses and process safelen/lastprivate.
|
|
bool SeparateIter = false;
|
|
CGF.LoopStack.setParallel();
|
|
CGF.LoopStack.setVectorizerEnable(true);
|
|
for (auto C : S.clauses()) {
|
|
switch (C->getClauseKind()) {
|
|
case OMPC_safelen: {
|
|
RValue Len = CGF.EmitAnyExpr(cast<OMPSafelenClause>(C)->getSafelen(),
|
|
AggValueSlot::ignored(), true);
|
|
llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
|
|
CGF.LoopStack.setVectorizerWidth(Val->getZExtValue());
|
|
// In presence of finite 'safelen', it may be unsafe to mark all
|
|
// the memory instructions parallel, because loop-carried
|
|
// dependences of 'safelen' iterations are possible.
|
|
CGF.LoopStack.setParallel(false);
|
|
break;
|
|
}
|
|
case OMPC_aligned:
|
|
EmitOMPAlignedClause(CGF, CGF.CGM, cast<OMPAlignedClause>(*C));
|
|
break;
|
|
case OMPC_lastprivate:
|
|
SeparateIter = true;
|
|
break;
|
|
default:
|
|
// Not handled yet
|
|
;
|
|
}
|
|
}
|
|
|
|
// Emit inits for the linear variables.
|
|
for (auto &&I = S.getClausesOfKind(OMPC_linear); I; ++I) {
|
|
auto *C = cast<OMPLinearClause>(*I);
|
|
for (auto Init : C->inits()) {
|
|
auto *D = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl());
|
|
CGF.EmitVarDecl(*D);
|
|
}
|
|
}
|
|
|
|
// Emit the loop iteration variable.
|
|
const Expr *IVExpr = S.getIterationVariable();
|
|
const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
|
|
CGF.EmitVarDecl(*IVDecl);
|
|
CGF.EmitIgnoredExpr(S.getInit());
|
|
|
|
// Emit the iterations count variable.
|
|
// If it is not a variable, Sema decided to calculate iterations count on
|
|
// each iteration (e.g., it is foldable into a constant).
|
|
if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
|
|
CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
|
|
// Emit calculation of the iterations count.
|
|
CGF.EmitIgnoredExpr(S.getCalcLastIteration());
|
|
}
|
|
|
|
// Emit the linear steps for the linear clauses.
|
|
// If a step is not constant, it is pre-calculated before the loop.
|
|
for (auto &&I = S.getClausesOfKind(OMPC_linear); I; ++I) {
|
|
auto *C = cast<OMPLinearClause>(*I);
|
|
if (auto CS = cast_or_null<BinaryOperator>(C->getCalcStep()))
|
|
if (auto SaveRef = cast<DeclRefExpr>(CS->getLHS())) {
|
|
CGF.EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl()));
|
|
// Emit calculation of the linear step.
|
|
CGF.EmitIgnoredExpr(CS);
|
|
}
|
|
}
|
|
|
|
{
|
|
OMPPrivateScope LoopScope(CGF);
|
|
EmitPrivateLoopCounters(CGF, LoopScope, S.counters());
|
|
EmitPrivateLinearVars(CGF, S, LoopScope);
|
|
CGF.EmitOMPPrivateClause(S, LoopScope);
|
|
(void)LoopScope.Privatize();
|
|
CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(),
|
|
S.getCond(SeparateIter), S.getInc(),
|
|
[&S](CodeGenFunction &CGF) {
|
|
CGF.EmitOMPLoopBody(S);
|
|
CGF.EmitStopPoint(&S);
|
|
},
|
|
[](CodeGenFunction &) {});
|
|
if (SeparateIter) {
|
|
CGF.EmitOMPLoopBody(S, /*SeparateIter=*/true);
|
|
}
|
|
}
|
|
CGF.EmitOMPSimdFinal(S);
|
|
// Emit: if (PreCond) - end.
|
|
if (ContBlock) {
|
|
CGF.EmitBranch(ContBlock);
|
|
CGF.EmitBlock(ContBlock, true);
|
|
}
|
|
};
|
|
CGM.getOpenMPRuntime().emitInlinedDirective(*this, CodeGen);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPForOuterLoop(OpenMPScheduleClauseKind ScheduleKind,
|
|
const OMPLoopDirective &S,
|
|
OMPPrivateScope &LoopScope,
|
|
bool Ordered, llvm::Value *LB,
|
|
llvm::Value *UB, llvm::Value *ST,
|
|
llvm::Value *IL, llvm::Value *Chunk) {
|
|
auto &RT = CGM.getOpenMPRuntime();
|
|
|
|
// Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime).
|
|
const bool DynamicOrOrdered = Ordered || RT.isDynamic(ScheduleKind);
|
|
|
|
assert((Ordered ||
|
|
!RT.isStaticNonchunked(ScheduleKind, /*Chunked=*/Chunk != nullptr)) &&
|
|
"static non-chunked schedule does not need outer loop");
|
|
|
|
// Emit outer loop.
|
|
//
|
|
// OpenMP [2.7.1, Loop Construct, Description, table 2-1]
|
|
// When schedule(dynamic,chunk_size) is specified, the iterations are
|
|
// distributed to threads in the team in chunks as the threads request them.
|
|
// Each thread executes a chunk of iterations, then requests another chunk,
|
|
// until no chunks remain to be distributed. Each chunk contains chunk_size
|
|
// iterations, except for the last chunk to be distributed, which may have
|
|
// fewer iterations. When no chunk_size is specified, it defaults to 1.
|
|
//
|
|
// When schedule(guided,chunk_size) is specified, the iterations are assigned
|
|
// to threads in the team in chunks as the executing threads request them.
|
|
// Each thread executes a chunk of iterations, then requests another chunk,
|
|
// until no chunks remain to be assigned. For a chunk_size of 1, the size of
|
|
// each chunk is proportional to the number of unassigned iterations divided
|
|
// by the number of threads in the team, decreasing to 1. For a chunk_size
|
|
// with value k (greater than 1), the size of each chunk is determined in the
|
|
// same way, with the restriction that the chunks do not contain fewer than k
|
|
// iterations (except for the last chunk to be assigned, which may have fewer
|
|
// than k iterations).
|
|
//
|
|
// When schedule(auto) is specified, the decision regarding scheduling is
|
|
// delegated to the compiler and/or runtime system. The programmer gives the
|
|
// implementation the freedom to choose any possible mapping of iterations to
|
|
// threads in the team.
|
|
//
|
|
// When schedule(runtime) is specified, the decision regarding scheduling is
|
|
// deferred until run time, and the schedule and chunk size are taken from the
|
|
// run-sched-var ICV. If the ICV is set to auto, the schedule is
|
|
// implementation defined
|
|
//
|
|
// while(__kmpc_dispatch_next(&LB, &UB)) {
|
|
// idx = LB;
|
|
// while (idx <= UB) { BODY; ++idx;
|
|
// __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only.
|
|
// } // inner loop
|
|
// }
|
|
//
|
|
// OpenMP [2.7.1, Loop Construct, Description, table 2-1]
|
|
// When schedule(static, chunk_size) is specified, iterations are divided into
|
|
// chunks of size chunk_size, and the chunks are assigned to the threads in
|
|
// the team in a round-robin fashion in the order of the thread number.
|
|
//
|
|
// while(UB = min(UB, GlobalUB), idx = LB, idx < UB) {
|
|
// while (idx <= UB) { BODY; ++idx; } // inner loop
|
|
// LB = LB + ST;
|
|
// UB = UB + ST;
|
|
// }
|
|
//
|
|
|
|
const Expr *IVExpr = S.getIterationVariable();
|
|
const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
|
|
const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
|
|
|
|
RT.emitForInit(
|
|
*this, S.getLocStart(), ScheduleKind, IVSize, IVSigned, Ordered, IL, LB,
|
|
(DynamicOrOrdered ? EmitAnyExpr(S.getLastIteration()).getScalarVal()
|
|
: UB),
|
|
ST, Chunk);
|
|
|
|
auto LoopExit = getJumpDestInCurrentScope("omp.dispatch.end");
|
|
|
|
// Start the loop with a block that tests the condition.
|
|
auto CondBlock = createBasicBlock("omp.dispatch.cond");
|
|
EmitBlock(CondBlock);
|
|
LoopStack.push(CondBlock);
|
|
|
|
llvm::Value *BoolCondVal = nullptr;
|
|
if (!DynamicOrOrdered) {
|
|
// UB = min(UB, GlobalUB)
|
|
EmitIgnoredExpr(S.getEnsureUpperBound());
|
|
// IV = LB
|
|
EmitIgnoredExpr(S.getInit());
|
|
// IV < UB
|
|
BoolCondVal = EvaluateExprAsBool(S.getCond(false));
|
|
} else {
|
|
BoolCondVal = RT.emitForNext(*this, S.getLocStart(), IVSize, IVSigned,
|
|
IL, LB, UB, ST);
|
|
}
|
|
|
|
// If there are any cleanups between here and the loop-exit scope,
|
|
// create a block to stage a loop exit along.
|
|
auto ExitBlock = LoopExit.getBlock();
|
|
if (LoopScope.requiresCleanups())
|
|
ExitBlock = createBasicBlock("omp.dispatch.cleanup");
|
|
|
|
auto LoopBody = createBasicBlock("omp.dispatch.body");
|
|
Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
|
|
if (ExitBlock != LoopExit.getBlock()) {
|
|
EmitBlock(ExitBlock);
|
|
EmitBranchThroughCleanup(LoopExit);
|
|
}
|
|
EmitBlock(LoopBody);
|
|
|
|
// Emit "IV = LB" (in case of static schedule, we have already calculated new
|
|
// LB for loop condition and emitted it above).
|
|
if (DynamicOrOrdered)
|
|
EmitIgnoredExpr(S.getInit());
|
|
|
|
// Create a block for the increment.
|
|
auto Continue = getJumpDestInCurrentScope("omp.dispatch.inc");
|
|
BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
|
|
|
|
SourceLocation Loc = S.getLocStart();
|
|
// Generate !llvm.loop.parallel metadata for loads and stores for loops with
|
|
// dynamic/guided scheduling and without ordered clause.
|
|
LoopStack.setParallel((ScheduleKind == OMPC_SCHEDULE_dynamic ||
|
|
ScheduleKind == OMPC_SCHEDULE_guided) &&
|
|
!Ordered);
|
|
EmitOMPInnerLoop(
|
|
S, LoopScope.requiresCleanups(), S.getCond(/*SeparateIter=*/false),
|
|
S.getInc(),
|
|
[&S](CodeGenFunction &CGF) {
|
|
CGF.EmitOMPLoopBody(S);
|
|
CGF.EmitStopPoint(&S);
|
|
},
|
|
[Ordered, IVSize, IVSigned, Loc](CodeGenFunction &CGF) {
|
|
if (Ordered) {
|
|
CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(
|
|
CGF, Loc, IVSize, IVSigned);
|
|
}
|
|
});
|
|
|
|
EmitBlock(Continue.getBlock());
|
|
BreakContinueStack.pop_back();
|
|
if (!DynamicOrOrdered) {
|
|
// Emit "LB = LB + Stride", "UB = UB + Stride".
|
|
EmitIgnoredExpr(S.getNextLowerBound());
|
|
EmitIgnoredExpr(S.getNextUpperBound());
|
|
}
|
|
|
|
EmitBranch(CondBlock);
|
|
LoopStack.pop();
|
|
// Emit the fall-through block.
|
|
EmitBlock(LoopExit.getBlock());
|
|
|
|
// Tell the runtime we are done.
|
|
if (!DynamicOrOrdered)
|
|
RT.emitForStaticFinish(*this, S.getLocEnd());
|
|
}
|
|
|
|
/// \brief Emit a helper variable and return corresponding lvalue.
|
|
static LValue EmitOMPHelperVar(CodeGenFunction &CGF,
|
|
const DeclRefExpr *Helper) {
|
|
auto VDecl = cast<VarDecl>(Helper->getDecl());
|
|
CGF.EmitVarDecl(*VDecl);
|
|
return CGF.EmitLValue(Helper);
|
|
}
|
|
|
|
static std::pair<llvm::Value * /*Chunk*/, OpenMPScheduleClauseKind>
|
|
emitScheduleClause(CodeGenFunction &CGF, const OMPLoopDirective &S,
|
|
bool OuterRegion) {
|
|
// Detect the loop schedule kind and chunk.
|
|
auto ScheduleKind = OMPC_SCHEDULE_unknown;
|
|
llvm::Value *Chunk = nullptr;
|
|
if (auto *C =
|
|
cast_or_null<OMPScheduleClause>(S.getSingleClause(OMPC_schedule))) {
|
|
ScheduleKind = C->getScheduleKind();
|
|
if (const auto *Ch = C->getChunkSize()) {
|
|
if (auto *ImpRef = cast_or_null<DeclRefExpr>(C->getHelperChunkSize())) {
|
|
if (OuterRegion) {
|
|
const VarDecl *ImpVar = cast<VarDecl>(ImpRef->getDecl());
|
|
CGF.EmitVarDecl(*ImpVar);
|
|
CGF.EmitStoreThroughLValue(
|
|
CGF.EmitAnyExpr(Ch),
|
|
CGF.MakeNaturalAlignAddrLValue(CGF.GetAddrOfLocalVar(ImpVar),
|
|
ImpVar->getType()));
|
|
} else {
|
|
Ch = ImpRef;
|
|
}
|
|
}
|
|
if (!C->getHelperChunkSize() || !OuterRegion) {
|
|
Chunk = CGF.EmitScalarExpr(Ch);
|
|
Chunk = CGF.EmitScalarConversion(Chunk, Ch->getType(),
|
|
S.getIterationVariable()->getType());
|
|
}
|
|
}
|
|
}
|
|
return std::make_pair(Chunk, ScheduleKind);
|
|
}
|
|
|
|
bool CodeGenFunction::EmitOMPWorksharingLoop(const OMPLoopDirective &S) {
|
|
// Emit the loop iteration variable.
|
|
auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
|
|
auto IVDecl = cast<VarDecl>(IVExpr->getDecl());
|
|
EmitVarDecl(*IVDecl);
|
|
|
|
// Emit the iterations count variable.
|
|
// If it is not a variable, Sema decided to calculate iterations count on each
|
|
// iteration (e.g., it is foldable into a constant).
|
|
if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
|
|
EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
|
|
// Emit calculation of the iterations count.
|
|
EmitIgnoredExpr(S.getCalcLastIteration());
|
|
}
|
|
|
|
auto &RT = CGM.getOpenMPRuntime();
|
|
|
|
bool HasLastprivateClause;
|
|
// Check pre-condition.
|
|
{
|
|
// Skip the entire loop if we don't meet the precondition.
|
|
// If the condition constant folds and can be elided, avoid emitting the
|
|
// whole loop.
|
|
bool CondConstant;
|
|
llvm::BasicBlock *ContBlock = nullptr;
|
|
if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
|
|
if (!CondConstant)
|
|
return false;
|
|
} else {
|
|
auto *ThenBlock = createBasicBlock("omp.precond.then");
|
|
ContBlock = createBasicBlock("omp.precond.end");
|
|
emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
|
|
getProfileCount(&S));
|
|
EmitBlock(ThenBlock);
|
|
incrementProfileCounter(&S);
|
|
}
|
|
// Emit 'then' code.
|
|
{
|
|
// Emit helper vars inits.
|
|
LValue LB =
|
|
EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getLowerBoundVariable()));
|
|
LValue UB =
|
|
EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getUpperBoundVariable()));
|
|
LValue ST =
|
|
EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
|
|
LValue IL =
|
|
EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
|
|
|
|
OMPPrivateScope LoopScope(*this);
|
|
if (EmitOMPFirstprivateClause(S, LoopScope)) {
|
|
// Emit implicit barrier to synchronize threads and avoid data races on
|
|
// initialization of firstprivate variables.
|
|
CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(),
|
|
OMPD_unknown);
|
|
}
|
|
EmitOMPPrivateClause(S, LoopScope);
|
|
HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope);
|
|
EmitOMPReductionClauseInit(S, LoopScope);
|
|
EmitPrivateLoopCounters(*this, LoopScope, S.counters());
|
|
(void)LoopScope.Privatize();
|
|
|
|
// Detect the loop schedule kind and chunk.
|
|
llvm::Value *Chunk;
|
|
OpenMPScheduleClauseKind ScheduleKind;
|
|
auto ScheduleInfo =
|
|
emitScheduleClause(*this, S, /*OuterRegion=*/false);
|
|
Chunk = ScheduleInfo.first;
|
|
ScheduleKind = ScheduleInfo.second;
|
|
const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
|
|
const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
|
|
const bool Ordered = S.getSingleClause(OMPC_ordered) != nullptr;
|
|
if (RT.isStaticNonchunked(ScheduleKind,
|
|
/* Chunked */ Chunk != nullptr) &&
|
|
!Ordered) {
|
|
// OpenMP [2.7.1, Loop Construct, Description, table 2-1]
|
|
// When no chunk_size is specified, the iteration space is divided into
|
|
// chunks that are approximately equal in size, and at most one chunk is
|
|
// distributed to each thread. Note that the size of the chunks is
|
|
// unspecified in this case.
|
|
RT.emitForInit(*this, S.getLocStart(), ScheduleKind, IVSize, IVSigned,
|
|
Ordered, IL.getAddress(), LB.getAddress(),
|
|
UB.getAddress(), ST.getAddress());
|
|
// UB = min(UB, GlobalUB);
|
|
EmitIgnoredExpr(S.getEnsureUpperBound());
|
|
// IV = LB;
|
|
EmitIgnoredExpr(S.getInit());
|
|
// while (idx <= UB) { BODY; ++idx; }
|
|
EmitOMPInnerLoop(S, LoopScope.requiresCleanups(),
|
|
S.getCond(/*SeparateIter=*/false), S.getInc(),
|
|
[&S](CodeGenFunction &CGF) {
|
|
CGF.EmitOMPLoopBody(S);
|
|
CGF.EmitStopPoint(&S);
|
|
},
|
|
[](CodeGenFunction &) {});
|
|
// Tell the runtime we are done.
|
|
RT.emitForStaticFinish(*this, S.getLocStart());
|
|
} else {
|
|
// Emit the outer loop, which requests its work chunk [LB..UB] from
|
|
// runtime and runs the inner loop to process it.
|
|
EmitOMPForOuterLoop(ScheduleKind, S, LoopScope, Ordered,
|
|
LB.getAddress(), UB.getAddress(), ST.getAddress(),
|
|
IL.getAddress(), Chunk);
|
|
}
|
|
EmitOMPReductionClauseFinal(S);
|
|
// Emit final copy of the lastprivate variables if IsLastIter != 0.
|
|
if (HasLastprivateClause)
|
|
EmitOMPLastprivateClauseFinal(
|
|
S, Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getLocStart())));
|
|
}
|
|
// We're now done with the loop, so jump to the continuation block.
|
|
if (ContBlock) {
|
|
EmitBranch(ContBlock);
|
|
EmitBlock(ContBlock, true);
|
|
}
|
|
}
|
|
return HasLastprivateClause;
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) {
|
|
LexicalScope Scope(*this, S.getSourceRange());
|
|
bool HasLastprivates = false;
|
|
auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF) {
|
|
HasLastprivates = CGF.EmitOMPWorksharingLoop(S);
|
|
};
|
|
CGM.getOpenMPRuntime().emitInlinedDirective(*this, CodeGen);
|
|
|
|
// Emit an implicit barrier at the end.
|
|
if (!S.getSingleClause(OMPC_nowait) || HasLastprivates) {
|
|
CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for);
|
|
}
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &) {
|
|
llvm_unreachable("CodeGen for 'omp for simd' is not supported yet.");
|
|
}
|
|
|
|
static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty,
|
|
const Twine &Name,
|
|
llvm::Value *Init = nullptr) {
|
|
auto LVal = CGF.MakeNaturalAlignAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty);
|
|
if (Init)
|
|
CGF.EmitScalarInit(Init, LVal);
|
|
return LVal;
|
|
}
|
|
|
|
static OpenMPDirectiveKind emitSections(CodeGenFunction &CGF,
|
|
const OMPExecutableDirective &S) {
|
|
auto *Stmt = cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt();
|
|
auto *CS = dyn_cast<CompoundStmt>(Stmt);
|
|
if (CS && CS->size() > 1) {
|
|
bool HasLastprivates = false;
|
|
auto &&CodeGen = [&S, CS, &HasLastprivates](CodeGenFunction &CGF) {
|
|
auto &C = CGF.CGM.getContext();
|
|
auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
|
|
// Emit helper vars inits.
|
|
LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.",
|
|
CGF.Builder.getInt32(0));
|
|
auto *GlobalUBVal = CGF.Builder.getInt32(CS->size() - 1);
|
|
LValue UB =
|
|
createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal);
|
|
LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.",
|
|
CGF.Builder.getInt32(1));
|
|
LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.",
|
|
CGF.Builder.getInt32(0));
|
|
// Loop counter.
|
|
LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv.");
|
|
OpaqueValueExpr IVRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue);
|
|
CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV);
|
|
OpaqueValueExpr UBRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue);
|
|
CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB);
|
|
// Generate condition for loop.
|
|
BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue,
|
|
OK_Ordinary, S.getLocStart(),
|
|
/*fpContractable=*/false);
|
|
// Increment for loop counter.
|
|
UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue,
|
|
OK_Ordinary, S.getLocStart());
|
|
auto BodyGen = [CS, &S, &IV](CodeGenFunction &CGF) {
|
|
// Iterate through all sections and emit a switch construct:
|
|
// switch (IV) {
|
|
// case 0:
|
|
// <SectionStmt[0]>;
|
|
// break;
|
|
// ...
|
|
// case <NumSection> - 1:
|
|
// <SectionStmt[<NumSection> - 1]>;
|
|
// break;
|
|
// }
|
|
// .omp.sections.exit:
|
|
auto *ExitBB = CGF.createBasicBlock(".omp.sections.exit");
|
|
auto *SwitchStmt = CGF.Builder.CreateSwitch(
|
|
CGF.EmitLoadOfLValue(IV, S.getLocStart()).getScalarVal(), ExitBB,
|
|
CS->size());
|
|
unsigned CaseNumber = 0;
|
|
for (auto C = CS->children(); C; ++C, ++CaseNumber) {
|
|
auto CaseBB = CGF.createBasicBlock(".omp.sections.case");
|
|
CGF.EmitBlock(CaseBB);
|
|
SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB);
|
|
CGF.EmitStmt(*C);
|
|
CGF.EmitBranch(ExitBB);
|
|
}
|
|
CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
|
|
};
|
|
|
|
CodeGenFunction::OMPPrivateScope LoopScope(CGF);
|
|
if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) {
|
|
// Emit implicit barrier to synchronize threads and avoid data races on
|
|
// initialization of firstprivate variables.
|
|
CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(),
|
|
OMPD_unknown);
|
|
}
|
|
CGF.EmitOMPPrivateClause(S, LoopScope);
|
|
HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
|
|
CGF.EmitOMPReductionClauseInit(S, LoopScope);
|
|
(void)LoopScope.Privatize();
|
|
|
|
// Emit static non-chunked loop.
|
|
CGF.CGM.getOpenMPRuntime().emitForInit(
|
|
CGF, S.getLocStart(), OMPC_SCHEDULE_static, /*IVSize=*/32,
|
|
/*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(),
|
|
LB.getAddress(), UB.getAddress(), ST.getAddress());
|
|
// UB = min(UB, GlobalUB);
|
|
auto *UBVal = CGF.EmitLoadOfScalar(UB, S.getLocStart());
|
|
auto *MinUBGlobalUB = CGF.Builder.CreateSelect(
|
|
CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal);
|
|
CGF.EmitStoreOfScalar(MinUBGlobalUB, UB);
|
|
// IV = LB;
|
|
CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getLocStart()), IV);
|
|
// while (idx <= UB) { BODY; ++idx; }
|
|
CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen,
|
|
[](CodeGenFunction &) {});
|
|
// Tell the runtime we are done.
|
|
CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocStart());
|
|
CGF.EmitOMPReductionClauseFinal(S);
|
|
|
|
// Emit final copy of the lastprivate variables if IsLastIter != 0.
|
|
if (HasLastprivates)
|
|
CGF.EmitOMPLastprivateClauseFinal(
|
|
S, CGF.Builder.CreateIsNotNull(
|
|
CGF.EmitLoadOfScalar(IL, S.getLocStart())));
|
|
};
|
|
|
|
CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, CodeGen);
|
|
// Emit barrier for lastprivates only if 'sections' directive has 'nowait'
|
|
// clause. Otherwise the barrier will be generated by the codegen for the
|
|
// directive.
|
|
if (HasLastprivates && S.getSingleClause(OMPC_nowait)) {
|
|
// Emit implicit barrier to synchronize threads and avoid data races on
|
|
// initialization of firstprivate variables.
|
|
CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(),
|
|
OMPD_unknown);
|
|
}
|
|
return OMPD_sections;
|
|
}
|
|
// If only one section is found - no need to generate loop, emit as a single
|
|
// region.
|
|
bool HasFirstprivates;
|
|
// No need to generate reductions for sections with single section region, we
|
|
// can use original shared variables for all operations.
|
|
bool HasReductions = !S.getClausesOfKind(OMPC_reduction).empty();
|
|
// No need to generate lastprivates for sections with single section region,
|
|
// we can use original shared variable for all calculations with barrier at
|
|
// the end of the sections.
|
|
bool HasLastprivates = !S.getClausesOfKind(OMPC_lastprivate).empty();
|
|
auto &&CodeGen = [Stmt, &S, &HasFirstprivates](CodeGenFunction &CGF) {
|
|
CodeGenFunction::OMPPrivateScope SingleScope(CGF);
|
|
HasFirstprivates = CGF.EmitOMPFirstprivateClause(S, SingleScope);
|
|
CGF.EmitOMPPrivateClause(S, SingleScope);
|
|
(void)SingleScope.Privatize();
|
|
|
|
CGF.EmitStmt(Stmt);
|
|
CGF.EnsureInsertPoint();
|
|
};
|
|
CGF.CGM.getOpenMPRuntime().emitSingleRegion(CGF, CodeGen, S.getLocStart(),
|
|
llvm::None, llvm::None,
|
|
llvm::None, llvm::None);
|
|
// Emit barrier for firstprivates, lastprivates or reductions only if
|
|
// 'sections' directive has 'nowait' clause. Otherwise the barrier will be
|
|
// generated by the codegen for the directive.
|
|
if ((HasFirstprivates || HasLastprivates || HasReductions) &&
|
|
S.getSingleClause(OMPC_nowait)) {
|
|
// Emit implicit barrier to synchronize threads and avoid data races on
|
|
// initialization of firstprivate variables.
|
|
CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(),
|
|
OMPD_unknown);
|
|
}
|
|
return OMPD_single;
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) {
|
|
LexicalScope Scope(*this, S.getSourceRange());
|
|
OpenMPDirectiveKind EmittedAs = emitSections(*this, S);
|
|
// Emit an implicit barrier at the end.
|
|
if (!S.getSingleClause(OMPC_nowait)) {
|
|
CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), EmittedAs);
|
|
}
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) {
|
|
LexicalScope Scope(*this, S.getSourceRange());
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF) {
|
|
CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
|
|
CGF.EnsureInsertPoint();
|
|
};
|
|
CGM.getOpenMPRuntime().emitInlinedDirective(*this, CodeGen);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) {
|
|
llvm::SmallVector<const Expr *, 8> CopyprivateVars;
|
|
llvm::SmallVector<const Expr *, 8> DestExprs;
|
|
llvm::SmallVector<const Expr *, 8> SrcExprs;
|
|
llvm::SmallVector<const Expr *, 8> AssignmentOps;
|
|
// Check if there are any 'copyprivate' clauses associated with this
|
|
// 'single'
|
|
// construct.
|
|
// Build a list of copyprivate variables along with helper expressions
|
|
// (<source>, <destination>, <destination>=<source> expressions)
|
|
for (auto &&I = S.getClausesOfKind(OMPC_copyprivate); I; ++I) {
|
|
auto *C = cast<OMPCopyprivateClause>(*I);
|
|
CopyprivateVars.append(C->varlists().begin(), C->varlists().end());
|
|
DestExprs.append(C->destination_exprs().begin(),
|
|
C->destination_exprs().end());
|
|
SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end());
|
|
AssignmentOps.append(C->assignment_ops().begin(),
|
|
C->assignment_ops().end());
|
|
}
|
|
LexicalScope Scope(*this, S.getSourceRange());
|
|
// Emit code for 'single' region along with 'copyprivate' clauses
|
|
bool HasFirstprivates;
|
|
auto &&CodeGen = [&S, &HasFirstprivates](CodeGenFunction &CGF) {
|
|
CodeGenFunction::OMPPrivateScope SingleScope(CGF);
|
|
HasFirstprivates = CGF.EmitOMPFirstprivateClause(S, SingleScope);
|
|
CGF.EmitOMPPrivateClause(S, SingleScope);
|
|
(void)SingleScope.Privatize();
|
|
|
|
CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
|
|
CGF.EnsureInsertPoint();
|
|
};
|
|
CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getLocStart(),
|
|
CopyprivateVars, DestExprs, SrcExprs,
|
|
AssignmentOps);
|
|
// Emit an implicit barrier at the end (to avoid data race on firstprivate
|
|
// init or if no 'nowait' clause was specified and no 'copyprivate' clause).
|
|
if ((!S.getSingleClause(OMPC_nowait) || HasFirstprivates) &&
|
|
CopyprivateVars.empty()) {
|
|
CGM.getOpenMPRuntime().emitBarrierCall(
|
|
*this, S.getLocStart(),
|
|
S.getSingleClause(OMPC_nowait) ? OMPD_unknown : OMPD_single);
|
|
}
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) {
|
|
LexicalScope Scope(*this, S.getSourceRange());
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF) {
|
|
CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
|
|
CGF.EnsureInsertPoint();
|
|
};
|
|
CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getLocStart());
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) {
|
|
LexicalScope Scope(*this, S.getSourceRange());
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF) {
|
|
CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
|
|
CGF.EnsureInsertPoint();
|
|
};
|
|
CGM.getOpenMPRuntime().emitCriticalRegion(
|
|
*this, S.getDirectiveName().getAsString(), CodeGen, S.getLocStart());
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPParallelForDirective(
|
|
const OMPParallelForDirective &S) {
|
|
// Emit directive as a combined directive that consists of two implicit
|
|
// directives: 'parallel' with 'for' directive.
|
|
LexicalScope Scope(*this, S.getSourceRange());
|
|
(void)emitScheduleClause(*this, S, /*OuterRegion=*/true);
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF) {
|
|
CGF.EmitOMPWorksharingLoop(S);
|
|
// Emit implicit barrier at the end of parallel region, but this barrier
|
|
// is at the end of 'for' directive, so emit it as the implicit barrier for
|
|
// this 'for' directive.
|
|
CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(),
|
|
OMPD_parallel);
|
|
};
|
|
emitCommonOMPParallelDirective(*this, S, CodeGen);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPParallelForSimdDirective(
|
|
const OMPParallelForSimdDirective &) {
|
|
llvm_unreachable("CodeGen for 'omp parallel for simd' is not supported yet.");
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPParallelSectionsDirective(
|
|
const OMPParallelSectionsDirective &S) {
|
|
// Emit directive as a combined directive that consists of two implicit
|
|
// directives: 'parallel' with 'sections' directive.
|
|
LexicalScope Scope(*this, S.getSourceRange());
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF) {
|
|
(void)emitSections(CGF, S);
|
|
// Emit implicit barrier at the end of parallel region.
|
|
CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getLocStart(),
|
|
OMPD_parallel);
|
|
};
|
|
emitCommonOMPParallelDirective(*this, S, CodeGen);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) {
|
|
// Emit outlined function for task construct.
|
|
LexicalScope Scope(*this, S.getSourceRange());
|
|
auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
|
|
auto CapturedStruct = GenerateCapturedStmtArgument(*CS);
|
|
auto *I = CS->getCapturedDecl()->param_begin();
|
|
auto *PartId = std::next(I);
|
|
// The first function argument for tasks is a thread id, the second one is a
|
|
// part id (0 for tied tasks, >=0 for untied task).
|
|
auto &&CodeGen = [PartId, &S](CodeGenFunction &CGF) {
|
|
if (*PartId) {
|
|
// TODO: emit code for untied tasks.
|
|
}
|
|
CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
|
|
};
|
|
auto OutlinedFn =
|
|
CGM.getOpenMPRuntime().emitTaskOutlinedFunction(S, *I, CodeGen);
|
|
// Check if we should emit tied or untied task.
|
|
bool Tied = !S.getSingleClause(OMPC_untied);
|
|
// Check if the task is final
|
|
llvm::PointerIntPair<llvm::Value *, 1, bool> Final;
|
|
if (auto *Clause = S.getSingleClause(OMPC_final)) {
|
|
// If the condition constant folds and can be elided, try to avoid emitting
|
|
// the condition and the dead arm of the if/else.
|
|
auto *Cond = cast<OMPFinalClause>(Clause)->getCondition();
|
|
bool CondConstant;
|
|
if (ConstantFoldsToSimpleInteger(Cond, CondConstant))
|
|
Final.setInt(CondConstant);
|
|
else
|
|
Final.setPointer(EvaluateExprAsBool(Cond));
|
|
} else {
|
|
// By default the task is not final.
|
|
Final.setInt(/*IntVal=*/false);
|
|
}
|
|
auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
|
|
const Expr *IfCond = nullptr;
|
|
if (auto C = S.getSingleClause(OMPC_if)) {
|
|
IfCond = cast<OMPIfClause>(C)->getCondition();
|
|
}
|
|
llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
|
|
// Get list of private variables.
|
|
llvm::SmallVector<const Expr *, 8> Privates;
|
|
llvm::SmallVector<const Expr *, 8> PrivateCopies;
|
|
for (auto &&I = S.getClausesOfKind(OMPC_private); I; ++I) {
|
|
auto *C = cast<OMPPrivateClause>(*I);
|
|
auto IRef = C->varlist_begin();
|
|
for (auto *IInit : C->private_copies()) {
|
|
auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
|
|
if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
|
|
Privates.push_back(*IRef);
|
|
PrivateCopies.push_back(IInit);
|
|
}
|
|
++IRef;
|
|
}
|
|
}
|
|
EmittedAsPrivate.clear();
|
|
// Get list of firstprivate variables.
|
|
llvm::SmallVector<const Expr *, 8> FirstprivateVars;
|
|
llvm::SmallVector<const Expr *, 8> FirstprivateCopies;
|
|
llvm::SmallVector<const Expr *, 8> FirstprivateInits;
|
|
for (auto &&I = S.getClausesOfKind(OMPC_firstprivate); I; ++I) {
|
|
auto *C = cast<OMPFirstprivateClause>(*I);
|
|
auto IRef = C->varlist_begin();
|
|
auto IElemInitRef = C->inits().begin();
|
|
for (auto *IInit : C->private_copies()) {
|
|
auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
|
|
if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
|
|
FirstprivateVars.push_back(*IRef);
|
|
FirstprivateCopies.push_back(IInit);
|
|
FirstprivateInits.push_back(*IElemInitRef);
|
|
}
|
|
++IRef, ++IElemInitRef;
|
|
}
|
|
}
|
|
CGM.getOpenMPRuntime().emitTaskCall(
|
|
*this, S.getLocStart(), S, Tied, Final, OutlinedFn, SharedsTy,
|
|
CapturedStruct, IfCond, Privates, PrivateCopies, FirstprivateVars,
|
|
FirstprivateCopies, FirstprivateInits);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPTaskyieldDirective(
|
|
const OMPTaskyieldDirective &S) {
|
|
CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getLocStart());
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) {
|
|
CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_barrier);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) {
|
|
CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getLocStart());
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) {
|
|
CGM.getOpenMPRuntime().emitFlush(*this, [&]() -> ArrayRef<const Expr *> {
|
|
if (auto C = S.getSingleClause(/*K*/ OMPC_flush)) {
|
|
auto FlushClause = cast<OMPFlushClause>(C);
|
|
return llvm::makeArrayRef(FlushClause->varlist_begin(),
|
|
FlushClause->varlist_end());
|
|
}
|
|
return llvm::None;
|
|
}(), S.getLocStart());
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) {
|
|
LexicalScope Scope(*this, S.getSourceRange());
|
|
auto &&CodeGen = [&S](CodeGenFunction &CGF) {
|
|
CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
|
|
CGF.EnsureInsertPoint();
|
|
};
|
|
CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getLocStart());
|
|
}
|
|
|
|
static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val,
|
|
QualType SrcType, QualType DestType) {
|
|
assert(CGF.hasScalarEvaluationKind(DestType) &&
|
|
"DestType must have scalar evaluation kind.");
|
|
assert(!Val.isAggregate() && "Must be a scalar or complex.");
|
|
return Val.isScalar()
|
|
? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestType)
|
|
: CGF.EmitComplexToScalarConversion(Val.getComplexVal(), SrcType,
|
|
DestType);
|
|
}
|
|
|
|
static CodeGenFunction::ComplexPairTy
|
|
convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType,
|
|
QualType DestType) {
|
|
assert(CGF.getEvaluationKind(DestType) == TEK_Complex &&
|
|
"DestType must have complex evaluation kind.");
|
|
CodeGenFunction::ComplexPairTy ComplexVal;
|
|
if (Val.isScalar()) {
|
|
// Convert the input element to the element type of the complex.
|
|
auto DestElementType = DestType->castAs<ComplexType>()->getElementType();
|
|
auto ScalarVal =
|
|
CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestElementType);
|
|
ComplexVal = CodeGenFunction::ComplexPairTy(
|
|
ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType()));
|
|
} else {
|
|
assert(Val.isComplex() && "Must be a scalar or complex.");
|
|
auto SrcElementType = SrcType->castAs<ComplexType>()->getElementType();
|
|
auto DestElementType = DestType->castAs<ComplexType>()->getElementType();
|
|
ComplexVal.first = CGF.EmitScalarConversion(
|
|
Val.getComplexVal().first, SrcElementType, DestElementType);
|
|
ComplexVal.second = CGF.EmitScalarConversion(
|
|
Val.getComplexVal().second, SrcElementType, DestElementType);
|
|
}
|
|
return ComplexVal;
|
|
}
|
|
|
|
static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst,
|
|
LValue LVal, RValue RVal) {
|
|
if (LVal.isGlobalReg()) {
|
|
CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal);
|
|
} else {
|
|
CGF.EmitAtomicStore(RVal, LVal, IsSeqCst ? llvm::SequentiallyConsistent
|
|
: llvm::Monotonic,
|
|
LVal.isVolatile(), /*IsInit=*/false);
|
|
}
|
|
}
|
|
|
|
static void emitSimpleStore(CodeGenFunction &CGF, LValue LVal, RValue RVal,
|
|
QualType RValTy) {
|
|
switch (CGF.getEvaluationKind(LVal.getType())) {
|
|
case TEK_Scalar:
|
|
CGF.EmitStoreThroughLValue(
|
|
RValue::get(convertToScalarValue(CGF, RVal, RValTy, LVal.getType())),
|
|
LVal);
|
|
break;
|
|
case TEK_Complex:
|
|
CGF.EmitStoreOfComplex(
|
|
convertToComplexValue(CGF, RVal, RValTy, LVal.getType()), LVal,
|
|
/*isInit=*/false);
|
|
break;
|
|
case TEK_Aggregate:
|
|
llvm_unreachable("Must be a scalar or complex.");
|
|
}
|
|
}
|
|
|
|
static void EmitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst,
|
|
const Expr *X, const Expr *V,
|
|
SourceLocation Loc) {
|
|
// v = x;
|
|
assert(V->isLValue() && "V of 'omp atomic read' is not lvalue");
|
|
assert(X->isLValue() && "X of 'omp atomic read' is not lvalue");
|
|
LValue XLValue = CGF.EmitLValue(X);
|
|
LValue VLValue = CGF.EmitLValue(V);
|
|
RValue Res = XLValue.isGlobalReg()
|
|
? CGF.EmitLoadOfLValue(XLValue, Loc)
|
|
: CGF.EmitAtomicLoad(XLValue, Loc,
|
|
IsSeqCst ? llvm::SequentiallyConsistent
|
|
: llvm::Monotonic,
|
|
XLValue.isVolatile());
|
|
// OpenMP, 2.12.6, atomic Construct
|
|
// Any atomic construct with a seq_cst clause forces the atomically
|
|
// performed operation to include an implicit flush operation without a
|
|
// list.
|
|
if (IsSeqCst)
|
|
CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
|
|
emitSimpleStore(CGF,VLValue, Res, X->getType().getNonReferenceType());
|
|
}
|
|
|
|
static void EmitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst,
|
|
const Expr *X, const Expr *E,
|
|
SourceLocation Loc) {
|
|
// x = expr;
|
|
assert(X->isLValue() && "X of 'omp atomic write' is not lvalue");
|
|
emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E));
|
|
// OpenMP, 2.12.6, atomic Construct
|
|
// Any atomic construct with a seq_cst clause forces the atomically
|
|
// performed operation to include an implicit flush operation without a
|
|
// list.
|
|
if (IsSeqCst)
|
|
CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
|
|
}
|
|
|
|
static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X,
|
|
RValue Update,
|
|
BinaryOperatorKind BO,
|
|
llvm::AtomicOrdering AO,
|
|
bool IsXLHSInRHSPart) {
|
|
auto &Context = CGF.CGM.getContext();
|
|
// Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x'
|
|
// expression is simple and atomic is allowed for the given type for the
|
|
// target platform.
|
|
if (BO == BO_Comma || !Update.isScalar() ||
|
|
!Update.getScalarVal()->getType()->isIntegerTy() ||
|
|
!X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) &&
|
|
(Update.getScalarVal()->getType() !=
|
|
X.getAddress()->getType()->getPointerElementType())) ||
|
|
!X.getAddress()->getType()->getPointerElementType()->isIntegerTy() ||
|
|
!Context.getTargetInfo().hasBuiltinAtomic(
|
|
Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment())))
|
|
return std::make_pair(false, RValue::get(nullptr));
|
|
|
|
llvm::AtomicRMWInst::BinOp RMWOp;
|
|
switch (BO) {
|
|
case BO_Add:
|
|
RMWOp = llvm::AtomicRMWInst::Add;
|
|
break;
|
|
case BO_Sub:
|
|
if (!IsXLHSInRHSPart)
|
|
return std::make_pair(false, RValue::get(nullptr));
|
|
RMWOp = llvm::AtomicRMWInst::Sub;
|
|
break;
|
|
case BO_And:
|
|
RMWOp = llvm::AtomicRMWInst::And;
|
|
break;
|
|
case BO_Or:
|
|
RMWOp = llvm::AtomicRMWInst::Or;
|
|
break;
|
|
case BO_Xor:
|
|
RMWOp = llvm::AtomicRMWInst::Xor;
|
|
break;
|
|
case BO_LT:
|
|
RMWOp = X.getType()->hasSignedIntegerRepresentation()
|
|
? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min
|
|
: llvm::AtomicRMWInst::Max)
|
|
: (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin
|
|
: llvm::AtomicRMWInst::UMax);
|
|
break;
|
|
case BO_GT:
|
|
RMWOp = X.getType()->hasSignedIntegerRepresentation()
|
|
? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max
|
|
: llvm::AtomicRMWInst::Min)
|
|
: (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax
|
|
: llvm::AtomicRMWInst::UMin);
|
|
break;
|
|
case BO_Assign:
|
|
RMWOp = llvm::AtomicRMWInst::Xchg;
|
|
break;
|
|
case BO_Mul:
|
|
case BO_Div:
|
|
case BO_Rem:
|
|
case BO_Shl:
|
|
case BO_Shr:
|
|
case BO_LAnd:
|
|
case BO_LOr:
|
|
return std::make_pair(false, RValue::get(nullptr));
|
|
case BO_PtrMemD:
|
|
case BO_PtrMemI:
|
|
case BO_LE:
|
|
case BO_GE:
|
|
case BO_EQ:
|
|
case BO_NE:
|
|
case BO_AddAssign:
|
|
case BO_SubAssign:
|
|
case BO_AndAssign:
|
|
case BO_OrAssign:
|
|
case BO_XorAssign:
|
|
case BO_MulAssign:
|
|
case BO_DivAssign:
|
|
case BO_RemAssign:
|
|
case BO_ShlAssign:
|
|
case BO_ShrAssign:
|
|
case BO_Comma:
|
|
llvm_unreachable("Unsupported atomic update operation");
|
|
}
|
|
auto *UpdateVal = Update.getScalarVal();
|
|
if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) {
|
|
UpdateVal = CGF.Builder.CreateIntCast(
|
|
IC, X.getAddress()->getType()->getPointerElementType(),
|
|
X.getType()->hasSignedIntegerRepresentation());
|
|
}
|
|
auto *Res = CGF.Builder.CreateAtomicRMW(RMWOp, X.getAddress(), UpdateVal, AO);
|
|
return std::make_pair(true, RValue::get(Res));
|
|
}
|
|
|
|
std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr(
|
|
LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
|
|
llvm::AtomicOrdering AO, SourceLocation Loc,
|
|
const llvm::function_ref<RValue(RValue)> &CommonGen) {
|
|
// Update expressions are allowed to have the following forms:
|
|
// x binop= expr; -> xrval + expr;
|
|
// x++, ++x -> xrval + 1;
|
|
// x--, --x -> xrval - 1;
|
|
// x = x binop expr; -> xrval binop expr
|
|
// x = expr Op x; - > expr binop xrval;
|
|
auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart);
|
|
if (!Res.first) {
|
|
if (X.isGlobalReg()) {
|
|
// Emit an update expression: 'xrval' binop 'expr' or 'expr' binop
|
|
// 'xrval'.
|
|
EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X);
|
|
} else {
|
|
// Perform compare-and-swap procedure.
|
|
EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified());
|
|
}
|
|
}
|
|
return Res;
|
|
}
|
|
|
|
static void EmitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst,
|
|
const Expr *X, const Expr *E,
|
|
const Expr *UE, bool IsXLHSInRHSPart,
|
|
SourceLocation Loc) {
|
|
assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
|
|
"Update expr in 'atomic update' must be a binary operator.");
|
|
auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
|
|
// Update expressions are allowed to have the following forms:
|
|
// x binop= expr; -> xrval + expr;
|
|
// x++, ++x -> xrval + 1;
|
|
// x--, --x -> xrval - 1;
|
|
// x = x binop expr; -> xrval binop expr
|
|
// x = expr Op x; - > expr binop xrval;
|
|
assert(X->isLValue() && "X of 'omp atomic update' is not lvalue");
|
|
LValue XLValue = CGF.EmitLValue(X);
|
|
RValue ExprRValue = CGF.EmitAnyExpr(E);
|
|
auto AO = IsSeqCst ? llvm::SequentiallyConsistent : llvm::Monotonic;
|
|
auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
|
|
auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
|
|
auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
|
|
auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
|
|
auto Gen =
|
|
[&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) -> RValue {
|
|
CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
|
|
CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
|
|
return CGF.EmitAnyExpr(UE);
|
|
};
|
|
(void)CGF.EmitOMPAtomicSimpleUpdateExpr(
|
|
XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
|
|
// OpenMP, 2.12.6, atomic Construct
|
|
// Any atomic construct with a seq_cst clause forces the atomically
|
|
// performed operation to include an implicit flush operation without a
|
|
// list.
|
|
if (IsSeqCst)
|
|
CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
|
|
}
|
|
|
|
static RValue convertToType(CodeGenFunction &CGF, RValue Value,
|
|
QualType SourceType, QualType ResType) {
|
|
switch (CGF.getEvaluationKind(ResType)) {
|
|
case TEK_Scalar:
|
|
return RValue::get(convertToScalarValue(CGF, Value, SourceType, ResType));
|
|
case TEK_Complex: {
|
|
auto Res = convertToComplexValue(CGF, Value, SourceType, ResType);
|
|
return RValue::getComplex(Res.first, Res.second);
|
|
}
|
|
case TEK_Aggregate:
|
|
break;
|
|
}
|
|
llvm_unreachable("Must be a scalar or complex.");
|
|
}
|
|
|
|
static void EmitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst,
|
|
bool IsPostfixUpdate, const Expr *V,
|
|
const Expr *X, const Expr *E,
|
|
const Expr *UE, bool IsXLHSInRHSPart,
|
|
SourceLocation Loc) {
|
|
assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue");
|
|
assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue");
|
|
RValue NewVVal;
|
|
LValue VLValue = CGF.EmitLValue(V);
|
|
LValue XLValue = CGF.EmitLValue(X);
|
|
RValue ExprRValue = CGF.EmitAnyExpr(E);
|
|
auto AO = IsSeqCst ? llvm::SequentiallyConsistent : llvm::Monotonic;
|
|
QualType NewVValType;
|
|
if (UE) {
|
|
// 'x' is updated with some additional value.
|
|
assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
|
|
"Update expr in 'atomic capture' must be a binary operator.");
|
|
auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
|
|
// Update expressions are allowed to have the following forms:
|
|
// x binop= expr; -> xrval + expr;
|
|
// x++, ++x -> xrval + 1;
|
|
// x--, --x -> xrval - 1;
|
|
// x = x binop expr; -> xrval binop expr
|
|
// x = expr Op x; - > expr binop xrval;
|
|
auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
|
|
auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
|
|
auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
|
|
NewVValType = XRValExpr->getType();
|
|
auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
|
|
auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr,
|
|
IsSeqCst, IsPostfixUpdate](RValue XRValue) -> RValue {
|
|
CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
|
|
CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
|
|
RValue Res = CGF.EmitAnyExpr(UE);
|
|
NewVVal = IsPostfixUpdate ? XRValue : Res;
|
|
return Res;
|
|
};
|
|
auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
|
|
XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
|
|
if (Res.first) {
|
|
// 'atomicrmw' instruction was generated.
|
|
if (IsPostfixUpdate) {
|
|
// Use old value from 'atomicrmw'.
|
|
NewVVal = Res.second;
|
|
} else {
|
|
// 'atomicrmw' does not provide new value, so evaluate it using old
|
|
// value of 'x'.
|
|
CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
|
|
CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second);
|
|
NewVVal = CGF.EmitAnyExpr(UE);
|
|
}
|
|
}
|
|
} else {
|
|
// 'x' is simply rewritten with some 'expr'.
|
|
NewVValType = X->getType().getNonReferenceType();
|
|
ExprRValue = convertToType(CGF, ExprRValue, E->getType(),
|
|
X->getType().getNonReferenceType());
|
|
auto &&Gen = [&CGF, &NewVVal, ExprRValue](RValue XRValue) -> RValue {
|
|
NewVVal = XRValue;
|
|
return ExprRValue;
|
|
};
|
|
// Try to perform atomicrmw xchg, otherwise simple exchange.
|
|
auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
|
|
XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO,
|
|
Loc, Gen);
|
|
if (Res.first) {
|
|
// 'atomicrmw' instruction was generated.
|
|
NewVVal = IsPostfixUpdate ? Res.second : ExprRValue;
|
|
}
|
|
}
|
|
// Emit post-update store to 'v' of old/new 'x' value.
|
|
emitSimpleStore(CGF, VLValue, NewVVal, NewVValType);
|
|
// OpenMP, 2.12.6, atomic Construct
|
|
// Any atomic construct with a seq_cst clause forces the atomically
|
|
// performed operation to include an implicit flush operation without a
|
|
// list.
|
|
if (IsSeqCst)
|
|
CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
|
|
}
|
|
|
|
static void EmitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind,
|
|
bool IsSeqCst, bool IsPostfixUpdate,
|
|
const Expr *X, const Expr *V, const Expr *E,
|
|
const Expr *UE, bool IsXLHSInRHSPart,
|
|
SourceLocation Loc) {
|
|
switch (Kind) {
|
|
case OMPC_read:
|
|
EmitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc);
|
|
break;
|
|
case OMPC_write:
|
|
EmitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc);
|
|
break;
|
|
case OMPC_unknown:
|
|
case OMPC_update:
|
|
EmitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc);
|
|
break;
|
|
case OMPC_capture:
|
|
EmitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE,
|
|
IsXLHSInRHSPart, Loc);
|
|
break;
|
|
case OMPC_if:
|
|
case OMPC_final:
|
|
case OMPC_num_threads:
|
|
case OMPC_private:
|
|
case OMPC_firstprivate:
|
|
case OMPC_lastprivate:
|
|
case OMPC_reduction:
|
|
case OMPC_safelen:
|
|
case OMPC_collapse:
|
|
case OMPC_default:
|
|
case OMPC_seq_cst:
|
|
case OMPC_shared:
|
|
case OMPC_linear:
|
|
case OMPC_aligned:
|
|
case OMPC_copyin:
|
|
case OMPC_copyprivate:
|
|
case OMPC_flush:
|
|
case OMPC_proc_bind:
|
|
case OMPC_schedule:
|
|
case OMPC_ordered:
|
|
case OMPC_nowait:
|
|
case OMPC_untied:
|
|
case OMPC_threadprivate:
|
|
case OMPC_mergeable:
|
|
llvm_unreachable("Clause is not allowed in 'omp atomic'.");
|
|
}
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) {
|
|
bool IsSeqCst = S.getSingleClause(/*K=*/OMPC_seq_cst);
|
|
OpenMPClauseKind Kind = OMPC_unknown;
|
|
for (auto *C : S.clauses()) {
|
|
// Find first clause (skip seq_cst clause, if it is first).
|
|
if (C->getClauseKind() != OMPC_seq_cst) {
|
|
Kind = C->getClauseKind();
|
|
break;
|
|
}
|
|
}
|
|
|
|
const auto *CS =
|
|
S.getAssociatedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
|
|
if (const auto *EWC = dyn_cast<ExprWithCleanups>(CS)) {
|
|
enterFullExpression(EWC);
|
|
}
|
|
// Processing for statements under 'atomic capture'.
|
|
if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) {
|
|
for (const auto *C : Compound->body()) {
|
|
if (const auto *EWC = dyn_cast<ExprWithCleanups>(C)) {
|
|
enterFullExpression(EWC);
|
|
}
|
|
}
|
|
}
|
|
|
|
LexicalScope Scope(*this, S.getSourceRange());
|
|
auto &&CodeGen = [&S, Kind, IsSeqCst](CodeGenFunction &CGF) {
|
|
EmitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(),
|
|
S.getV(), S.getExpr(), S.getUpdateExpr(),
|
|
S.isXLHSInRHSPart(), S.getLocStart());
|
|
};
|
|
CGM.getOpenMPRuntime().emitInlinedDirective(*this, CodeGen);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &) {
|
|
llvm_unreachable("CodeGen for 'omp target' is not supported yet.");
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &) {
|
|
llvm_unreachable("CodeGen for 'omp teams' is not supported yet.");
|
|
}
|