forked from OSchip/llvm-project
1188 lines
47 KiB
C++
1188 lines
47 KiB
C++
//===- PassManagerBuilder.cpp - Build Standard Pass -----------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the PassManagerBuilder class, which is used to set up a
|
|
// "standard" optimization sequence suitable for languages like C and C++.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
|
|
#include "llvm-c/Transforms/PassManagerBuilder.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Analysis/BasicAliasAnalysis.h"
|
|
#include "llvm/Analysis/CFLAndersAliasAnalysis.h"
|
|
#include "llvm/Analysis/CFLSteensAliasAnalysis.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/Analysis/InlineCost.h"
|
|
#include "llvm/Analysis/Passes.h"
|
|
#include "llvm/Analysis/ScopedNoAliasAA.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/TypeBasedAliasAnalysis.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/LegacyPassManager.h"
|
|
#include "llvm/IR/Verifier.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/ManagedStatic.h"
|
|
#include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h"
|
|
#include "llvm/Transforms/IPO.h"
|
|
#include "llvm/Transforms/IPO/Attributor.h"
|
|
#include "llvm/Transforms/IPO/ForceFunctionAttrs.h"
|
|
#include "llvm/Transforms/IPO/FunctionAttrs.h"
|
|
#include "llvm/Transforms/IPO/InferFunctionAttrs.h"
|
|
#include "llvm/Transforms/InstCombine/InstCombine.h"
|
|
#include "llvm/Transforms/Instrumentation.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Scalar/GVN.h"
|
|
#include "llvm/Transforms/Scalar/InstSimplifyPass.h"
|
|
#include "llvm/Transforms/Scalar/LICM.h"
|
|
#include "llvm/Transforms/Scalar/LoopUnrollPass.h"
|
|
#include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
|
|
#include "llvm/Transforms/Utils.h"
|
|
#include "llvm/Transforms/Vectorize.h"
|
|
#include "llvm/Transforms/Vectorize/LoopVectorize.h"
|
|
#include "llvm/Transforms/Vectorize/SLPVectorizer.h"
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool>
|
|
RunPartialInlining("enable-partial-inlining", cl::init(false), cl::Hidden,
|
|
cl::ZeroOrMore, cl::desc("Run Partial inlinining pass"));
|
|
|
|
static cl::opt<bool>
|
|
UseGVNAfterVectorization("use-gvn-after-vectorization",
|
|
cl::init(false), cl::Hidden,
|
|
cl::desc("Run GVN instead of Early CSE after vectorization passes"));
|
|
|
|
static cl::opt<bool> ExtraVectorizerPasses(
|
|
"extra-vectorizer-passes", cl::init(false), cl::Hidden,
|
|
cl::desc("Run cleanup optimization passes after vectorization."));
|
|
|
|
static cl::opt<bool>
|
|
RunLoopRerolling("reroll-loops", cl::Hidden,
|
|
cl::desc("Run the loop rerolling pass"));
|
|
|
|
static cl::opt<bool> RunNewGVN("enable-newgvn", cl::init(false), cl::Hidden,
|
|
cl::desc("Run the NewGVN pass"));
|
|
|
|
// Experimental option to use CFL-AA
|
|
enum class CFLAAType { None, Steensgaard, Andersen, Both };
|
|
static cl::opt<CFLAAType>
|
|
UseCFLAA("use-cfl-aa", cl::init(CFLAAType::None), cl::Hidden,
|
|
cl::desc("Enable the new, experimental CFL alias analysis"),
|
|
cl::values(clEnumValN(CFLAAType::None, "none", "Disable CFL-AA"),
|
|
clEnumValN(CFLAAType::Steensgaard, "steens",
|
|
"Enable unification-based CFL-AA"),
|
|
clEnumValN(CFLAAType::Andersen, "anders",
|
|
"Enable inclusion-based CFL-AA"),
|
|
clEnumValN(CFLAAType::Both, "both",
|
|
"Enable both variants of CFL-AA")));
|
|
|
|
static cl::opt<bool> EnableLoopInterchange(
|
|
"enable-loopinterchange", cl::init(false), cl::Hidden,
|
|
cl::desc("Enable the new, experimental LoopInterchange Pass"));
|
|
|
|
static cl::opt<bool> EnableUnrollAndJam("enable-unroll-and-jam",
|
|
cl::init(false), cl::Hidden,
|
|
cl::desc("Enable Unroll And Jam Pass"));
|
|
|
|
static cl::opt<bool>
|
|
EnablePrepareForThinLTO("prepare-for-thinlto", cl::init(false), cl::Hidden,
|
|
cl::desc("Enable preparation for ThinLTO."));
|
|
|
|
static cl::opt<bool>
|
|
EnablePerformThinLTO("perform-thinlto", cl::init(false), cl::Hidden,
|
|
cl::desc("Enable performing ThinLTO."));
|
|
|
|
cl::opt<bool> EnableHotColdSplit("hot-cold-split", cl::init(false), cl::Hidden,
|
|
cl::desc("Enable hot-cold splitting pass"));
|
|
|
|
static cl::opt<bool> UseLoopVersioningLICM(
|
|
"enable-loop-versioning-licm", cl::init(false), cl::Hidden,
|
|
cl::desc("Enable the experimental Loop Versioning LICM pass"));
|
|
|
|
static cl::opt<bool>
|
|
DisablePreInliner("disable-preinline", cl::init(false), cl::Hidden,
|
|
cl::desc("Disable pre-instrumentation inliner"));
|
|
|
|
static cl::opt<int> PreInlineThreshold(
|
|
"preinline-threshold", cl::Hidden, cl::init(75), cl::ZeroOrMore,
|
|
cl::desc("Control the amount of inlining in pre-instrumentation inliner "
|
|
"(default = 75)"));
|
|
|
|
static cl::opt<bool> EnableGVNHoist(
|
|
"enable-gvn-hoist", cl::init(false), cl::Hidden,
|
|
cl::desc("Enable the GVN hoisting pass (default = off)"));
|
|
|
|
static cl::opt<bool>
|
|
DisableLibCallsShrinkWrap("disable-libcalls-shrinkwrap", cl::init(false),
|
|
cl::Hidden,
|
|
cl::desc("Disable shrink-wrap library calls"));
|
|
|
|
static cl::opt<bool> EnableSimpleLoopUnswitch(
|
|
"enable-simple-loop-unswitch", cl::init(false), cl::Hidden,
|
|
cl::desc("Enable the simple loop unswitch pass. Also enables independent "
|
|
"cleanup passes integrated into the loop pass manager pipeline."));
|
|
|
|
static cl::opt<bool> EnableGVNSink(
|
|
"enable-gvn-sink", cl::init(false), cl::Hidden,
|
|
cl::desc("Enable the GVN sinking pass (default = off)"));
|
|
|
|
// This option is used in simplifying testing SampleFDO optimizations for
|
|
// profile loading.
|
|
static cl::opt<bool>
|
|
EnableCHR("enable-chr", cl::init(true), cl::Hidden,
|
|
cl::desc("Enable control height reduction optimization (CHR)"));
|
|
|
|
cl::opt<bool> FlattenedProfileUsed(
|
|
"flattened-profile-used", cl::init(false), cl::Hidden,
|
|
cl::desc("Indicate the sample profile being used is flattened, i.e., "
|
|
"no inline hierachy exists in the profile. "));
|
|
|
|
cl::opt<bool> EnableOrderFileInstrumentation(
|
|
"enable-order-file-instrumentation", cl::init(false), cl::Hidden,
|
|
cl::desc("Enable order file instrumentation (default = off)"));
|
|
|
|
static cl::opt<bool>
|
|
EnableMatrix("enable-matrix", cl::init(false), cl::Hidden,
|
|
cl::desc("Enable lowering of the matrix intrinsics"));
|
|
|
|
PassManagerBuilder::PassManagerBuilder() {
|
|
OptLevel = 2;
|
|
SizeLevel = 0;
|
|
LibraryInfo = nullptr;
|
|
Inliner = nullptr;
|
|
DisableUnrollLoops = false;
|
|
SLPVectorize = RunSLPVectorization;
|
|
LoopVectorize = EnableLoopVectorization;
|
|
LoopsInterleaved = EnableLoopInterleaving;
|
|
RerollLoops = RunLoopRerolling;
|
|
NewGVN = RunNewGVN;
|
|
LicmMssaOptCap = SetLicmMssaOptCap;
|
|
LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap;
|
|
DisableGVNLoadPRE = false;
|
|
ForgetAllSCEVInLoopUnroll = ForgetSCEVInLoopUnroll;
|
|
VerifyInput = false;
|
|
VerifyOutput = false;
|
|
MergeFunctions = false;
|
|
PrepareForLTO = false;
|
|
EnablePGOInstrGen = false;
|
|
EnablePGOCSInstrGen = false;
|
|
EnablePGOCSInstrUse = false;
|
|
PGOInstrGen = "";
|
|
PGOInstrUse = "";
|
|
PGOSampleUse = "";
|
|
PrepareForThinLTO = EnablePrepareForThinLTO;
|
|
PerformThinLTO = EnablePerformThinLTO;
|
|
DivergentTarget = false;
|
|
}
|
|
|
|
PassManagerBuilder::~PassManagerBuilder() {
|
|
delete LibraryInfo;
|
|
delete Inliner;
|
|
}
|
|
|
|
/// Set of global extensions, automatically added as part of the standard set.
|
|
static ManagedStatic<
|
|
SmallVector<std::tuple<PassManagerBuilder::ExtensionPointTy,
|
|
PassManagerBuilder::ExtensionFn,
|
|
PassManagerBuilder::GlobalExtensionID>,
|
|
8>>
|
|
GlobalExtensions;
|
|
static PassManagerBuilder::GlobalExtensionID GlobalExtensionsCounter;
|
|
|
|
/// Check if GlobalExtensions is constructed and not empty.
|
|
/// Since GlobalExtensions is a managed static, calling 'empty()' will trigger
|
|
/// the construction of the object.
|
|
static bool GlobalExtensionsNotEmpty() {
|
|
return GlobalExtensions.isConstructed() && !GlobalExtensions->empty();
|
|
}
|
|
|
|
PassManagerBuilder::GlobalExtensionID
|
|
PassManagerBuilder::addGlobalExtension(PassManagerBuilder::ExtensionPointTy Ty,
|
|
PassManagerBuilder::ExtensionFn Fn) {
|
|
auto ExtensionID = GlobalExtensionsCounter++;
|
|
GlobalExtensions->push_back(std::make_tuple(Ty, std::move(Fn), ExtensionID));
|
|
return ExtensionID;
|
|
}
|
|
|
|
void PassManagerBuilder::removeGlobalExtension(
|
|
PassManagerBuilder::GlobalExtensionID ExtensionID) {
|
|
// RegisterStandardPasses may try to call this function after GlobalExtensions
|
|
// has already been destroyed; doing so should not generate an error.
|
|
if (!GlobalExtensions.isConstructed())
|
|
return;
|
|
|
|
auto GlobalExtension =
|
|
llvm::find_if(*GlobalExtensions, [ExtensionID](const auto &elem) {
|
|
return std::get<2>(elem) == ExtensionID;
|
|
});
|
|
assert(GlobalExtension != GlobalExtensions->end() &&
|
|
"The extension ID to be removed should always be valid.");
|
|
|
|
GlobalExtensions->erase(GlobalExtension);
|
|
}
|
|
|
|
void PassManagerBuilder::addExtension(ExtensionPointTy Ty, ExtensionFn Fn) {
|
|
Extensions.push_back(std::make_pair(Ty, std::move(Fn)));
|
|
}
|
|
|
|
void PassManagerBuilder::addExtensionsToPM(ExtensionPointTy ETy,
|
|
legacy::PassManagerBase &PM) const {
|
|
if (GlobalExtensionsNotEmpty()) {
|
|
for (auto &Ext : *GlobalExtensions) {
|
|
if (std::get<0>(Ext) == ETy)
|
|
std::get<1>(Ext)(*this, PM);
|
|
}
|
|
}
|
|
for (unsigned i = 0, e = Extensions.size(); i != e; ++i)
|
|
if (Extensions[i].first == ETy)
|
|
Extensions[i].second(*this, PM);
|
|
}
|
|
|
|
void PassManagerBuilder::addInitialAliasAnalysisPasses(
|
|
legacy::PassManagerBase &PM) const {
|
|
switch (UseCFLAA) {
|
|
case CFLAAType::Steensgaard:
|
|
PM.add(createCFLSteensAAWrapperPass());
|
|
break;
|
|
case CFLAAType::Andersen:
|
|
PM.add(createCFLAndersAAWrapperPass());
|
|
break;
|
|
case CFLAAType::Both:
|
|
PM.add(createCFLSteensAAWrapperPass());
|
|
PM.add(createCFLAndersAAWrapperPass());
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that
|
|
// BasicAliasAnalysis wins if they disagree. This is intended to help
|
|
// support "obvious" type-punning idioms.
|
|
PM.add(createTypeBasedAAWrapperPass());
|
|
PM.add(createScopedNoAliasAAWrapperPass());
|
|
}
|
|
|
|
void PassManagerBuilder::addInstructionCombiningPass(
|
|
legacy::PassManagerBase &PM) const {
|
|
bool ExpensiveCombines = OptLevel > 2;
|
|
PM.add(createInstructionCombiningPass(ExpensiveCombines));
|
|
}
|
|
|
|
void PassManagerBuilder::populateFunctionPassManager(
|
|
legacy::FunctionPassManager &FPM) {
|
|
addExtensionsToPM(EP_EarlyAsPossible, FPM);
|
|
FPM.add(createEntryExitInstrumenterPass());
|
|
|
|
// Add LibraryInfo if we have some.
|
|
if (LibraryInfo)
|
|
FPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
|
|
|
|
if (OptLevel == 0) return;
|
|
|
|
addInitialAliasAnalysisPasses(FPM);
|
|
|
|
FPM.add(createCFGSimplificationPass());
|
|
FPM.add(createSROAPass());
|
|
FPM.add(createEarlyCSEPass());
|
|
FPM.add(createLowerExpectIntrinsicPass());
|
|
}
|
|
|
|
// Do PGO instrumentation generation or use pass as the option specified.
|
|
void PassManagerBuilder::addPGOInstrPasses(legacy::PassManagerBase &MPM,
|
|
bool IsCS = false) {
|
|
if (IsCS) {
|
|
if (!EnablePGOCSInstrGen && !EnablePGOCSInstrUse)
|
|
return;
|
|
} else if (!EnablePGOInstrGen && PGOInstrUse.empty() && PGOSampleUse.empty())
|
|
return;
|
|
|
|
// Perform the preinline and cleanup passes for O1 and above.
|
|
// And avoid doing them if optimizing for size.
|
|
// We will not do this inline for context sensitive PGO (when IsCS is true).
|
|
if (OptLevel > 0 && SizeLevel == 0 && !DisablePreInliner &&
|
|
PGOSampleUse.empty() && !IsCS) {
|
|
// Create preinline pass. We construct an InlineParams object and specify
|
|
// the threshold here to avoid the command line options of the regular
|
|
// inliner to influence pre-inlining. The only fields of InlineParams we
|
|
// care about are DefaultThreshold and HintThreshold.
|
|
InlineParams IP;
|
|
IP.DefaultThreshold = PreInlineThreshold;
|
|
// FIXME: The hint threshold has the same value used by the regular inliner.
|
|
// This should probably be lowered after performance testing.
|
|
IP.HintThreshold = 325;
|
|
|
|
MPM.add(createFunctionInliningPass(IP));
|
|
MPM.add(createSROAPass());
|
|
MPM.add(createEarlyCSEPass()); // Catch trivial redundancies
|
|
MPM.add(createCFGSimplificationPass()); // Merge & remove BBs
|
|
MPM.add(createInstructionCombiningPass()); // Combine silly seq's
|
|
addExtensionsToPM(EP_Peephole, MPM);
|
|
}
|
|
if ((EnablePGOInstrGen && !IsCS) || (EnablePGOCSInstrGen && IsCS)) {
|
|
MPM.add(createPGOInstrumentationGenLegacyPass(IsCS));
|
|
// Add the profile lowering pass.
|
|
InstrProfOptions Options;
|
|
if (!PGOInstrGen.empty())
|
|
Options.InstrProfileOutput = PGOInstrGen;
|
|
Options.DoCounterPromotion = true;
|
|
Options.UseBFIInPromotion = IsCS;
|
|
MPM.add(createLoopRotatePass());
|
|
MPM.add(createInstrProfilingLegacyPass(Options, IsCS));
|
|
}
|
|
if (!PGOInstrUse.empty())
|
|
MPM.add(createPGOInstrumentationUseLegacyPass(PGOInstrUse, IsCS));
|
|
// Indirect call promotion that promotes intra-module targets only.
|
|
// For ThinLTO this is done earlier due to interactions with globalopt
|
|
// for imported functions. We don't run this at -O0.
|
|
if (OptLevel > 0 && !IsCS)
|
|
MPM.add(
|
|
createPGOIndirectCallPromotionLegacyPass(false, !PGOSampleUse.empty()));
|
|
}
|
|
void PassManagerBuilder::addFunctionSimplificationPasses(
|
|
legacy::PassManagerBase &MPM) {
|
|
// Start of function pass.
|
|
// Break up aggregate allocas, using SSAUpdater.
|
|
assert(OptLevel >= 1 && "Calling function optimizer with no optimization level!");
|
|
MPM.add(createSROAPass());
|
|
MPM.add(createEarlyCSEPass(true /* Enable mem-ssa. */)); // Catch trivial redundancies
|
|
|
|
if (OptLevel > 1) {
|
|
if (EnableGVNHoist)
|
|
MPM.add(createGVNHoistPass());
|
|
if (EnableGVNSink) {
|
|
MPM.add(createGVNSinkPass());
|
|
MPM.add(createCFGSimplificationPass());
|
|
}
|
|
}
|
|
|
|
if (OptLevel > 1) {
|
|
// Speculative execution if the target has divergent branches; otherwise nop.
|
|
MPM.add(createSpeculativeExecutionIfHasBranchDivergencePass());
|
|
|
|
MPM.add(createJumpThreadingPass()); // Thread jumps.
|
|
MPM.add(createCorrelatedValuePropagationPass()); // Propagate conditionals
|
|
}
|
|
MPM.add(createCFGSimplificationPass()); // Merge & remove BBs
|
|
// Combine silly seq's
|
|
if (OptLevel > 2)
|
|
MPM.add(createAggressiveInstCombinerPass());
|
|
addInstructionCombiningPass(MPM);
|
|
if (SizeLevel == 0 && !DisableLibCallsShrinkWrap)
|
|
MPM.add(createLibCallsShrinkWrapPass());
|
|
addExtensionsToPM(EP_Peephole, MPM);
|
|
|
|
// Optimize memory intrinsic calls based on the profiled size information.
|
|
if (SizeLevel == 0)
|
|
MPM.add(createPGOMemOPSizeOptLegacyPass());
|
|
|
|
// TODO: Investigate the cost/benefit of tail call elimination on debugging.
|
|
if (OptLevel > 1)
|
|
MPM.add(createTailCallEliminationPass()); // Eliminate tail calls
|
|
MPM.add(createCFGSimplificationPass()); // Merge & remove BBs
|
|
MPM.add(createReassociatePass()); // Reassociate expressions
|
|
|
|
// Begin the loop pass pipeline.
|
|
if (EnableSimpleLoopUnswitch) {
|
|
// The simple loop unswitch pass relies on separate cleanup passes. Schedule
|
|
// them first so when we re-process a loop they run before other loop
|
|
// passes.
|
|
MPM.add(createLoopInstSimplifyPass());
|
|
MPM.add(createLoopSimplifyCFGPass());
|
|
}
|
|
// Rotate Loop - disable header duplication at -Oz
|
|
MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1));
|
|
// TODO: Investigate promotion cap for O1.
|
|
MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap));
|
|
if (EnableSimpleLoopUnswitch)
|
|
MPM.add(createSimpleLoopUnswitchLegacyPass());
|
|
else
|
|
MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget));
|
|
// FIXME: We break the loop pass pipeline here in order to do full
|
|
// simplify-cfg. Eventually loop-simplifycfg should be enhanced to replace the
|
|
// need for this.
|
|
MPM.add(createCFGSimplificationPass());
|
|
addInstructionCombiningPass(MPM);
|
|
// We resume loop passes creating a second loop pipeline here.
|
|
MPM.add(createIndVarSimplifyPass()); // Canonicalize indvars
|
|
MPM.add(createLoopIdiomPass()); // Recognize idioms like memset.
|
|
addExtensionsToPM(EP_LateLoopOptimizations, MPM);
|
|
MPM.add(createLoopDeletionPass()); // Delete dead loops
|
|
|
|
if (EnableLoopInterchange)
|
|
MPM.add(createLoopInterchangePass()); // Interchange loops
|
|
|
|
// Unroll small loops
|
|
MPM.add(createSimpleLoopUnrollPass(OptLevel, DisableUnrollLoops,
|
|
ForgetAllSCEVInLoopUnroll));
|
|
addExtensionsToPM(EP_LoopOptimizerEnd, MPM);
|
|
// This ends the loop pass pipelines.
|
|
|
|
if (OptLevel > 1) {
|
|
MPM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds
|
|
MPM.add(NewGVN ? createNewGVNPass()
|
|
: createGVNPass(DisableGVNLoadPRE)); // Remove redundancies
|
|
}
|
|
MPM.add(createMemCpyOptPass()); // Remove memcpy / form memset
|
|
MPM.add(createSCCPPass()); // Constant prop with SCCP
|
|
|
|
// Delete dead bit computations (instcombine runs after to fold away the dead
|
|
// computations, and then ADCE will run later to exploit any new DCE
|
|
// opportunities that creates).
|
|
MPM.add(createBitTrackingDCEPass()); // Delete dead bit computations
|
|
|
|
// Run instcombine after redundancy elimination to exploit opportunities
|
|
// opened up by them.
|
|
addInstructionCombiningPass(MPM);
|
|
addExtensionsToPM(EP_Peephole, MPM);
|
|
if (OptLevel > 1) {
|
|
MPM.add(createJumpThreadingPass()); // Thread jumps
|
|
MPM.add(createCorrelatedValuePropagationPass());
|
|
MPM.add(createDeadStoreEliminationPass()); // Delete dead stores
|
|
MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap));
|
|
}
|
|
|
|
addExtensionsToPM(EP_ScalarOptimizerLate, MPM);
|
|
|
|
if (RerollLoops)
|
|
MPM.add(createLoopRerollPass());
|
|
|
|
// TODO: Investigate if this is too expensive at O1.
|
|
MPM.add(createAggressiveDCEPass()); // Delete dead instructions
|
|
MPM.add(createCFGSimplificationPass()); // Merge & remove BBs
|
|
// Clean up after everything.
|
|
addInstructionCombiningPass(MPM);
|
|
addExtensionsToPM(EP_Peephole, MPM);
|
|
|
|
if (EnableCHR && OptLevel >= 3 &&
|
|
(!PGOInstrUse.empty() || !PGOSampleUse.empty() || EnablePGOCSInstrGen))
|
|
MPM.add(createControlHeightReductionLegacyPass());
|
|
}
|
|
|
|
void PassManagerBuilder::populateModulePassManager(
|
|
legacy::PassManagerBase &MPM) {
|
|
// Whether this is a default or *LTO pre-link pipeline. The FullLTO post-link
|
|
// is handled separately, so just check this is not the ThinLTO post-link.
|
|
bool DefaultOrPreLinkPipeline = !PerformThinLTO;
|
|
|
|
if (!PGOSampleUse.empty()) {
|
|
MPM.add(createPruneEHPass());
|
|
// In ThinLTO mode, when flattened profile is used, all the available
|
|
// profile information will be annotated in PreLink phase so there is
|
|
// no need to load the profile again in PostLink.
|
|
if (!(FlattenedProfileUsed && PerformThinLTO))
|
|
MPM.add(createSampleProfileLoaderPass(PGOSampleUse));
|
|
}
|
|
|
|
// Allow forcing function attributes as a debugging and tuning aid.
|
|
MPM.add(createForceFunctionAttrsLegacyPass());
|
|
|
|
// If all optimizations are disabled, just run the always-inline pass and,
|
|
// if enabled, the function merging pass.
|
|
if (OptLevel == 0) {
|
|
addPGOInstrPasses(MPM);
|
|
if (Inliner) {
|
|
MPM.add(Inliner);
|
|
Inliner = nullptr;
|
|
}
|
|
|
|
// FIXME: The BarrierNoopPass is a HACK! The inliner pass above implicitly
|
|
// creates a CGSCC pass manager, but we don't want to add extensions into
|
|
// that pass manager. To prevent this we insert a no-op module pass to reset
|
|
// the pass manager to get the same behavior as EP_OptimizerLast in non-O0
|
|
// builds. The function merging pass is
|
|
if (MergeFunctions)
|
|
MPM.add(createMergeFunctionsPass());
|
|
else if (GlobalExtensionsNotEmpty() || !Extensions.empty())
|
|
MPM.add(createBarrierNoopPass());
|
|
|
|
if (PerformThinLTO) {
|
|
// Drop available_externally and unreferenced globals. This is necessary
|
|
// with ThinLTO in order to avoid leaving undefined references to dead
|
|
// globals in the object file.
|
|
MPM.add(createEliminateAvailableExternallyPass());
|
|
MPM.add(createGlobalDCEPass());
|
|
}
|
|
|
|
addExtensionsToPM(EP_EnabledOnOptLevel0, MPM);
|
|
|
|
if (PrepareForLTO || PrepareForThinLTO) {
|
|
MPM.add(createCanonicalizeAliasesPass());
|
|
// Rename anon globals to be able to export them in the summary.
|
|
// This has to be done after we add the extensions to the pass manager
|
|
// as there could be passes (e.g. Adddress sanitizer) which introduce
|
|
// new unnamed globals.
|
|
MPM.add(createNameAnonGlobalPass());
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Add LibraryInfo if we have some.
|
|
if (LibraryInfo)
|
|
MPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
|
|
|
|
addInitialAliasAnalysisPasses(MPM);
|
|
|
|
// For ThinLTO there are two passes of indirect call promotion. The
|
|
// first is during the compile phase when PerformThinLTO=false and
|
|
// intra-module indirect call targets are promoted. The second is during
|
|
// the ThinLTO backend when PerformThinLTO=true, when we promote imported
|
|
// inter-module indirect calls. For that we perform indirect call promotion
|
|
// earlier in the pass pipeline, here before globalopt. Otherwise imported
|
|
// available_externally functions look unreferenced and are removed.
|
|
if (PerformThinLTO)
|
|
MPM.add(createPGOIndirectCallPromotionLegacyPass(/*InLTO = */ true,
|
|
!PGOSampleUse.empty()));
|
|
|
|
// For SamplePGO in ThinLTO compile phase, we do not want to unroll loops
|
|
// as it will change the CFG too much to make the 2nd profile annotation
|
|
// in backend more difficult.
|
|
bool PrepareForThinLTOUsingPGOSampleProfile =
|
|
PrepareForThinLTO && !PGOSampleUse.empty();
|
|
if (PrepareForThinLTOUsingPGOSampleProfile)
|
|
DisableUnrollLoops = true;
|
|
|
|
// Infer attributes about declarations if possible.
|
|
MPM.add(createInferFunctionAttrsLegacyPass());
|
|
|
|
addExtensionsToPM(EP_ModuleOptimizerEarly, MPM);
|
|
|
|
if (OptLevel > 2)
|
|
MPM.add(createCallSiteSplittingPass());
|
|
|
|
MPM.add(createIPSCCPPass()); // IP SCCP
|
|
MPM.add(createCalledValuePropagationPass());
|
|
|
|
// Infer attributes on declarations, call sites, arguments, etc.
|
|
MPM.add(createAttributorLegacyPass());
|
|
|
|
MPM.add(createGlobalOptimizerPass()); // Optimize out global vars
|
|
// Promote any localized global vars.
|
|
MPM.add(createPromoteMemoryToRegisterPass());
|
|
|
|
MPM.add(createDeadArgEliminationPass()); // Dead argument elimination
|
|
|
|
addInstructionCombiningPass(MPM); // Clean up after IPCP & DAE
|
|
addExtensionsToPM(EP_Peephole, MPM);
|
|
MPM.add(createCFGSimplificationPass()); // Clean up after IPCP & DAE
|
|
|
|
// For SamplePGO in ThinLTO compile phase, we do not want to do indirect
|
|
// call promotion as it will change the CFG too much to make the 2nd
|
|
// profile annotation in backend more difficult.
|
|
// PGO instrumentation is added during the compile phase for ThinLTO, do
|
|
// not run it a second time
|
|
if (DefaultOrPreLinkPipeline && !PrepareForThinLTOUsingPGOSampleProfile)
|
|
addPGOInstrPasses(MPM);
|
|
|
|
// Create profile COMDAT variables. Lld linker wants to see all variables
|
|
// before the LTO/ThinLTO link since it needs to resolve symbols/comdats.
|
|
if (!PerformThinLTO && EnablePGOCSInstrGen)
|
|
MPM.add(createPGOInstrumentationGenCreateVarLegacyPass(PGOInstrGen));
|
|
|
|
// We add a module alias analysis pass here. In part due to bugs in the
|
|
// analysis infrastructure this "works" in that the analysis stays alive
|
|
// for the entire SCC pass run below.
|
|
MPM.add(createGlobalsAAWrapperPass());
|
|
|
|
// Start of CallGraph SCC passes.
|
|
MPM.add(createPruneEHPass()); // Remove dead EH info
|
|
bool RunInliner = false;
|
|
if (Inliner) {
|
|
MPM.add(Inliner);
|
|
Inliner = nullptr;
|
|
RunInliner = true;
|
|
}
|
|
|
|
MPM.add(createPostOrderFunctionAttrsLegacyPass());
|
|
if (OptLevel > 2)
|
|
MPM.add(createArgumentPromotionPass()); // Scalarize uninlined fn args
|
|
|
|
addExtensionsToPM(EP_CGSCCOptimizerLate, MPM);
|
|
addFunctionSimplificationPasses(MPM);
|
|
|
|
// FIXME: This is a HACK! The inliner pass above implicitly creates a CGSCC
|
|
// pass manager that we are specifically trying to avoid. To prevent this
|
|
// we must insert a no-op module pass to reset the pass manager.
|
|
MPM.add(createBarrierNoopPass());
|
|
|
|
if (RunPartialInlining)
|
|
MPM.add(createPartialInliningPass());
|
|
|
|
if (OptLevel > 1 && !PrepareForLTO && !PrepareForThinLTO)
|
|
// Remove avail extern fns and globals definitions if we aren't
|
|
// compiling an object file for later LTO. For LTO we want to preserve
|
|
// these so they are eligible for inlining at link-time. Note if they
|
|
// are unreferenced they will be removed by GlobalDCE later, so
|
|
// this only impacts referenced available externally globals.
|
|
// Eventually they will be suppressed during codegen, but eliminating
|
|
// here enables more opportunity for GlobalDCE as it may make
|
|
// globals referenced by available external functions dead
|
|
// and saves running remaining passes on the eliminated functions.
|
|
MPM.add(createEliminateAvailableExternallyPass());
|
|
|
|
// CSFDO instrumentation and use pass. Don't invoke this for Prepare pass
|
|
// for LTO and ThinLTO -- The actual pass will be called after all inlines
|
|
// are performed.
|
|
// Need to do this after COMDAT variables have been eliminated,
|
|
// (i.e. after EliminateAvailableExternallyPass).
|
|
if (!(PrepareForLTO || PrepareForThinLTO))
|
|
addPGOInstrPasses(MPM, /* IsCS */ true);
|
|
|
|
if (EnableOrderFileInstrumentation)
|
|
MPM.add(createInstrOrderFilePass());
|
|
|
|
MPM.add(createReversePostOrderFunctionAttrsPass());
|
|
|
|
// The inliner performs some kind of dead code elimination as it goes,
|
|
// but there are cases that are not really caught by it. We might
|
|
// at some point consider teaching the inliner about them, but it
|
|
// is OK for now to run GlobalOpt + GlobalDCE in tandem as their
|
|
// benefits generally outweight the cost, making the whole pipeline
|
|
// faster.
|
|
if (RunInliner) {
|
|
MPM.add(createGlobalOptimizerPass());
|
|
MPM.add(createGlobalDCEPass());
|
|
}
|
|
|
|
// If we are planning to perform ThinLTO later, let's not bloat the code with
|
|
// unrolling/vectorization/... now. We'll first run the inliner + CGSCC passes
|
|
// during ThinLTO and perform the rest of the optimizations afterward.
|
|
if (PrepareForThinLTO) {
|
|
// Ensure we perform any last passes, but do so before renaming anonymous
|
|
// globals in case the passes add any.
|
|
addExtensionsToPM(EP_OptimizerLast, MPM);
|
|
MPM.add(createCanonicalizeAliasesPass());
|
|
// Rename anon globals to be able to export them in the summary.
|
|
MPM.add(createNameAnonGlobalPass());
|
|
return;
|
|
}
|
|
|
|
if (PerformThinLTO)
|
|
// Optimize globals now when performing ThinLTO, this enables more
|
|
// optimizations later.
|
|
MPM.add(createGlobalOptimizerPass());
|
|
|
|
// Scheduling LoopVersioningLICM when inlining is over, because after that
|
|
// we may see more accurate aliasing. Reason to run this late is that too
|
|
// early versioning may prevent further inlining due to increase of code
|
|
// size. By placing it just after inlining other optimizations which runs
|
|
// later might get benefit of no-alias assumption in clone loop.
|
|
if (UseLoopVersioningLICM) {
|
|
MPM.add(createLoopVersioningLICMPass()); // Do LoopVersioningLICM
|
|
MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap));
|
|
}
|
|
|
|
// We add a fresh GlobalsModRef run at this point. This is particularly
|
|
// useful as the above will have inlined, DCE'ed, and function-attr
|
|
// propagated everything. We should at this point have a reasonably minimal
|
|
// and richly annotated call graph. By computing aliasing and mod/ref
|
|
// information for all local globals here, the late loop passes and notably
|
|
// the vectorizer will be able to use them to help recognize vectorizable
|
|
// memory operations.
|
|
//
|
|
// Note that this relies on a bug in the pass manager which preserves
|
|
// a module analysis into a function pass pipeline (and throughout it) so
|
|
// long as the first function pass doesn't invalidate the module analysis.
|
|
// Thus both Float2Int and LoopRotate have to preserve AliasAnalysis for
|
|
// this to work. Fortunately, it is trivial to preserve AliasAnalysis
|
|
// (doing nothing preserves it as it is required to be conservatively
|
|
// correct in the face of IR changes).
|
|
MPM.add(createGlobalsAAWrapperPass());
|
|
|
|
MPM.add(createFloat2IntPass());
|
|
MPM.add(createLowerConstantIntrinsicsPass());
|
|
|
|
if (EnableMatrix) {
|
|
MPM.add(createLowerMatrixIntrinsicsPass());
|
|
// CSE the pointer arithmetic of the column vectors. This allows alias
|
|
// analysis to establish no-aliasing between loads and stores of different
|
|
// columns of the same matrix.
|
|
MPM.add(createEarlyCSEPass(false));
|
|
}
|
|
|
|
addExtensionsToPM(EP_VectorizerStart, MPM);
|
|
|
|
// Re-rotate loops in all our loop nests. These may have fallout out of
|
|
// rotated form due to GVN or other transformations, and the vectorizer relies
|
|
// on the rotated form. Disable header duplication at -Oz.
|
|
MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1));
|
|
|
|
// Distribute loops to allow partial vectorization. I.e. isolate dependences
|
|
// into separate loop that would otherwise inhibit vectorization. This is
|
|
// currently only performed for loops marked with the metadata
|
|
// llvm.loop.distribute=true or when -enable-loop-distribute is specified.
|
|
MPM.add(createLoopDistributePass());
|
|
|
|
MPM.add(createLoopVectorizePass(!LoopsInterleaved, !LoopVectorize));
|
|
|
|
// Eliminate loads by forwarding stores from the previous iteration to loads
|
|
// of the current iteration.
|
|
MPM.add(createLoopLoadEliminationPass());
|
|
|
|
// FIXME: Because of #pragma vectorize enable, the passes below are always
|
|
// inserted in the pipeline, even when the vectorizer doesn't run (ex. when
|
|
// on -O1 and no #pragma is found). Would be good to have these two passes
|
|
// as function calls, so that we can only pass them when the vectorizer
|
|
// changed the code.
|
|
addInstructionCombiningPass(MPM);
|
|
if (OptLevel > 1 && ExtraVectorizerPasses) {
|
|
// At higher optimization levels, try to clean up any runtime overlap and
|
|
// alignment checks inserted by the vectorizer. We want to track correllated
|
|
// runtime checks for two inner loops in the same outer loop, fold any
|
|
// common computations, hoist loop-invariant aspects out of any outer loop,
|
|
// and unswitch the runtime checks if possible. Once hoisted, we may have
|
|
// dead (or speculatable) control flows or more combining opportunities.
|
|
MPM.add(createEarlyCSEPass());
|
|
MPM.add(createCorrelatedValuePropagationPass());
|
|
addInstructionCombiningPass(MPM);
|
|
MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap));
|
|
MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget));
|
|
MPM.add(createCFGSimplificationPass());
|
|
addInstructionCombiningPass(MPM);
|
|
}
|
|
|
|
// Cleanup after loop vectorization, etc. Simplification passes like CVP and
|
|
// GVN, loop transforms, and others have already run, so it's now better to
|
|
// convert to more optimized IR using more aggressive simplify CFG options.
|
|
// The extra sinking transform can create larger basic blocks, so do this
|
|
// before SLP vectorization.
|
|
MPM.add(createCFGSimplificationPass(1, true, true, false, true));
|
|
|
|
if (SLPVectorize) {
|
|
MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains.
|
|
if (OptLevel > 1 && ExtraVectorizerPasses) {
|
|
MPM.add(createEarlyCSEPass());
|
|
}
|
|
}
|
|
|
|
addExtensionsToPM(EP_Peephole, MPM);
|
|
addInstructionCombiningPass(MPM);
|
|
|
|
if (EnableUnrollAndJam && !DisableUnrollLoops) {
|
|
// Unroll and Jam. We do this before unroll but need to be in a separate
|
|
// loop pass manager in order for the outer loop to be processed by
|
|
// unroll and jam before the inner loop is unrolled.
|
|
MPM.add(createLoopUnrollAndJamPass(OptLevel));
|
|
}
|
|
|
|
// Unroll small loops
|
|
MPM.add(createLoopUnrollPass(OptLevel, DisableUnrollLoops,
|
|
ForgetAllSCEVInLoopUnroll));
|
|
|
|
if (!DisableUnrollLoops) {
|
|
// LoopUnroll may generate some redundency to cleanup.
|
|
addInstructionCombiningPass(MPM);
|
|
|
|
// Runtime unrolling will introduce runtime check in loop prologue. If the
|
|
// unrolled loop is a inner loop, then the prologue will be inside the
|
|
// outer loop. LICM pass can help to promote the runtime check out if the
|
|
// checked value is loop invariant.
|
|
MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap));
|
|
}
|
|
|
|
MPM.add(createWarnMissedTransformationsPass());
|
|
|
|
// After vectorization and unrolling, assume intrinsics may tell us more
|
|
// about pointer alignments.
|
|
MPM.add(createAlignmentFromAssumptionsPass());
|
|
|
|
// FIXME: We shouldn't bother with this anymore.
|
|
MPM.add(createStripDeadPrototypesPass()); // Get rid of dead prototypes
|
|
|
|
// GlobalOpt already deletes dead functions and globals, at -O2 try a
|
|
// late pass of GlobalDCE. It is capable of deleting dead cycles.
|
|
if (OptLevel > 1) {
|
|
MPM.add(createGlobalDCEPass()); // Remove dead fns and globals.
|
|
MPM.add(createConstantMergePass()); // Merge dup global constants
|
|
}
|
|
|
|
// See comment in the new PM for justification of scheduling splitting at
|
|
// this stage (\ref buildModuleSimplificationPipeline).
|
|
if (EnableHotColdSplit && !(PrepareForLTO || PrepareForThinLTO))
|
|
MPM.add(createHotColdSplittingPass());
|
|
|
|
if (MergeFunctions)
|
|
MPM.add(createMergeFunctionsPass());
|
|
|
|
// LoopSink pass sinks instructions hoisted by LICM, which serves as a
|
|
// canonicalization pass that enables other optimizations. As a result,
|
|
// LoopSink pass needs to be a very late IR pass to avoid undoing LICM
|
|
// result too early.
|
|
MPM.add(createLoopSinkPass());
|
|
// Get rid of LCSSA nodes.
|
|
MPM.add(createInstSimplifyLegacyPass());
|
|
|
|
// This hoists/decomposes div/rem ops. It should run after other sink/hoist
|
|
// passes to avoid re-sinking, but before SimplifyCFG because it can allow
|
|
// flattening of blocks.
|
|
MPM.add(createDivRemPairsPass());
|
|
|
|
// LoopSink (and other loop passes since the last simplifyCFG) might have
|
|
// resulted in single-entry-single-exit or empty blocks. Clean up the CFG.
|
|
MPM.add(createCFGSimplificationPass());
|
|
|
|
addExtensionsToPM(EP_OptimizerLast, MPM);
|
|
|
|
if (PrepareForLTO) {
|
|
MPM.add(createCanonicalizeAliasesPass());
|
|
// Rename anon globals to be able to handle them in the summary
|
|
MPM.add(createNameAnonGlobalPass());
|
|
}
|
|
}
|
|
|
|
void PassManagerBuilder::addLTOOptimizationPasses(legacy::PassManagerBase &PM) {
|
|
// Load sample profile before running the LTO optimization pipeline.
|
|
if (!PGOSampleUse.empty()) {
|
|
PM.add(createPruneEHPass());
|
|
PM.add(createSampleProfileLoaderPass(PGOSampleUse));
|
|
}
|
|
|
|
// Remove unused virtual tables to improve the quality of code generated by
|
|
// whole-program devirtualization and bitset lowering.
|
|
PM.add(createGlobalDCEPass());
|
|
|
|
// Provide AliasAnalysis services for optimizations.
|
|
addInitialAliasAnalysisPasses(PM);
|
|
|
|
// Allow forcing function attributes as a debugging and tuning aid.
|
|
PM.add(createForceFunctionAttrsLegacyPass());
|
|
|
|
// Infer attributes about declarations if possible.
|
|
PM.add(createInferFunctionAttrsLegacyPass());
|
|
|
|
if (OptLevel > 1) {
|
|
// Split call-site with more constrained arguments.
|
|
PM.add(createCallSiteSplittingPass());
|
|
|
|
// Indirect call promotion. This should promote all the targets that are
|
|
// left by the earlier promotion pass that promotes intra-module targets.
|
|
// This two-step promotion is to save the compile time. For LTO, it should
|
|
// produce the same result as if we only do promotion here.
|
|
PM.add(
|
|
createPGOIndirectCallPromotionLegacyPass(true, !PGOSampleUse.empty()));
|
|
|
|
// Propagate constants at call sites into the functions they call. This
|
|
// opens opportunities for globalopt (and inlining) by substituting function
|
|
// pointers passed as arguments to direct uses of functions.
|
|
PM.add(createIPSCCPPass());
|
|
|
|
// Attach metadata to indirect call sites indicating the set of functions
|
|
// they may target at run-time. This should follow IPSCCP.
|
|
PM.add(createCalledValuePropagationPass());
|
|
|
|
// Infer attributes on declarations, call sites, arguments, etc.
|
|
PM.add(createAttributorLegacyPass());
|
|
}
|
|
|
|
// Infer attributes about definitions. The readnone attribute in particular is
|
|
// required for virtual constant propagation.
|
|
PM.add(createPostOrderFunctionAttrsLegacyPass());
|
|
PM.add(createReversePostOrderFunctionAttrsPass());
|
|
|
|
// Split globals using inrange annotations on GEP indices. This can help
|
|
// improve the quality of generated code when virtual constant propagation or
|
|
// control flow integrity are enabled.
|
|
PM.add(createGlobalSplitPass());
|
|
|
|
// Apply whole-program devirtualization and virtual constant propagation.
|
|
PM.add(createWholeProgramDevirtPass(ExportSummary, nullptr));
|
|
|
|
// That's all we need at opt level 1.
|
|
if (OptLevel == 1)
|
|
return;
|
|
|
|
// Now that we internalized some globals, see if we can hack on them!
|
|
PM.add(createGlobalOptimizerPass());
|
|
// Promote any localized global vars.
|
|
PM.add(createPromoteMemoryToRegisterPass());
|
|
|
|
// Linking modules together can lead to duplicated global constants, only
|
|
// keep one copy of each constant.
|
|
PM.add(createConstantMergePass());
|
|
|
|
// Remove unused arguments from functions.
|
|
PM.add(createDeadArgEliminationPass());
|
|
|
|
// Reduce the code after globalopt and ipsccp. Both can open up significant
|
|
// simplification opportunities, and both can propagate functions through
|
|
// function pointers. When this happens, we often have to resolve varargs
|
|
// calls, etc, so let instcombine do this.
|
|
if (OptLevel > 2)
|
|
PM.add(createAggressiveInstCombinerPass());
|
|
addInstructionCombiningPass(PM);
|
|
addExtensionsToPM(EP_Peephole, PM);
|
|
|
|
// Inline small functions
|
|
bool RunInliner = Inliner;
|
|
if (RunInliner) {
|
|
PM.add(Inliner);
|
|
Inliner = nullptr;
|
|
}
|
|
|
|
PM.add(createPruneEHPass()); // Remove dead EH info.
|
|
|
|
// CSFDO instrumentation and use pass.
|
|
addPGOInstrPasses(PM, /* IsCS */ true);
|
|
|
|
// Optimize globals again if we ran the inliner.
|
|
if (RunInliner)
|
|
PM.add(createGlobalOptimizerPass());
|
|
PM.add(createGlobalDCEPass()); // Remove dead functions.
|
|
|
|
// If we didn't decide to inline a function, check to see if we can
|
|
// transform it to pass arguments by value instead of by reference.
|
|
PM.add(createArgumentPromotionPass());
|
|
|
|
// The IPO passes may leave cruft around. Clean up after them.
|
|
addInstructionCombiningPass(PM);
|
|
addExtensionsToPM(EP_Peephole, PM);
|
|
PM.add(createJumpThreadingPass());
|
|
|
|
// Break up allocas
|
|
PM.add(createSROAPass());
|
|
|
|
// LTO provides additional opportunities for tailcall elimination due to
|
|
// link-time inlining, and visibility of nocapture attribute.
|
|
if (OptLevel > 1)
|
|
PM.add(createTailCallEliminationPass());
|
|
|
|
// Infer attributes on declarations, call sites, arguments, etc.
|
|
PM.add(createPostOrderFunctionAttrsLegacyPass()); // Add nocapture.
|
|
// Run a few AA driven optimizations here and now, to cleanup the code.
|
|
PM.add(createGlobalsAAWrapperPass()); // IP alias analysis.
|
|
|
|
PM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap));
|
|
PM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds.
|
|
PM.add(NewGVN ? createNewGVNPass()
|
|
: createGVNPass(DisableGVNLoadPRE)); // Remove redundancies.
|
|
PM.add(createMemCpyOptPass()); // Remove dead memcpys.
|
|
|
|
// Nuke dead stores.
|
|
PM.add(createDeadStoreEliminationPass());
|
|
|
|
// More loops are countable; try to optimize them.
|
|
PM.add(createIndVarSimplifyPass());
|
|
PM.add(createLoopDeletionPass());
|
|
if (EnableLoopInterchange)
|
|
PM.add(createLoopInterchangePass());
|
|
|
|
// Unroll small loops
|
|
PM.add(createSimpleLoopUnrollPass(OptLevel, DisableUnrollLoops,
|
|
ForgetAllSCEVInLoopUnroll));
|
|
PM.add(createLoopVectorizePass(true, !LoopVectorize));
|
|
// The vectorizer may have significantly shortened a loop body; unroll again.
|
|
PM.add(createLoopUnrollPass(OptLevel, DisableUnrollLoops,
|
|
ForgetAllSCEVInLoopUnroll));
|
|
|
|
PM.add(createWarnMissedTransformationsPass());
|
|
|
|
// Now that we've optimized loops (in particular loop induction variables),
|
|
// we may have exposed more scalar opportunities. Run parts of the scalar
|
|
// optimizer again at this point.
|
|
addInstructionCombiningPass(PM); // Initial cleanup
|
|
PM.add(createCFGSimplificationPass()); // if-convert
|
|
PM.add(createSCCPPass()); // Propagate exposed constants
|
|
addInstructionCombiningPass(PM); // Clean up again
|
|
PM.add(createBitTrackingDCEPass());
|
|
|
|
// More scalar chains could be vectorized due to more alias information
|
|
if (SLPVectorize)
|
|
PM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains.
|
|
|
|
// After vectorization, assume intrinsics may tell us more about pointer
|
|
// alignments.
|
|
PM.add(createAlignmentFromAssumptionsPass());
|
|
|
|
// Cleanup and simplify the code after the scalar optimizations.
|
|
addInstructionCombiningPass(PM);
|
|
addExtensionsToPM(EP_Peephole, PM);
|
|
|
|
PM.add(createJumpThreadingPass());
|
|
}
|
|
|
|
void PassManagerBuilder::addLateLTOOptimizationPasses(
|
|
legacy::PassManagerBase &PM) {
|
|
// See comment in the new PM for justification of scheduling splitting at
|
|
// this stage (\ref buildLTODefaultPipeline).
|
|
if (EnableHotColdSplit)
|
|
PM.add(createHotColdSplittingPass());
|
|
|
|
// Delete basic blocks, which optimization passes may have killed.
|
|
PM.add(createCFGSimplificationPass());
|
|
|
|
// Drop bodies of available externally objects to improve GlobalDCE.
|
|
PM.add(createEliminateAvailableExternallyPass());
|
|
|
|
// Now that we have optimized the program, discard unreachable functions.
|
|
PM.add(createGlobalDCEPass());
|
|
|
|
// FIXME: this is profitable (for compiler time) to do at -O0 too, but
|
|
// currently it damages debug info.
|
|
if (MergeFunctions)
|
|
PM.add(createMergeFunctionsPass());
|
|
}
|
|
|
|
void PassManagerBuilder::populateThinLTOPassManager(
|
|
legacy::PassManagerBase &PM) {
|
|
PerformThinLTO = true;
|
|
if (LibraryInfo)
|
|
PM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
|
|
|
|
if (VerifyInput)
|
|
PM.add(createVerifierPass());
|
|
|
|
if (ImportSummary) {
|
|
// These passes import type identifier resolutions for whole-program
|
|
// devirtualization and CFI. They must run early because other passes may
|
|
// disturb the specific instruction patterns that these passes look for,
|
|
// creating dependencies on resolutions that may not appear in the summary.
|
|
//
|
|
// For example, GVN may transform the pattern assume(type.test) appearing in
|
|
// two basic blocks into assume(phi(type.test, type.test)), which would
|
|
// transform a dependency on a WPD resolution into a dependency on a type
|
|
// identifier resolution for CFI.
|
|
//
|
|
// Also, WPD has access to more precise information than ICP and can
|
|
// devirtualize more effectively, so it should operate on the IR first.
|
|
PM.add(createWholeProgramDevirtPass(nullptr, ImportSummary));
|
|
PM.add(createLowerTypeTestsPass(nullptr, ImportSummary));
|
|
}
|
|
|
|
populateModulePassManager(PM);
|
|
|
|
if (VerifyOutput)
|
|
PM.add(createVerifierPass());
|
|
PerformThinLTO = false;
|
|
}
|
|
|
|
void PassManagerBuilder::populateLTOPassManager(legacy::PassManagerBase &PM) {
|
|
if (LibraryInfo)
|
|
PM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
|
|
|
|
if (VerifyInput)
|
|
PM.add(createVerifierPass());
|
|
|
|
addExtensionsToPM(EP_FullLinkTimeOptimizationEarly, PM);
|
|
|
|
if (OptLevel != 0)
|
|
addLTOOptimizationPasses(PM);
|
|
else {
|
|
// The whole-program-devirt pass needs to run at -O0 because only it knows
|
|
// about the llvm.type.checked.load intrinsic: it needs to both lower the
|
|
// intrinsic itself and handle it in the summary.
|
|
PM.add(createWholeProgramDevirtPass(ExportSummary, nullptr));
|
|
}
|
|
|
|
// Create a function that performs CFI checks for cross-DSO calls with targets
|
|
// in the current module.
|
|
PM.add(createCrossDSOCFIPass());
|
|
|
|
// Lower type metadata and the type.test intrinsic. This pass supports Clang's
|
|
// control flow integrity mechanisms (-fsanitize=cfi*) and needs to run at
|
|
// link time if CFI is enabled. The pass does nothing if CFI is disabled.
|
|
PM.add(createLowerTypeTestsPass(ExportSummary, nullptr));
|
|
|
|
if (OptLevel != 0)
|
|
addLateLTOOptimizationPasses(PM);
|
|
|
|
addExtensionsToPM(EP_FullLinkTimeOptimizationLast, PM);
|
|
|
|
if (VerifyOutput)
|
|
PM.add(createVerifierPass());
|
|
}
|
|
|
|
inline PassManagerBuilder *unwrap(LLVMPassManagerBuilderRef P) {
|
|
return reinterpret_cast<PassManagerBuilder*>(P);
|
|
}
|
|
|
|
inline LLVMPassManagerBuilderRef wrap(PassManagerBuilder *P) {
|
|
return reinterpret_cast<LLVMPassManagerBuilderRef>(P);
|
|
}
|
|
|
|
LLVMPassManagerBuilderRef LLVMPassManagerBuilderCreate() {
|
|
PassManagerBuilder *PMB = new PassManagerBuilder();
|
|
return wrap(PMB);
|
|
}
|
|
|
|
void LLVMPassManagerBuilderDispose(LLVMPassManagerBuilderRef PMB) {
|
|
PassManagerBuilder *Builder = unwrap(PMB);
|
|
delete Builder;
|
|
}
|
|
|
|
void
|
|
LLVMPassManagerBuilderSetOptLevel(LLVMPassManagerBuilderRef PMB,
|
|
unsigned OptLevel) {
|
|
PassManagerBuilder *Builder = unwrap(PMB);
|
|
Builder->OptLevel = OptLevel;
|
|
}
|
|
|
|
void
|
|
LLVMPassManagerBuilderSetSizeLevel(LLVMPassManagerBuilderRef PMB,
|
|
unsigned SizeLevel) {
|
|
PassManagerBuilder *Builder = unwrap(PMB);
|
|
Builder->SizeLevel = SizeLevel;
|
|
}
|
|
|
|
void
|
|
LLVMPassManagerBuilderSetDisableUnitAtATime(LLVMPassManagerBuilderRef PMB,
|
|
LLVMBool Value) {
|
|
// NOTE: The DisableUnitAtATime switch has been removed.
|
|
}
|
|
|
|
void
|
|
LLVMPassManagerBuilderSetDisableUnrollLoops(LLVMPassManagerBuilderRef PMB,
|
|
LLVMBool Value) {
|
|
PassManagerBuilder *Builder = unwrap(PMB);
|
|
Builder->DisableUnrollLoops = Value;
|
|
}
|
|
|
|
void
|
|
LLVMPassManagerBuilderSetDisableSimplifyLibCalls(LLVMPassManagerBuilderRef PMB,
|
|
LLVMBool Value) {
|
|
// NOTE: The simplify-libcalls pass has been removed.
|
|
}
|
|
|
|
void
|
|
LLVMPassManagerBuilderUseInlinerWithThreshold(LLVMPassManagerBuilderRef PMB,
|
|
unsigned Threshold) {
|
|
PassManagerBuilder *Builder = unwrap(PMB);
|
|
Builder->Inliner = createFunctionInliningPass(Threshold);
|
|
}
|
|
|
|
void
|
|
LLVMPassManagerBuilderPopulateFunctionPassManager(LLVMPassManagerBuilderRef PMB,
|
|
LLVMPassManagerRef PM) {
|
|
PassManagerBuilder *Builder = unwrap(PMB);
|
|
legacy::FunctionPassManager *FPM = unwrap<legacy::FunctionPassManager>(PM);
|
|
Builder->populateFunctionPassManager(*FPM);
|
|
}
|
|
|
|
void
|
|
LLVMPassManagerBuilderPopulateModulePassManager(LLVMPassManagerBuilderRef PMB,
|
|
LLVMPassManagerRef PM) {
|
|
PassManagerBuilder *Builder = unwrap(PMB);
|
|
legacy::PassManagerBase *MPM = unwrap(PM);
|
|
Builder->populateModulePassManager(*MPM);
|
|
}
|
|
|
|
void LLVMPassManagerBuilderPopulateLTOPassManager(LLVMPassManagerBuilderRef PMB,
|
|
LLVMPassManagerRef PM,
|
|
LLVMBool Internalize,
|
|
LLVMBool RunInliner) {
|
|
PassManagerBuilder *Builder = unwrap(PMB);
|
|
legacy::PassManagerBase *LPM = unwrap(PM);
|
|
|
|
// A small backwards compatibility hack. populateLTOPassManager used to take
|
|
// an RunInliner option.
|
|
if (RunInliner && !Builder->Inliner)
|
|
Builder->Inliner = createFunctionInliningPass();
|
|
|
|
Builder->populateLTOPassManager(*LPM);
|
|
}
|