forked from OSchip/llvm-project
1248 lines
43 KiB
C++
1248 lines
43 KiB
C++
//===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the SystemZ implementation of the TargetInstrInfo class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "SystemZInstrInfo.h"
|
|
#include "SystemZInstrBuilder.h"
|
|
#include "SystemZTargetMachine.h"
|
|
#include "llvm/CodeGen/LiveVariables.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define GET_INSTRINFO_CTOR_DTOR
|
|
#define GET_INSTRMAP_INFO
|
|
#include "SystemZGenInstrInfo.inc"
|
|
|
|
// Return a mask with Count low bits set.
|
|
static uint64_t allOnes(unsigned int Count) {
|
|
return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1;
|
|
}
|
|
|
|
// Reg should be a 32-bit GPR. Return true if it is a high register rather
|
|
// than a low register.
|
|
static bool isHighReg(unsigned int Reg) {
|
|
if (SystemZ::GRH32BitRegClass.contains(Reg))
|
|
return true;
|
|
assert(SystemZ::GR32BitRegClass.contains(Reg) && "Invalid GRX32");
|
|
return false;
|
|
}
|
|
|
|
// Pin the vtable to this file.
|
|
void SystemZInstrInfo::anchor() {}
|
|
|
|
SystemZInstrInfo::SystemZInstrInfo(SystemZSubtarget &sti)
|
|
: SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP),
|
|
RI(), STI(sti) {
|
|
}
|
|
|
|
// MI is a 128-bit load or store. Split it into two 64-bit loads or stores,
|
|
// each having the opcode given by NewOpcode.
|
|
void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI,
|
|
unsigned NewOpcode) const {
|
|
MachineBasicBlock *MBB = MI->getParent();
|
|
MachineFunction &MF = *MBB->getParent();
|
|
|
|
// Get two load or store instructions. Use the original instruction for one
|
|
// of them (arbitrarily the second here) and create a clone for the other.
|
|
MachineInstr *EarlierMI = MF.CloneMachineInstr(MI);
|
|
MBB->insert(MI, EarlierMI);
|
|
|
|
// Set up the two 64-bit registers.
|
|
MachineOperand &HighRegOp = EarlierMI->getOperand(0);
|
|
MachineOperand &LowRegOp = MI->getOperand(0);
|
|
HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64));
|
|
LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64));
|
|
|
|
// The address in the first (high) instruction is already correct.
|
|
// Adjust the offset in the second (low) instruction.
|
|
MachineOperand &HighOffsetOp = EarlierMI->getOperand(2);
|
|
MachineOperand &LowOffsetOp = MI->getOperand(2);
|
|
LowOffsetOp.setImm(LowOffsetOp.getImm() + 8);
|
|
|
|
// Set the opcodes.
|
|
unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm());
|
|
unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm());
|
|
assert(HighOpcode && LowOpcode && "Both offsets should be in range");
|
|
|
|
EarlierMI->setDesc(get(HighOpcode));
|
|
MI->setDesc(get(LowOpcode));
|
|
}
|
|
|
|
// Split ADJDYNALLOC instruction MI.
|
|
void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const {
|
|
MachineBasicBlock *MBB = MI->getParent();
|
|
MachineFunction &MF = *MBB->getParent();
|
|
MachineFrameInfo *MFFrame = MF.getFrameInfo();
|
|
MachineOperand &OffsetMO = MI->getOperand(2);
|
|
|
|
uint64_t Offset = (MFFrame->getMaxCallFrameSize() +
|
|
SystemZMC::CallFrameSize +
|
|
OffsetMO.getImm());
|
|
unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset);
|
|
assert(NewOpcode && "No support for huge argument lists yet");
|
|
MI->setDesc(get(NewOpcode));
|
|
OffsetMO.setImm(Offset);
|
|
}
|
|
|
|
// MI is an RI-style pseudo instruction. Replace it with LowOpcode
|
|
// if the first operand is a low GR32 and HighOpcode if the first operand
|
|
// is a high GR32. ConvertHigh is true if LowOpcode takes a signed operand
|
|
// and HighOpcode takes an unsigned 32-bit operand. In those cases,
|
|
// MI has the same kind of operand as LowOpcode, so needs to be converted
|
|
// if HighOpcode is used.
|
|
void SystemZInstrInfo::expandRIPseudo(MachineInstr *MI, unsigned LowOpcode,
|
|
unsigned HighOpcode,
|
|
bool ConvertHigh) const {
|
|
unsigned Reg = MI->getOperand(0).getReg();
|
|
bool IsHigh = isHighReg(Reg);
|
|
MI->setDesc(get(IsHigh ? HighOpcode : LowOpcode));
|
|
if (IsHigh && ConvertHigh)
|
|
MI->getOperand(1).setImm(uint32_t(MI->getOperand(1).getImm()));
|
|
}
|
|
|
|
// MI is a three-operand RIE-style pseudo instruction. Replace it with
|
|
// LowOpcode3 if the registers are both low GR32s, otherwise use a move
|
|
// followed by HighOpcode or LowOpcode, depending on whether the target
|
|
// is a high or low GR32.
|
|
void SystemZInstrInfo::expandRIEPseudo(MachineInstr *MI, unsigned LowOpcode,
|
|
unsigned LowOpcodeK,
|
|
unsigned HighOpcode) const {
|
|
unsigned DestReg = MI->getOperand(0).getReg();
|
|
unsigned SrcReg = MI->getOperand(1).getReg();
|
|
bool DestIsHigh = isHighReg(DestReg);
|
|
bool SrcIsHigh = isHighReg(SrcReg);
|
|
if (!DestIsHigh && !SrcIsHigh)
|
|
MI->setDesc(get(LowOpcodeK));
|
|
else {
|
|
emitGRX32Move(*MI->getParent(), MI, MI->getDebugLoc(),
|
|
DestReg, SrcReg, SystemZ::LR, 32,
|
|
MI->getOperand(1).isKill());
|
|
MI->setDesc(get(DestIsHigh ? HighOpcode : LowOpcode));
|
|
MI->getOperand(1).setReg(DestReg);
|
|
}
|
|
}
|
|
|
|
// MI is an RXY-style pseudo instruction. Replace it with LowOpcode
|
|
// if the first operand is a low GR32 and HighOpcode if the first operand
|
|
// is a high GR32.
|
|
void SystemZInstrInfo::expandRXYPseudo(MachineInstr *MI, unsigned LowOpcode,
|
|
unsigned HighOpcode) const {
|
|
unsigned Reg = MI->getOperand(0).getReg();
|
|
unsigned Opcode = getOpcodeForOffset(isHighReg(Reg) ? HighOpcode : LowOpcode,
|
|
MI->getOperand(2).getImm());
|
|
MI->setDesc(get(Opcode));
|
|
}
|
|
|
|
// MI is an RR-style pseudo instruction that zero-extends the low Size bits
|
|
// of one GRX32 into another. Replace it with LowOpcode if both operands
|
|
// are low registers, otherwise use RISB[LH]G.
|
|
void SystemZInstrInfo::expandZExtPseudo(MachineInstr *MI, unsigned LowOpcode,
|
|
unsigned Size) const {
|
|
emitGRX32Move(*MI->getParent(), MI, MI->getDebugLoc(),
|
|
MI->getOperand(0).getReg(), MI->getOperand(1).getReg(),
|
|
LowOpcode, Size, MI->getOperand(1).isKill());
|
|
MI->eraseFromParent();
|
|
}
|
|
|
|
// Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR
|
|
// DestReg before MBBI in MBB. Use LowLowOpcode when both DestReg and SrcReg
|
|
// are low registers, otherwise use RISB[LH]G. Size is the number of bits
|
|
// taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR).
|
|
// KillSrc is true if this move is the last use of SrcReg.
|
|
void SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MBBI,
|
|
DebugLoc DL, unsigned DestReg,
|
|
unsigned SrcReg, unsigned LowLowOpcode,
|
|
unsigned Size, bool KillSrc) const {
|
|
unsigned Opcode;
|
|
bool DestIsHigh = isHighReg(DestReg);
|
|
bool SrcIsHigh = isHighReg(SrcReg);
|
|
if (DestIsHigh && SrcIsHigh)
|
|
Opcode = SystemZ::RISBHH;
|
|
else if (DestIsHigh && !SrcIsHigh)
|
|
Opcode = SystemZ::RISBHL;
|
|
else if (!DestIsHigh && SrcIsHigh)
|
|
Opcode = SystemZ::RISBLH;
|
|
else {
|
|
BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
return;
|
|
}
|
|
unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0);
|
|
BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
|
|
.addReg(DestReg, RegState::Undef)
|
|
.addReg(SrcReg, getKillRegState(KillSrc))
|
|
.addImm(32 - Size).addImm(128 + 31).addImm(Rotate);
|
|
}
|
|
|
|
// If MI is a simple load or store for a frame object, return the register
|
|
// it loads or stores and set FrameIndex to the index of the frame object.
|
|
// Return 0 otherwise.
|
|
//
|
|
// Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
|
|
static int isSimpleMove(const MachineInstr *MI, int &FrameIndex,
|
|
unsigned Flag) {
|
|
const MCInstrDesc &MCID = MI->getDesc();
|
|
if ((MCID.TSFlags & Flag) &&
|
|
MI->getOperand(1).isFI() &&
|
|
MI->getOperand(2).getImm() == 0 &&
|
|
MI->getOperand(3).getReg() == 0) {
|
|
FrameIndex = MI->getOperand(1).getIndex();
|
|
return MI->getOperand(0).getReg();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
|
|
int &FrameIndex) const {
|
|
return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad);
|
|
}
|
|
|
|
unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
|
|
int &FrameIndex) const {
|
|
return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore);
|
|
}
|
|
|
|
bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr *MI,
|
|
int &DestFrameIndex,
|
|
int &SrcFrameIndex) const {
|
|
// Check for MVC 0(Length,FI1),0(FI2)
|
|
const MachineFrameInfo *MFI = MI->getParent()->getParent()->getFrameInfo();
|
|
if (MI->getOpcode() != SystemZ::MVC ||
|
|
!MI->getOperand(0).isFI() ||
|
|
MI->getOperand(1).getImm() != 0 ||
|
|
!MI->getOperand(3).isFI() ||
|
|
MI->getOperand(4).getImm() != 0)
|
|
return false;
|
|
|
|
// Check that Length covers the full slots.
|
|
int64_t Length = MI->getOperand(2).getImm();
|
|
unsigned FI1 = MI->getOperand(0).getIndex();
|
|
unsigned FI2 = MI->getOperand(3).getIndex();
|
|
if (MFI->getObjectSize(FI1) != Length ||
|
|
MFI->getObjectSize(FI2) != Length)
|
|
return false;
|
|
|
|
DestFrameIndex = FI1;
|
|
SrcFrameIndex = FI2;
|
|
return true;
|
|
}
|
|
|
|
bool SystemZInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
|
|
MachineBasicBlock *&TBB,
|
|
MachineBasicBlock *&FBB,
|
|
SmallVectorImpl<MachineOperand> &Cond,
|
|
bool AllowModify) const {
|
|
// Most of the code and comments here are boilerplate.
|
|
|
|
// Start from the bottom of the block and work up, examining the
|
|
// terminator instructions.
|
|
MachineBasicBlock::iterator I = MBB.end();
|
|
while (I != MBB.begin()) {
|
|
--I;
|
|
if (I->isDebugValue())
|
|
continue;
|
|
|
|
// Working from the bottom, when we see a non-terminator instruction, we're
|
|
// done.
|
|
if (!isUnpredicatedTerminator(I))
|
|
break;
|
|
|
|
// A terminator that isn't a branch can't easily be handled by this
|
|
// analysis.
|
|
if (!I->isBranch())
|
|
return true;
|
|
|
|
// Can't handle indirect branches.
|
|
SystemZII::Branch Branch(getBranchInfo(I));
|
|
if (!Branch.Target->isMBB())
|
|
return true;
|
|
|
|
// Punt on compound branches.
|
|
if (Branch.Type != SystemZII::BranchNormal)
|
|
return true;
|
|
|
|
if (Branch.CCMask == SystemZ::CCMASK_ANY) {
|
|
// Handle unconditional branches.
|
|
if (!AllowModify) {
|
|
TBB = Branch.Target->getMBB();
|
|
continue;
|
|
}
|
|
|
|
// If the block has any instructions after a JMP, delete them.
|
|
while (std::next(I) != MBB.end())
|
|
std::next(I)->eraseFromParent();
|
|
|
|
Cond.clear();
|
|
FBB = nullptr;
|
|
|
|
// Delete the JMP if it's equivalent to a fall-through.
|
|
if (MBB.isLayoutSuccessor(Branch.Target->getMBB())) {
|
|
TBB = nullptr;
|
|
I->eraseFromParent();
|
|
I = MBB.end();
|
|
continue;
|
|
}
|
|
|
|
// TBB is used to indicate the unconditinal destination.
|
|
TBB = Branch.Target->getMBB();
|
|
continue;
|
|
}
|
|
|
|
// Working from the bottom, handle the first conditional branch.
|
|
if (Cond.empty()) {
|
|
// FIXME: add X86-style branch swap
|
|
FBB = TBB;
|
|
TBB = Branch.Target->getMBB();
|
|
Cond.push_back(MachineOperand::CreateImm(Branch.CCValid));
|
|
Cond.push_back(MachineOperand::CreateImm(Branch.CCMask));
|
|
continue;
|
|
}
|
|
|
|
// Handle subsequent conditional branches.
|
|
assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch");
|
|
|
|
// Only handle the case where all conditional branches branch to the same
|
|
// destination.
|
|
if (TBB != Branch.Target->getMBB())
|
|
return true;
|
|
|
|
// If the conditions are the same, we can leave them alone.
|
|
unsigned OldCCValid = Cond[0].getImm();
|
|
unsigned OldCCMask = Cond[1].getImm();
|
|
if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask)
|
|
continue;
|
|
|
|
// FIXME: Try combining conditions like X86 does. Should be easy on Z!
|
|
return false;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
unsigned SystemZInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
|
|
// Most of the code and comments here are boilerplate.
|
|
MachineBasicBlock::iterator I = MBB.end();
|
|
unsigned Count = 0;
|
|
|
|
while (I != MBB.begin()) {
|
|
--I;
|
|
if (I->isDebugValue())
|
|
continue;
|
|
if (!I->isBranch())
|
|
break;
|
|
if (!getBranchInfo(I).Target->isMBB())
|
|
break;
|
|
// Remove the branch.
|
|
I->eraseFromParent();
|
|
I = MBB.end();
|
|
++Count;
|
|
}
|
|
|
|
return Count;
|
|
}
|
|
|
|
bool SystemZInstrInfo::
|
|
ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
|
|
assert(Cond.size() == 2 && "Invalid condition");
|
|
Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm());
|
|
return false;
|
|
}
|
|
|
|
unsigned
|
|
SystemZInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
|
|
MachineBasicBlock *FBB,
|
|
const SmallVectorImpl<MachineOperand> &Cond,
|
|
DebugLoc DL) const {
|
|
// In this function we output 32-bit branches, which should always
|
|
// have enough range. They can be shortened and relaxed by later code
|
|
// in the pipeline, if desired.
|
|
|
|
// Shouldn't be a fall through.
|
|
assert(TBB && "InsertBranch must not be told to insert a fallthrough");
|
|
assert((Cond.size() == 2 || Cond.size() == 0) &&
|
|
"SystemZ branch conditions have one component!");
|
|
|
|
if (Cond.empty()) {
|
|
// Unconditional branch?
|
|
assert(!FBB && "Unconditional branch with multiple successors!");
|
|
BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB);
|
|
return 1;
|
|
}
|
|
|
|
// Conditional branch.
|
|
unsigned Count = 0;
|
|
unsigned CCValid = Cond[0].getImm();
|
|
unsigned CCMask = Cond[1].getImm();
|
|
BuildMI(&MBB, DL, get(SystemZ::BRC))
|
|
.addImm(CCValid).addImm(CCMask).addMBB(TBB);
|
|
++Count;
|
|
|
|
if (FBB) {
|
|
// Two-way Conditional branch. Insert the second branch.
|
|
BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB);
|
|
++Count;
|
|
}
|
|
return Count;
|
|
}
|
|
|
|
bool SystemZInstrInfo::analyzeCompare(const MachineInstr *MI,
|
|
unsigned &SrcReg, unsigned &SrcReg2,
|
|
int &Mask, int &Value) const {
|
|
assert(MI->isCompare() && "Caller should have checked for a comparison");
|
|
|
|
if (MI->getNumExplicitOperands() == 2 &&
|
|
MI->getOperand(0).isReg() &&
|
|
MI->getOperand(1).isImm()) {
|
|
SrcReg = MI->getOperand(0).getReg();
|
|
SrcReg2 = 0;
|
|
Value = MI->getOperand(1).getImm();
|
|
Mask = ~0;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// If Reg is a virtual register, return its definition, otherwise return null.
|
|
static MachineInstr *getDef(unsigned Reg,
|
|
const MachineRegisterInfo *MRI) {
|
|
if (TargetRegisterInfo::isPhysicalRegister(Reg))
|
|
return nullptr;
|
|
return MRI->getUniqueVRegDef(Reg);
|
|
}
|
|
|
|
// Return true if MI is a shift of type Opcode by Imm bits.
|
|
static bool isShift(MachineInstr *MI, int Opcode, int64_t Imm) {
|
|
return (MI->getOpcode() == Opcode &&
|
|
!MI->getOperand(2).getReg() &&
|
|
MI->getOperand(3).getImm() == Imm);
|
|
}
|
|
|
|
// If the destination of MI has no uses, delete it as dead.
|
|
static void eraseIfDead(MachineInstr *MI, const MachineRegisterInfo *MRI) {
|
|
if (MRI->use_nodbg_empty(MI->getOperand(0).getReg()))
|
|
MI->eraseFromParent();
|
|
}
|
|
|
|
// Compare compares SrcReg against zero. Check whether SrcReg contains
|
|
// the result of an IPM sequence whose input CC survives until Compare,
|
|
// and whether Compare is therefore redundant. Delete it and return
|
|
// true if so.
|
|
static bool removeIPMBasedCompare(MachineInstr *Compare, unsigned SrcReg,
|
|
const MachineRegisterInfo *MRI,
|
|
const TargetRegisterInfo *TRI) {
|
|
MachineInstr *LGFR = nullptr;
|
|
MachineInstr *RLL = getDef(SrcReg, MRI);
|
|
if (RLL && RLL->getOpcode() == SystemZ::LGFR) {
|
|
LGFR = RLL;
|
|
RLL = getDef(LGFR->getOperand(1).getReg(), MRI);
|
|
}
|
|
if (!RLL || !isShift(RLL, SystemZ::RLL, 31))
|
|
return false;
|
|
|
|
MachineInstr *SRL = getDef(RLL->getOperand(1).getReg(), MRI);
|
|
if (!SRL || !isShift(SRL, SystemZ::SRL, SystemZ::IPM_CC))
|
|
return false;
|
|
|
|
MachineInstr *IPM = getDef(SRL->getOperand(1).getReg(), MRI);
|
|
if (!IPM || IPM->getOpcode() != SystemZ::IPM)
|
|
return false;
|
|
|
|
// Check that there are no assignments to CC between the IPM and Compare,
|
|
if (IPM->getParent() != Compare->getParent())
|
|
return false;
|
|
MachineBasicBlock::iterator MBBI = IPM, MBBE = Compare;
|
|
for (++MBBI; MBBI != MBBE; ++MBBI) {
|
|
MachineInstr *MI = MBBI;
|
|
if (MI->modifiesRegister(SystemZ::CC, TRI))
|
|
return false;
|
|
}
|
|
|
|
Compare->eraseFromParent();
|
|
if (LGFR)
|
|
eraseIfDead(LGFR, MRI);
|
|
eraseIfDead(RLL, MRI);
|
|
eraseIfDead(SRL, MRI);
|
|
eraseIfDead(IPM, MRI);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
SystemZInstrInfo::optimizeCompareInstr(MachineInstr *Compare,
|
|
unsigned SrcReg, unsigned SrcReg2,
|
|
int Mask, int Value,
|
|
const MachineRegisterInfo *MRI) const {
|
|
assert(!SrcReg2 && "Only optimizing constant comparisons so far");
|
|
bool IsLogical = (Compare->getDesc().TSFlags & SystemZII::IsLogical) != 0;
|
|
if (Value == 0 &&
|
|
!IsLogical &&
|
|
removeIPMBasedCompare(Compare, SrcReg, MRI, &RI))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
// If Opcode is a move that has a conditional variant, return that variant,
|
|
// otherwise return 0.
|
|
static unsigned getConditionalMove(unsigned Opcode) {
|
|
switch (Opcode) {
|
|
case SystemZ::LR: return SystemZ::LOCR;
|
|
case SystemZ::LGR: return SystemZ::LOCGR;
|
|
default: return 0;
|
|
}
|
|
}
|
|
|
|
bool SystemZInstrInfo::isPredicable(MachineInstr *MI) const {
|
|
unsigned Opcode = MI->getOpcode();
|
|
if (STI.hasLoadStoreOnCond() &&
|
|
getConditionalMove(Opcode))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool SystemZInstrInfo::
|
|
isProfitableToIfCvt(MachineBasicBlock &MBB,
|
|
unsigned NumCycles, unsigned ExtraPredCycles,
|
|
const BranchProbability &Probability) const {
|
|
// For now only convert single instructions.
|
|
return NumCycles == 1;
|
|
}
|
|
|
|
bool SystemZInstrInfo::
|
|
isProfitableToIfCvt(MachineBasicBlock &TMBB,
|
|
unsigned NumCyclesT, unsigned ExtraPredCyclesT,
|
|
MachineBasicBlock &FMBB,
|
|
unsigned NumCyclesF, unsigned ExtraPredCyclesF,
|
|
const BranchProbability &Probability) const {
|
|
// For now avoid converting mutually-exclusive cases.
|
|
return false;
|
|
}
|
|
|
|
bool SystemZInstrInfo::
|
|
PredicateInstruction(MachineInstr *MI,
|
|
const SmallVectorImpl<MachineOperand> &Pred) const {
|
|
assert(Pred.size() == 2 && "Invalid condition");
|
|
unsigned CCValid = Pred[0].getImm();
|
|
unsigned CCMask = Pred[1].getImm();
|
|
assert(CCMask > 0 && CCMask < 15 && "Invalid predicate");
|
|
unsigned Opcode = MI->getOpcode();
|
|
if (STI.hasLoadStoreOnCond()) {
|
|
if (unsigned CondOpcode = getConditionalMove(Opcode)) {
|
|
MI->setDesc(get(CondOpcode));
|
|
MachineInstrBuilder(*MI->getParent()->getParent(), MI)
|
|
.addImm(CCValid).addImm(CCMask)
|
|
.addReg(SystemZ::CC, RegState::Implicit);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void
|
|
SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MBBI, DebugLoc DL,
|
|
unsigned DestReg, unsigned SrcReg,
|
|
bool KillSrc) const {
|
|
// Split 128-bit GPR moves into two 64-bit moves. This handles ADDR128 too.
|
|
if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) {
|
|
copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64),
|
|
RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc);
|
|
copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64),
|
|
RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc);
|
|
return;
|
|
}
|
|
|
|
if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) {
|
|
emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc);
|
|
return;
|
|
}
|
|
|
|
// Everything else needs only one instruction.
|
|
unsigned Opcode;
|
|
if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg))
|
|
Opcode = SystemZ::LGR;
|
|
else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg))
|
|
Opcode = SystemZ::LER;
|
|
else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg))
|
|
Opcode = SystemZ::LDR;
|
|
else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg))
|
|
Opcode = SystemZ::LXR;
|
|
else
|
|
llvm_unreachable("Impossible reg-to-reg copy");
|
|
|
|
BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
}
|
|
|
|
void
|
|
SystemZInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MBBI,
|
|
unsigned SrcReg, bool isKill,
|
|
int FrameIdx,
|
|
const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI) const {
|
|
DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
|
|
|
|
// Callers may expect a single instruction, so keep 128-bit moves
|
|
// together for now and lower them after register allocation.
|
|
unsigned LoadOpcode, StoreOpcode;
|
|
getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
|
|
addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode))
|
|
.addReg(SrcReg, getKillRegState(isKill)), FrameIdx);
|
|
}
|
|
|
|
void
|
|
SystemZInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MBBI,
|
|
unsigned DestReg, int FrameIdx,
|
|
const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI) const {
|
|
DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
|
|
|
|
// Callers may expect a single instruction, so keep 128-bit moves
|
|
// together for now and lower them after register allocation.
|
|
unsigned LoadOpcode, StoreOpcode;
|
|
getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
|
|
addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg),
|
|
FrameIdx);
|
|
}
|
|
|
|
// Return true if MI is a simple load or store with a 12-bit displacement
|
|
// and no index. Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
|
|
static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) {
|
|
const MCInstrDesc &MCID = MI->getDesc();
|
|
return ((MCID.TSFlags & Flag) &&
|
|
isUInt<12>(MI->getOperand(2).getImm()) &&
|
|
MI->getOperand(3).getReg() == 0);
|
|
}
|
|
|
|
namespace {
|
|
struct LogicOp {
|
|
LogicOp() : RegSize(0), ImmLSB(0), ImmSize(0) {}
|
|
LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize)
|
|
: RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {}
|
|
|
|
explicit operator bool() const { return RegSize; }
|
|
|
|
unsigned RegSize, ImmLSB, ImmSize;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
static LogicOp interpretAndImmediate(unsigned Opcode) {
|
|
switch (Opcode) {
|
|
case SystemZ::NILMux: return LogicOp(32, 0, 16);
|
|
case SystemZ::NIHMux: return LogicOp(32, 16, 16);
|
|
case SystemZ::NILL64: return LogicOp(64, 0, 16);
|
|
case SystemZ::NILH64: return LogicOp(64, 16, 16);
|
|
case SystemZ::NIHL64: return LogicOp(64, 32, 16);
|
|
case SystemZ::NIHH64: return LogicOp(64, 48, 16);
|
|
case SystemZ::NIFMux: return LogicOp(32, 0, 32);
|
|
case SystemZ::NILF64: return LogicOp(64, 0, 32);
|
|
case SystemZ::NIHF64: return LogicOp(64, 32, 32);
|
|
default: return LogicOp();
|
|
}
|
|
}
|
|
|
|
// Used to return from convertToThreeAddress after replacing two-address
|
|
// instruction OldMI with three-address instruction NewMI.
|
|
static MachineInstr *finishConvertToThreeAddress(MachineInstr *OldMI,
|
|
MachineInstr *NewMI,
|
|
LiveVariables *LV) {
|
|
if (LV) {
|
|
unsigned NumOps = OldMI->getNumOperands();
|
|
for (unsigned I = 1; I < NumOps; ++I) {
|
|
MachineOperand &Op = OldMI->getOperand(I);
|
|
if (Op.isReg() && Op.isKill())
|
|
LV->replaceKillInstruction(Op.getReg(), OldMI, NewMI);
|
|
}
|
|
}
|
|
return NewMI;
|
|
}
|
|
|
|
MachineInstr *
|
|
SystemZInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
|
|
MachineBasicBlock::iterator &MBBI,
|
|
LiveVariables *LV) const {
|
|
MachineInstr *MI = MBBI;
|
|
MachineBasicBlock *MBB = MI->getParent();
|
|
MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
|
|
|
|
unsigned Opcode = MI->getOpcode();
|
|
unsigned NumOps = MI->getNumOperands();
|
|
|
|
// Try to convert something like SLL into SLLK, if supported.
|
|
// We prefer to keep the two-operand form where possible both
|
|
// because it tends to be shorter and because some instructions
|
|
// have memory forms that can be used during spilling.
|
|
if (STI.hasDistinctOps()) {
|
|
MachineOperand &Dest = MI->getOperand(0);
|
|
MachineOperand &Src = MI->getOperand(1);
|
|
unsigned DestReg = Dest.getReg();
|
|
unsigned SrcReg = Src.getReg();
|
|
// AHIMux is only really a three-operand instruction when both operands
|
|
// are low registers. Try to constrain both operands to be low if
|
|
// possible.
|
|
if (Opcode == SystemZ::AHIMux &&
|
|
TargetRegisterInfo::isVirtualRegister(DestReg) &&
|
|
TargetRegisterInfo::isVirtualRegister(SrcReg) &&
|
|
MRI.getRegClass(DestReg)->contains(SystemZ::R1L) &&
|
|
MRI.getRegClass(SrcReg)->contains(SystemZ::R1L)) {
|
|
MRI.constrainRegClass(DestReg, &SystemZ::GR32BitRegClass);
|
|
MRI.constrainRegClass(SrcReg, &SystemZ::GR32BitRegClass);
|
|
}
|
|
int ThreeOperandOpcode = SystemZ::getThreeOperandOpcode(Opcode);
|
|
if (ThreeOperandOpcode >= 0) {
|
|
MachineInstrBuilder MIB =
|
|
BuildMI(*MBB, MBBI, MI->getDebugLoc(), get(ThreeOperandOpcode))
|
|
.addOperand(Dest);
|
|
// Keep the kill state, but drop the tied flag.
|
|
MIB.addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg());
|
|
// Keep the remaining operands as-is.
|
|
for (unsigned I = 2; I < NumOps; ++I)
|
|
MIB.addOperand(MI->getOperand(I));
|
|
return finishConvertToThreeAddress(MI, MIB, LV);
|
|
}
|
|
}
|
|
|
|
// Try to convert an AND into an RISBG-type instruction.
|
|
if (LogicOp And = interpretAndImmediate(Opcode)) {
|
|
uint64_t Imm = MI->getOperand(2).getImm() << And.ImmLSB;
|
|
// AND IMMEDIATE leaves the other bits of the register unchanged.
|
|
Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB);
|
|
unsigned Start, End;
|
|
if (isRxSBGMask(Imm, And.RegSize, Start, End)) {
|
|
unsigned NewOpcode;
|
|
if (And.RegSize == 64)
|
|
NewOpcode = SystemZ::RISBG;
|
|
else {
|
|
NewOpcode = SystemZ::RISBMux;
|
|
Start &= 31;
|
|
End &= 31;
|
|
}
|
|
MachineOperand &Dest = MI->getOperand(0);
|
|
MachineOperand &Src = MI->getOperand(1);
|
|
MachineInstrBuilder MIB =
|
|
BuildMI(*MBB, MI, MI->getDebugLoc(), get(NewOpcode))
|
|
.addOperand(Dest).addReg(0)
|
|
.addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg())
|
|
.addImm(Start).addImm(End + 128).addImm(0);
|
|
return finishConvertToThreeAddress(MI, MIB, LV);
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
MachineInstr *
|
|
SystemZInstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
|
|
MachineInstr *MI,
|
|
const SmallVectorImpl<unsigned> &Ops,
|
|
int FrameIndex) const {
|
|
const MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
unsigned Size = MFI->getObjectSize(FrameIndex);
|
|
unsigned Opcode = MI->getOpcode();
|
|
|
|
if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
|
|
if ((Opcode == SystemZ::LA || Opcode == SystemZ::LAY) &&
|
|
isInt<8>(MI->getOperand(2).getImm()) &&
|
|
!MI->getOperand(3).getReg()) {
|
|
// LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST
|
|
return BuildMI(MF, MI->getDebugLoc(), get(SystemZ::AGSI))
|
|
.addFrameIndex(FrameIndex).addImm(0)
|
|
.addImm(MI->getOperand(2).getImm());
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
// All other cases require a single operand.
|
|
if (Ops.size() != 1)
|
|
return nullptr;
|
|
|
|
unsigned OpNum = Ops[0];
|
|
assert(Size == MF.getRegInfo()
|
|
.getRegClass(MI->getOperand(OpNum).getReg())->getSize() &&
|
|
"Invalid size combination");
|
|
|
|
if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) &&
|
|
OpNum == 0 &&
|
|
isInt<8>(MI->getOperand(2).getImm())) {
|
|
// A(G)HI %reg, CONST -> A(G)SI %mem, CONST
|
|
Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI);
|
|
return BuildMI(MF, MI->getDebugLoc(), get(Opcode))
|
|
.addFrameIndex(FrameIndex).addImm(0)
|
|
.addImm(MI->getOperand(2).getImm());
|
|
}
|
|
|
|
if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) {
|
|
bool Op0IsGPR = (Opcode == SystemZ::LGDR);
|
|
bool Op1IsGPR = (Opcode == SystemZ::LDGR);
|
|
// If we're spilling the destination of an LDGR or LGDR, store the
|
|
// source register instead.
|
|
if (OpNum == 0) {
|
|
unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD;
|
|
return BuildMI(MF, MI->getDebugLoc(), get(StoreOpcode))
|
|
.addOperand(MI->getOperand(1)).addFrameIndex(FrameIndex)
|
|
.addImm(0).addReg(0);
|
|
}
|
|
// If we're spilling the source of an LDGR or LGDR, load the
|
|
// destination register instead.
|
|
if (OpNum == 1) {
|
|
unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD;
|
|
unsigned Dest = MI->getOperand(0).getReg();
|
|
return BuildMI(MF, MI->getDebugLoc(), get(LoadOpcode), Dest)
|
|
.addFrameIndex(FrameIndex).addImm(0).addReg(0);
|
|
}
|
|
}
|
|
|
|
// Look for cases where the source of a simple store or the destination
|
|
// of a simple load is being spilled. Try to use MVC instead.
|
|
//
|
|
// Although MVC is in practice a fast choice in these cases, it is still
|
|
// logically a bytewise copy. This means that we cannot use it if the
|
|
// load or store is volatile. We also wouldn't be able to use MVC if
|
|
// the two memories partially overlap, but that case cannot occur here,
|
|
// because we know that one of the memories is a full frame index.
|
|
//
|
|
// For performance reasons, we also want to avoid using MVC if the addresses
|
|
// might be equal. We don't worry about that case here, because spill slot
|
|
// coloring happens later, and because we have special code to remove
|
|
// MVCs that turn out to be redundant.
|
|
if (OpNum == 0 && MI->hasOneMemOperand()) {
|
|
MachineMemOperand *MMO = *MI->memoperands_begin();
|
|
if (MMO->getSize() == Size && !MMO->isVolatile()) {
|
|
// Handle conversion of loads.
|
|
if (isSimpleBD12Move(MI, SystemZII::SimpleBDXLoad)) {
|
|
return BuildMI(MF, MI->getDebugLoc(), get(SystemZ::MVC))
|
|
.addFrameIndex(FrameIndex).addImm(0).addImm(Size)
|
|
.addOperand(MI->getOperand(1)).addImm(MI->getOperand(2).getImm())
|
|
.addMemOperand(MMO);
|
|
}
|
|
// Handle conversion of stores.
|
|
if (isSimpleBD12Move(MI, SystemZII::SimpleBDXStore)) {
|
|
return BuildMI(MF, MI->getDebugLoc(), get(SystemZ::MVC))
|
|
.addOperand(MI->getOperand(1)).addImm(MI->getOperand(2).getImm())
|
|
.addImm(Size).addFrameIndex(FrameIndex).addImm(0)
|
|
.addMemOperand(MMO);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the spilled operand is the final one, try to change <INSN>R
|
|
// into <INSN>.
|
|
int MemOpcode = SystemZ::getMemOpcode(Opcode);
|
|
if (MemOpcode >= 0) {
|
|
unsigned NumOps = MI->getNumExplicitOperands();
|
|
if (OpNum == NumOps - 1) {
|
|
const MCInstrDesc &MemDesc = get(MemOpcode);
|
|
uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags);
|
|
assert(AccessBytes != 0 && "Size of access should be known");
|
|
assert(AccessBytes <= Size && "Access outside the frame index");
|
|
uint64_t Offset = Size - AccessBytes;
|
|
MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(MemOpcode));
|
|
for (unsigned I = 0; I < OpNum; ++I)
|
|
MIB.addOperand(MI->getOperand(I));
|
|
MIB.addFrameIndex(FrameIndex).addImm(Offset);
|
|
if (MemDesc.TSFlags & SystemZII::HasIndex)
|
|
MIB.addReg(0);
|
|
return MIB;
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
MachineInstr *
|
|
SystemZInstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr* MI,
|
|
const SmallVectorImpl<unsigned> &Ops,
|
|
MachineInstr* LoadMI) const {
|
|
return nullptr;
|
|
}
|
|
|
|
bool
|
|
SystemZInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
|
|
switch (MI->getOpcode()) {
|
|
case SystemZ::L128:
|
|
splitMove(MI, SystemZ::LG);
|
|
return true;
|
|
|
|
case SystemZ::ST128:
|
|
splitMove(MI, SystemZ::STG);
|
|
return true;
|
|
|
|
case SystemZ::LX:
|
|
splitMove(MI, SystemZ::LD);
|
|
return true;
|
|
|
|
case SystemZ::STX:
|
|
splitMove(MI, SystemZ::STD);
|
|
return true;
|
|
|
|
case SystemZ::LBMux:
|
|
expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH);
|
|
return true;
|
|
|
|
case SystemZ::LHMux:
|
|
expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH);
|
|
return true;
|
|
|
|
case SystemZ::LLCRMux:
|
|
expandZExtPseudo(MI, SystemZ::LLCR, 8);
|
|
return true;
|
|
|
|
case SystemZ::LLHRMux:
|
|
expandZExtPseudo(MI, SystemZ::LLHR, 16);
|
|
return true;
|
|
|
|
case SystemZ::LLCMux:
|
|
expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH);
|
|
return true;
|
|
|
|
case SystemZ::LLHMux:
|
|
expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH);
|
|
return true;
|
|
|
|
case SystemZ::LMux:
|
|
expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH);
|
|
return true;
|
|
|
|
case SystemZ::STCMux:
|
|
expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH);
|
|
return true;
|
|
|
|
case SystemZ::STHMux:
|
|
expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH);
|
|
return true;
|
|
|
|
case SystemZ::STMux:
|
|
expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH);
|
|
return true;
|
|
|
|
case SystemZ::LHIMux:
|
|
expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true);
|
|
return true;
|
|
|
|
case SystemZ::IIFMux:
|
|
expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false);
|
|
return true;
|
|
|
|
case SystemZ::IILMux:
|
|
expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false);
|
|
return true;
|
|
|
|
case SystemZ::IIHMux:
|
|
expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false);
|
|
return true;
|
|
|
|
case SystemZ::NIFMux:
|
|
expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false);
|
|
return true;
|
|
|
|
case SystemZ::NILMux:
|
|
expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false);
|
|
return true;
|
|
|
|
case SystemZ::NIHMux:
|
|
expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false);
|
|
return true;
|
|
|
|
case SystemZ::OIFMux:
|
|
expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false);
|
|
return true;
|
|
|
|
case SystemZ::OILMux:
|
|
expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false);
|
|
return true;
|
|
|
|
case SystemZ::OIHMux:
|
|
expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false);
|
|
return true;
|
|
|
|
case SystemZ::XIFMux:
|
|
expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false);
|
|
return true;
|
|
|
|
case SystemZ::TMLMux:
|
|
expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false);
|
|
return true;
|
|
|
|
case SystemZ::TMHMux:
|
|
expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false);
|
|
return true;
|
|
|
|
case SystemZ::AHIMux:
|
|
expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false);
|
|
return true;
|
|
|
|
case SystemZ::AHIMuxK:
|
|
expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH);
|
|
return true;
|
|
|
|
case SystemZ::AFIMux:
|
|
expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false);
|
|
return true;
|
|
|
|
case SystemZ::CFIMux:
|
|
expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false);
|
|
return true;
|
|
|
|
case SystemZ::CLFIMux:
|
|
expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false);
|
|
return true;
|
|
|
|
case SystemZ::CMux:
|
|
expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF);
|
|
return true;
|
|
|
|
case SystemZ::CLMux:
|
|
expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF);
|
|
return true;
|
|
|
|
case SystemZ::RISBMux: {
|
|
bool DestIsHigh = isHighReg(MI->getOperand(0).getReg());
|
|
bool SrcIsHigh = isHighReg(MI->getOperand(2).getReg());
|
|
if (SrcIsHigh == DestIsHigh)
|
|
MI->setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL));
|
|
else {
|
|
MI->setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH));
|
|
MI->getOperand(5).setImm(MI->getOperand(5).getImm() ^ 32);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
case SystemZ::ADJDYNALLOC:
|
|
splitAdjDynAlloc(MI);
|
|
return true;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
uint64_t SystemZInstrInfo::getInstSizeInBytes(const MachineInstr *MI) const {
|
|
if (MI->getOpcode() == TargetOpcode::INLINEASM) {
|
|
const MachineFunction *MF = MI->getParent()->getParent();
|
|
const char *AsmStr = MI->getOperand(0).getSymbolName();
|
|
return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
|
|
}
|
|
return MI->getDesc().getSize();
|
|
}
|
|
|
|
SystemZII::Branch
|
|
SystemZInstrInfo::getBranchInfo(const MachineInstr *MI) const {
|
|
switch (MI->getOpcode()) {
|
|
case SystemZ::BR:
|
|
case SystemZ::J:
|
|
case SystemZ::JG:
|
|
return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY,
|
|
SystemZ::CCMASK_ANY, &MI->getOperand(0));
|
|
|
|
case SystemZ::BRC:
|
|
case SystemZ::BRCL:
|
|
return SystemZII::Branch(SystemZII::BranchNormal,
|
|
MI->getOperand(0).getImm(),
|
|
MI->getOperand(1).getImm(), &MI->getOperand(2));
|
|
|
|
case SystemZ::BRCT:
|
|
return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP,
|
|
SystemZ::CCMASK_CMP_NE, &MI->getOperand(2));
|
|
|
|
case SystemZ::BRCTG:
|
|
return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP,
|
|
SystemZ::CCMASK_CMP_NE, &MI->getOperand(2));
|
|
|
|
case SystemZ::CIJ:
|
|
case SystemZ::CRJ:
|
|
return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP,
|
|
MI->getOperand(2).getImm(), &MI->getOperand(3));
|
|
|
|
case SystemZ::CLIJ:
|
|
case SystemZ::CLRJ:
|
|
return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP,
|
|
MI->getOperand(2).getImm(), &MI->getOperand(3));
|
|
|
|
case SystemZ::CGIJ:
|
|
case SystemZ::CGRJ:
|
|
return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP,
|
|
MI->getOperand(2).getImm(), &MI->getOperand(3));
|
|
|
|
case SystemZ::CLGIJ:
|
|
case SystemZ::CLGRJ:
|
|
return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP,
|
|
MI->getOperand(2).getImm(), &MI->getOperand(3));
|
|
|
|
default:
|
|
llvm_unreachable("Unrecognized branch opcode");
|
|
}
|
|
}
|
|
|
|
void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC,
|
|
unsigned &LoadOpcode,
|
|
unsigned &StoreOpcode) const {
|
|
if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) {
|
|
LoadOpcode = SystemZ::L;
|
|
StoreOpcode = SystemZ::ST;
|
|
} else if (RC == &SystemZ::GRH32BitRegClass) {
|
|
LoadOpcode = SystemZ::LFH;
|
|
StoreOpcode = SystemZ::STFH;
|
|
} else if (RC == &SystemZ::GRX32BitRegClass) {
|
|
LoadOpcode = SystemZ::LMux;
|
|
StoreOpcode = SystemZ::STMux;
|
|
} else if (RC == &SystemZ::GR64BitRegClass ||
|
|
RC == &SystemZ::ADDR64BitRegClass) {
|
|
LoadOpcode = SystemZ::LG;
|
|
StoreOpcode = SystemZ::STG;
|
|
} else if (RC == &SystemZ::GR128BitRegClass ||
|
|
RC == &SystemZ::ADDR128BitRegClass) {
|
|
LoadOpcode = SystemZ::L128;
|
|
StoreOpcode = SystemZ::ST128;
|
|
} else if (RC == &SystemZ::FP32BitRegClass) {
|
|
LoadOpcode = SystemZ::LE;
|
|
StoreOpcode = SystemZ::STE;
|
|
} else if (RC == &SystemZ::FP64BitRegClass) {
|
|
LoadOpcode = SystemZ::LD;
|
|
StoreOpcode = SystemZ::STD;
|
|
} else if (RC == &SystemZ::FP128BitRegClass) {
|
|
LoadOpcode = SystemZ::LX;
|
|
StoreOpcode = SystemZ::STX;
|
|
} else
|
|
llvm_unreachable("Unsupported regclass to load or store");
|
|
}
|
|
|
|
unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode,
|
|
int64_t Offset) const {
|
|
const MCInstrDesc &MCID = get(Opcode);
|
|
int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset);
|
|
if (isUInt<12>(Offset) && isUInt<12>(Offset2)) {
|
|
// Get the instruction to use for unsigned 12-bit displacements.
|
|
int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode);
|
|
if (Disp12Opcode >= 0)
|
|
return Disp12Opcode;
|
|
|
|
// All address-related instructions can use unsigned 12-bit
|
|
// displacements.
|
|
return Opcode;
|
|
}
|
|
if (isInt<20>(Offset) && isInt<20>(Offset2)) {
|
|
// Get the instruction to use for signed 20-bit displacements.
|
|
int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode);
|
|
if (Disp20Opcode >= 0)
|
|
return Disp20Opcode;
|
|
|
|
// Check whether Opcode allows signed 20-bit displacements.
|
|
if (MCID.TSFlags & SystemZII::Has20BitOffset)
|
|
return Opcode;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const {
|
|
switch (Opcode) {
|
|
case SystemZ::L: return SystemZ::LT;
|
|
case SystemZ::LY: return SystemZ::LT;
|
|
case SystemZ::LG: return SystemZ::LTG;
|
|
case SystemZ::LGF: return SystemZ::LTGF;
|
|
case SystemZ::LR: return SystemZ::LTR;
|
|
case SystemZ::LGFR: return SystemZ::LTGFR;
|
|
case SystemZ::LGR: return SystemZ::LTGR;
|
|
case SystemZ::LER: return SystemZ::LTEBR;
|
|
case SystemZ::LDR: return SystemZ::LTDBR;
|
|
case SystemZ::LXR: return SystemZ::LTXBR;
|
|
default: return 0;
|
|
}
|
|
}
|
|
|
|
// Return true if Mask matches the regexp 0*1+0*, given that zero masks
|
|
// have already been filtered out. Store the first set bit in LSB and
|
|
// the number of set bits in Length if so.
|
|
static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) {
|
|
unsigned First = findFirstSet(Mask);
|
|
uint64_t Top = (Mask >> First) + 1;
|
|
if ((Top & -Top) == Top) {
|
|
LSB = First;
|
|
Length = findFirstSet(Top);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize,
|
|
unsigned &Start, unsigned &End) const {
|
|
// Reject trivial all-zero masks.
|
|
if (Mask == 0)
|
|
return false;
|
|
|
|
// Handle the 1+0+ or 0+1+0* cases. Start then specifies the index of
|
|
// the msb and End specifies the index of the lsb.
|
|
unsigned LSB, Length;
|
|
if (isStringOfOnes(Mask, LSB, Length)) {
|
|
Start = 63 - (LSB + Length - 1);
|
|
End = 63 - LSB;
|
|
return true;
|
|
}
|
|
|
|
// Handle the wrap-around 1+0+1+ cases. Start then specifies the msb
|
|
// of the low 1s and End specifies the lsb of the high 1s.
|
|
if (isStringOfOnes(Mask ^ allOnes(BitSize), LSB, Length)) {
|
|
assert(LSB > 0 && "Bottom bit must be set");
|
|
assert(LSB + Length < BitSize && "Top bit must be set");
|
|
Start = 63 - (LSB - 1);
|
|
End = 63 - (LSB + Length);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
unsigned SystemZInstrInfo::getCompareAndBranch(unsigned Opcode,
|
|
const MachineInstr *MI) const {
|
|
switch (Opcode) {
|
|
case SystemZ::CR:
|
|
return SystemZ::CRJ;
|
|
case SystemZ::CGR:
|
|
return SystemZ::CGRJ;
|
|
case SystemZ::CHI:
|
|
return MI && isInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CIJ : 0;
|
|
case SystemZ::CGHI:
|
|
return MI && isInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CGIJ : 0;
|
|
case SystemZ::CLR:
|
|
return SystemZ::CLRJ;
|
|
case SystemZ::CLGR:
|
|
return SystemZ::CLGRJ;
|
|
case SystemZ::CLFI:
|
|
return MI && isUInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CLIJ : 0;
|
|
case SystemZ::CLGFI:
|
|
return MI && isUInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CLGIJ : 0;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MBBI,
|
|
unsigned Reg, uint64_t Value) const {
|
|
DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
|
|
unsigned Opcode;
|
|
if (isInt<16>(Value))
|
|
Opcode = SystemZ::LGHI;
|
|
else if (SystemZ::isImmLL(Value))
|
|
Opcode = SystemZ::LLILL;
|
|
else if (SystemZ::isImmLH(Value)) {
|
|
Opcode = SystemZ::LLILH;
|
|
Value >>= 16;
|
|
} else {
|
|
assert(isInt<32>(Value) && "Huge values not handled yet");
|
|
Opcode = SystemZ::LGFI;
|
|
}
|
|
BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value);
|
|
}
|