llvm-project/llvm/lib/Target/X86/X86MacroFusion.cpp

272 lines
7.2 KiB
C++

//===- X86MacroFusion.cpp - X86 Macro Fusion ------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// \file This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the X86 implementation of the DAG scheduling mutation to
// pair instructions back to back.
//
//===----------------------------------------------------------------------===//
#include "X86MacroFusion.h"
#include "X86Subtarget.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetInstrInfo.h"
#define DEBUG_TYPE "misched"
STATISTIC(NumFused, "Number of instr pairs fused");
using namespace llvm;
static cl::opt<bool> EnableMacroFusion("x86-misched-fusion", cl::Hidden,
cl::desc("Enable scheduling for macro fusion."), cl::init(true));
namespace {
/// \brief Verify that the instruction pair, First and Second,
/// should be scheduled back to back. If either instruction is unspecified,
/// then verify that the other instruction may be part of a pair at all.
static bool shouldScheduleAdjacent(const X86Subtarget &ST,
const MachineInstr *First,
const MachineInstr *Second) {
// Check if this processor supports macro-fusion. Since this is a minor
// heuristic, we haven't specifically reserved a feature. hasAVX is a decent
// proxy for SandyBridge+.
if (!ST.hasAVX())
return false;
enum {
FuseTest,
FuseCmp,
FuseInc
} FuseKind;
assert((First || Second) && "At least one instr must be specified");
unsigned FirstOpcode = First
? First->getOpcode()
: static_cast<unsigned>(X86::INSTRUCTION_LIST_END);
unsigned SecondOpcode = Second
? Second->getOpcode()
: static_cast<unsigned>(X86::INSTRUCTION_LIST_END);
switch (SecondOpcode) {
default:
return false;
case X86::JE_1:
case X86::JNE_1:
case X86::JL_1:
case X86::JLE_1:
case X86::JG_1:
case X86::JGE_1:
FuseKind = FuseInc;
break;
case X86::JB_1:
case X86::JBE_1:
case X86::JA_1:
case X86::JAE_1:
FuseKind = FuseCmp;
break;
case X86::JS_1:
case X86::JNS_1:
case X86::JP_1:
case X86::JNP_1:
case X86::JO_1:
case X86::JNO_1:
FuseKind = FuseTest;
break;
}
switch (FirstOpcode) {
default:
return false;
case X86::TEST8rr:
case X86::TEST16rr:
case X86::TEST32rr:
case X86::TEST64rr:
case X86::TEST8ri:
case X86::TEST16ri:
case X86::TEST32ri:
case X86::TEST32i32:
case X86::TEST64i32:
case X86::TEST64ri32:
case X86::TEST8rm:
case X86::TEST16rm:
case X86::TEST32rm:
case X86::TEST64rm:
case X86::TEST8ri_NOREX:
case X86::AND16i16:
case X86::AND16ri:
case X86::AND16ri8:
case X86::AND16rm:
case X86::AND16rr:
case X86::AND32i32:
case X86::AND32ri:
case X86::AND32ri8:
case X86::AND32rm:
case X86::AND32rr:
case X86::AND64i32:
case X86::AND64ri32:
case X86::AND64ri8:
case X86::AND64rm:
case X86::AND64rr:
case X86::AND8i8:
case X86::AND8ri:
case X86::AND8rm:
case X86::AND8rr:
return true;
case X86::CMP16i16:
case X86::CMP16ri:
case X86::CMP16ri8:
case X86::CMP16rm:
case X86::CMP16rr:
case X86::CMP32i32:
case X86::CMP32ri:
case X86::CMP32ri8:
case X86::CMP32rm:
case X86::CMP32rr:
case X86::CMP64i32:
case X86::CMP64ri32:
case X86::CMP64ri8:
case X86::CMP64rm:
case X86::CMP64rr:
case X86::CMP8i8:
case X86::CMP8ri:
case X86::CMP8rm:
case X86::CMP8rr:
case X86::ADD16i16:
case X86::ADD16ri:
case X86::ADD16ri8:
case X86::ADD16ri8_DB:
case X86::ADD16ri_DB:
case X86::ADD16rm:
case X86::ADD16rr:
case X86::ADD16rr_DB:
case X86::ADD32i32:
case X86::ADD32ri:
case X86::ADD32ri8:
case X86::ADD32ri8_DB:
case X86::ADD32ri_DB:
case X86::ADD32rm:
case X86::ADD32rr:
case X86::ADD32rr_DB:
case X86::ADD64i32:
case X86::ADD64ri32:
case X86::ADD64ri32_DB:
case X86::ADD64ri8:
case X86::ADD64ri8_DB:
case X86::ADD64rm:
case X86::ADD64rr:
case X86::ADD64rr_DB:
case X86::ADD8i8:
case X86::ADD8mi:
case X86::ADD8mr:
case X86::ADD8ri:
case X86::ADD8rm:
case X86::ADD8rr:
case X86::SUB16i16:
case X86::SUB16ri:
case X86::SUB16ri8:
case X86::SUB16rm:
case X86::SUB16rr:
case X86::SUB32i32:
case X86::SUB32ri:
case X86::SUB32ri8:
case X86::SUB32rm:
case X86::SUB32rr:
case X86::SUB64i32:
case X86::SUB64ri32:
case X86::SUB64ri8:
case X86::SUB64rm:
case X86::SUB64rr:
case X86::SUB8i8:
case X86::SUB8ri:
case X86::SUB8rm:
case X86::SUB8rr:
return FuseKind == FuseCmp || FuseKind == FuseInc;
case X86::INC16r:
case X86::INC32r:
case X86::INC64r:
case X86::INC8r:
case X86::DEC16r:
case X86::DEC32r:
case X86::DEC64r:
case X86::DEC8r:
return FuseKind == FuseInc;
case X86::INSTRUCTION_LIST_END:
return true;
}
}
/// \brief Post-process the DAG to create cluster edges between instructions
/// that may be fused by the processor into a single operation.
class X86MacroFusion : public ScheduleDAGMutation {
public:
X86MacroFusion() {}
void apply(ScheduleDAGInstrs *DAGInstrs) override;
};
void X86MacroFusion::apply(ScheduleDAGInstrs *DAGInstrs) {
ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
const X86Subtarget &ST = DAG->MF.getSubtarget<X86Subtarget>();
// For now, assume targets can only fuse with the branch.
SUnit &ExitSU = DAG->ExitSU;
MachineInstr *Branch = ExitSU.getInstr();
if (!Branch || !shouldScheduleAdjacent(ST, nullptr, Branch))
return;
for (SDep &PredDep : ExitSU.Preds) {
if (PredDep.isWeak())
continue;
SUnit &SU = *PredDep.getSUnit();
MachineInstr &Pred = *SU.getInstr();
if (!shouldScheduleAdjacent(ST, &Pred, Branch))
continue;
// Create a single weak edge from SU to ExitSU. The only effect is to cause
// bottom-up scheduling to heavily prioritize the clustered SU. There is no
// need to copy predecessor edges from ExitSU to SU, since top-down
// scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling
// of SU, we could create an artificial edge from the deepest root, but it
// hasn't been needed yet.
bool Success = DAG->addEdge(&ExitSU, SDep(&SU, SDep::Cluster));
(void)Success;
assert(Success && "No DAG nodes should be reachable from ExitSU");
// Adjust latency of data deps between the nodes.
for (SDep &PredDep : ExitSU.Preds)
if (PredDep.getSUnit() == &SU)
PredDep.setLatency(0);
for (SDep &SuccDep : SU.Succs)
if (SuccDep.getSUnit() == &ExitSU)
SuccDep.setLatency(0);
++NumFused;
DEBUG(dbgs() << DAG->MF.getName() << "(): Macro fuse ";
SU.print(dbgs(), DAG);
dbgs() << " - ExitSU"
<< " / " << DAG->TII->getName(Pred.getOpcode()) << " - "
<< DAG->TII->getName(Branch->getOpcode()) << '\n';);
break;
}
}
} // end namespace
namespace llvm {
std::unique_ptr<ScheduleDAGMutation>
createX86MacroFusionDAGMutation () {
return EnableMacroFusion ? make_unique<X86MacroFusion>() : nullptr;
}
} // end namespace llvm