llvm-project/clang/lib/Basic/Targets/X86.h

856 lines
26 KiB
C++

//===--- X86.h - Declare X86 target feature support -------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares X86 TargetInfo objects.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_LIB_BASIC_TARGETS_X86_H
#define LLVM_CLANG_LIB_BASIC_TARGETS_X86_H
#include "OSTargets.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/TargetOptions.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Support/Compiler.h"
namespace clang {
namespace targets {
// X86 target abstract base class; x86-32 and x86-64 are very close, so
// most of the implementation can be shared.
class LLVM_LIBRARY_VISIBILITY X86TargetInfo : public TargetInfo {
enum X86SSEEnum {
NoSSE,
SSE1,
SSE2,
SSE3,
SSSE3,
SSE41,
SSE42,
AVX,
AVX2,
AVX512F
} SSELevel = NoSSE;
enum MMX3DNowEnum {
NoMMX3DNow,
MMX,
AMD3DNow,
AMD3DNowAthlon
} MMX3DNowLevel = NoMMX3DNow;
enum XOPEnum { NoXOP, SSE4A, FMA4, XOP } XOPLevel = NoXOP;
bool HasAES = false;
bool HasVAES = false;
bool HasPCLMUL = false;
bool HasVPCLMULQDQ = false;
bool HasGFNI = false;
bool HasLZCNT = false;
bool HasRDRND = false;
bool HasFSGSBASE = false;
bool HasBMI = false;
bool HasBMI2 = false;
bool HasPOPCNT = false;
bool HasRTM = false;
bool HasPRFCHW = false;
bool HasRDSEED = false;
bool HasADX = false;
bool HasTBM = false;
bool HasLWP = false;
bool HasFMA = false;
bool HasF16C = false;
bool HasAVX512CD = false;
bool HasAVX512VPOPCNTDQ = false;
bool HasAVX512VNNI = false;
bool HasAVX512ER = false;
bool HasAVX512PF = false;
bool HasAVX512DQ = false;
bool HasAVX512BITALG = false;
bool HasAVX512BW = false;
bool HasAVX512VL = false;
bool HasAVX512VBMI = false;
bool HasAVX512VBMI2 = false;
bool HasAVX512IFMA = false;
bool HasSHA = false;
bool HasMPX = false;
bool HasSHSTK = false;
bool HasSGX = false;
bool HasCX16 = false;
bool HasFXSR = false;
bool HasXSAVE = false;
bool HasXSAVEOPT = false;
bool HasXSAVEC = false;
bool HasXSAVES = false;
bool HasMWAITX = false;
bool HasCLZERO = false;
bool HasCLDEMOTE = false;
bool HasPCONFIG = false;
bool HasPKU = false;
bool HasCLFLUSHOPT = false;
bool HasCLWB = false;
bool HasMOVBE = false;
bool HasPREFETCHWT1 = false;
bool HasRDPID = false;
bool HasRetpoline = false;
bool HasRetpolineExternalThunk = false;
bool HasLAHFSAHF = false;
bool HasWBNOINVD = false;
bool HasWAITPKG = false;
bool HasMOVDIRI = false;
bool HasMOVDIR64B = false;
bool HasPTWRITE = false;
bool HasINVPCID = false;
protected:
/// Enumeration of all of the X86 CPUs supported by Clang.
///
/// Each enumeration represents a particular CPU supported by Clang. These
/// loosely correspond to the options passed to '-march' or '-mtune' flags.
enum CPUKind {
CK_Generic,
#define PROC(ENUM, STRING, IS64BIT) CK_##ENUM,
#include "clang/Basic/X86Target.def"
} CPU = CK_Generic;
bool checkCPUKind(CPUKind Kind) const;
CPUKind getCPUKind(StringRef CPU) const;
std::string getCPUKindCanonicalName(CPUKind Kind) const;
enum FPMathKind { FP_Default, FP_SSE, FP_387 } FPMath = FP_Default;
public:
X86TargetInfo(const llvm::Triple &Triple, const TargetOptions &)
: TargetInfo(Triple) {
LongDoubleFormat = &llvm::APFloat::x87DoubleExtended();
}
unsigned getFloatEvalMethod() const override {
// X87 evaluates with 80 bits "long double" precision.
return SSELevel == NoSSE ? 2 : 0;
}
ArrayRef<const char *> getGCCRegNames() const override;
ArrayRef<TargetInfo::GCCRegAlias> getGCCRegAliases() const override {
return None;
}
ArrayRef<TargetInfo::AddlRegName> getGCCAddlRegNames() const override;
bool validateCpuSupports(StringRef Name) const override;
bool validateCpuIs(StringRef Name) const override;
bool validateCPUSpecificCPUDispatch(StringRef Name) const override;
char CPUSpecificManglingCharacter(StringRef Name) const override;
void getCPUSpecificCPUDispatchFeatures(
StringRef Name,
llvm::SmallVectorImpl<StringRef> &Features) const override;
bool validateAsmConstraint(const char *&Name,
TargetInfo::ConstraintInfo &info) const override;
bool validateGlobalRegisterVariable(StringRef RegName, unsigned RegSize,
bool &HasSizeMismatch) const override {
// esp and ebp are the only 32-bit registers the x86 backend can currently
// handle.
if (RegName.equals("esp") || RegName.equals("ebp")) {
// Check that the register size is 32-bit.
HasSizeMismatch = RegSize != 32;
return true;
}
return false;
}
bool validateOutputSize(StringRef Constraint, unsigned Size) const override;
bool validateInputSize(StringRef Constraint, unsigned Size) const override;
virtual bool
checkCFProtectionReturnSupported(DiagnosticsEngine &Diags) const override {
return true;
};
virtual bool
checkCFProtectionBranchSupported(DiagnosticsEngine &Diags) const override {
return true;
};
virtual bool validateOperandSize(StringRef Constraint, unsigned Size) const;
std::string convertConstraint(const char *&Constraint) const override;
const char *getClobbers() const override {
return "~{dirflag},~{fpsr},~{flags}";
}
StringRef getConstraintRegister(StringRef Constraint,
StringRef Expression) const override {
StringRef::iterator I, E;
for (I = Constraint.begin(), E = Constraint.end(); I != E; ++I) {
if (isalpha(*I))
break;
}
if (I == E)
return "";
switch (*I) {
// For the register constraints, return the matching register name
case 'a':
return "ax";
case 'b':
return "bx";
case 'c':
return "cx";
case 'd':
return "dx";
case 'S':
return "si";
case 'D':
return "di";
// In case the constraint is 'r' we need to return Expression
case 'r':
return Expression;
// Double letters Y<x> constraints
case 'Y':
if ((++I != E) && ((*I == '0') || (*I == 'z')))
return "xmm0";
default:
break;
}
return "";
}
bool useFP16ConversionIntrinsics() const override {
return false;
}
void getTargetDefines(const LangOptions &Opts,
MacroBuilder &Builder) const override;
static void setSSELevel(llvm::StringMap<bool> &Features, X86SSEEnum Level,
bool Enabled);
static void setMMXLevel(llvm::StringMap<bool> &Features, MMX3DNowEnum Level,
bool Enabled);
static void setXOPLevel(llvm::StringMap<bool> &Features, XOPEnum Level,
bool Enabled);
void setFeatureEnabled(llvm::StringMap<bool> &Features, StringRef Name,
bool Enabled) const override {
setFeatureEnabledImpl(Features, Name, Enabled);
}
// This exists purely to cut down on the number of virtual calls in
// initFeatureMap which calls this repeatedly.
static void setFeatureEnabledImpl(llvm::StringMap<bool> &Features,
StringRef Name, bool Enabled);
bool
initFeatureMap(llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags,
StringRef CPU,
const std::vector<std::string> &FeaturesVec) const override;
bool isValidFeatureName(StringRef Name) const override;
bool hasFeature(StringRef Feature) const override;
bool handleTargetFeatures(std::vector<std::string> &Features,
DiagnosticsEngine &Diags) override;
StringRef getABI() const override {
if (getTriple().getArch() == llvm::Triple::x86_64 && SSELevel >= AVX512F)
return "avx512";
if (getTriple().getArch() == llvm::Triple::x86_64 && SSELevel >= AVX)
return "avx";
if (getTriple().getArch() == llvm::Triple::x86 &&
MMX3DNowLevel == NoMMX3DNow)
return "no-mmx";
return "";
}
bool isValidCPUName(StringRef Name) const override {
return checkCPUKind(getCPUKind(Name));
}
void fillValidCPUList(SmallVectorImpl<StringRef> &Values) const override;
bool setCPU(const std::string &Name) override {
return checkCPUKind(CPU = getCPUKind(Name));
}
bool supportsMultiVersioning() const override {
return getTriple().isOSBinFormatELF();
}
unsigned multiVersionSortPriority(StringRef Name) const override;
bool setFPMath(StringRef Name) override;
CallingConvCheckResult checkCallingConvention(CallingConv CC) const override {
// Most of the non-ARM calling conventions are i386 conventions.
switch (CC) {
case CC_X86ThisCall:
case CC_X86FastCall:
case CC_X86StdCall:
case CC_X86VectorCall:
case CC_X86RegCall:
case CC_C:
case CC_PreserveMost:
case CC_Swift:
case CC_X86Pascal:
case CC_IntelOclBicc:
case CC_OpenCLKernel:
return CCCR_OK;
default:
return CCCR_Warning;
}
}
CallingConv getDefaultCallingConv(CallingConvMethodType MT) const override {
return MT == CCMT_Member ? CC_X86ThisCall : CC_C;
}
bool hasSjLjLowering() const override { return true; }
void setSupportedOpenCLOpts() override {
getSupportedOpenCLOpts().supportAll();
}
};
// X86-32 generic target
class LLVM_LIBRARY_VISIBILITY X86_32TargetInfo : public X86TargetInfo {
public:
X86_32TargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts)
: X86TargetInfo(Triple, Opts) {
DoubleAlign = LongLongAlign = 32;
LongDoubleWidth = 96;
LongDoubleAlign = 32;
SuitableAlign = 128;
resetDataLayout("e-m:e-p:32:32-f64:32:64-f80:32-n8:16:32-S128");
SizeType = UnsignedInt;
PtrDiffType = SignedInt;
IntPtrType = SignedInt;
RegParmMax = 3;
// Use fpret for all types.
RealTypeUsesObjCFPRet =
((1 << TargetInfo::Float) | (1 << TargetInfo::Double) |
(1 << TargetInfo::LongDouble));
// x86-32 has atomics up to 8 bytes
CPUKind Kind = getCPUKind(Opts.CPU);
if (Kind >= CK_i586 || Kind == CK_Generic)
MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 64;
else if (Kind >= CK_i486)
MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 32;
}
BuiltinVaListKind getBuiltinVaListKind() const override {
return TargetInfo::CharPtrBuiltinVaList;
}
int getEHDataRegisterNumber(unsigned RegNo) const override {
if (RegNo == 0)
return 0;
if (RegNo == 1)
return 2;
return -1;
}
bool validateOperandSize(StringRef Constraint, unsigned Size) const override {
switch (Constraint[0]) {
default:
break;
case 'R':
case 'q':
case 'Q':
case 'a':
case 'b':
case 'c':
case 'd':
case 'S':
case 'D':
return Size <= 32;
case 'A':
return Size <= 64;
}
return X86TargetInfo::validateOperandSize(Constraint, Size);
}
ArrayRef<Builtin::Info> getTargetBuiltins() const override;
};
class LLVM_LIBRARY_VISIBILITY NetBSDI386TargetInfo
: public NetBSDTargetInfo<X86_32TargetInfo> {
public:
NetBSDI386TargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts)
: NetBSDTargetInfo<X86_32TargetInfo>(Triple, Opts) {}
unsigned getFloatEvalMethod() const override {
unsigned Major, Minor, Micro;
getTriple().getOSVersion(Major, Minor, Micro);
// New NetBSD uses the default rounding mode.
if (Major >= 7 || (Major == 6 && Minor == 99 && Micro >= 26) || Major == 0)
return X86_32TargetInfo::getFloatEvalMethod();
// NetBSD before 6.99.26 defaults to "double" rounding.
return 1;
}
};
class LLVM_LIBRARY_VISIBILITY OpenBSDI386TargetInfo
: public OpenBSDTargetInfo<X86_32TargetInfo> {
public:
OpenBSDI386TargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts)
: OpenBSDTargetInfo<X86_32TargetInfo>(Triple, Opts) {
SizeType = UnsignedLong;
IntPtrType = SignedLong;
PtrDiffType = SignedLong;
}
};
class LLVM_LIBRARY_VISIBILITY DarwinI386TargetInfo
: public DarwinTargetInfo<X86_32TargetInfo> {
public:
DarwinI386TargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts)
: DarwinTargetInfo<X86_32TargetInfo>(Triple, Opts) {
LongDoubleWidth = 128;
LongDoubleAlign = 128;
SuitableAlign = 128;
MaxVectorAlign = 256;
// The watchOS simulator uses the builtin bool type for Objective-C.
llvm::Triple T = llvm::Triple(Triple);
if (T.isWatchOS())
UseSignedCharForObjCBool = false;
SizeType = UnsignedLong;
IntPtrType = SignedLong;
resetDataLayout("e-m:o-p:32:32-f64:32:64-f80:128-n8:16:32-S128");
HasAlignMac68kSupport = true;
}
bool handleTargetFeatures(std::vector<std::string> &Features,
DiagnosticsEngine &Diags) override {
if (!DarwinTargetInfo<X86_32TargetInfo>::handleTargetFeatures(Features,
Diags))
return false;
// We now know the features we have: we can decide how to align vectors.
MaxVectorAlign =
hasFeature("avx512f") ? 512 : hasFeature("avx") ? 256 : 128;
return true;
}
};
// x86-32 Windows target
class LLVM_LIBRARY_VISIBILITY WindowsX86_32TargetInfo
: public WindowsTargetInfo<X86_32TargetInfo> {
public:
WindowsX86_32TargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts)
: WindowsTargetInfo<X86_32TargetInfo>(Triple, Opts) {
DoubleAlign = LongLongAlign = 64;
bool IsWinCOFF =
getTriple().isOSWindows() && getTriple().isOSBinFormatCOFF();
resetDataLayout(IsWinCOFF
? "e-m:x-p:32:32-i64:64-f80:32-n8:16:32-a:0:32-S32"
: "e-m:e-p:32:32-i64:64-f80:32-n8:16:32-a:0:32-S32");
}
};
// x86-32 Windows Visual Studio target
class LLVM_LIBRARY_VISIBILITY MicrosoftX86_32TargetInfo
: public WindowsX86_32TargetInfo {
public:
MicrosoftX86_32TargetInfo(const llvm::Triple &Triple,
const TargetOptions &Opts)
: WindowsX86_32TargetInfo(Triple, Opts) {
LongDoubleWidth = LongDoubleAlign = 64;
LongDoubleFormat = &llvm::APFloat::IEEEdouble();
}
void getTargetDefines(const LangOptions &Opts,
MacroBuilder &Builder) const override {
WindowsX86_32TargetInfo::getTargetDefines(Opts, Builder);
WindowsX86_32TargetInfo::getVisualStudioDefines(Opts, Builder);
// The value of the following reflects processor type.
// 300=386, 400=486, 500=Pentium, 600=Blend (default)
// We lost the original triple, so we use the default.
Builder.defineMacro("_M_IX86", "600");
}
};
// x86-32 MinGW target
class LLVM_LIBRARY_VISIBILITY MinGWX86_32TargetInfo
: public WindowsX86_32TargetInfo {
public:
MinGWX86_32TargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts)
: WindowsX86_32TargetInfo(Triple, Opts) {
HasFloat128 = true;
}
void getTargetDefines(const LangOptions &Opts,
MacroBuilder &Builder) const override {
WindowsX86_32TargetInfo::getTargetDefines(Opts, Builder);
Builder.defineMacro("_X86_");
}
};
// x86-32 Cygwin target
class LLVM_LIBRARY_VISIBILITY CygwinX86_32TargetInfo : public X86_32TargetInfo {
public:
CygwinX86_32TargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts)
: X86_32TargetInfo(Triple, Opts) {
this->WCharType = TargetInfo::UnsignedShort;
DoubleAlign = LongLongAlign = 64;
resetDataLayout("e-m:x-p:32:32-i64:64-f80:32-n8:16:32-a:0:32-S32");
}
void getTargetDefines(const LangOptions &Opts,
MacroBuilder &Builder) const override {
X86_32TargetInfo::getTargetDefines(Opts, Builder);
Builder.defineMacro("_X86_");
Builder.defineMacro("__CYGWIN__");
Builder.defineMacro("__CYGWIN32__");
addCygMingDefines(Opts, Builder);
DefineStd(Builder, "unix", Opts);
if (Opts.CPlusPlus)
Builder.defineMacro("_GNU_SOURCE");
}
};
// x86-32 Haiku target
class LLVM_LIBRARY_VISIBILITY HaikuX86_32TargetInfo
: public HaikuTargetInfo<X86_32TargetInfo> {
public:
HaikuX86_32TargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts)
: HaikuTargetInfo<X86_32TargetInfo>(Triple, Opts) {}
void getTargetDefines(const LangOptions &Opts,
MacroBuilder &Builder) const override {
HaikuTargetInfo<X86_32TargetInfo>::getTargetDefines(Opts, Builder);
Builder.defineMacro("__INTEL__");
}
};
// X86-32 MCU target
class LLVM_LIBRARY_VISIBILITY MCUX86_32TargetInfo : public X86_32TargetInfo {
public:
MCUX86_32TargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts)
: X86_32TargetInfo(Triple, Opts) {
LongDoubleWidth = 64;
LongDoubleFormat = &llvm::APFloat::IEEEdouble();
resetDataLayout("e-m:e-p:32:32-i64:32-f64:32-f128:32-n8:16:32-a:0:32-S32");
WIntType = UnsignedInt;
}
CallingConvCheckResult checkCallingConvention(CallingConv CC) const override {
// On MCU we support only C calling convention.
return CC == CC_C ? CCCR_OK : CCCR_Warning;
}
void getTargetDefines(const LangOptions &Opts,
MacroBuilder &Builder) const override {
X86_32TargetInfo::getTargetDefines(Opts, Builder);
Builder.defineMacro("__iamcu");
Builder.defineMacro("__iamcu__");
}
bool allowsLargerPreferedTypeAlignment() const override { return false; }
};
// x86-32 RTEMS target
class LLVM_LIBRARY_VISIBILITY RTEMSX86_32TargetInfo : public X86_32TargetInfo {
public:
RTEMSX86_32TargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts)
: X86_32TargetInfo(Triple, Opts) {
SizeType = UnsignedLong;
IntPtrType = SignedLong;
PtrDiffType = SignedLong;
}
void getTargetDefines(const LangOptions &Opts,
MacroBuilder &Builder) const override {
X86_32TargetInfo::getTargetDefines(Opts, Builder);
Builder.defineMacro("__INTEL__");
Builder.defineMacro("__rtems__");
}
};
// x86-64 generic target
class LLVM_LIBRARY_VISIBILITY X86_64TargetInfo : public X86TargetInfo {
public:
X86_64TargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts)
: X86TargetInfo(Triple, Opts) {
const bool IsX32 = getTriple().getEnvironment() == llvm::Triple::GNUX32;
bool IsWinCOFF =
getTriple().isOSWindows() && getTriple().isOSBinFormatCOFF();
LongWidth = LongAlign = PointerWidth = PointerAlign = IsX32 ? 32 : 64;
LongDoubleWidth = 128;
LongDoubleAlign = 128;
LargeArrayMinWidth = 128;
LargeArrayAlign = 128;
SuitableAlign = 128;
SizeType = IsX32 ? UnsignedInt : UnsignedLong;
PtrDiffType = IsX32 ? SignedInt : SignedLong;
IntPtrType = IsX32 ? SignedInt : SignedLong;
IntMaxType = IsX32 ? SignedLongLong : SignedLong;
Int64Type = IsX32 ? SignedLongLong : SignedLong;
RegParmMax = 6;
// Pointers are 32-bit in x32.
resetDataLayout(IsX32
? "e-m:e-p:32:32-i64:64-f80:128-n8:16:32:64-S128"
: IsWinCOFF ? "e-m:w-i64:64-f80:128-n8:16:32:64-S128"
: "e-m:e-i64:64-f80:128-n8:16:32:64-S128");
// Use fpret only for long double.
RealTypeUsesObjCFPRet = (1 << TargetInfo::LongDouble);
// Use fp2ret for _Complex long double.
ComplexLongDoubleUsesFP2Ret = true;
// Make __builtin_ms_va_list available.
HasBuiltinMSVaList = true;
// x86-64 has atomics up to 16 bytes.
MaxAtomicPromoteWidth = 128;
MaxAtomicInlineWidth = 64;
}
BuiltinVaListKind getBuiltinVaListKind() const override {
return TargetInfo::X86_64ABIBuiltinVaList;
}
int getEHDataRegisterNumber(unsigned RegNo) const override {
if (RegNo == 0)
return 0;
if (RegNo == 1)
return 1;
return -1;
}
CallingConvCheckResult checkCallingConvention(CallingConv CC) const override {
switch (CC) {
case CC_C:
case CC_Swift:
case CC_X86VectorCall:
case CC_IntelOclBicc:
case CC_Win64:
case CC_PreserveMost:
case CC_PreserveAll:
case CC_X86RegCall:
case CC_OpenCLKernel:
return CCCR_OK;
default:
return CCCR_Warning;
}
}
CallingConv getDefaultCallingConv(CallingConvMethodType MT) const override {
return CC_C;
}
// for x32 we need it here explicitly
bool hasInt128Type() const override { return true; }
unsigned getUnwindWordWidth() const override { return 64; }
unsigned getRegisterWidth() const override { return 64; }
bool validateGlobalRegisterVariable(StringRef RegName, unsigned RegSize,
bool &HasSizeMismatch) const override {
// rsp and rbp are the only 64-bit registers the x86 backend can currently
// handle.
if (RegName.equals("rsp") || RegName.equals("rbp")) {
// Check that the register size is 64-bit.
HasSizeMismatch = RegSize != 64;
return true;
}
// Check if the register is a 32-bit register the backend can handle.
return X86TargetInfo::validateGlobalRegisterVariable(RegName, RegSize,
HasSizeMismatch);
}
void setMaxAtomicWidth() override {
if (hasFeature("cx16"))
MaxAtomicInlineWidth = 128;
}
ArrayRef<Builtin::Info> getTargetBuiltins() const override;
};
// x86-64 Windows target
class LLVM_LIBRARY_VISIBILITY WindowsX86_64TargetInfo
: public WindowsTargetInfo<X86_64TargetInfo> {
public:
WindowsX86_64TargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts)
: WindowsTargetInfo<X86_64TargetInfo>(Triple, Opts) {
LongWidth = LongAlign = 32;
DoubleAlign = LongLongAlign = 64;
IntMaxType = SignedLongLong;
Int64Type = SignedLongLong;
SizeType = UnsignedLongLong;
PtrDiffType = SignedLongLong;
IntPtrType = SignedLongLong;
}
BuiltinVaListKind getBuiltinVaListKind() const override {
return TargetInfo::CharPtrBuiltinVaList;
}
CallingConvCheckResult checkCallingConvention(CallingConv CC) const override {
switch (CC) {
case CC_X86StdCall:
case CC_X86ThisCall:
case CC_X86FastCall:
return CCCR_Ignore;
case CC_C:
case CC_X86VectorCall:
case CC_IntelOclBicc:
case CC_PreserveMost:
case CC_PreserveAll:
case CC_X86_64SysV:
case CC_Swift:
case CC_X86RegCall:
case CC_OpenCLKernel:
return CCCR_OK;
default:
return CCCR_Warning;
}
}
};
// x86-64 Windows Visual Studio target
class LLVM_LIBRARY_VISIBILITY MicrosoftX86_64TargetInfo
: public WindowsX86_64TargetInfo {
public:
MicrosoftX86_64TargetInfo(const llvm::Triple &Triple,
const TargetOptions &Opts)
: WindowsX86_64TargetInfo(Triple, Opts) {
LongDoubleWidth = LongDoubleAlign = 64;
LongDoubleFormat = &llvm::APFloat::IEEEdouble();
}
void getTargetDefines(const LangOptions &Opts,
MacroBuilder &Builder) const override {
WindowsX86_64TargetInfo::getTargetDefines(Opts, Builder);
WindowsX86_64TargetInfo::getVisualStudioDefines(Opts, Builder);
Builder.defineMacro("_M_X64", "100");
Builder.defineMacro("_M_AMD64", "100");
}
TargetInfo::CallingConvKind
getCallingConvKind(bool ClangABICompat4) const override {
return CCK_MicrosoftX86_64;
}
};
// x86-64 MinGW target
class LLVM_LIBRARY_VISIBILITY MinGWX86_64TargetInfo
: public WindowsX86_64TargetInfo {
public:
MinGWX86_64TargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts)
: WindowsX86_64TargetInfo(Triple, Opts) {
// Mingw64 rounds long double size and alignment up to 16 bytes, but sticks
// with x86 FP ops. Weird.
LongDoubleWidth = LongDoubleAlign = 128;
LongDoubleFormat = &llvm::APFloat::x87DoubleExtended();
HasFloat128 = true;
}
};
// x86-64 Cygwin target
class LLVM_LIBRARY_VISIBILITY CygwinX86_64TargetInfo : public X86_64TargetInfo {
public:
CygwinX86_64TargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts)
: X86_64TargetInfo(Triple, Opts) {
this->WCharType = TargetInfo::UnsignedShort;
TLSSupported = false;
}
void getTargetDefines(const LangOptions &Opts,
MacroBuilder &Builder) const override {
X86_64TargetInfo::getTargetDefines(Opts, Builder);
Builder.defineMacro("__x86_64__");
Builder.defineMacro("__CYGWIN__");
Builder.defineMacro("__CYGWIN64__");
addCygMingDefines(Opts, Builder);
DefineStd(Builder, "unix", Opts);
if (Opts.CPlusPlus)
Builder.defineMacro("_GNU_SOURCE");
}
};
class LLVM_LIBRARY_VISIBILITY DarwinX86_64TargetInfo
: public DarwinTargetInfo<X86_64TargetInfo> {
public:
DarwinX86_64TargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts)
: DarwinTargetInfo<X86_64TargetInfo>(Triple, Opts) {
Int64Type = SignedLongLong;
// The 64-bit iOS simulator uses the builtin bool type for Objective-C.
llvm::Triple T = llvm::Triple(Triple);
if (T.isiOS())
UseSignedCharForObjCBool = false;
resetDataLayout("e-m:o-i64:64-f80:128-n8:16:32:64-S128");
}
bool handleTargetFeatures(std::vector<std::string> &Features,
DiagnosticsEngine &Diags) override {
if (!DarwinTargetInfo<X86_64TargetInfo>::handleTargetFeatures(Features,
Diags))
return false;
// We now know the features we have: we can decide how to align vectors.
MaxVectorAlign =
hasFeature("avx512f") ? 512 : hasFeature("avx") ? 256 : 128;
return true;
}
};
class LLVM_LIBRARY_VISIBILITY OpenBSDX86_64TargetInfo
: public OpenBSDTargetInfo<X86_64TargetInfo> {
public:
OpenBSDX86_64TargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts)
: OpenBSDTargetInfo<X86_64TargetInfo>(Triple, Opts) {
IntMaxType = SignedLongLong;
Int64Type = SignedLongLong;
}
};
// x86_32 Android target
class LLVM_LIBRARY_VISIBILITY AndroidX86_32TargetInfo
: public LinuxTargetInfo<X86_32TargetInfo> {
public:
AndroidX86_32TargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts)
: LinuxTargetInfo<X86_32TargetInfo>(Triple, Opts) {
SuitableAlign = 32;
LongDoubleWidth = 64;
LongDoubleFormat = &llvm::APFloat::IEEEdouble();
}
};
// x86_64 Android target
class LLVM_LIBRARY_VISIBILITY AndroidX86_64TargetInfo
: public LinuxTargetInfo<X86_64TargetInfo> {
public:
AndroidX86_64TargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts)
: LinuxTargetInfo<X86_64TargetInfo>(Triple, Opts) {
LongDoubleFormat = &llvm::APFloat::IEEEquad();
}
bool useFloat128ManglingForLongDouble() const override { return true; }
};
} // namespace targets
} // namespace clang
#endif // LLVM_CLANG_LIB_BASIC_TARGETS_X86_H