llvm-project/mlir/lib/IR/PatternMatch.cpp

314 lines
13 KiB
C++

//===- PatternMatch.cpp - Base classes for pattern match ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/Value.h"
using namespace mlir;
PatternBenefit::PatternBenefit(unsigned benefit) : representation(benefit) {
assert(representation == benefit && benefit != ImpossibleToMatchSentinel &&
"This pattern match benefit is too large to represent");
}
unsigned short PatternBenefit::getBenefit() const {
assert(!isImpossibleToMatch() && "Pattern doesn't match");
return representation;
}
//===----------------------------------------------------------------------===//
// Pattern implementation
//===----------------------------------------------------------------------===//
Pattern::Pattern(StringRef rootName, PatternBenefit benefit,
MLIRContext *context)
: rootKind(OperationName(rootName, context)), benefit(benefit) {}
Pattern::Pattern(PatternBenefit benefit, MatchAnyOpTypeTag)
: benefit(benefit) {}
// Out-of-line vtable anchor.
void Pattern::anchor() {}
//===----------------------------------------------------------------------===//
// RewritePattern and PatternRewriter implementation
//===----------------------------------------------------------------------===//
void RewritePattern::rewrite(Operation *op, PatternRewriter &rewriter) const {
llvm_unreachable("need to implement either matchAndRewrite or one of the "
"rewrite functions!");
}
LogicalResult RewritePattern::match(Operation *op) const {
llvm_unreachable("need to implement either match or matchAndRewrite!");
}
RewritePattern::RewritePattern(StringRef rootName,
ArrayRef<StringRef> generatedNames,
PatternBenefit benefit, MLIRContext *context)
: Pattern(rootName, benefit, context) {
generatedOps.reserve(generatedNames.size());
std::transform(generatedNames.begin(), generatedNames.end(),
std::back_inserter(generatedOps), [context](StringRef name) {
return OperationName(name, context);
});
}
RewritePattern::RewritePattern(ArrayRef<StringRef> generatedNames,
PatternBenefit benefit, MLIRContext *context,
MatchAnyOpTypeTag tag)
: Pattern(benefit, tag) {
generatedOps.reserve(generatedNames.size());
std::transform(generatedNames.begin(), generatedNames.end(),
std::back_inserter(generatedOps), [context](StringRef name) {
return OperationName(name, context);
});
}
PatternRewriter::~PatternRewriter() {
// Out of line to provide a vtable anchor for the class.
}
/// This method performs the final replacement for a pattern, where the
/// results of the operation are updated to use the specified list of SSA
/// values.
void PatternRewriter::replaceOp(Operation *op, ValueRange newValues) {
// Notify the rewriter subclass that we're about to replace this root.
notifyRootReplaced(op);
assert(op->getNumResults() == newValues.size() &&
"incorrect # of replacement values");
op->replaceAllUsesWith(newValues);
notifyOperationRemoved(op);
op->erase();
}
/// This method erases an operation that is known to have no uses. The uses of
/// the given operation *must* be known to be dead.
void PatternRewriter::eraseOp(Operation *op) {
assert(op->use_empty() && "expected 'op' to have no uses");
notifyOperationRemoved(op);
op->erase();
}
void PatternRewriter::eraseBlock(Block *block) {
for (auto &op : llvm::make_early_inc_range(llvm::reverse(*block))) {
assert(op.use_empty() && "expected 'op' to have no uses");
eraseOp(&op);
}
block->erase();
}
/// Merge the operations of block 'source' into the end of block 'dest'.
/// 'source's predecessors must be empty or only contain 'dest`.
/// 'argValues' is used to replace the block arguments of 'source' after
/// merging.
void PatternRewriter::mergeBlocks(Block *source, Block *dest,
ValueRange argValues) {
assert(llvm::all_of(source->getPredecessors(),
[dest](Block *succ) { return succ == dest; }) &&
"expected 'source' to have no predecessors or only 'dest'");
assert(argValues.size() == source->getNumArguments() &&
"incorrect # of argument replacement values");
// Replace all of the successor arguments with the provided values.
for (auto it : llvm::zip(source->getArguments(), argValues))
std::get<0>(it).replaceAllUsesWith(std::get<1>(it));
// Splice the operations of the 'source' block into the 'dest' block and erase
// it.
dest->getOperations().splice(dest->end(), source->getOperations());
source->dropAllUses();
source->erase();
}
// Merge the operations of block 'source' before the operation 'op'. Source
// block should not have existing predecessors or successors.
void PatternRewriter::mergeBlockBefore(Block *source, Operation *op,
ValueRange argValues) {
assert(source->hasNoPredecessors() &&
"expected 'source' to have no predecessors");
assert(source->hasNoSuccessors() &&
"expected 'source' to have no successors");
// Split the block containing 'op' into two, one containg all operations
// before 'op' (prologue) and another (epilogue) containing 'op' and all
// operations after it.
Block *prologue = op->getBlock();
Block *epilogue = splitBlock(prologue, op->getIterator());
// Merge the source block at the end of the prologue.
mergeBlocks(source, prologue, argValues);
// Merge the epilogue at the end the prologue.
mergeBlocks(epilogue, prologue);
}
/// Split the operations starting at "before" (inclusive) out of the given
/// block into a new block, and return it.
Block *PatternRewriter::splitBlock(Block *block, Block::iterator before) {
return block->splitBlock(before);
}
/// 'op' and 'newOp' are known to have the same number of results, replace the
/// uses of op with uses of newOp
void PatternRewriter::replaceOpWithResultsOfAnotherOp(Operation *op,
Operation *newOp) {
assert(op->getNumResults() == newOp->getNumResults() &&
"replacement op doesn't match results of original op");
if (op->getNumResults() == 1)
return replaceOp(op, newOp->getResult(0));
return replaceOp(op, newOp->getResults());
}
/// Move the blocks that belong to "region" before the given position in
/// another region. The two regions must be different. The caller is in
/// charge to update create the operation transferring the control flow to the
/// region and pass it the correct block arguments.
void PatternRewriter::inlineRegionBefore(Region &region, Region &parent,
Region::iterator before) {
parent.getBlocks().splice(before, region.getBlocks());
}
void PatternRewriter::inlineRegionBefore(Region &region, Block *before) {
inlineRegionBefore(region, *before->getParent(), before->getIterator());
}
/// Clone the blocks that belong to "region" before the given position in
/// another region "parent". The two regions must be different. The caller is
/// responsible for creating or updating the operation transferring flow of
/// control to the region and passing it the correct block arguments.
void PatternRewriter::cloneRegionBefore(Region &region, Region &parent,
Region::iterator before,
BlockAndValueMapping &mapping) {
region.cloneInto(&parent, before, mapping);
}
void PatternRewriter::cloneRegionBefore(Region &region, Region &parent,
Region::iterator before) {
BlockAndValueMapping mapping;
cloneRegionBefore(region, parent, before, mapping);
}
void PatternRewriter::cloneRegionBefore(Region &region, Block *before) {
cloneRegionBefore(region, *before->getParent(), before->getIterator());
}
//===----------------------------------------------------------------------===//
// PatternMatcher implementation
//===----------------------------------------------------------------------===//
void PatternApplicator::applyCostModel(CostModel model) {
// Separate patterns by root kind to simplify lookup later on.
patterns.clear();
anyOpPatterns.clear();
for (const auto &pat : owningPatternList) {
// If the pattern is always impossible to match, just ignore it.
if (pat->getBenefit().isImpossibleToMatch())
continue;
if (Optional<OperationName> opName = pat->getRootKind())
patterns[*opName].push_back(pat.get());
else
anyOpPatterns.push_back(pat.get());
}
// Sort the patterns using the provided cost model.
llvm::SmallDenseMap<RewritePattern *, PatternBenefit> benefits;
auto cmp = [&benefits](RewritePattern *lhs, RewritePattern *rhs) {
return benefits[lhs] > benefits[rhs];
};
auto processPatternList = [&](SmallVectorImpl<RewritePattern *> &list) {
// Special case for one pattern in the list, which is the most common case.
if (list.size() == 1) {
if (model(*list.front()).isImpossibleToMatch())
list.clear();
return;
}
// Collect the dynamic benefits for the current pattern list.
benefits.clear();
for (RewritePattern *pat : list)
benefits.try_emplace(pat, model(*pat));
// Sort patterns with highest benefit first, and remove those that are
// impossible to match.
std::stable_sort(list.begin(), list.end(), cmp);
while (!list.empty() && benefits[list.back()].isImpossibleToMatch())
list.pop_back();
};
for (auto &it : patterns)
processPatternList(it.second);
processPatternList(anyOpPatterns);
}
void PatternApplicator::walkAllPatterns(
function_ref<void(const RewritePattern &)> walk) {
for (auto &it : owningPatternList)
walk(*it);
}
LogicalResult PatternApplicator::matchAndRewrite(
Operation *op, PatternRewriter &rewriter,
function_ref<bool(const RewritePattern &)> canApply,
function_ref<void(const RewritePattern &)> onFailure,
function_ref<LogicalResult(const RewritePattern &)> onSuccess) {
// Check to see if there are patterns matching this specific operation type.
MutableArrayRef<RewritePattern *> opPatterns;
auto patternIt = patterns.find(op->getName());
if (patternIt != patterns.end())
opPatterns = patternIt->second;
// Process the patterns for that match the specific operation type, and any
// operation type in an interleaved fashion.
// FIXME: It'd be nice to just write an llvm::make_merge_range utility
// and pass in a comparison function. That would make this code trivial.
auto opIt = opPatterns.begin(), opE = opPatterns.end();
auto anyIt = anyOpPatterns.begin(), anyE = anyOpPatterns.end();
while (opIt != opE && anyIt != anyE) {
// Try to match the pattern providing the most benefit.
RewritePattern *pattern;
if ((*opIt)->getBenefit() >= (*anyIt)->getBenefit())
pattern = *(opIt++);
else
pattern = *(anyIt++);
// Otherwise, try to match the generic pattern.
if (succeeded(matchAndRewrite(op, *pattern, rewriter, canApply, onFailure,
onSuccess)))
return success();
}
// If we break from the loop, then only one of the ranges can still have
// elements. Loop over both without checking given that we don't need to
// interleave anymore.
for (RewritePattern *pattern : llvm::concat<RewritePattern *>(
llvm::make_range(opIt, opE), llvm::make_range(anyIt, anyE))) {
if (succeeded(matchAndRewrite(op, *pattern, rewriter, canApply, onFailure,
onSuccess)))
return success();
}
return failure();
}
LogicalResult PatternApplicator::matchAndRewrite(
Operation *op, const RewritePattern &pattern, PatternRewriter &rewriter,
function_ref<bool(const RewritePattern &)> canApply,
function_ref<void(const RewritePattern &)> onFailure,
function_ref<LogicalResult(const RewritePattern &)> onSuccess) {
// Check that the pattern can be applied.
if (canApply && !canApply(pattern))
return failure();
// Try to match and rewrite this pattern. The patterns are sorted by
// benefit, so if we match we can immediately rewrite.
rewriter.setInsertionPoint(op);
if (succeeded(pattern.matchAndRewrite(op, rewriter)))
return success(!onSuccess || succeeded(onSuccess(pattern)));
if (onFailure)
onFailure(pattern);
return failure();
}