forked from OSchip/llvm-project
4020 lines
146 KiB
C++
4020 lines
146 KiB
C++
//===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Expression parsing implementation for C++.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "clang/Parse/Parser.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/Basic/PrettyStackTrace.h"
|
|
#include "clang/Lex/LiteralSupport.h"
|
|
#include "clang/Parse/ParseDiagnostic.h"
|
|
#include "clang/Parse/RAIIObjectsForParser.h"
|
|
#include "clang/Sema/DeclSpec.h"
|
|
#include "clang/Sema/ParsedTemplate.h"
|
|
#include "clang/Sema/Scope.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include <numeric>
|
|
|
|
using namespace clang;
|
|
|
|
static int SelectDigraphErrorMessage(tok::TokenKind Kind) {
|
|
switch (Kind) {
|
|
// template name
|
|
case tok::unknown: return 0;
|
|
// casts
|
|
case tok::kw_addrspace_cast: return 1;
|
|
case tok::kw_const_cast: return 2;
|
|
case tok::kw_dynamic_cast: return 3;
|
|
case tok::kw_reinterpret_cast: return 4;
|
|
case tok::kw_static_cast: return 5;
|
|
default:
|
|
llvm_unreachable("Unknown type for digraph error message.");
|
|
}
|
|
}
|
|
|
|
// Are the two tokens adjacent in the same source file?
|
|
bool Parser::areTokensAdjacent(const Token &First, const Token &Second) {
|
|
SourceManager &SM = PP.getSourceManager();
|
|
SourceLocation FirstLoc = SM.getSpellingLoc(First.getLocation());
|
|
SourceLocation FirstEnd = FirstLoc.getLocWithOffset(First.getLength());
|
|
return FirstEnd == SM.getSpellingLoc(Second.getLocation());
|
|
}
|
|
|
|
// Suggest fixit for "<::" after a cast.
|
|
static void FixDigraph(Parser &P, Preprocessor &PP, Token &DigraphToken,
|
|
Token &ColonToken, tok::TokenKind Kind, bool AtDigraph) {
|
|
// Pull '<:' and ':' off token stream.
|
|
if (!AtDigraph)
|
|
PP.Lex(DigraphToken);
|
|
PP.Lex(ColonToken);
|
|
|
|
SourceRange Range;
|
|
Range.setBegin(DigraphToken.getLocation());
|
|
Range.setEnd(ColonToken.getLocation());
|
|
P.Diag(DigraphToken.getLocation(), diag::err_missing_whitespace_digraph)
|
|
<< SelectDigraphErrorMessage(Kind)
|
|
<< FixItHint::CreateReplacement(Range, "< ::");
|
|
|
|
// Update token information to reflect their change in token type.
|
|
ColonToken.setKind(tok::coloncolon);
|
|
ColonToken.setLocation(ColonToken.getLocation().getLocWithOffset(-1));
|
|
ColonToken.setLength(2);
|
|
DigraphToken.setKind(tok::less);
|
|
DigraphToken.setLength(1);
|
|
|
|
// Push new tokens back to token stream.
|
|
PP.EnterToken(ColonToken, /*IsReinject*/ true);
|
|
if (!AtDigraph)
|
|
PP.EnterToken(DigraphToken, /*IsReinject*/ true);
|
|
}
|
|
|
|
// Check for '<::' which should be '< ::' instead of '[:' when following
|
|
// a template name.
|
|
void Parser::CheckForTemplateAndDigraph(Token &Next, ParsedType ObjectType,
|
|
bool EnteringContext,
|
|
IdentifierInfo &II, CXXScopeSpec &SS) {
|
|
if (!Next.is(tok::l_square) || Next.getLength() != 2)
|
|
return;
|
|
|
|
Token SecondToken = GetLookAheadToken(2);
|
|
if (!SecondToken.is(tok::colon) || !areTokensAdjacent(Next, SecondToken))
|
|
return;
|
|
|
|
TemplateTy Template;
|
|
UnqualifiedId TemplateName;
|
|
TemplateName.setIdentifier(&II, Tok.getLocation());
|
|
bool MemberOfUnknownSpecialization;
|
|
if (!Actions.isTemplateName(getCurScope(), SS, /*hasTemplateKeyword=*/false,
|
|
TemplateName, ObjectType, EnteringContext,
|
|
Template, MemberOfUnknownSpecialization))
|
|
return;
|
|
|
|
FixDigraph(*this, PP, Next, SecondToken, tok::unknown,
|
|
/*AtDigraph*/false);
|
|
}
|
|
|
|
/// Parse global scope or nested-name-specifier if present.
|
|
///
|
|
/// Parses a C++ global scope specifier ('::') or nested-name-specifier (which
|
|
/// may be preceded by '::'). Note that this routine will not parse ::new or
|
|
/// ::delete; it will just leave them in the token stream.
|
|
///
|
|
/// '::'[opt] nested-name-specifier
|
|
/// '::'
|
|
///
|
|
/// nested-name-specifier:
|
|
/// type-name '::'
|
|
/// namespace-name '::'
|
|
/// nested-name-specifier identifier '::'
|
|
/// nested-name-specifier 'template'[opt] simple-template-id '::'
|
|
///
|
|
///
|
|
/// \param SS the scope specifier that will be set to the parsed
|
|
/// nested-name-specifier (or empty)
|
|
///
|
|
/// \param ObjectType if this nested-name-specifier is being parsed following
|
|
/// the "." or "->" of a member access expression, this parameter provides the
|
|
/// type of the object whose members are being accessed.
|
|
///
|
|
/// \param ObjectHadErrors if this unqualified-id occurs within a member access
|
|
/// expression, indicates whether the original subexpressions had any errors.
|
|
/// When true, diagnostics for missing 'template' keyword will be supressed.
|
|
///
|
|
/// \param EnteringContext whether we will be entering into the context of
|
|
/// the nested-name-specifier after parsing it.
|
|
///
|
|
/// \param MayBePseudoDestructor When non-NULL, points to a flag that
|
|
/// indicates whether this nested-name-specifier may be part of a
|
|
/// pseudo-destructor name. In this case, the flag will be set false
|
|
/// if we don't actually end up parsing a destructor name. Moreover,
|
|
/// if we do end up determining that we are parsing a destructor name,
|
|
/// the last component of the nested-name-specifier is not parsed as
|
|
/// part of the scope specifier.
|
|
///
|
|
/// \param IsTypename If \c true, this nested-name-specifier is known to be
|
|
/// part of a type name. This is used to improve error recovery.
|
|
///
|
|
/// \param LastII When non-NULL, points to an IdentifierInfo* that will be
|
|
/// filled in with the leading identifier in the last component of the
|
|
/// nested-name-specifier, if any.
|
|
///
|
|
/// \param OnlyNamespace If true, only considers namespaces in lookup.
|
|
///
|
|
///
|
|
/// \returns true if there was an error parsing a scope specifier
|
|
bool Parser::ParseOptionalCXXScopeSpecifier(
|
|
CXXScopeSpec &SS, ParsedType ObjectType, bool ObjectHadErrors,
|
|
bool EnteringContext, bool *MayBePseudoDestructor, bool IsTypename,
|
|
IdentifierInfo **LastII, bool OnlyNamespace, bool InUsingDeclaration) {
|
|
assert(getLangOpts().CPlusPlus &&
|
|
"Call sites of this function should be guarded by checking for C++");
|
|
|
|
if (Tok.is(tok::annot_cxxscope)) {
|
|
assert(!LastII && "want last identifier but have already annotated scope");
|
|
assert(!MayBePseudoDestructor && "unexpected annot_cxxscope");
|
|
Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
|
|
Tok.getAnnotationRange(),
|
|
SS);
|
|
ConsumeAnnotationToken();
|
|
return false;
|
|
}
|
|
|
|
// Has to happen before any "return false"s in this function.
|
|
bool CheckForDestructor = false;
|
|
if (MayBePseudoDestructor && *MayBePseudoDestructor) {
|
|
CheckForDestructor = true;
|
|
*MayBePseudoDestructor = false;
|
|
}
|
|
|
|
if (LastII)
|
|
*LastII = nullptr;
|
|
|
|
bool HasScopeSpecifier = false;
|
|
|
|
if (Tok.is(tok::coloncolon)) {
|
|
// ::new and ::delete aren't nested-name-specifiers.
|
|
tok::TokenKind NextKind = NextToken().getKind();
|
|
if (NextKind == tok::kw_new || NextKind == tok::kw_delete)
|
|
return false;
|
|
|
|
if (NextKind == tok::l_brace) {
|
|
// It is invalid to have :: {, consume the scope qualifier and pretend
|
|
// like we never saw it.
|
|
Diag(ConsumeToken(), diag::err_expected) << tok::identifier;
|
|
} else {
|
|
// '::' - Global scope qualifier.
|
|
if (Actions.ActOnCXXGlobalScopeSpecifier(ConsumeToken(), SS))
|
|
return true;
|
|
|
|
HasScopeSpecifier = true;
|
|
}
|
|
}
|
|
|
|
if (Tok.is(tok::kw___super)) {
|
|
SourceLocation SuperLoc = ConsumeToken();
|
|
if (!Tok.is(tok::coloncolon)) {
|
|
Diag(Tok.getLocation(), diag::err_expected_coloncolon_after_super);
|
|
return true;
|
|
}
|
|
|
|
return Actions.ActOnSuperScopeSpecifier(SuperLoc, ConsumeToken(), SS);
|
|
}
|
|
|
|
if (!HasScopeSpecifier &&
|
|
Tok.isOneOf(tok::kw_decltype, tok::annot_decltype)) {
|
|
DeclSpec DS(AttrFactory);
|
|
SourceLocation DeclLoc = Tok.getLocation();
|
|
SourceLocation EndLoc = ParseDecltypeSpecifier(DS);
|
|
|
|
SourceLocation CCLoc;
|
|
// Work around a standard defect: 'decltype(auto)::' is not a
|
|
// nested-name-specifier.
|
|
if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto ||
|
|
!TryConsumeToken(tok::coloncolon, CCLoc)) {
|
|
AnnotateExistingDecltypeSpecifier(DS, DeclLoc, EndLoc);
|
|
return false;
|
|
}
|
|
|
|
if (Actions.ActOnCXXNestedNameSpecifierDecltype(SS, DS, CCLoc))
|
|
SS.SetInvalid(SourceRange(DeclLoc, CCLoc));
|
|
|
|
HasScopeSpecifier = true;
|
|
}
|
|
|
|
// Preferred type might change when parsing qualifiers, we need the original.
|
|
auto SavedType = PreferredType;
|
|
while (true) {
|
|
if (HasScopeSpecifier) {
|
|
if (Tok.is(tok::code_completion)) {
|
|
// Code completion for a nested-name-specifier, where the code
|
|
// completion token follows the '::'.
|
|
Actions.CodeCompleteQualifiedId(getCurScope(), SS, EnteringContext,
|
|
InUsingDeclaration, ObjectType.get(),
|
|
SavedType.get(SS.getBeginLoc()));
|
|
// Include code completion token into the range of the scope otherwise
|
|
// when we try to annotate the scope tokens the dangling code completion
|
|
// token will cause assertion in
|
|
// Preprocessor::AnnotatePreviousCachedTokens.
|
|
SS.setEndLoc(Tok.getLocation());
|
|
cutOffParsing();
|
|
return true;
|
|
}
|
|
|
|
// C++ [basic.lookup.classref]p5:
|
|
// If the qualified-id has the form
|
|
//
|
|
// ::class-name-or-namespace-name::...
|
|
//
|
|
// the class-name-or-namespace-name is looked up in global scope as a
|
|
// class-name or namespace-name.
|
|
//
|
|
// To implement this, we clear out the object type as soon as we've
|
|
// seen a leading '::' or part of a nested-name-specifier.
|
|
ObjectType = nullptr;
|
|
}
|
|
|
|
// nested-name-specifier:
|
|
// nested-name-specifier 'template'[opt] simple-template-id '::'
|
|
|
|
// Parse the optional 'template' keyword, then make sure we have
|
|
// 'identifier <' after it.
|
|
if (Tok.is(tok::kw_template)) {
|
|
// If we don't have a scope specifier or an object type, this isn't a
|
|
// nested-name-specifier, since they aren't allowed to start with
|
|
// 'template'.
|
|
if (!HasScopeSpecifier && !ObjectType)
|
|
break;
|
|
|
|
TentativeParsingAction TPA(*this);
|
|
SourceLocation TemplateKWLoc = ConsumeToken();
|
|
|
|
UnqualifiedId TemplateName;
|
|
if (Tok.is(tok::identifier)) {
|
|
// Consume the identifier.
|
|
TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
|
|
ConsumeToken();
|
|
} else if (Tok.is(tok::kw_operator)) {
|
|
// We don't need to actually parse the unqualified-id in this case,
|
|
// because a simple-template-id cannot start with 'operator', but
|
|
// go ahead and parse it anyway for consistency with the case where
|
|
// we already annotated the template-id.
|
|
if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType,
|
|
TemplateName)) {
|
|
TPA.Commit();
|
|
break;
|
|
}
|
|
|
|
if (TemplateName.getKind() != UnqualifiedIdKind::IK_OperatorFunctionId &&
|
|
TemplateName.getKind() != UnqualifiedIdKind::IK_LiteralOperatorId) {
|
|
Diag(TemplateName.getSourceRange().getBegin(),
|
|
diag::err_id_after_template_in_nested_name_spec)
|
|
<< TemplateName.getSourceRange();
|
|
TPA.Commit();
|
|
break;
|
|
}
|
|
} else {
|
|
TPA.Revert();
|
|
break;
|
|
}
|
|
|
|
// If the next token is not '<', we have a qualified-id that refers
|
|
// to a template name, such as T::template apply, but is not a
|
|
// template-id.
|
|
if (Tok.isNot(tok::less)) {
|
|
TPA.Revert();
|
|
break;
|
|
}
|
|
|
|
// Commit to parsing the template-id.
|
|
TPA.Commit();
|
|
TemplateTy Template;
|
|
TemplateNameKind TNK = Actions.ActOnTemplateName(
|
|
getCurScope(), SS, TemplateKWLoc, TemplateName, ObjectType,
|
|
EnteringContext, Template, /*AllowInjectedClassName*/ true);
|
|
if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateKWLoc,
|
|
TemplateName, false))
|
|
return true;
|
|
|
|
continue;
|
|
}
|
|
|
|
if (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) {
|
|
// We have
|
|
//
|
|
// template-id '::'
|
|
//
|
|
// So we need to check whether the template-id is a simple-template-id of
|
|
// the right kind (it should name a type or be dependent), and then
|
|
// convert it into a type within the nested-name-specifier.
|
|
TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
|
|
if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
|
|
*MayBePseudoDestructor = true;
|
|
return false;
|
|
}
|
|
|
|
if (LastII)
|
|
*LastII = TemplateId->Name;
|
|
|
|
// Consume the template-id token.
|
|
ConsumeAnnotationToken();
|
|
|
|
assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!");
|
|
SourceLocation CCLoc = ConsumeToken();
|
|
|
|
HasScopeSpecifier = true;
|
|
|
|
ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
|
|
TemplateId->NumArgs);
|
|
|
|
if (TemplateId->isInvalid() ||
|
|
Actions.ActOnCXXNestedNameSpecifier(getCurScope(),
|
|
SS,
|
|
TemplateId->TemplateKWLoc,
|
|
TemplateId->Template,
|
|
TemplateId->TemplateNameLoc,
|
|
TemplateId->LAngleLoc,
|
|
TemplateArgsPtr,
|
|
TemplateId->RAngleLoc,
|
|
CCLoc,
|
|
EnteringContext)) {
|
|
SourceLocation StartLoc
|
|
= SS.getBeginLoc().isValid()? SS.getBeginLoc()
|
|
: TemplateId->TemplateNameLoc;
|
|
SS.SetInvalid(SourceRange(StartLoc, CCLoc));
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
// The rest of the nested-name-specifier possibilities start with
|
|
// tok::identifier.
|
|
if (Tok.isNot(tok::identifier))
|
|
break;
|
|
|
|
IdentifierInfo &II = *Tok.getIdentifierInfo();
|
|
|
|
// nested-name-specifier:
|
|
// type-name '::'
|
|
// namespace-name '::'
|
|
// nested-name-specifier identifier '::'
|
|
Token Next = NextToken();
|
|
Sema::NestedNameSpecInfo IdInfo(&II, Tok.getLocation(), Next.getLocation(),
|
|
ObjectType);
|
|
|
|
// If we get foo:bar, this is almost certainly a typo for foo::bar. Recover
|
|
// and emit a fixit hint for it.
|
|
if (Next.is(tok::colon) && !ColonIsSacred) {
|
|
if (Actions.IsInvalidUnlessNestedName(getCurScope(), SS, IdInfo,
|
|
EnteringContext) &&
|
|
// If the token after the colon isn't an identifier, it's still an
|
|
// error, but they probably meant something else strange so don't
|
|
// recover like this.
|
|
PP.LookAhead(1).is(tok::identifier)) {
|
|
Diag(Next, diag::err_unexpected_colon_in_nested_name_spec)
|
|
<< FixItHint::CreateReplacement(Next.getLocation(), "::");
|
|
// Recover as if the user wrote '::'.
|
|
Next.setKind(tok::coloncolon);
|
|
}
|
|
}
|
|
|
|
if (Next.is(tok::coloncolon) && GetLookAheadToken(2).is(tok::l_brace)) {
|
|
// It is invalid to have :: {, consume the scope qualifier and pretend
|
|
// like we never saw it.
|
|
Token Identifier = Tok; // Stash away the identifier.
|
|
ConsumeToken(); // Eat the identifier, current token is now '::'.
|
|
Diag(PP.getLocForEndOfToken(ConsumeToken()), diag::err_expected)
|
|
<< tok::identifier;
|
|
UnconsumeToken(Identifier); // Stick the identifier back.
|
|
Next = NextToken(); // Point Next at the '{' token.
|
|
}
|
|
|
|
if (Next.is(tok::coloncolon)) {
|
|
if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
|
|
*MayBePseudoDestructor = true;
|
|
return false;
|
|
}
|
|
|
|
if (ColonIsSacred) {
|
|
const Token &Next2 = GetLookAheadToken(2);
|
|
if (Next2.is(tok::kw_private) || Next2.is(tok::kw_protected) ||
|
|
Next2.is(tok::kw_public) || Next2.is(tok::kw_virtual)) {
|
|
Diag(Next2, diag::err_unexpected_token_in_nested_name_spec)
|
|
<< Next2.getName()
|
|
<< FixItHint::CreateReplacement(Next.getLocation(), ":");
|
|
Token ColonColon;
|
|
PP.Lex(ColonColon);
|
|
ColonColon.setKind(tok::colon);
|
|
PP.EnterToken(ColonColon, /*IsReinject*/ true);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (LastII)
|
|
*LastII = &II;
|
|
|
|
// We have an identifier followed by a '::'. Lookup this name
|
|
// as the name in a nested-name-specifier.
|
|
Token Identifier = Tok;
|
|
SourceLocation IdLoc = ConsumeToken();
|
|
assert(Tok.isOneOf(tok::coloncolon, tok::colon) &&
|
|
"NextToken() not working properly!");
|
|
Token ColonColon = Tok;
|
|
SourceLocation CCLoc = ConsumeToken();
|
|
|
|
bool IsCorrectedToColon = false;
|
|
bool *CorrectionFlagPtr = ColonIsSacred ? &IsCorrectedToColon : nullptr;
|
|
if (Actions.ActOnCXXNestedNameSpecifier(
|
|
getCurScope(), IdInfo, EnteringContext, SS, false,
|
|
CorrectionFlagPtr, OnlyNamespace)) {
|
|
// Identifier is not recognized as a nested name, but we can have
|
|
// mistyped '::' instead of ':'.
|
|
if (CorrectionFlagPtr && IsCorrectedToColon) {
|
|
ColonColon.setKind(tok::colon);
|
|
PP.EnterToken(Tok, /*IsReinject*/ true);
|
|
PP.EnterToken(ColonColon, /*IsReinject*/ true);
|
|
Tok = Identifier;
|
|
break;
|
|
}
|
|
SS.SetInvalid(SourceRange(IdLoc, CCLoc));
|
|
}
|
|
HasScopeSpecifier = true;
|
|
continue;
|
|
}
|
|
|
|
CheckForTemplateAndDigraph(Next, ObjectType, EnteringContext, II, SS);
|
|
|
|
// nested-name-specifier:
|
|
// type-name '<'
|
|
if (Next.is(tok::less)) {
|
|
|
|
TemplateTy Template;
|
|
UnqualifiedId TemplateName;
|
|
TemplateName.setIdentifier(&II, Tok.getLocation());
|
|
bool MemberOfUnknownSpecialization;
|
|
if (TemplateNameKind TNK = Actions.isTemplateName(getCurScope(), SS,
|
|
/*hasTemplateKeyword=*/false,
|
|
TemplateName,
|
|
ObjectType,
|
|
EnteringContext,
|
|
Template,
|
|
MemberOfUnknownSpecialization)) {
|
|
// If lookup didn't find anything, we treat the name as a template-name
|
|
// anyway. C++20 requires this, and in prior language modes it improves
|
|
// error recovery. But before we commit to this, check that we actually
|
|
// have something that looks like a template-argument-list next.
|
|
if (!IsTypename && TNK == TNK_Undeclared_template &&
|
|
isTemplateArgumentList(1) == TPResult::False)
|
|
break;
|
|
|
|
// We have found a template name, so annotate this token
|
|
// with a template-id annotation. We do not permit the
|
|
// template-id to be translated into a type annotation,
|
|
// because some clients (e.g., the parsing of class template
|
|
// specializations) still want to see the original template-id
|
|
// token, and it might not be a type at all (e.g. a concept name in a
|
|
// type-constraint).
|
|
ConsumeToken();
|
|
if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
|
|
TemplateName, false))
|
|
return true;
|
|
continue;
|
|
}
|
|
|
|
if (MemberOfUnknownSpecialization && (ObjectType || SS.isSet()) &&
|
|
(IsTypename || isTemplateArgumentList(1) == TPResult::True)) {
|
|
// If we had errors before, ObjectType can be dependent even without any
|
|
// templates. Do not report missing template keyword in that case.
|
|
if (!ObjectHadErrors) {
|
|
// We have something like t::getAs<T>, where getAs is a
|
|
// member of an unknown specialization. However, this will only
|
|
// parse correctly as a template, so suggest the keyword 'template'
|
|
// before 'getAs' and treat this as a dependent template name.
|
|
unsigned DiagID = diag::err_missing_dependent_template_keyword;
|
|
if (getLangOpts().MicrosoftExt)
|
|
DiagID = diag::warn_missing_dependent_template_keyword;
|
|
|
|
Diag(Tok.getLocation(), DiagID)
|
|
<< II.getName()
|
|
<< FixItHint::CreateInsertion(Tok.getLocation(), "template ");
|
|
}
|
|
|
|
SourceLocation TemplateNameLoc = ConsumeToken();
|
|
|
|
TemplateNameKind TNK = Actions.ActOnTemplateName(
|
|
getCurScope(), SS, TemplateNameLoc, TemplateName, ObjectType,
|
|
EnteringContext, Template, /*AllowInjectedClassName*/ true);
|
|
if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
|
|
TemplateName, false))
|
|
return true;
|
|
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// We don't have any tokens that form the beginning of a
|
|
// nested-name-specifier, so we're done.
|
|
break;
|
|
}
|
|
|
|
// Even if we didn't see any pieces of a nested-name-specifier, we
|
|
// still check whether there is a tilde in this position, which
|
|
// indicates a potential pseudo-destructor.
|
|
if (CheckForDestructor && !HasScopeSpecifier && Tok.is(tok::tilde))
|
|
*MayBePseudoDestructor = true;
|
|
|
|
return false;
|
|
}
|
|
|
|
ExprResult Parser::tryParseCXXIdExpression(CXXScopeSpec &SS,
|
|
bool isAddressOfOperand,
|
|
Token &Replacement) {
|
|
ExprResult E;
|
|
|
|
// We may have already annotated this id-expression.
|
|
switch (Tok.getKind()) {
|
|
case tok::annot_non_type: {
|
|
NamedDecl *ND = getNonTypeAnnotation(Tok);
|
|
SourceLocation Loc = ConsumeAnnotationToken();
|
|
E = Actions.ActOnNameClassifiedAsNonType(getCurScope(), SS, ND, Loc, Tok);
|
|
break;
|
|
}
|
|
|
|
case tok::annot_non_type_dependent: {
|
|
IdentifierInfo *II = getIdentifierAnnotation(Tok);
|
|
SourceLocation Loc = ConsumeAnnotationToken();
|
|
|
|
// This is only the direct operand of an & operator if it is not
|
|
// followed by a postfix-expression suffix.
|
|
if (isAddressOfOperand && isPostfixExpressionSuffixStart())
|
|
isAddressOfOperand = false;
|
|
|
|
E = Actions.ActOnNameClassifiedAsDependentNonType(SS, II, Loc,
|
|
isAddressOfOperand);
|
|
break;
|
|
}
|
|
|
|
case tok::annot_non_type_undeclared: {
|
|
assert(SS.isEmpty() &&
|
|
"undeclared non-type annotation should be unqualified");
|
|
IdentifierInfo *II = getIdentifierAnnotation(Tok);
|
|
SourceLocation Loc = ConsumeAnnotationToken();
|
|
E = Actions.ActOnNameClassifiedAsUndeclaredNonType(II, Loc);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
SourceLocation TemplateKWLoc;
|
|
UnqualifiedId Name;
|
|
if (ParseUnqualifiedId(SS, /*ObjectType=*/nullptr,
|
|
/*ObjectHadErrors=*/false,
|
|
/*EnteringContext=*/false,
|
|
/*AllowDestructorName=*/false,
|
|
/*AllowConstructorName=*/false,
|
|
/*AllowDeductionGuide=*/false, &TemplateKWLoc, Name))
|
|
return ExprError();
|
|
|
|
// This is only the direct operand of an & operator if it is not
|
|
// followed by a postfix-expression suffix.
|
|
if (isAddressOfOperand && isPostfixExpressionSuffixStart())
|
|
isAddressOfOperand = false;
|
|
|
|
E = Actions.ActOnIdExpression(
|
|
getCurScope(), SS, TemplateKWLoc, Name, Tok.is(tok::l_paren),
|
|
isAddressOfOperand, /*CCC=*/nullptr, /*IsInlineAsmIdentifier=*/false,
|
|
&Replacement);
|
|
break;
|
|
}
|
|
|
|
if (!E.isInvalid() && !E.isUnset() && Tok.is(tok::less))
|
|
checkPotentialAngleBracket(E);
|
|
return E;
|
|
}
|
|
|
|
/// ParseCXXIdExpression - Handle id-expression.
|
|
///
|
|
/// id-expression:
|
|
/// unqualified-id
|
|
/// qualified-id
|
|
///
|
|
/// qualified-id:
|
|
/// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
|
|
/// '::' identifier
|
|
/// '::' operator-function-id
|
|
/// '::' template-id
|
|
///
|
|
/// NOTE: The standard specifies that, for qualified-id, the parser does not
|
|
/// expect:
|
|
///
|
|
/// '::' conversion-function-id
|
|
/// '::' '~' class-name
|
|
///
|
|
/// This may cause a slight inconsistency on diagnostics:
|
|
///
|
|
/// class C {};
|
|
/// namespace A {}
|
|
/// void f() {
|
|
/// :: A :: ~ C(); // Some Sema error about using destructor with a
|
|
/// // namespace.
|
|
/// :: ~ C(); // Some Parser error like 'unexpected ~'.
|
|
/// }
|
|
///
|
|
/// We simplify the parser a bit and make it work like:
|
|
///
|
|
/// qualified-id:
|
|
/// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
|
|
/// '::' unqualified-id
|
|
///
|
|
/// That way Sema can handle and report similar errors for namespaces and the
|
|
/// global scope.
|
|
///
|
|
/// The isAddressOfOperand parameter indicates that this id-expression is a
|
|
/// direct operand of the address-of operator. This is, besides member contexts,
|
|
/// the only place where a qualified-id naming a non-static class member may
|
|
/// appear.
|
|
///
|
|
ExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) {
|
|
// qualified-id:
|
|
// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
|
|
// '::' unqualified-id
|
|
//
|
|
CXXScopeSpec SS;
|
|
ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr,
|
|
/*ObjectHadErrors=*/false,
|
|
/*EnteringContext=*/false);
|
|
|
|
Token Replacement;
|
|
ExprResult Result =
|
|
tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
|
|
if (Result.isUnset()) {
|
|
// If the ExprResult is valid but null, then typo correction suggested a
|
|
// keyword replacement that needs to be reparsed.
|
|
UnconsumeToken(Replacement);
|
|
Result = tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
|
|
}
|
|
assert(!Result.isUnset() && "Typo correction suggested a keyword replacement "
|
|
"for a previous keyword suggestion");
|
|
return Result;
|
|
}
|
|
|
|
/// ParseLambdaExpression - Parse a C++11 lambda expression.
|
|
///
|
|
/// lambda-expression:
|
|
/// lambda-introducer lambda-declarator[opt] compound-statement
|
|
/// lambda-introducer '<' template-parameter-list '>'
|
|
/// lambda-declarator[opt] compound-statement
|
|
///
|
|
/// lambda-introducer:
|
|
/// '[' lambda-capture[opt] ']'
|
|
///
|
|
/// lambda-capture:
|
|
/// capture-default
|
|
/// capture-list
|
|
/// capture-default ',' capture-list
|
|
///
|
|
/// capture-default:
|
|
/// '&'
|
|
/// '='
|
|
///
|
|
/// capture-list:
|
|
/// capture
|
|
/// capture-list ',' capture
|
|
///
|
|
/// capture:
|
|
/// simple-capture
|
|
/// init-capture [C++1y]
|
|
///
|
|
/// simple-capture:
|
|
/// identifier
|
|
/// '&' identifier
|
|
/// 'this'
|
|
///
|
|
/// init-capture: [C++1y]
|
|
/// identifier initializer
|
|
/// '&' identifier initializer
|
|
///
|
|
/// lambda-declarator:
|
|
/// '(' parameter-declaration-clause ')' attribute-specifier[opt]
|
|
/// 'mutable'[opt] exception-specification[opt]
|
|
/// trailing-return-type[opt]
|
|
///
|
|
ExprResult Parser::ParseLambdaExpression() {
|
|
// Parse lambda-introducer.
|
|
LambdaIntroducer Intro;
|
|
if (ParseLambdaIntroducer(Intro)) {
|
|
SkipUntil(tok::r_square, StopAtSemi);
|
|
SkipUntil(tok::l_brace, StopAtSemi);
|
|
SkipUntil(tok::r_brace, StopAtSemi);
|
|
return ExprError();
|
|
}
|
|
|
|
return ParseLambdaExpressionAfterIntroducer(Intro);
|
|
}
|
|
|
|
/// Use lookahead and potentially tentative parsing to determine if we are
|
|
/// looking at a C++11 lambda expression, and parse it if we are.
|
|
///
|
|
/// If we are not looking at a lambda expression, returns ExprError().
|
|
ExprResult Parser::TryParseLambdaExpression() {
|
|
assert(getLangOpts().CPlusPlus11
|
|
&& Tok.is(tok::l_square)
|
|
&& "Not at the start of a possible lambda expression.");
|
|
|
|
const Token Next = NextToken();
|
|
if (Next.is(tok::eof)) // Nothing else to lookup here...
|
|
return ExprEmpty();
|
|
|
|
const Token After = GetLookAheadToken(2);
|
|
// If lookahead indicates this is a lambda...
|
|
if (Next.is(tok::r_square) || // []
|
|
Next.is(tok::equal) || // [=
|
|
(Next.is(tok::amp) && // [&] or [&,
|
|
After.isOneOf(tok::r_square, tok::comma)) ||
|
|
(Next.is(tok::identifier) && // [identifier]
|
|
After.is(tok::r_square)) ||
|
|
Next.is(tok::ellipsis)) { // [...
|
|
return ParseLambdaExpression();
|
|
}
|
|
|
|
// If lookahead indicates an ObjC message send...
|
|
// [identifier identifier
|
|
if (Next.is(tok::identifier) && After.is(tok::identifier))
|
|
return ExprEmpty();
|
|
|
|
// Here, we're stuck: lambda introducers and Objective-C message sends are
|
|
// unambiguous, but it requires arbitrary lookhead. [a,b,c,d,e,f,g] is a
|
|
// lambda, and [a,b,c,d,e,f,g h] is a Objective-C message send. Instead of
|
|
// writing two routines to parse a lambda introducer, just try to parse
|
|
// a lambda introducer first, and fall back if that fails.
|
|
LambdaIntroducer Intro;
|
|
{
|
|
TentativeParsingAction TPA(*this);
|
|
LambdaIntroducerTentativeParse Tentative;
|
|
if (ParseLambdaIntroducer(Intro, &Tentative)) {
|
|
TPA.Commit();
|
|
return ExprError();
|
|
}
|
|
|
|
switch (Tentative) {
|
|
case LambdaIntroducerTentativeParse::Success:
|
|
TPA.Commit();
|
|
break;
|
|
|
|
case LambdaIntroducerTentativeParse::Incomplete:
|
|
// Didn't fully parse the lambda-introducer, try again with a
|
|
// non-tentative parse.
|
|
TPA.Revert();
|
|
Intro = LambdaIntroducer();
|
|
if (ParseLambdaIntroducer(Intro))
|
|
return ExprError();
|
|
break;
|
|
|
|
case LambdaIntroducerTentativeParse::MessageSend:
|
|
case LambdaIntroducerTentativeParse::Invalid:
|
|
// Not a lambda-introducer, might be a message send.
|
|
TPA.Revert();
|
|
return ExprEmpty();
|
|
}
|
|
}
|
|
|
|
return ParseLambdaExpressionAfterIntroducer(Intro);
|
|
}
|
|
|
|
/// Parse a lambda introducer.
|
|
/// \param Intro A LambdaIntroducer filled in with information about the
|
|
/// contents of the lambda-introducer.
|
|
/// \param Tentative If non-null, we are disambiguating between a
|
|
/// lambda-introducer and some other construct. In this mode, we do not
|
|
/// produce any diagnostics or take any other irreversible action unless
|
|
/// we're sure that this is a lambda-expression.
|
|
/// \return \c true if parsing (or disambiguation) failed with a diagnostic and
|
|
/// the caller should bail out / recover.
|
|
bool Parser::ParseLambdaIntroducer(LambdaIntroducer &Intro,
|
|
LambdaIntroducerTentativeParse *Tentative) {
|
|
if (Tentative)
|
|
*Tentative = LambdaIntroducerTentativeParse::Success;
|
|
|
|
assert(Tok.is(tok::l_square) && "Lambda expressions begin with '['.");
|
|
BalancedDelimiterTracker T(*this, tok::l_square);
|
|
T.consumeOpen();
|
|
|
|
Intro.Range.setBegin(T.getOpenLocation());
|
|
|
|
bool First = true;
|
|
|
|
// Produce a diagnostic if we're not tentatively parsing; otherwise track
|
|
// that our parse has failed.
|
|
auto Invalid = [&](llvm::function_ref<void()> Action) {
|
|
if (Tentative) {
|
|
*Tentative = LambdaIntroducerTentativeParse::Invalid;
|
|
return false;
|
|
}
|
|
Action();
|
|
return true;
|
|
};
|
|
|
|
// Perform some irreversible action if this is a non-tentative parse;
|
|
// otherwise note that our actions were incomplete.
|
|
auto NonTentativeAction = [&](llvm::function_ref<void()> Action) {
|
|
if (Tentative)
|
|
*Tentative = LambdaIntroducerTentativeParse::Incomplete;
|
|
else
|
|
Action();
|
|
};
|
|
|
|
// Parse capture-default.
|
|
if (Tok.is(tok::amp) &&
|
|
(NextToken().is(tok::comma) || NextToken().is(tok::r_square))) {
|
|
Intro.Default = LCD_ByRef;
|
|
Intro.DefaultLoc = ConsumeToken();
|
|
First = false;
|
|
if (!Tok.getIdentifierInfo()) {
|
|
// This can only be a lambda; no need for tentative parsing any more.
|
|
// '[[and]]' can still be an attribute, though.
|
|
Tentative = nullptr;
|
|
}
|
|
} else if (Tok.is(tok::equal)) {
|
|
Intro.Default = LCD_ByCopy;
|
|
Intro.DefaultLoc = ConsumeToken();
|
|
First = false;
|
|
Tentative = nullptr;
|
|
}
|
|
|
|
while (Tok.isNot(tok::r_square)) {
|
|
if (!First) {
|
|
if (Tok.isNot(tok::comma)) {
|
|
// Provide a completion for a lambda introducer here. Except
|
|
// in Objective-C, where this is Almost Surely meant to be a message
|
|
// send. In that case, fail here and let the ObjC message
|
|
// expression parser perform the completion.
|
|
if (Tok.is(tok::code_completion) &&
|
|
!(getLangOpts().ObjC && Tentative)) {
|
|
Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
|
|
/*AfterAmpersand=*/false);
|
|
cutOffParsing();
|
|
break;
|
|
}
|
|
|
|
return Invalid([&] {
|
|
Diag(Tok.getLocation(), diag::err_expected_comma_or_rsquare);
|
|
});
|
|
}
|
|
ConsumeToken();
|
|
}
|
|
|
|
if (Tok.is(tok::code_completion)) {
|
|
// If we're in Objective-C++ and we have a bare '[', then this is more
|
|
// likely to be a message receiver.
|
|
if (getLangOpts().ObjC && Tentative && First)
|
|
Actions.CodeCompleteObjCMessageReceiver(getCurScope());
|
|
else
|
|
Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
|
|
/*AfterAmpersand=*/false);
|
|
cutOffParsing();
|
|
break;
|
|
}
|
|
|
|
First = false;
|
|
|
|
// Parse capture.
|
|
LambdaCaptureKind Kind = LCK_ByCopy;
|
|
LambdaCaptureInitKind InitKind = LambdaCaptureInitKind::NoInit;
|
|
SourceLocation Loc;
|
|
IdentifierInfo *Id = nullptr;
|
|
SourceLocation EllipsisLocs[4];
|
|
ExprResult Init;
|
|
SourceLocation LocStart = Tok.getLocation();
|
|
|
|
if (Tok.is(tok::star)) {
|
|
Loc = ConsumeToken();
|
|
if (Tok.is(tok::kw_this)) {
|
|
ConsumeToken();
|
|
Kind = LCK_StarThis;
|
|
} else {
|
|
return Invalid([&] {
|
|
Diag(Tok.getLocation(), diag::err_expected_star_this_capture);
|
|
});
|
|
}
|
|
} else if (Tok.is(tok::kw_this)) {
|
|
Kind = LCK_This;
|
|
Loc = ConsumeToken();
|
|
} else if (Tok.isOneOf(tok::amp, tok::equal) &&
|
|
NextToken().isOneOf(tok::comma, tok::r_square) &&
|
|
Intro.Default == LCD_None) {
|
|
// We have a lone "&" or "=" which is either a misplaced capture-default
|
|
// or the start of a capture (in the "&" case) with the rest of the
|
|
// capture missing. Both are an error but a misplaced capture-default
|
|
// is more likely if we don't already have a capture default.
|
|
return Invalid(
|
|
[&] { Diag(Tok.getLocation(), diag::err_capture_default_first); });
|
|
} else {
|
|
TryConsumeToken(tok::ellipsis, EllipsisLocs[0]);
|
|
|
|
if (Tok.is(tok::amp)) {
|
|
Kind = LCK_ByRef;
|
|
ConsumeToken();
|
|
|
|
if (Tok.is(tok::code_completion)) {
|
|
Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
|
|
/*AfterAmpersand=*/true);
|
|
cutOffParsing();
|
|
break;
|
|
}
|
|
}
|
|
|
|
TryConsumeToken(tok::ellipsis, EllipsisLocs[1]);
|
|
|
|
if (Tok.is(tok::identifier)) {
|
|
Id = Tok.getIdentifierInfo();
|
|
Loc = ConsumeToken();
|
|
} else if (Tok.is(tok::kw_this)) {
|
|
return Invalid([&] {
|
|
// FIXME: Suggest a fixit here.
|
|
Diag(Tok.getLocation(), diag::err_this_captured_by_reference);
|
|
});
|
|
} else {
|
|
return Invalid([&] {
|
|
Diag(Tok.getLocation(), diag::err_expected_capture);
|
|
});
|
|
}
|
|
|
|
TryConsumeToken(tok::ellipsis, EllipsisLocs[2]);
|
|
|
|
if (Tok.is(tok::l_paren)) {
|
|
BalancedDelimiterTracker Parens(*this, tok::l_paren);
|
|
Parens.consumeOpen();
|
|
|
|
InitKind = LambdaCaptureInitKind::DirectInit;
|
|
|
|
ExprVector Exprs;
|
|
CommaLocsTy Commas;
|
|
if (Tentative) {
|
|
Parens.skipToEnd();
|
|
*Tentative = LambdaIntroducerTentativeParse::Incomplete;
|
|
} else if (ParseExpressionList(Exprs, Commas)) {
|
|
Parens.skipToEnd();
|
|
Init = ExprError();
|
|
} else {
|
|
Parens.consumeClose();
|
|
Init = Actions.ActOnParenListExpr(Parens.getOpenLocation(),
|
|
Parens.getCloseLocation(),
|
|
Exprs);
|
|
}
|
|
} else if (Tok.isOneOf(tok::l_brace, tok::equal)) {
|
|
// Each lambda init-capture forms its own full expression, which clears
|
|
// Actions.MaybeODRUseExprs. So create an expression evaluation context
|
|
// to save the necessary state, and restore it later.
|
|
EnterExpressionEvaluationContext EC(
|
|
Actions, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
|
|
|
|
if (TryConsumeToken(tok::equal))
|
|
InitKind = LambdaCaptureInitKind::CopyInit;
|
|
else
|
|
InitKind = LambdaCaptureInitKind::ListInit;
|
|
|
|
if (!Tentative) {
|
|
Init = ParseInitializer();
|
|
} else if (Tok.is(tok::l_brace)) {
|
|
BalancedDelimiterTracker Braces(*this, tok::l_brace);
|
|
Braces.consumeOpen();
|
|
Braces.skipToEnd();
|
|
*Tentative = LambdaIntroducerTentativeParse::Incomplete;
|
|
} else {
|
|
// We're disambiguating this:
|
|
//
|
|
// [..., x = expr
|
|
//
|
|
// We need to find the end of the following expression in order to
|
|
// determine whether this is an Obj-C message send's receiver, a
|
|
// C99 designator, or a lambda init-capture.
|
|
//
|
|
// Parse the expression to find where it ends, and annotate it back
|
|
// onto the tokens. We would have parsed this expression the same way
|
|
// in either case: both the RHS of an init-capture and the RHS of an
|
|
// assignment expression are parsed as an initializer-clause, and in
|
|
// neither case can anything be added to the scope between the '[' and
|
|
// here.
|
|
//
|
|
// FIXME: This is horrible. Adding a mechanism to skip an expression
|
|
// would be much cleaner.
|
|
// FIXME: If there is a ',' before the next ']' or ':', we can skip to
|
|
// that instead. (And if we see a ':' with no matching '?', we can
|
|
// classify this as an Obj-C message send.)
|
|
SourceLocation StartLoc = Tok.getLocation();
|
|
InMessageExpressionRAIIObject MaybeInMessageExpression(*this, true);
|
|
Init = ParseInitializer();
|
|
if (!Init.isInvalid())
|
|
Init = Actions.CorrectDelayedTyposInExpr(Init.get());
|
|
|
|
if (Tok.getLocation() != StartLoc) {
|
|
// Back out the lexing of the token after the initializer.
|
|
PP.RevertCachedTokens(1);
|
|
|
|
// Replace the consumed tokens with an appropriate annotation.
|
|
Tok.setLocation(StartLoc);
|
|
Tok.setKind(tok::annot_primary_expr);
|
|
setExprAnnotation(Tok, Init);
|
|
Tok.setAnnotationEndLoc(PP.getLastCachedTokenLocation());
|
|
PP.AnnotateCachedTokens(Tok);
|
|
|
|
// Consume the annotated initializer.
|
|
ConsumeAnnotationToken();
|
|
}
|
|
}
|
|
}
|
|
|
|
TryConsumeToken(tok::ellipsis, EllipsisLocs[3]);
|
|
}
|
|
|
|
// Check if this is a message send before we act on a possible init-capture.
|
|
if (Tentative && Tok.is(tok::identifier) &&
|
|
NextToken().isOneOf(tok::colon, tok::r_square)) {
|
|
// This can only be a message send. We're done with disambiguation.
|
|
*Tentative = LambdaIntroducerTentativeParse::MessageSend;
|
|
return false;
|
|
}
|
|
|
|
// Ensure that any ellipsis was in the right place.
|
|
SourceLocation EllipsisLoc;
|
|
if (std::any_of(std::begin(EllipsisLocs), std::end(EllipsisLocs),
|
|
[](SourceLocation Loc) { return Loc.isValid(); })) {
|
|
// The '...' should appear before the identifier in an init-capture, and
|
|
// after the identifier otherwise.
|
|
bool InitCapture = InitKind != LambdaCaptureInitKind::NoInit;
|
|
SourceLocation *ExpectedEllipsisLoc =
|
|
!InitCapture ? &EllipsisLocs[2] :
|
|
Kind == LCK_ByRef ? &EllipsisLocs[1] :
|
|
&EllipsisLocs[0];
|
|
EllipsisLoc = *ExpectedEllipsisLoc;
|
|
|
|
unsigned DiagID = 0;
|
|
if (EllipsisLoc.isInvalid()) {
|
|
DiagID = diag::err_lambda_capture_misplaced_ellipsis;
|
|
for (SourceLocation Loc : EllipsisLocs) {
|
|
if (Loc.isValid())
|
|
EllipsisLoc = Loc;
|
|
}
|
|
} else {
|
|
unsigned NumEllipses = std::accumulate(
|
|
std::begin(EllipsisLocs), std::end(EllipsisLocs), 0,
|
|
[](int N, SourceLocation Loc) { return N + Loc.isValid(); });
|
|
if (NumEllipses > 1)
|
|
DiagID = diag::err_lambda_capture_multiple_ellipses;
|
|
}
|
|
if (DiagID) {
|
|
NonTentativeAction([&] {
|
|
// Point the diagnostic at the first misplaced ellipsis.
|
|
SourceLocation DiagLoc;
|
|
for (SourceLocation &Loc : EllipsisLocs) {
|
|
if (&Loc != ExpectedEllipsisLoc && Loc.isValid()) {
|
|
DiagLoc = Loc;
|
|
break;
|
|
}
|
|
}
|
|
assert(DiagLoc.isValid() && "no location for diagnostic");
|
|
|
|
// Issue the diagnostic and produce fixits showing where the ellipsis
|
|
// should have been written.
|
|
auto &&D = Diag(DiagLoc, DiagID);
|
|
if (DiagID == diag::err_lambda_capture_misplaced_ellipsis) {
|
|
SourceLocation ExpectedLoc =
|
|
InitCapture ? Loc
|
|
: Lexer::getLocForEndOfToken(
|
|
Loc, 0, PP.getSourceManager(), getLangOpts());
|
|
D << InitCapture << FixItHint::CreateInsertion(ExpectedLoc, "...");
|
|
}
|
|
for (SourceLocation &Loc : EllipsisLocs) {
|
|
if (&Loc != ExpectedEllipsisLoc && Loc.isValid())
|
|
D << FixItHint::CreateRemoval(Loc);
|
|
}
|
|
});
|
|
}
|
|
}
|
|
|
|
// Process the init-capture initializers now rather than delaying until we
|
|
// form the lambda-expression so that they can be handled in the context
|
|
// enclosing the lambda-expression, rather than in the context of the
|
|
// lambda-expression itself.
|
|
ParsedType InitCaptureType;
|
|
if (Init.isUsable())
|
|
Init = Actions.CorrectDelayedTyposInExpr(Init.get());
|
|
if (Init.isUsable()) {
|
|
NonTentativeAction([&] {
|
|
// Get the pointer and store it in an lvalue, so we can use it as an
|
|
// out argument.
|
|
Expr *InitExpr = Init.get();
|
|
// This performs any lvalue-to-rvalue conversions if necessary, which
|
|
// can affect what gets captured in the containing decl-context.
|
|
InitCaptureType = Actions.actOnLambdaInitCaptureInitialization(
|
|
Loc, Kind == LCK_ByRef, EllipsisLoc, Id, InitKind, InitExpr);
|
|
Init = InitExpr;
|
|
});
|
|
}
|
|
|
|
SourceLocation LocEnd = PrevTokLocation;
|
|
|
|
Intro.addCapture(Kind, Loc, Id, EllipsisLoc, InitKind, Init,
|
|
InitCaptureType, SourceRange(LocStart, LocEnd));
|
|
}
|
|
|
|
T.consumeClose();
|
|
Intro.Range.setEnd(T.getCloseLocation());
|
|
return false;
|
|
}
|
|
|
|
static void tryConsumeLambdaSpecifierToken(Parser &P,
|
|
SourceLocation &MutableLoc,
|
|
SourceLocation &ConstexprLoc,
|
|
SourceLocation &ConstevalLoc,
|
|
SourceLocation &DeclEndLoc) {
|
|
assert(MutableLoc.isInvalid());
|
|
assert(ConstexprLoc.isInvalid());
|
|
// Consume constexpr-opt mutable-opt in any sequence, and set the DeclEndLoc
|
|
// to the final of those locations. Emit an error if we have multiple
|
|
// copies of those keywords and recover.
|
|
|
|
while (true) {
|
|
switch (P.getCurToken().getKind()) {
|
|
case tok::kw_mutable: {
|
|
if (MutableLoc.isValid()) {
|
|
P.Diag(P.getCurToken().getLocation(),
|
|
diag::err_lambda_decl_specifier_repeated)
|
|
<< 0 << FixItHint::CreateRemoval(P.getCurToken().getLocation());
|
|
}
|
|
MutableLoc = P.ConsumeToken();
|
|
DeclEndLoc = MutableLoc;
|
|
break /*switch*/;
|
|
}
|
|
case tok::kw_constexpr:
|
|
if (ConstexprLoc.isValid()) {
|
|
P.Diag(P.getCurToken().getLocation(),
|
|
diag::err_lambda_decl_specifier_repeated)
|
|
<< 1 << FixItHint::CreateRemoval(P.getCurToken().getLocation());
|
|
}
|
|
ConstexprLoc = P.ConsumeToken();
|
|
DeclEndLoc = ConstexprLoc;
|
|
break /*switch*/;
|
|
case tok::kw_consteval:
|
|
if (ConstevalLoc.isValid()) {
|
|
P.Diag(P.getCurToken().getLocation(),
|
|
diag::err_lambda_decl_specifier_repeated)
|
|
<< 2 << FixItHint::CreateRemoval(P.getCurToken().getLocation());
|
|
}
|
|
ConstevalLoc = P.ConsumeToken();
|
|
DeclEndLoc = ConstevalLoc;
|
|
break /*switch*/;
|
|
default:
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
addConstexprToLambdaDeclSpecifier(Parser &P, SourceLocation ConstexprLoc,
|
|
DeclSpec &DS) {
|
|
if (ConstexprLoc.isValid()) {
|
|
P.Diag(ConstexprLoc, !P.getLangOpts().CPlusPlus17
|
|
? diag::ext_constexpr_on_lambda_cxx17
|
|
: diag::warn_cxx14_compat_constexpr_on_lambda);
|
|
const char *PrevSpec = nullptr;
|
|
unsigned DiagID = 0;
|
|
DS.SetConstexprSpec(ConstexprSpecKind::Constexpr, ConstexprLoc, PrevSpec,
|
|
DiagID);
|
|
assert(PrevSpec == nullptr && DiagID == 0 &&
|
|
"Constexpr cannot have been set previously!");
|
|
}
|
|
}
|
|
|
|
static void addConstevalToLambdaDeclSpecifier(Parser &P,
|
|
SourceLocation ConstevalLoc,
|
|
DeclSpec &DS) {
|
|
if (ConstevalLoc.isValid()) {
|
|
P.Diag(ConstevalLoc, diag::warn_cxx20_compat_consteval);
|
|
const char *PrevSpec = nullptr;
|
|
unsigned DiagID = 0;
|
|
DS.SetConstexprSpec(ConstexprSpecKind::Consteval, ConstevalLoc, PrevSpec,
|
|
DiagID);
|
|
if (DiagID != 0)
|
|
P.Diag(ConstevalLoc, DiagID) << PrevSpec;
|
|
}
|
|
}
|
|
|
|
/// ParseLambdaExpressionAfterIntroducer - Parse the rest of a lambda
|
|
/// expression.
|
|
ExprResult Parser::ParseLambdaExpressionAfterIntroducer(
|
|
LambdaIntroducer &Intro) {
|
|
SourceLocation LambdaBeginLoc = Intro.Range.getBegin();
|
|
Diag(LambdaBeginLoc, diag::warn_cxx98_compat_lambda);
|
|
|
|
PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), LambdaBeginLoc,
|
|
"lambda expression parsing");
|
|
|
|
|
|
|
|
// FIXME: Call into Actions to add any init-capture declarations to the
|
|
// scope while parsing the lambda-declarator and compound-statement.
|
|
|
|
// Parse lambda-declarator[opt].
|
|
DeclSpec DS(AttrFactory);
|
|
Declarator D(DS, DeclaratorContext::LambdaExpr);
|
|
TemplateParameterDepthRAII CurTemplateDepthTracker(TemplateParameterDepth);
|
|
Actions.PushLambdaScope();
|
|
|
|
ParsedAttributes Attr(AttrFactory);
|
|
SourceLocation DeclLoc = Tok.getLocation();
|
|
if (getLangOpts().CUDA) {
|
|
// In CUDA code, GNU attributes are allowed to appear immediately after the
|
|
// "[...]", even if there is no "(...)" before the lambda body.
|
|
MaybeParseGNUAttributes(D);
|
|
}
|
|
|
|
// Helper to emit a warning if we see a CUDA host/device/global attribute
|
|
// after '(...)'. nvcc doesn't accept this.
|
|
auto WarnIfHasCUDATargetAttr = [&] {
|
|
if (getLangOpts().CUDA)
|
|
for (const ParsedAttr &A : Attr)
|
|
if (A.getKind() == ParsedAttr::AT_CUDADevice ||
|
|
A.getKind() == ParsedAttr::AT_CUDAHost ||
|
|
A.getKind() == ParsedAttr::AT_CUDAGlobal)
|
|
Diag(A.getLoc(), diag::warn_cuda_attr_lambda_position)
|
|
<< A.getAttrName()->getName();
|
|
};
|
|
|
|
MultiParseScope TemplateParamScope(*this);
|
|
if (Tok.is(tok::less)) {
|
|
Diag(Tok, getLangOpts().CPlusPlus20
|
|
? diag::warn_cxx17_compat_lambda_template_parameter_list
|
|
: diag::ext_lambda_template_parameter_list);
|
|
|
|
SmallVector<NamedDecl*, 4> TemplateParams;
|
|
SourceLocation LAngleLoc, RAngleLoc;
|
|
if (ParseTemplateParameters(TemplateParamScope,
|
|
CurTemplateDepthTracker.getDepth(),
|
|
TemplateParams, LAngleLoc, RAngleLoc)) {
|
|
Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
|
|
return ExprError();
|
|
}
|
|
|
|
if (TemplateParams.empty()) {
|
|
Diag(RAngleLoc,
|
|
diag::err_lambda_template_parameter_list_empty);
|
|
} else {
|
|
ExprResult RequiresClause;
|
|
if (TryConsumeToken(tok::kw_requires)) {
|
|
RequiresClause =
|
|
Actions.ActOnRequiresClause(ParseConstraintLogicalOrExpression(
|
|
/*IsTrailingRequiresClause=*/false));
|
|
if (RequiresClause.isInvalid())
|
|
SkipUntil({tok::l_brace, tok::l_paren}, StopAtSemi | StopBeforeMatch);
|
|
}
|
|
|
|
Actions.ActOnLambdaExplicitTemplateParameterList(
|
|
LAngleLoc, TemplateParams, RAngleLoc, RequiresClause);
|
|
++CurTemplateDepthTracker;
|
|
}
|
|
}
|
|
|
|
TypeResult TrailingReturnType;
|
|
SourceLocation TrailingReturnTypeLoc;
|
|
if (Tok.is(tok::l_paren)) {
|
|
ParseScope PrototypeScope(this,
|
|
Scope::FunctionPrototypeScope |
|
|
Scope::FunctionDeclarationScope |
|
|
Scope::DeclScope);
|
|
|
|
BalancedDelimiterTracker T(*this, tok::l_paren);
|
|
T.consumeOpen();
|
|
SourceLocation LParenLoc = T.getOpenLocation();
|
|
|
|
// Parse parameter-declaration-clause.
|
|
SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
|
|
SourceLocation EllipsisLoc;
|
|
|
|
if (Tok.isNot(tok::r_paren)) {
|
|
Actions.RecordParsingTemplateParameterDepth(
|
|
CurTemplateDepthTracker.getOriginalDepth());
|
|
|
|
ParseParameterDeclarationClause(D.getContext(), Attr, ParamInfo,
|
|
EllipsisLoc);
|
|
// For a generic lambda, each 'auto' within the parameter declaration
|
|
// clause creates a template type parameter, so increment the depth.
|
|
// If we've parsed any explicit template parameters, then the depth will
|
|
// have already been incremented. So we make sure that at most a single
|
|
// depth level is added.
|
|
if (Actions.getCurGenericLambda())
|
|
CurTemplateDepthTracker.setAddedDepth(1);
|
|
}
|
|
|
|
T.consumeClose();
|
|
SourceLocation RParenLoc = T.getCloseLocation();
|
|
SourceLocation DeclEndLoc = RParenLoc;
|
|
|
|
// GNU-style attributes must be parsed before the mutable specifier to be
|
|
// compatible with GCC.
|
|
MaybeParseGNUAttributes(Attr, &DeclEndLoc);
|
|
|
|
// MSVC-style attributes must be parsed before the mutable specifier to be
|
|
// compatible with MSVC.
|
|
MaybeParseMicrosoftDeclSpecs(Attr, &DeclEndLoc);
|
|
|
|
// Parse mutable-opt and/or constexpr-opt or consteval-opt, and update the
|
|
// DeclEndLoc.
|
|
SourceLocation MutableLoc;
|
|
SourceLocation ConstexprLoc;
|
|
SourceLocation ConstevalLoc;
|
|
tryConsumeLambdaSpecifierToken(*this, MutableLoc, ConstexprLoc,
|
|
ConstevalLoc, DeclEndLoc);
|
|
|
|
addConstexprToLambdaDeclSpecifier(*this, ConstexprLoc, DS);
|
|
addConstevalToLambdaDeclSpecifier(*this, ConstevalLoc, DS);
|
|
// Parse exception-specification[opt].
|
|
ExceptionSpecificationType ESpecType = EST_None;
|
|
SourceRange ESpecRange;
|
|
SmallVector<ParsedType, 2> DynamicExceptions;
|
|
SmallVector<SourceRange, 2> DynamicExceptionRanges;
|
|
ExprResult NoexceptExpr;
|
|
CachedTokens *ExceptionSpecTokens;
|
|
ESpecType = tryParseExceptionSpecification(/*Delayed=*/false,
|
|
ESpecRange,
|
|
DynamicExceptions,
|
|
DynamicExceptionRanges,
|
|
NoexceptExpr,
|
|
ExceptionSpecTokens);
|
|
|
|
if (ESpecType != EST_None)
|
|
DeclEndLoc = ESpecRange.getEnd();
|
|
|
|
// Parse attribute-specifier[opt].
|
|
MaybeParseCXX11Attributes(Attr, &DeclEndLoc);
|
|
|
|
// Parse OpenCL addr space attribute.
|
|
if (Tok.isOneOf(tok::kw___private, tok::kw___global, tok::kw___local,
|
|
tok::kw___constant, tok::kw___generic)) {
|
|
ParseOpenCLQualifiers(DS.getAttributes());
|
|
ConsumeToken();
|
|
}
|
|
|
|
SourceLocation FunLocalRangeEnd = DeclEndLoc;
|
|
|
|
// Parse trailing-return-type[opt].
|
|
if (Tok.is(tok::arrow)) {
|
|
FunLocalRangeEnd = Tok.getLocation();
|
|
SourceRange Range;
|
|
TrailingReturnType =
|
|
ParseTrailingReturnType(Range, /*MayBeFollowedByDirectInit*/ false);
|
|
TrailingReturnTypeLoc = Range.getBegin();
|
|
if (Range.getEnd().isValid())
|
|
DeclEndLoc = Range.getEnd();
|
|
}
|
|
|
|
SourceLocation NoLoc;
|
|
D.AddTypeInfo(DeclaratorChunk::getFunction(
|
|
/*HasProto=*/true,
|
|
/*IsAmbiguous=*/false, LParenLoc, ParamInfo.data(),
|
|
ParamInfo.size(), EllipsisLoc, RParenLoc,
|
|
/*RefQualifierIsLvalueRef=*/true,
|
|
/*RefQualifierLoc=*/NoLoc, MutableLoc, ESpecType,
|
|
ESpecRange, DynamicExceptions.data(),
|
|
DynamicExceptionRanges.data(), DynamicExceptions.size(),
|
|
NoexceptExpr.isUsable() ? NoexceptExpr.get() : nullptr,
|
|
/*ExceptionSpecTokens*/ nullptr,
|
|
/*DeclsInPrototype=*/None, LParenLoc, FunLocalRangeEnd, D,
|
|
TrailingReturnType, TrailingReturnTypeLoc, &DS),
|
|
std::move(Attr), DeclEndLoc);
|
|
|
|
// Parse requires-clause[opt].
|
|
if (Tok.is(tok::kw_requires))
|
|
ParseTrailingRequiresClause(D);
|
|
|
|
PrototypeScope.Exit();
|
|
|
|
WarnIfHasCUDATargetAttr();
|
|
} else if (Tok.isOneOf(tok::kw_mutable, tok::arrow, tok::kw___attribute,
|
|
tok::kw_constexpr, tok::kw_consteval,
|
|
tok::kw___private, tok::kw___global, tok::kw___local,
|
|
tok::kw___constant, tok::kw___generic,
|
|
tok::kw_requires) ||
|
|
(Tok.is(tok::l_square) && NextToken().is(tok::l_square))) {
|
|
// It's common to forget that one needs '()' before 'mutable', an attribute
|
|
// specifier, the result type, or the requires clause. Deal with this.
|
|
unsigned TokKind = 0;
|
|
switch (Tok.getKind()) {
|
|
case tok::kw_mutable: TokKind = 0; break;
|
|
case tok::arrow: TokKind = 1; break;
|
|
case tok::kw___attribute:
|
|
case tok::kw___private:
|
|
case tok::kw___global:
|
|
case tok::kw___local:
|
|
case tok::kw___constant:
|
|
case tok::kw___generic:
|
|
case tok::l_square: TokKind = 2; break;
|
|
case tok::kw_constexpr: TokKind = 3; break;
|
|
case tok::kw_consteval: TokKind = 4; break;
|
|
case tok::kw_requires: TokKind = 5; break;
|
|
default: llvm_unreachable("Unknown token kind");
|
|
}
|
|
|
|
Diag(Tok, diag::err_lambda_missing_parens)
|
|
<< TokKind
|
|
<< FixItHint::CreateInsertion(Tok.getLocation(), "() ");
|
|
SourceLocation DeclEndLoc = DeclLoc;
|
|
|
|
// GNU-style attributes must be parsed before the mutable specifier to be
|
|
// compatible with GCC.
|
|
MaybeParseGNUAttributes(Attr, &DeclEndLoc);
|
|
|
|
// Parse 'mutable', if it's there.
|
|
SourceLocation MutableLoc;
|
|
if (Tok.is(tok::kw_mutable)) {
|
|
MutableLoc = ConsumeToken();
|
|
DeclEndLoc = MutableLoc;
|
|
}
|
|
|
|
// Parse attribute-specifier[opt].
|
|
MaybeParseCXX11Attributes(Attr, &DeclEndLoc);
|
|
|
|
// Parse the return type, if there is one.
|
|
if (Tok.is(tok::arrow)) {
|
|
SourceRange Range;
|
|
TrailingReturnType =
|
|
ParseTrailingReturnType(Range, /*MayBeFollowedByDirectInit*/ false);
|
|
if (Range.getEnd().isValid())
|
|
DeclEndLoc = Range.getEnd();
|
|
}
|
|
|
|
SourceLocation NoLoc;
|
|
D.AddTypeInfo(DeclaratorChunk::getFunction(
|
|
/*HasProto=*/true,
|
|
/*IsAmbiguous=*/false,
|
|
/*LParenLoc=*/NoLoc,
|
|
/*Params=*/nullptr,
|
|
/*NumParams=*/0,
|
|
/*EllipsisLoc=*/NoLoc,
|
|
/*RParenLoc=*/NoLoc,
|
|
/*RefQualifierIsLvalueRef=*/true,
|
|
/*RefQualifierLoc=*/NoLoc, MutableLoc, EST_None,
|
|
/*ESpecRange=*/SourceRange(),
|
|
/*Exceptions=*/nullptr,
|
|
/*ExceptionRanges=*/nullptr,
|
|
/*NumExceptions=*/0,
|
|
/*NoexceptExpr=*/nullptr,
|
|
/*ExceptionSpecTokens=*/nullptr,
|
|
/*DeclsInPrototype=*/None, DeclLoc, DeclEndLoc, D,
|
|
TrailingReturnType),
|
|
std::move(Attr), DeclEndLoc);
|
|
|
|
// Parse the requires-clause, if present.
|
|
if (Tok.is(tok::kw_requires))
|
|
ParseTrailingRequiresClause(D);
|
|
|
|
WarnIfHasCUDATargetAttr();
|
|
}
|
|
|
|
// FIXME: Rename BlockScope -> ClosureScope if we decide to continue using
|
|
// it.
|
|
unsigned ScopeFlags = Scope::BlockScope | Scope::FnScope | Scope::DeclScope |
|
|
Scope::CompoundStmtScope;
|
|
ParseScope BodyScope(this, ScopeFlags);
|
|
|
|
Actions.ActOnStartOfLambdaDefinition(Intro, D, getCurScope());
|
|
|
|
// Parse compound-statement.
|
|
if (!Tok.is(tok::l_brace)) {
|
|
Diag(Tok, diag::err_expected_lambda_body);
|
|
Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
|
|
return ExprError();
|
|
}
|
|
|
|
StmtResult Stmt(ParseCompoundStatementBody());
|
|
BodyScope.Exit();
|
|
TemplateParamScope.Exit();
|
|
|
|
if (!Stmt.isInvalid() && !TrailingReturnType.isInvalid())
|
|
return Actions.ActOnLambdaExpr(LambdaBeginLoc, Stmt.get(), getCurScope());
|
|
|
|
Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
|
|
return ExprError();
|
|
}
|
|
|
|
/// ParseCXXCasts - This handles the various ways to cast expressions to another
|
|
/// type.
|
|
///
|
|
/// postfix-expression: [C++ 5.2p1]
|
|
/// 'dynamic_cast' '<' type-name '>' '(' expression ')'
|
|
/// 'static_cast' '<' type-name '>' '(' expression ')'
|
|
/// 'reinterpret_cast' '<' type-name '>' '(' expression ')'
|
|
/// 'const_cast' '<' type-name '>' '(' expression ')'
|
|
///
|
|
/// C++ for OpenCL s2.3.1 adds:
|
|
/// 'addrspace_cast' '<' type-name '>' '(' expression ')'
|
|
ExprResult Parser::ParseCXXCasts() {
|
|
tok::TokenKind Kind = Tok.getKind();
|
|
const char *CastName = nullptr; // For error messages
|
|
|
|
switch (Kind) {
|
|
default: llvm_unreachable("Unknown C++ cast!");
|
|
case tok::kw_addrspace_cast: CastName = "addrspace_cast"; break;
|
|
case tok::kw_const_cast: CastName = "const_cast"; break;
|
|
case tok::kw_dynamic_cast: CastName = "dynamic_cast"; break;
|
|
case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break;
|
|
case tok::kw_static_cast: CastName = "static_cast"; break;
|
|
}
|
|
|
|
SourceLocation OpLoc = ConsumeToken();
|
|
SourceLocation LAngleBracketLoc = Tok.getLocation();
|
|
|
|
// Check for "<::" which is parsed as "[:". If found, fix token stream,
|
|
// diagnose error, suggest fix, and recover parsing.
|
|
if (Tok.is(tok::l_square) && Tok.getLength() == 2) {
|
|
Token Next = NextToken();
|
|
if (Next.is(tok::colon) && areTokensAdjacent(Tok, Next))
|
|
FixDigraph(*this, PP, Tok, Next, Kind, /*AtDigraph*/true);
|
|
}
|
|
|
|
if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName))
|
|
return ExprError();
|
|
|
|
// Parse the common declaration-specifiers piece.
|
|
DeclSpec DS(AttrFactory);
|
|
ParseSpecifierQualifierList(DS);
|
|
|
|
// Parse the abstract-declarator, if present.
|
|
Declarator DeclaratorInfo(DS, DeclaratorContext::TypeName);
|
|
ParseDeclarator(DeclaratorInfo);
|
|
|
|
SourceLocation RAngleBracketLoc = Tok.getLocation();
|
|
|
|
if (ExpectAndConsume(tok::greater))
|
|
return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << tok::less);
|
|
|
|
BalancedDelimiterTracker T(*this, tok::l_paren);
|
|
|
|
if (T.expectAndConsume(diag::err_expected_lparen_after, CastName))
|
|
return ExprError();
|
|
|
|
ExprResult Result = ParseExpression();
|
|
|
|
// Match the ')'.
|
|
T.consumeClose();
|
|
|
|
if (!Result.isInvalid() && !DeclaratorInfo.isInvalidType())
|
|
Result = Actions.ActOnCXXNamedCast(OpLoc, Kind,
|
|
LAngleBracketLoc, DeclaratorInfo,
|
|
RAngleBracketLoc,
|
|
T.getOpenLocation(), Result.get(),
|
|
T.getCloseLocation());
|
|
|
|
return Result;
|
|
}
|
|
|
|
/// ParseCXXTypeid - This handles the C++ typeid expression.
|
|
///
|
|
/// postfix-expression: [C++ 5.2p1]
|
|
/// 'typeid' '(' expression ')'
|
|
/// 'typeid' '(' type-id ')'
|
|
///
|
|
ExprResult Parser::ParseCXXTypeid() {
|
|
assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!");
|
|
|
|
SourceLocation OpLoc = ConsumeToken();
|
|
SourceLocation LParenLoc, RParenLoc;
|
|
BalancedDelimiterTracker T(*this, tok::l_paren);
|
|
|
|
// typeid expressions are always parenthesized.
|
|
if (T.expectAndConsume(diag::err_expected_lparen_after, "typeid"))
|
|
return ExprError();
|
|
LParenLoc = T.getOpenLocation();
|
|
|
|
ExprResult Result;
|
|
|
|
// C++0x [expr.typeid]p3:
|
|
// When typeid is applied to an expression other than an lvalue of a
|
|
// polymorphic class type [...] The expression is an unevaluated
|
|
// operand (Clause 5).
|
|
//
|
|
// Note that we can't tell whether the expression is an lvalue of a
|
|
// polymorphic class type until after we've parsed the expression; we
|
|
// speculatively assume the subexpression is unevaluated, and fix it up
|
|
// later.
|
|
//
|
|
// We enter the unevaluated context before trying to determine whether we
|
|
// have a type-id, because the tentative parse logic will try to resolve
|
|
// names, and must treat them as unevaluated.
|
|
EnterExpressionEvaluationContext Unevaluated(
|
|
Actions, Sema::ExpressionEvaluationContext::Unevaluated,
|
|
Sema::ReuseLambdaContextDecl);
|
|
|
|
if (isTypeIdInParens()) {
|
|
TypeResult Ty = ParseTypeName();
|
|
|
|
// Match the ')'.
|
|
T.consumeClose();
|
|
RParenLoc = T.getCloseLocation();
|
|
if (Ty.isInvalid() || RParenLoc.isInvalid())
|
|
return ExprError();
|
|
|
|
Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true,
|
|
Ty.get().getAsOpaquePtr(), RParenLoc);
|
|
} else {
|
|
Result = ParseExpression();
|
|
|
|
// Match the ')'.
|
|
if (Result.isInvalid())
|
|
SkipUntil(tok::r_paren, StopAtSemi);
|
|
else {
|
|
T.consumeClose();
|
|
RParenLoc = T.getCloseLocation();
|
|
if (RParenLoc.isInvalid())
|
|
return ExprError();
|
|
|
|
Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false,
|
|
Result.get(), RParenLoc);
|
|
}
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
/// ParseCXXUuidof - This handles the Microsoft C++ __uuidof expression.
|
|
///
|
|
/// '__uuidof' '(' expression ')'
|
|
/// '__uuidof' '(' type-id ')'
|
|
///
|
|
ExprResult Parser::ParseCXXUuidof() {
|
|
assert(Tok.is(tok::kw___uuidof) && "Not '__uuidof'!");
|
|
|
|
SourceLocation OpLoc = ConsumeToken();
|
|
BalancedDelimiterTracker T(*this, tok::l_paren);
|
|
|
|
// __uuidof expressions are always parenthesized.
|
|
if (T.expectAndConsume(diag::err_expected_lparen_after, "__uuidof"))
|
|
return ExprError();
|
|
|
|
ExprResult Result;
|
|
|
|
if (isTypeIdInParens()) {
|
|
TypeResult Ty = ParseTypeName();
|
|
|
|
// Match the ')'.
|
|
T.consumeClose();
|
|
|
|
if (Ty.isInvalid())
|
|
return ExprError();
|
|
|
|
Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(), /*isType=*/true,
|
|
Ty.get().getAsOpaquePtr(),
|
|
T.getCloseLocation());
|
|
} else {
|
|
EnterExpressionEvaluationContext Unevaluated(
|
|
Actions, Sema::ExpressionEvaluationContext::Unevaluated);
|
|
Result = ParseExpression();
|
|
|
|
// Match the ')'.
|
|
if (Result.isInvalid())
|
|
SkipUntil(tok::r_paren, StopAtSemi);
|
|
else {
|
|
T.consumeClose();
|
|
|
|
Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(),
|
|
/*isType=*/false,
|
|
Result.get(), T.getCloseLocation());
|
|
}
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
/// Parse a C++ pseudo-destructor expression after the base,
|
|
/// . or -> operator, and nested-name-specifier have already been
|
|
/// parsed. We're handling this fragment of the grammar:
|
|
///
|
|
/// postfix-expression: [C++2a expr.post]
|
|
/// postfix-expression . template[opt] id-expression
|
|
/// postfix-expression -> template[opt] id-expression
|
|
///
|
|
/// id-expression:
|
|
/// qualified-id
|
|
/// unqualified-id
|
|
///
|
|
/// qualified-id:
|
|
/// nested-name-specifier template[opt] unqualified-id
|
|
///
|
|
/// nested-name-specifier:
|
|
/// type-name ::
|
|
/// decltype-specifier :: FIXME: not implemented, but probably only
|
|
/// allowed in C++ grammar by accident
|
|
/// nested-name-specifier identifier ::
|
|
/// nested-name-specifier template[opt] simple-template-id ::
|
|
/// [...]
|
|
///
|
|
/// unqualified-id:
|
|
/// ~ type-name
|
|
/// ~ decltype-specifier
|
|
/// [...]
|
|
///
|
|
/// ... where the all but the last component of the nested-name-specifier
|
|
/// has already been parsed, and the base expression is not of a non-dependent
|
|
/// class type.
|
|
ExprResult
|
|
Parser::ParseCXXPseudoDestructor(Expr *Base, SourceLocation OpLoc,
|
|
tok::TokenKind OpKind,
|
|
CXXScopeSpec &SS,
|
|
ParsedType ObjectType) {
|
|
// If the last component of the (optional) nested-name-specifier is
|
|
// template[opt] simple-template-id, it has already been annotated.
|
|
UnqualifiedId FirstTypeName;
|
|
SourceLocation CCLoc;
|
|
if (Tok.is(tok::identifier)) {
|
|
FirstTypeName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
|
|
ConsumeToken();
|
|
assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
|
|
CCLoc = ConsumeToken();
|
|
} else if (Tok.is(tok::annot_template_id)) {
|
|
TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
|
|
// FIXME: Carry on and build an AST representation for tooling.
|
|
if (TemplateId->isInvalid())
|
|
return ExprError();
|
|
FirstTypeName.setTemplateId(TemplateId);
|
|
ConsumeAnnotationToken();
|
|
assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
|
|
CCLoc = ConsumeToken();
|
|
} else {
|
|
assert(SS.isEmpty() && "missing last component of nested name specifier");
|
|
FirstTypeName.setIdentifier(nullptr, SourceLocation());
|
|
}
|
|
|
|
// Parse the tilde.
|
|
assert(Tok.is(tok::tilde) && "ParseOptionalCXXScopeSpecifier fail");
|
|
SourceLocation TildeLoc = ConsumeToken();
|
|
|
|
if (Tok.is(tok::kw_decltype) && !FirstTypeName.isValid()) {
|
|
DeclSpec DS(AttrFactory);
|
|
ParseDecltypeSpecifier(DS);
|
|
if (DS.getTypeSpecType() == TST_error)
|
|
return ExprError();
|
|
return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind,
|
|
TildeLoc, DS);
|
|
}
|
|
|
|
if (!Tok.is(tok::identifier)) {
|
|
Diag(Tok, diag::err_destructor_tilde_identifier);
|
|
return ExprError();
|
|
}
|
|
|
|
// Parse the second type.
|
|
UnqualifiedId SecondTypeName;
|
|
IdentifierInfo *Name = Tok.getIdentifierInfo();
|
|
SourceLocation NameLoc = ConsumeToken();
|
|
SecondTypeName.setIdentifier(Name, NameLoc);
|
|
|
|
// If there is a '<', the second type name is a template-id. Parse
|
|
// it as such.
|
|
//
|
|
// FIXME: This is not a context in which a '<' is assumed to start a template
|
|
// argument list. This affects examples such as
|
|
// void f(auto *p) { p->~X<int>(); }
|
|
// ... but there's no ambiguity, and nowhere to write 'template' in such an
|
|
// example, so we accept it anyway.
|
|
if (Tok.is(tok::less) &&
|
|
ParseUnqualifiedIdTemplateId(
|
|
SS, ObjectType, Base && Base->containsErrors(), SourceLocation(),
|
|
Name, NameLoc, false, SecondTypeName,
|
|
/*AssumeTemplateId=*/true))
|
|
return ExprError();
|
|
|
|
return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind,
|
|
SS, FirstTypeName, CCLoc, TildeLoc,
|
|
SecondTypeName);
|
|
}
|
|
|
|
/// ParseCXXBoolLiteral - This handles the C++ Boolean literals.
|
|
///
|
|
/// boolean-literal: [C++ 2.13.5]
|
|
/// 'true'
|
|
/// 'false'
|
|
ExprResult Parser::ParseCXXBoolLiteral() {
|
|
tok::TokenKind Kind = Tok.getKind();
|
|
return Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind);
|
|
}
|
|
|
|
/// ParseThrowExpression - This handles the C++ throw expression.
|
|
///
|
|
/// throw-expression: [C++ 15]
|
|
/// 'throw' assignment-expression[opt]
|
|
ExprResult Parser::ParseThrowExpression() {
|
|
assert(Tok.is(tok::kw_throw) && "Not throw!");
|
|
SourceLocation ThrowLoc = ConsumeToken(); // Eat the throw token.
|
|
|
|
// If the current token isn't the start of an assignment-expression,
|
|
// then the expression is not present. This handles things like:
|
|
// "C ? throw : (void)42", which is crazy but legal.
|
|
switch (Tok.getKind()) { // FIXME: move this predicate somewhere common.
|
|
case tok::semi:
|
|
case tok::r_paren:
|
|
case tok::r_square:
|
|
case tok::r_brace:
|
|
case tok::colon:
|
|
case tok::comma:
|
|
return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, nullptr);
|
|
|
|
default:
|
|
ExprResult Expr(ParseAssignmentExpression());
|
|
if (Expr.isInvalid()) return Expr;
|
|
return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, Expr.get());
|
|
}
|
|
}
|
|
|
|
/// Parse the C++ Coroutines co_yield expression.
|
|
///
|
|
/// co_yield-expression:
|
|
/// 'co_yield' assignment-expression[opt]
|
|
ExprResult Parser::ParseCoyieldExpression() {
|
|
assert(Tok.is(tok::kw_co_yield) && "Not co_yield!");
|
|
|
|
SourceLocation Loc = ConsumeToken();
|
|
ExprResult Expr = Tok.is(tok::l_brace) ? ParseBraceInitializer()
|
|
: ParseAssignmentExpression();
|
|
if (!Expr.isInvalid())
|
|
Expr = Actions.ActOnCoyieldExpr(getCurScope(), Loc, Expr.get());
|
|
return Expr;
|
|
}
|
|
|
|
/// ParseCXXThis - This handles the C++ 'this' pointer.
|
|
///
|
|
/// C++ 9.3.2: In the body of a non-static member function, the keyword this is
|
|
/// a non-lvalue expression whose value is the address of the object for which
|
|
/// the function is called.
|
|
ExprResult Parser::ParseCXXThis() {
|
|
assert(Tok.is(tok::kw_this) && "Not 'this'!");
|
|
SourceLocation ThisLoc = ConsumeToken();
|
|
return Actions.ActOnCXXThis(ThisLoc);
|
|
}
|
|
|
|
/// ParseCXXTypeConstructExpression - Parse construction of a specified type.
|
|
/// Can be interpreted either as function-style casting ("int(x)")
|
|
/// or class type construction ("ClassType(x,y,z)")
|
|
/// or creation of a value-initialized type ("int()").
|
|
/// See [C++ 5.2.3].
|
|
///
|
|
/// postfix-expression: [C++ 5.2p1]
|
|
/// simple-type-specifier '(' expression-list[opt] ')'
|
|
/// [C++0x] simple-type-specifier braced-init-list
|
|
/// typename-specifier '(' expression-list[opt] ')'
|
|
/// [C++0x] typename-specifier braced-init-list
|
|
///
|
|
/// In C++1z onwards, the type specifier can also be a template-name.
|
|
ExprResult
|
|
Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) {
|
|
Declarator DeclaratorInfo(DS, DeclaratorContext::FunctionalCast);
|
|
ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
|
|
|
|
assert((Tok.is(tok::l_paren) ||
|
|
(getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)))
|
|
&& "Expected '(' or '{'!");
|
|
|
|
if (Tok.is(tok::l_brace)) {
|
|
PreferredType.enterTypeCast(Tok.getLocation(), TypeRep.get());
|
|
ExprResult Init = ParseBraceInitializer();
|
|
if (Init.isInvalid())
|
|
return Init;
|
|
Expr *InitList = Init.get();
|
|
return Actions.ActOnCXXTypeConstructExpr(
|
|
TypeRep, InitList->getBeginLoc(), MultiExprArg(&InitList, 1),
|
|
InitList->getEndLoc(), /*ListInitialization=*/true);
|
|
} else {
|
|
BalancedDelimiterTracker T(*this, tok::l_paren);
|
|
T.consumeOpen();
|
|
|
|
PreferredType.enterTypeCast(Tok.getLocation(), TypeRep.get());
|
|
|
|
ExprVector Exprs;
|
|
CommaLocsTy CommaLocs;
|
|
|
|
auto RunSignatureHelp = [&]() {
|
|
QualType PreferredType;
|
|
if (TypeRep)
|
|
PreferredType = Actions.ProduceConstructorSignatureHelp(
|
|
getCurScope(), TypeRep.get()->getCanonicalTypeInternal(),
|
|
DS.getEndLoc(), Exprs, T.getOpenLocation());
|
|
CalledSignatureHelp = true;
|
|
return PreferredType;
|
|
};
|
|
|
|
if (Tok.isNot(tok::r_paren)) {
|
|
if (ParseExpressionList(Exprs, CommaLocs, [&] {
|
|
PreferredType.enterFunctionArgument(Tok.getLocation(),
|
|
RunSignatureHelp);
|
|
})) {
|
|
if (PP.isCodeCompletionReached() && !CalledSignatureHelp)
|
|
RunSignatureHelp();
|
|
SkipUntil(tok::r_paren, StopAtSemi);
|
|
return ExprError();
|
|
}
|
|
}
|
|
|
|
// Match the ')'.
|
|
T.consumeClose();
|
|
|
|
// TypeRep could be null, if it references an invalid typedef.
|
|
if (!TypeRep)
|
|
return ExprError();
|
|
|
|
assert((Exprs.size() == 0 || Exprs.size()-1 == CommaLocs.size())&&
|
|
"Unexpected number of commas!");
|
|
return Actions.ActOnCXXTypeConstructExpr(TypeRep, T.getOpenLocation(),
|
|
Exprs, T.getCloseLocation(),
|
|
/*ListInitialization=*/false);
|
|
}
|
|
}
|
|
|
|
/// ParseCXXCondition - if/switch/while condition expression.
|
|
///
|
|
/// condition:
|
|
/// expression
|
|
/// type-specifier-seq declarator '=' assignment-expression
|
|
/// [C++11] type-specifier-seq declarator '=' initializer-clause
|
|
/// [C++11] type-specifier-seq declarator braced-init-list
|
|
/// [Clang] type-specifier-seq ref-qualifier[opt] '[' identifier-list ']'
|
|
/// brace-or-equal-initializer
|
|
/// [GNU] type-specifier-seq declarator simple-asm-expr[opt] attributes[opt]
|
|
/// '=' assignment-expression
|
|
///
|
|
/// In C++1z, a condition may in some contexts be preceded by an
|
|
/// optional init-statement. This function will parse that too.
|
|
///
|
|
/// \param InitStmt If non-null, an init-statement is permitted, and if present
|
|
/// will be parsed and stored here.
|
|
///
|
|
/// \param Loc The location of the start of the statement that requires this
|
|
/// condition, e.g., the "for" in a for loop.
|
|
///
|
|
/// \param FRI If non-null, a for range declaration is permitted, and if
|
|
/// present will be parsed and stored here, and a null result will be returned.
|
|
///
|
|
/// \returns The parsed condition.
|
|
Sema::ConditionResult Parser::ParseCXXCondition(StmtResult *InitStmt,
|
|
SourceLocation Loc,
|
|
Sema::ConditionKind CK,
|
|
ForRangeInfo *FRI) {
|
|
ParenBraceBracketBalancer BalancerRAIIObj(*this);
|
|
PreferredType.enterCondition(Actions, Tok.getLocation());
|
|
|
|
if (Tok.is(tok::code_completion)) {
|
|
Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Condition);
|
|
cutOffParsing();
|
|
return Sema::ConditionError();
|
|
}
|
|
|
|
ParsedAttributesWithRange attrs(AttrFactory);
|
|
MaybeParseCXX11Attributes(attrs);
|
|
|
|
const auto WarnOnInit = [this, &CK] {
|
|
Diag(Tok.getLocation(), getLangOpts().CPlusPlus17
|
|
? diag::warn_cxx14_compat_init_statement
|
|
: diag::ext_init_statement)
|
|
<< (CK == Sema::ConditionKind::Switch);
|
|
};
|
|
|
|
// Determine what kind of thing we have.
|
|
switch (isCXXConditionDeclarationOrInitStatement(InitStmt, FRI)) {
|
|
case ConditionOrInitStatement::Expression: {
|
|
ProhibitAttributes(attrs);
|
|
|
|
// We can have an empty expression here.
|
|
// if (; true);
|
|
if (InitStmt && Tok.is(tok::semi)) {
|
|
WarnOnInit();
|
|
SourceLocation SemiLoc = Tok.getLocation();
|
|
if (!Tok.hasLeadingEmptyMacro() && !SemiLoc.isMacroID()) {
|
|
Diag(SemiLoc, diag::warn_empty_init_statement)
|
|
<< (CK == Sema::ConditionKind::Switch)
|
|
<< FixItHint::CreateRemoval(SemiLoc);
|
|
}
|
|
ConsumeToken();
|
|
*InitStmt = Actions.ActOnNullStmt(SemiLoc);
|
|
return ParseCXXCondition(nullptr, Loc, CK);
|
|
}
|
|
|
|
// Parse the expression.
|
|
ExprResult Expr = ParseExpression(); // expression
|
|
if (Expr.isInvalid())
|
|
return Sema::ConditionError();
|
|
|
|
if (InitStmt && Tok.is(tok::semi)) {
|
|
WarnOnInit();
|
|
*InitStmt = Actions.ActOnExprStmt(Expr.get());
|
|
ConsumeToken();
|
|
return ParseCXXCondition(nullptr, Loc, CK);
|
|
}
|
|
|
|
return Actions.ActOnCondition(getCurScope(), Loc, Expr.get(), CK);
|
|
}
|
|
|
|
case ConditionOrInitStatement::InitStmtDecl: {
|
|
WarnOnInit();
|
|
SourceLocation DeclStart = Tok.getLocation(), DeclEnd;
|
|
DeclGroupPtrTy DG = ParseSimpleDeclaration(
|
|
DeclaratorContext::SelectionInit, DeclEnd, attrs, /*RequireSemi=*/true);
|
|
*InitStmt = Actions.ActOnDeclStmt(DG, DeclStart, DeclEnd);
|
|
return ParseCXXCondition(nullptr, Loc, CK);
|
|
}
|
|
|
|
case ConditionOrInitStatement::ForRangeDecl: {
|
|
assert(FRI && "should not parse a for range declaration here");
|
|
SourceLocation DeclStart = Tok.getLocation(), DeclEnd;
|
|
DeclGroupPtrTy DG = ParseSimpleDeclaration(DeclaratorContext::ForInit,
|
|
DeclEnd, attrs, false, FRI);
|
|
FRI->LoopVar = Actions.ActOnDeclStmt(DG, DeclStart, Tok.getLocation());
|
|
return Sema::ConditionResult();
|
|
}
|
|
|
|
case ConditionOrInitStatement::ConditionDecl:
|
|
case ConditionOrInitStatement::Error:
|
|
break;
|
|
}
|
|
|
|
// type-specifier-seq
|
|
DeclSpec DS(AttrFactory);
|
|
DS.takeAttributesFrom(attrs);
|
|
ParseSpecifierQualifierList(DS, AS_none, DeclSpecContext::DSC_condition);
|
|
|
|
// declarator
|
|
Declarator DeclaratorInfo(DS, DeclaratorContext::Condition);
|
|
ParseDeclarator(DeclaratorInfo);
|
|
|
|
// simple-asm-expr[opt]
|
|
if (Tok.is(tok::kw_asm)) {
|
|
SourceLocation Loc;
|
|
ExprResult AsmLabel(ParseSimpleAsm(/*ForAsmLabel*/ true, &Loc));
|
|
if (AsmLabel.isInvalid()) {
|
|
SkipUntil(tok::semi, StopAtSemi);
|
|
return Sema::ConditionError();
|
|
}
|
|
DeclaratorInfo.setAsmLabel(AsmLabel.get());
|
|
DeclaratorInfo.SetRangeEnd(Loc);
|
|
}
|
|
|
|
// If attributes are present, parse them.
|
|
MaybeParseGNUAttributes(DeclaratorInfo);
|
|
|
|
// Type-check the declaration itself.
|
|
DeclResult Dcl = Actions.ActOnCXXConditionDeclaration(getCurScope(),
|
|
DeclaratorInfo);
|
|
if (Dcl.isInvalid())
|
|
return Sema::ConditionError();
|
|
Decl *DeclOut = Dcl.get();
|
|
|
|
// '=' assignment-expression
|
|
// If a '==' or '+=' is found, suggest a fixit to '='.
|
|
bool CopyInitialization = isTokenEqualOrEqualTypo();
|
|
if (CopyInitialization)
|
|
ConsumeToken();
|
|
|
|
ExprResult InitExpr = ExprError();
|
|
if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
|
|
Diag(Tok.getLocation(),
|
|
diag::warn_cxx98_compat_generalized_initializer_lists);
|
|
InitExpr = ParseBraceInitializer();
|
|
} else if (CopyInitialization) {
|
|
PreferredType.enterVariableInit(Tok.getLocation(), DeclOut);
|
|
InitExpr = ParseAssignmentExpression();
|
|
} else if (Tok.is(tok::l_paren)) {
|
|
// This was probably an attempt to initialize the variable.
|
|
SourceLocation LParen = ConsumeParen(), RParen = LParen;
|
|
if (SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch))
|
|
RParen = ConsumeParen();
|
|
Diag(DeclOut->getLocation(),
|
|
diag::err_expected_init_in_condition_lparen)
|
|
<< SourceRange(LParen, RParen);
|
|
} else {
|
|
Diag(DeclOut->getLocation(), diag::err_expected_init_in_condition);
|
|
}
|
|
|
|
if (!InitExpr.isInvalid())
|
|
Actions.AddInitializerToDecl(DeclOut, InitExpr.get(), !CopyInitialization);
|
|
else
|
|
Actions.ActOnInitializerError(DeclOut);
|
|
|
|
Actions.FinalizeDeclaration(DeclOut);
|
|
return Actions.ActOnConditionVariable(DeclOut, Loc, CK);
|
|
}
|
|
|
|
/// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers.
|
|
/// This should only be called when the current token is known to be part of
|
|
/// simple-type-specifier.
|
|
///
|
|
/// simple-type-specifier:
|
|
/// '::'[opt] nested-name-specifier[opt] type-name
|
|
/// '::'[opt] nested-name-specifier 'template' simple-template-id [TODO]
|
|
/// char
|
|
/// wchar_t
|
|
/// bool
|
|
/// short
|
|
/// int
|
|
/// long
|
|
/// signed
|
|
/// unsigned
|
|
/// float
|
|
/// double
|
|
/// void
|
|
/// [GNU] typeof-specifier
|
|
/// [C++0x] auto [TODO]
|
|
///
|
|
/// type-name:
|
|
/// class-name
|
|
/// enum-name
|
|
/// typedef-name
|
|
///
|
|
void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) {
|
|
DS.SetRangeStart(Tok.getLocation());
|
|
const char *PrevSpec;
|
|
unsigned DiagID;
|
|
SourceLocation Loc = Tok.getLocation();
|
|
const clang::PrintingPolicy &Policy =
|
|
Actions.getASTContext().getPrintingPolicy();
|
|
|
|
switch (Tok.getKind()) {
|
|
case tok::identifier: // foo::bar
|
|
case tok::coloncolon: // ::foo::bar
|
|
llvm_unreachable("Annotation token should already be formed!");
|
|
default:
|
|
llvm_unreachable("Not a simple-type-specifier token!");
|
|
|
|
// type-name
|
|
case tok::annot_typename: {
|
|
DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID,
|
|
getTypeAnnotation(Tok), Policy);
|
|
DS.SetRangeEnd(Tok.getAnnotationEndLoc());
|
|
ConsumeAnnotationToken();
|
|
|
|
DS.Finish(Actions, Policy);
|
|
return;
|
|
}
|
|
|
|
case tok::kw__ExtInt: {
|
|
ExprResult ER = ParseExtIntegerArgument();
|
|
if (ER.isInvalid())
|
|
DS.SetTypeSpecError();
|
|
else
|
|
DS.SetExtIntType(Loc, ER.get(), PrevSpec, DiagID, Policy);
|
|
|
|
// Do this here because we have already consumed the close paren.
|
|
DS.SetRangeEnd(PrevTokLocation);
|
|
DS.Finish(Actions, Policy);
|
|
return;
|
|
}
|
|
|
|
// builtin types
|
|
case tok::kw_short:
|
|
DS.SetTypeSpecWidth(TypeSpecifierWidth::Short, Loc, PrevSpec, DiagID,
|
|
Policy);
|
|
break;
|
|
case tok::kw_long:
|
|
DS.SetTypeSpecWidth(TypeSpecifierWidth::Long, Loc, PrevSpec, DiagID,
|
|
Policy);
|
|
break;
|
|
case tok::kw___int64:
|
|
DS.SetTypeSpecWidth(TypeSpecifierWidth::LongLong, Loc, PrevSpec, DiagID,
|
|
Policy);
|
|
break;
|
|
case tok::kw_signed:
|
|
DS.SetTypeSpecSign(TypeSpecifierSign::Signed, Loc, PrevSpec, DiagID);
|
|
break;
|
|
case tok::kw_unsigned:
|
|
DS.SetTypeSpecSign(TypeSpecifierSign::Unsigned, Loc, PrevSpec, DiagID);
|
|
break;
|
|
case tok::kw_void:
|
|
DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID, Policy);
|
|
break;
|
|
case tok::kw_char:
|
|
DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID, Policy);
|
|
break;
|
|
case tok::kw_int:
|
|
DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID, Policy);
|
|
break;
|
|
case tok::kw___int128:
|
|
DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec, DiagID, Policy);
|
|
break;
|
|
case tok::kw___bf16:
|
|
DS.SetTypeSpecType(DeclSpec::TST_BFloat16, Loc, PrevSpec, DiagID, Policy);
|
|
break;
|
|
case tok::kw_half:
|
|
DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, DiagID, Policy);
|
|
break;
|
|
case tok::kw_float:
|
|
DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID, Policy);
|
|
break;
|
|
case tok::kw_double:
|
|
DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID, Policy);
|
|
break;
|
|
case tok::kw__Float16:
|
|
DS.SetTypeSpecType(DeclSpec::TST_float16, Loc, PrevSpec, DiagID, Policy);
|
|
break;
|
|
case tok::kw___float128:
|
|
DS.SetTypeSpecType(DeclSpec::TST_float128, Loc, PrevSpec, DiagID, Policy);
|
|
break;
|
|
case tok::kw_wchar_t:
|
|
DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID, Policy);
|
|
break;
|
|
case tok::kw_char8_t:
|
|
DS.SetTypeSpecType(DeclSpec::TST_char8, Loc, PrevSpec, DiagID, Policy);
|
|
break;
|
|
case tok::kw_char16_t:
|
|
DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID, Policy);
|
|
break;
|
|
case tok::kw_char32_t:
|
|
DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID, Policy);
|
|
break;
|
|
case tok::kw_bool:
|
|
DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID, Policy);
|
|
break;
|
|
#define GENERIC_IMAGE_TYPE(ImgType, Id) \
|
|
case tok::kw_##ImgType##_t: \
|
|
DS.SetTypeSpecType(DeclSpec::TST_##ImgType##_t, Loc, PrevSpec, DiagID, \
|
|
Policy); \
|
|
break;
|
|
#include "clang/Basic/OpenCLImageTypes.def"
|
|
|
|
case tok::annot_decltype:
|
|
case tok::kw_decltype:
|
|
DS.SetRangeEnd(ParseDecltypeSpecifier(DS));
|
|
return DS.Finish(Actions, Policy);
|
|
|
|
// GNU typeof support.
|
|
case tok::kw_typeof:
|
|
ParseTypeofSpecifier(DS);
|
|
DS.Finish(Actions, Policy);
|
|
return;
|
|
}
|
|
ConsumeAnyToken();
|
|
DS.SetRangeEnd(PrevTokLocation);
|
|
DS.Finish(Actions, Policy);
|
|
}
|
|
|
|
/// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++
|
|
/// [dcl.name]), which is a non-empty sequence of type-specifiers,
|
|
/// e.g., "const short int". Note that the DeclSpec is *not* finished
|
|
/// by parsing the type-specifier-seq, because these sequences are
|
|
/// typically followed by some form of declarator. Returns true and
|
|
/// emits diagnostics if this is not a type-specifier-seq, false
|
|
/// otherwise.
|
|
///
|
|
/// type-specifier-seq: [C++ 8.1]
|
|
/// type-specifier type-specifier-seq[opt]
|
|
///
|
|
bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS) {
|
|
ParseSpecifierQualifierList(DS, AS_none, DeclSpecContext::DSC_type_specifier);
|
|
DS.Finish(Actions, Actions.getASTContext().getPrintingPolicy());
|
|
return false;
|
|
}
|
|
|
|
/// Finish parsing a C++ unqualified-id that is a template-id of
|
|
/// some form.
|
|
///
|
|
/// This routine is invoked when a '<' is encountered after an identifier or
|
|
/// operator-function-id is parsed by \c ParseUnqualifiedId() to determine
|
|
/// whether the unqualified-id is actually a template-id. This routine will
|
|
/// then parse the template arguments and form the appropriate template-id to
|
|
/// return to the caller.
|
|
///
|
|
/// \param SS the nested-name-specifier that precedes this template-id, if
|
|
/// we're actually parsing a qualified-id.
|
|
///
|
|
/// \param ObjectType if this unqualified-id occurs within a member access
|
|
/// expression, the type of the base object whose member is being accessed.
|
|
///
|
|
/// \param ObjectHadErrors this unqualified-id occurs within a member access
|
|
/// expression, indicates whether the original subexpressions had any errors.
|
|
///
|
|
/// \param Name for constructor and destructor names, this is the actual
|
|
/// identifier that may be a template-name.
|
|
///
|
|
/// \param NameLoc the location of the class-name in a constructor or
|
|
/// destructor.
|
|
///
|
|
/// \param EnteringContext whether we're entering the scope of the
|
|
/// nested-name-specifier.
|
|
///
|
|
/// \param Id as input, describes the template-name or operator-function-id
|
|
/// that precedes the '<'. If template arguments were parsed successfully,
|
|
/// will be updated with the template-id.
|
|
///
|
|
/// \param AssumeTemplateId When true, this routine will assume that the name
|
|
/// refers to a template without performing name lookup to verify.
|
|
///
|
|
/// \returns true if a parse error occurred, false otherwise.
|
|
bool Parser::ParseUnqualifiedIdTemplateId(
|
|
CXXScopeSpec &SS, ParsedType ObjectType, bool ObjectHadErrors,
|
|
SourceLocation TemplateKWLoc, IdentifierInfo *Name, SourceLocation NameLoc,
|
|
bool EnteringContext, UnqualifiedId &Id, bool AssumeTemplateId) {
|
|
assert(Tok.is(tok::less) && "Expected '<' to finish parsing a template-id");
|
|
|
|
TemplateTy Template;
|
|
TemplateNameKind TNK = TNK_Non_template;
|
|
switch (Id.getKind()) {
|
|
case UnqualifiedIdKind::IK_Identifier:
|
|
case UnqualifiedIdKind::IK_OperatorFunctionId:
|
|
case UnqualifiedIdKind::IK_LiteralOperatorId:
|
|
if (AssumeTemplateId) {
|
|
// We defer the injected-class-name checks until we've found whether
|
|
// this template-id is used to form a nested-name-specifier or not.
|
|
TNK = Actions.ActOnTemplateName(getCurScope(), SS, TemplateKWLoc, Id,
|
|
ObjectType, EnteringContext, Template,
|
|
/*AllowInjectedClassName*/ true);
|
|
} else {
|
|
bool MemberOfUnknownSpecialization;
|
|
TNK = Actions.isTemplateName(getCurScope(), SS,
|
|
TemplateKWLoc.isValid(), Id,
|
|
ObjectType, EnteringContext, Template,
|
|
MemberOfUnknownSpecialization);
|
|
// If lookup found nothing but we're assuming that this is a template
|
|
// name, double-check that makes sense syntactically before committing
|
|
// to it.
|
|
if (TNK == TNK_Undeclared_template &&
|
|
isTemplateArgumentList(0) == TPResult::False)
|
|
return false;
|
|
|
|
if (TNK == TNK_Non_template && MemberOfUnknownSpecialization &&
|
|
ObjectType && isTemplateArgumentList(0) == TPResult::True) {
|
|
// If we had errors before, ObjectType can be dependent even without any
|
|
// templates, do not report missing template keyword in that case.
|
|
if (!ObjectHadErrors) {
|
|
// We have something like t->getAs<T>(), where getAs is a
|
|
// member of an unknown specialization. However, this will only
|
|
// parse correctly as a template, so suggest the keyword 'template'
|
|
// before 'getAs' and treat this as a dependent template name.
|
|
std::string Name;
|
|
if (Id.getKind() == UnqualifiedIdKind::IK_Identifier)
|
|
Name = std::string(Id.Identifier->getName());
|
|
else {
|
|
Name = "operator ";
|
|
if (Id.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId)
|
|
Name += getOperatorSpelling(Id.OperatorFunctionId.Operator);
|
|
else
|
|
Name += Id.Identifier->getName();
|
|
}
|
|
Diag(Id.StartLocation, diag::err_missing_dependent_template_keyword)
|
|
<< Name
|
|
<< FixItHint::CreateInsertion(Id.StartLocation, "template ");
|
|
}
|
|
TNK = Actions.ActOnTemplateName(
|
|
getCurScope(), SS, TemplateKWLoc, Id, ObjectType, EnteringContext,
|
|
Template, /*AllowInjectedClassName*/ true);
|
|
} else if (TNK == TNK_Non_template) {
|
|
return false;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case UnqualifiedIdKind::IK_ConstructorName: {
|
|
UnqualifiedId TemplateName;
|
|
bool MemberOfUnknownSpecialization;
|
|
TemplateName.setIdentifier(Name, NameLoc);
|
|
TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
|
|
TemplateName, ObjectType,
|
|
EnteringContext, Template,
|
|
MemberOfUnknownSpecialization);
|
|
if (TNK == TNK_Non_template)
|
|
return false;
|
|
break;
|
|
}
|
|
|
|
case UnqualifiedIdKind::IK_DestructorName: {
|
|
UnqualifiedId TemplateName;
|
|
bool MemberOfUnknownSpecialization;
|
|
TemplateName.setIdentifier(Name, NameLoc);
|
|
if (ObjectType) {
|
|
TNK = Actions.ActOnTemplateName(
|
|
getCurScope(), SS, TemplateKWLoc, TemplateName, ObjectType,
|
|
EnteringContext, Template, /*AllowInjectedClassName*/ true);
|
|
} else {
|
|
TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
|
|
TemplateName, ObjectType,
|
|
EnteringContext, Template,
|
|
MemberOfUnknownSpecialization);
|
|
|
|
if (TNK == TNK_Non_template && !Id.DestructorName.get()) {
|
|
Diag(NameLoc, diag::err_destructor_template_id)
|
|
<< Name << SS.getRange();
|
|
// Carry on to parse the template arguments before bailing out.
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
// Parse the enclosed template argument list.
|
|
SourceLocation LAngleLoc, RAngleLoc;
|
|
TemplateArgList TemplateArgs;
|
|
if (ParseTemplateIdAfterTemplateName(true, LAngleLoc, TemplateArgs,
|
|
RAngleLoc))
|
|
return true;
|
|
|
|
// If this is a non-template, we already issued a diagnostic.
|
|
if (TNK == TNK_Non_template)
|
|
return true;
|
|
|
|
if (Id.getKind() == UnqualifiedIdKind::IK_Identifier ||
|
|
Id.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId ||
|
|
Id.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId) {
|
|
// Form a parsed representation of the template-id to be stored in the
|
|
// UnqualifiedId.
|
|
|
|
// FIXME: Store name for literal operator too.
|
|
IdentifierInfo *TemplateII =
|
|
Id.getKind() == UnqualifiedIdKind::IK_Identifier ? Id.Identifier
|
|
: nullptr;
|
|
OverloadedOperatorKind OpKind =
|
|
Id.getKind() == UnqualifiedIdKind::IK_Identifier
|
|
? OO_None
|
|
: Id.OperatorFunctionId.Operator;
|
|
|
|
TemplateIdAnnotation *TemplateId = TemplateIdAnnotation::Create(
|
|
TemplateKWLoc, Id.StartLocation, TemplateII, OpKind, Template, TNK,
|
|
LAngleLoc, RAngleLoc, TemplateArgs, /*ArgsInvalid*/false, TemplateIds);
|
|
|
|
Id.setTemplateId(TemplateId);
|
|
return false;
|
|
}
|
|
|
|
// Bundle the template arguments together.
|
|
ASTTemplateArgsPtr TemplateArgsPtr(TemplateArgs);
|
|
|
|
// Constructor and destructor names.
|
|
TypeResult Type = Actions.ActOnTemplateIdType(
|
|
getCurScope(), SS, TemplateKWLoc, Template, Name, NameLoc, LAngleLoc,
|
|
TemplateArgsPtr, RAngleLoc, /*IsCtorOrDtorName=*/true);
|
|
if (Type.isInvalid())
|
|
return true;
|
|
|
|
if (Id.getKind() == UnqualifiedIdKind::IK_ConstructorName)
|
|
Id.setConstructorName(Type.get(), NameLoc, RAngleLoc);
|
|
else
|
|
Id.setDestructorName(Id.StartLocation, Type.get(), RAngleLoc);
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Parse an operator-function-id or conversion-function-id as part
|
|
/// of a C++ unqualified-id.
|
|
///
|
|
/// This routine is responsible only for parsing the operator-function-id or
|
|
/// conversion-function-id; it does not handle template arguments in any way.
|
|
///
|
|
/// \code
|
|
/// operator-function-id: [C++ 13.5]
|
|
/// 'operator' operator
|
|
///
|
|
/// operator: one of
|
|
/// new delete new[] delete[]
|
|
/// + - * / % ^ & | ~
|
|
/// ! = < > += -= *= /= %=
|
|
/// ^= &= |= << >> >>= <<= == !=
|
|
/// <= >= && || ++ -- , ->* ->
|
|
/// () [] <=>
|
|
///
|
|
/// conversion-function-id: [C++ 12.3.2]
|
|
/// operator conversion-type-id
|
|
///
|
|
/// conversion-type-id:
|
|
/// type-specifier-seq conversion-declarator[opt]
|
|
///
|
|
/// conversion-declarator:
|
|
/// ptr-operator conversion-declarator[opt]
|
|
/// \endcode
|
|
///
|
|
/// \param SS The nested-name-specifier that preceded this unqualified-id. If
|
|
/// non-empty, then we are parsing the unqualified-id of a qualified-id.
|
|
///
|
|
/// \param EnteringContext whether we are entering the scope of the
|
|
/// nested-name-specifier.
|
|
///
|
|
/// \param ObjectType if this unqualified-id occurs within a member access
|
|
/// expression, the type of the base object whose member is being accessed.
|
|
///
|
|
/// \param Result on a successful parse, contains the parsed unqualified-id.
|
|
///
|
|
/// \returns true if parsing fails, false otherwise.
|
|
bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext,
|
|
ParsedType ObjectType,
|
|
UnqualifiedId &Result) {
|
|
assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword");
|
|
|
|
// Consume the 'operator' keyword.
|
|
SourceLocation KeywordLoc = ConsumeToken();
|
|
|
|
// Determine what kind of operator name we have.
|
|
unsigned SymbolIdx = 0;
|
|
SourceLocation SymbolLocations[3];
|
|
OverloadedOperatorKind Op = OO_None;
|
|
switch (Tok.getKind()) {
|
|
case tok::kw_new:
|
|
case tok::kw_delete: {
|
|
bool isNew = Tok.getKind() == tok::kw_new;
|
|
// Consume the 'new' or 'delete'.
|
|
SymbolLocations[SymbolIdx++] = ConsumeToken();
|
|
// Check for array new/delete.
|
|
if (Tok.is(tok::l_square) &&
|
|
(!getLangOpts().CPlusPlus11 || NextToken().isNot(tok::l_square))) {
|
|
// Consume the '[' and ']'.
|
|
BalancedDelimiterTracker T(*this, tok::l_square);
|
|
T.consumeOpen();
|
|
T.consumeClose();
|
|
if (T.getCloseLocation().isInvalid())
|
|
return true;
|
|
|
|
SymbolLocations[SymbolIdx++] = T.getOpenLocation();
|
|
SymbolLocations[SymbolIdx++] = T.getCloseLocation();
|
|
Op = isNew? OO_Array_New : OO_Array_Delete;
|
|
} else {
|
|
Op = isNew? OO_New : OO_Delete;
|
|
}
|
|
break;
|
|
}
|
|
|
|
#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
|
|
case tok::Token: \
|
|
SymbolLocations[SymbolIdx++] = ConsumeToken(); \
|
|
Op = OO_##Name; \
|
|
break;
|
|
#define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
|
|
#include "clang/Basic/OperatorKinds.def"
|
|
|
|
case tok::l_paren: {
|
|
// Consume the '(' and ')'.
|
|
BalancedDelimiterTracker T(*this, tok::l_paren);
|
|
T.consumeOpen();
|
|
T.consumeClose();
|
|
if (T.getCloseLocation().isInvalid())
|
|
return true;
|
|
|
|
SymbolLocations[SymbolIdx++] = T.getOpenLocation();
|
|
SymbolLocations[SymbolIdx++] = T.getCloseLocation();
|
|
Op = OO_Call;
|
|
break;
|
|
}
|
|
|
|
case tok::l_square: {
|
|
// Consume the '[' and ']'.
|
|
BalancedDelimiterTracker T(*this, tok::l_square);
|
|
T.consumeOpen();
|
|
T.consumeClose();
|
|
if (T.getCloseLocation().isInvalid())
|
|
return true;
|
|
|
|
SymbolLocations[SymbolIdx++] = T.getOpenLocation();
|
|
SymbolLocations[SymbolIdx++] = T.getCloseLocation();
|
|
Op = OO_Subscript;
|
|
break;
|
|
}
|
|
|
|
case tok::code_completion: {
|
|
// Code completion for the operator name.
|
|
Actions.CodeCompleteOperatorName(getCurScope());
|
|
cutOffParsing();
|
|
// Don't try to parse any further.
|
|
return true;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (Op != OO_None) {
|
|
// We have parsed an operator-function-id.
|
|
Result.setOperatorFunctionId(KeywordLoc, Op, SymbolLocations);
|
|
return false;
|
|
}
|
|
|
|
// Parse a literal-operator-id.
|
|
//
|
|
// literal-operator-id: C++11 [over.literal]
|
|
// operator string-literal identifier
|
|
// operator user-defined-string-literal
|
|
|
|
if (getLangOpts().CPlusPlus11 && isTokenStringLiteral()) {
|
|
Diag(Tok.getLocation(), diag::warn_cxx98_compat_literal_operator);
|
|
|
|
SourceLocation DiagLoc;
|
|
unsigned DiagId = 0;
|
|
|
|
// We're past translation phase 6, so perform string literal concatenation
|
|
// before checking for "".
|
|
SmallVector<Token, 4> Toks;
|
|
SmallVector<SourceLocation, 4> TokLocs;
|
|
while (isTokenStringLiteral()) {
|
|
if (!Tok.is(tok::string_literal) && !DiagId) {
|
|
// C++11 [over.literal]p1:
|
|
// The string-literal or user-defined-string-literal in a
|
|
// literal-operator-id shall have no encoding-prefix [...].
|
|
DiagLoc = Tok.getLocation();
|
|
DiagId = diag::err_literal_operator_string_prefix;
|
|
}
|
|
Toks.push_back(Tok);
|
|
TokLocs.push_back(ConsumeStringToken());
|
|
}
|
|
|
|
StringLiteralParser Literal(Toks, PP);
|
|
if (Literal.hadError)
|
|
return true;
|
|
|
|
// Grab the literal operator's suffix, which will be either the next token
|
|
// or a ud-suffix from the string literal.
|
|
IdentifierInfo *II = nullptr;
|
|
SourceLocation SuffixLoc;
|
|
if (!Literal.getUDSuffix().empty()) {
|
|
II = &PP.getIdentifierTable().get(Literal.getUDSuffix());
|
|
SuffixLoc =
|
|
Lexer::AdvanceToTokenCharacter(TokLocs[Literal.getUDSuffixToken()],
|
|
Literal.getUDSuffixOffset(),
|
|
PP.getSourceManager(), getLangOpts());
|
|
} else if (Tok.is(tok::identifier)) {
|
|
II = Tok.getIdentifierInfo();
|
|
SuffixLoc = ConsumeToken();
|
|
TokLocs.push_back(SuffixLoc);
|
|
} else {
|
|
Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
|
|
return true;
|
|
}
|
|
|
|
// The string literal must be empty.
|
|
if (!Literal.GetString().empty() || Literal.Pascal) {
|
|
// C++11 [over.literal]p1:
|
|
// The string-literal or user-defined-string-literal in a
|
|
// literal-operator-id shall [...] contain no characters
|
|
// other than the implicit terminating '\0'.
|
|
DiagLoc = TokLocs.front();
|
|
DiagId = diag::err_literal_operator_string_not_empty;
|
|
}
|
|
|
|
if (DiagId) {
|
|
// This isn't a valid literal-operator-id, but we think we know
|
|
// what the user meant. Tell them what they should have written.
|
|
SmallString<32> Str;
|
|
Str += "\"\"";
|
|
Str += II->getName();
|
|
Diag(DiagLoc, DiagId) << FixItHint::CreateReplacement(
|
|
SourceRange(TokLocs.front(), TokLocs.back()), Str);
|
|
}
|
|
|
|
Result.setLiteralOperatorId(II, KeywordLoc, SuffixLoc);
|
|
|
|
return Actions.checkLiteralOperatorId(SS, Result);
|
|
}
|
|
|
|
// Parse a conversion-function-id.
|
|
//
|
|
// conversion-function-id: [C++ 12.3.2]
|
|
// operator conversion-type-id
|
|
//
|
|
// conversion-type-id:
|
|
// type-specifier-seq conversion-declarator[opt]
|
|
//
|
|
// conversion-declarator:
|
|
// ptr-operator conversion-declarator[opt]
|
|
|
|
// Parse the type-specifier-seq.
|
|
DeclSpec DS(AttrFactory);
|
|
if (ParseCXXTypeSpecifierSeq(DS)) // FIXME: ObjectType?
|
|
return true;
|
|
|
|
// Parse the conversion-declarator, which is merely a sequence of
|
|
// ptr-operators.
|
|
Declarator D(DS, DeclaratorContext::ConversionId);
|
|
ParseDeclaratorInternal(D, /*DirectDeclParser=*/nullptr);
|
|
|
|
// Finish up the type.
|
|
TypeResult Ty = Actions.ActOnTypeName(getCurScope(), D);
|
|
if (Ty.isInvalid())
|
|
return true;
|
|
|
|
// Note that this is a conversion-function-id.
|
|
Result.setConversionFunctionId(KeywordLoc, Ty.get(),
|
|
D.getSourceRange().getEnd());
|
|
return false;
|
|
}
|
|
|
|
/// Parse a C++ unqualified-id (or a C identifier), which describes the
|
|
/// name of an entity.
|
|
///
|
|
/// \code
|
|
/// unqualified-id: [C++ expr.prim.general]
|
|
/// identifier
|
|
/// operator-function-id
|
|
/// conversion-function-id
|
|
/// [C++0x] literal-operator-id [TODO]
|
|
/// ~ class-name
|
|
/// template-id
|
|
///
|
|
/// \endcode
|
|
///
|
|
/// \param SS The nested-name-specifier that preceded this unqualified-id. If
|
|
/// non-empty, then we are parsing the unqualified-id of a qualified-id.
|
|
///
|
|
/// \param ObjectType if this unqualified-id occurs within a member access
|
|
/// expression, the type of the base object whose member is being accessed.
|
|
///
|
|
/// \param ObjectHadErrors if this unqualified-id occurs within a member access
|
|
/// expression, indicates whether the original subexpressions had any errors.
|
|
/// When true, diagnostics for missing 'template' keyword will be supressed.
|
|
///
|
|
/// \param EnteringContext whether we are entering the scope of the
|
|
/// nested-name-specifier.
|
|
///
|
|
/// \param AllowDestructorName whether we allow parsing of a destructor name.
|
|
///
|
|
/// \param AllowConstructorName whether we allow parsing a constructor name.
|
|
///
|
|
/// \param AllowDeductionGuide whether we allow parsing a deduction guide name.
|
|
///
|
|
/// \param Result on a successful parse, contains the parsed unqualified-id.
|
|
///
|
|
/// \returns true if parsing fails, false otherwise.
|
|
bool Parser::ParseUnqualifiedId(CXXScopeSpec &SS, ParsedType ObjectType,
|
|
bool ObjectHadErrors, bool EnteringContext,
|
|
bool AllowDestructorName,
|
|
bool AllowConstructorName,
|
|
bool AllowDeductionGuide,
|
|
SourceLocation *TemplateKWLoc,
|
|
UnqualifiedId &Result) {
|
|
if (TemplateKWLoc)
|
|
*TemplateKWLoc = SourceLocation();
|
|
|
|
// Handle 'A::template B'. This is for template-ids which have not
|
|
// already been annotated by ParseOptionalCXXScopeSpecifier().
|
|
bool TemplateSpecified = false;
|
|
if (Tok.is(tok::kw_template)) {
|
|
if (TemplateKWLoc && (ObjectType || SS.isSet())) {
|
|
TemplateSpecified = true;
|
|
*TemplateKWLoc = ConsumeToken();
|
|
} else {
|
|
SourceLocation TemplateLoc = ConsumeToken();
|
|
Diag(TemplateLoc, diag::err_unexpected_template_in_unqualified_id)
|
|
<< FixItHint::CreateRemoval(TemplateLoc);
|
|
}
|
|
}
|
|
|
|
// unqualified-id:
|
|
// identifier
|
|
// template-id (when it hasn't already been annotated)
|
|
if (Tok.is(tok::identifier)) {
|
|
// Consume the identifier.
|
|
IdentifierInfo *Id = Tok.getIdentifierInfo();
|
|
SourceLocation IdLoc = ConsumeToken();
|
|
|
|
if (!getLangOpts().CPlusPlus) {
|
|
// If we're not in C++, only identifiers matter. Record the
|
|
// identifier and return.
|
|
Result.setIdentifier(Id, IdLoc);
|
|
return false;
|
|
}
|
|
|
|
ParsedTemplateTy TemplateName;
|
|
if (AllowConstructorName &&
|
|
Actions.isCurrentClassName(*Id, getCurScope(), &SS)) {
|
|
// We have parsed a constructor name.
|
|
ParsedType Ty = Actions.getConstructorName(*Id, IdLoc, getCurScope(), SS,
|
|
EnteringContext);
|
|
if (!Ty)
|
|
return true;
|
|
Result.setConstructorName(Ty, IdLoc, IdLoc);
|
|
} else if (getLangOpts().CPlusPlus17 &&
|
|
AllowDeductionGuide && SS.isEmpty() &&
|
|
Actions.isDeductionGuideName(getCurScope(), *Id, IdLoc,
|
|
&TemplateName)) {
|
|
// We have parsed a template-name naming a deduction guide.
|
|
Result.setDeductionGuideName(TemplateName, IdLoc);
|
|
} else {
|
|
// We have parsed an identifier.
|
|
Result.setIdentifier(Id, IdLoc);
|
|
}
|
|
|
|
// If the next token is a '<', we may have a template.
|
|
TemplateTy Template;
|
|
if (Tok.is(tok::less))
|
|
return ParseUnqualifiedIdTemplateId(
|
|
SS, ObjectType, ObjectHadErrors,
|
|
TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), Id, IdLoc,
|
|
EnteringContext, Result, TemplateSpecified);
|
|
else if (TemplateSpecified &&
|
|
Actions.ActOnTemplateName(
|
|
getCurScope(), SS, *TemplateKWLoc, Result, ObjectType,
|
|
EnteringContext, Template,
|
|
/*AllowInjectedClassName*/ true) == TNK_Non_template)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
// unqualified-id:
|
|
// template-id (already parsed and annotated)
|
|
if (Tok.is(tok::annot_template_id)) {
|
|
TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
|
|
|
|
// FIXME: Consider passing invalid template-ids on to callers; they may
|
|
// be able to recover better than we can.
|
|
if (TemplateId->isInvalid()) {
|
|
ConsumeAnnotationToken();
|
|
return true;
|
|
}
|
|
|
|
// If the template-name names the current class, then this is a constructor
|
|
if (AllowConstructorName && TemplateId->Name &&
|
|
Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
|
|
if (SS.isSet()) {
|
|
// C++ [class.qual]p2 specifies that a qualified template-name
|
|
// is taken as the constructor name where a constructor can be
|
|
// declared. Thus, the template arguments are extraneous, so
|
|
// complain about them and remove them entirely.
|
|
Diag(TemplateId->TemplateNameLoc,
|
|
diag::err_out_of_line_constructor_template_id)
|
|
<< TemplateId->Name
|
|
<< FixItHint::CreateRemoval(
|
|
SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc));
|
|
ParsedType Ty = Actions.getConstructorName(
|
|
*TemplateId->Name, TemplateId->TemplateNameLoc, getCurScope(), SS,
|
|
EnteringContext);
|
|
if (!Ty)
|
|
return true;
|
|
Result.setConstructorName(Ty, TemplateId->TemplateNameLoc,
|
|
TemplateId->RAngleLoc);
|
|
ConsumeAnnotationToken();
|
|
return false;
|
|
}
|
|
|
|
Result.setConstructorTemplateId(TemplateId);
|
|
ConsumeAnnotationToken();
|
|
return false;
|
|
}
|
|
|
|
// We have already parsed a template-id; consume the annotation token as
|
|
// our unqualified-id.
|
|
Result.setTemplateId(TemplateId);
|
|
SourceLocation TemplateLoc = TemplateId->TemplateKWLoc;
|
|
if (TemplateLoc.isValid()) {
|
|
if (TemplateKWLoc && (ObjectType || SS.isSet()))
|
|
*TemplateKWLoc = TemplateLoc;
|
|
else
|
|
Diag(TemplateLoc, diag::err_unexpected_template_in_unqualified_id)
|
|
<< FixItHint::CreateRemoval(TemplateLoc);
|
|
}
|
|
ConsumeAnnotationToken();
|
|
return false;
|
|
}
|
|
|
|
// unqualified-id:
|
|
// operator-function-id
|
|
// conversion-function-id
|
|
if (Tok.is(tok::kw_operator)) {
|
|
if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, Result))
|
|
return true;
|
|
|
|
// If we have an operator-function-id or a literal-operator-id and the next
|
|
// token is a '<', we may have a
|
|
//
|
|
// template-id:
|
|
// operator-function-id < template-argument-list[opt] >
|
|
TemplateTy Template;
|
|
if ((Result.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId ||
|
|
Result.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId) &&
|
|
Tok.is(tok::less))
|
|
return ParseUnqualifiedIdTemplateId(
|
|
SS, ObjectType, ObjectHadErrors,
|
|
TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), nullptr,
|
|
SourceLocation(), EnteringContext, Result, TemplateSpecified);
|
|
else if (TemplateSpecified &&
|
|
Actions.ActOnTemplateName(
|
|
getCurScope(), SS, *TemplateKWLoc, Result, ObjectType,
|
|
EnteringContext, Template,
|
|
/*AllowInjectedClassName*/ true) == TNK_Non_template)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
if (getLangOpts().CPlusPlus &&
|
|
(AllowDestructorName || SS.isSet()) && Tok.is(tok::tilde)) {
|
|
// C++ [expr.unary.op]p10:
|
|
// There is an ambiguity in the unary-expression ~X(), where X is a
|
|
// class-name. The ambiguity is resolved in favor of treating ~ as a
|
|
// unary complement rather than treating ~X as referring to a destructor.
|
|
|
|
// Parse the '~'.
|
|
SourceLocation TildeLoc = ConsumeToken();
|
|
|
|
if (TemplateSpecified) {
|
|
// C++ [temp.names]p3:
|
|
// A name prefixed by the keyword template shall be a template-id [...]
|
|
//
|
|
// A template-id cannot begin with a '~' token. This would never work
|
|
// anyway: x.~A<int>() would specify that the destructor is a template,
|
|
// not that 'A' is a template.
|
|
//
|
|
// FIXME: Suggest replacing the attempted destructor name with a correct
|
|
// destructor name and recover. (This is not trivial if this would become
|
|
// a pseudo-destructor name).
|
|
Diag(*TemplateKWLoc, diag::err_unexpected_template_in_destructor_name)
|
|
<< Tok.getLocation();
|
|
return true;
|
|
}
|
|
|
|
if (SS.isEmpty() && Tok.is(tok::kw_decltype)) {
|
|
DeclSpec DS(AttrFactory);
|
|
SourceLocation EndLoc = ParseDecltypeSpecifier(DS);
|
|
if (ParsedType Type =
|
|
Actions.getDestructorTypeForDecltype(DS, ObjectType)) {
|
|
Result.setDestructorName(TildeLoc, Type, EndLoc);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Parse the class-name.
|
|
if (Tok.isNot(tok::identifier)) {
|
|
Diag(Tok, diag::err_destructor_tilde_identifier);
|
|
return true;
|
|
}
|
|
|
|
// If the user wrote ~T::T, correct it to T::~T.
|
|
DeclaratorScopeObj DeclScopeObj(*this, SS);
|
|
if (NextToken().is(tok::coloncolon)) {
|
|
// Don't let ParseOptionalCXXScopeSpecifier() "correct"
|
|
// `int A; struct { ~A::A(); };` to `int A; struct { ~A:A(); };`,
|
|
// it will confuse this recovery logic.
|
|
ColonProtectionRAIIObject ColonRAII(*this, false);
|
|
|
|
if (SS.isSet()) {
|
|
AnnotateScopeToken(SS, /*NewAnnotation*/true);
|
|
SS.clear();
|
|
}
|
|
if (ParseOptionalCXXScopeSpecifier(SS, ObjectType, ObjectHadErrors,
|
|
EnteringContext))
|
|
return true;
|
|
if (SS.isNotEmpty())
|
|
ObjectType = nullptr;
|
|
if (Tok.isNot(tok::identifier) || NextToken().is(tok::coloncolon) ||
|
|
!SS.isSet()) {
|
|
Diag(TildeLoc, diag::err_destructor_tilde_scope);
|
|
return true;
|
|
}
|
|
|
|
// Recover as if the tilde had been written before the identifier.
|
|
Diag(TildeLoc, diag::err_destructor_tilde_scope)
|
|
<< FixItHint::CreateRemoval(TildeLoc)
|
|
<< FixItHint::CreateInsertion(Tok.getLocation(), "~");
|
|
|
|
// Temporarily enter the scope for the rest of this function.
|
|
if (Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
|
|
DeclScopeObj.EnterDeclaratorScope();
|
|
}
|
|
|
|
// Parse the class-name (or template-name in a simple-template-id).
|
|
IdentifierInfo *ClassName = Tok.getIdentifierInfo();
|
|
SourceLocation ClassNameLoc = ConsumeToken();
|
|
|
|
if (Tok.is(tok::less)) {
|
|
Result.setDestructorName(TildeLoc, nullptr, ClassNameLoc);
|
|
return ParseUnqualifiedIdTemplateId(
|
|
SS, ObjectType, ObjectHadErrors,
|
|
TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), ClassName,
|
|
ClassNameLoc, EnteringContext, Result, TemplateSpecified);
|
|
}
|
|
|
|
// Note that this is a destructor name.
|
|
ParsedType Ty = Actions.getDestructorName(TildeLoc, *ClassName,
|
|
ClassNameLoc, getCurScope(),
|
|
SS, ObjectType,
|
|
EnteringContext);
|
|
if (!Ty)
|
|
return true;
|
|
|
|
Result.setDestructorName(TildeLoc, Ty, ClassNameLoc);
|
|
return false;
|
|
}
|
|
|
|
Diag(Tok, diag::err_expected_unqualified_id)
|
|
<< getLangOpts().CPlusPlus;
|
|
return true;
|
|
}
|
|
|
|
/// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate
|
|
/// memory in a typesafe manner and call constructors.
|
|
///
|
|
/// This method is called to parse the new expression after the optional :: has
|
|
/// been already parsed. If the :: was present, "UseGlobal" is true and "Start"
|
|
/// is its location. Otherwise, "Start" is the location of the 'new' token.
|
|
///
|
|
/// new-expression:
|
|
/// '::'[opt] 'new' new-placement[opt] new-type-id
|
|
/// new-initializer[opt]
|
|
/// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
|
|
/// new-initializer[opt]
|
|
///
|
|
/// new-placement:
|
|
/// '(' expression-list ')'
|
|
///
|
|
/// new-type-id:
|
|
/// type-specifier-seq new-declarator[opt]
|
|
/// [GNU] attributes type-specifier-seq new-declarator[opt]
|
|
///
|
|
/// new-declarator:
|
|
/// ptr-operator new-declarator[opt]
|
|
/// direct-new-declarator
|
|
///
|
|
/// new-initializer:
|
|
/// '(' expression-list[opt] ')'
|
|
/// [C++0x] braced-init-list
|
|
///
|
|
ExprResult
|
|
Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) {
|
|
assert(Tok.is(tok::kw_new) && "expected 'new' token");
|
|
ConsumeToken(); // Consume 'new'
|
|
|
|
// A '(' now can be a new-placement or the '(' wrapping the type-id in the
|
|
// second form of new-expression. It can't be a new-type-id.
|
|
|
|
ExprVector PlacementArgs;
|
|
SourceLocation PlacementLParen, PlacementRParen;
|
|
|
|
SourceRange TypeIdParens;
|
|
DeclSpec DS(AttrFactory);
|
|
Declarator DeclaratorInfo(DS, DeclaratorContext::CXXNew);
|
|
if (Tok.is(tok::l_paren)) {
|
|
// If it turns out to be a placement, we change the type location.
|
|
BalancedDelimiterTracker T(*this, tok::l_paren);
|
|
T.consumeOpen();
|
|
PlacementLParen = T.getOpenLocation();
|
|
if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) {
|
|
SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
|
|
return ExprError();
|
|
}
|
|
|
|
T.consumeClose();
|
|
PlacementRParen = T.getCloseLocation();
|
|
if (PlacementRParen.isInvalid()) {
|
|
SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
|
|
return ExprError();
|
|
}
|
|
|
|
if (PlacementArgs.empty()) {
|
|
// Reset the placement locations. There was no placement.
|
|
TypeIdParens = T.getRange();
|
|
PlacementLParen = PlacementRParen = SourceLocation();
|
|
} else {
|
|
// We still need the type.
|
|
if (Tok.is(tok::l_paren)) {
|
|
BalancedDelimiterTracker T(*this, tok::l_paren);
|
|
T.consumeOpen();
|
|
MaybeParseGNUAttributes(DeclaratorInfo);
|
|
ParseSpecifierQualifierList(DS);
|
|
DeclaratorInfo.SetSourceRange(DS.getSourceRange());
|
|
ParseDeclarator(DeclaratorInfo);
|
|
T.consumeClose();
|
|
TypeIdParens = T.getRange();
|
|
} else {
|
|
MaybeParseGNUAttributes(DeclaratorInfo);
|
|
if (ParseCXXTypeSpecifierSeq(DS))
|
|
DeclaratorInfo.setInvalidType(true);
|
|
else {
|
|
DeclaratorInfo.SetSourceRange(DS.getSourceRange());
|
|
ParseDeclaratorInternal(DeclaratorInfo,
|
|
&Parser::ParseDirectNewDeclarator);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
// A new-type-id is a simplified type-id, where essentially the
|
|
// direct-declarator is replaced by a direct-new-declarator.
|
|
MaybeParseGNUAttributes(DeclaratorInfo);
|
|
if (ParseCXXTypeSpecifierSeq(DS))
|
|
DeclaratorInfo.setInvalidType(true);
|
|
else {
|
|
DeclaratorInfo.SetSourceRange(DS.getSourceRange());
|
|
ParseDeclaratorInternal(DeclaratorInfo,
|
|
&Parser::ParseDirectNewDeclarator);
|
|
}
|
|
}
|
|
if (DeclaratorInfo.isInvalidType()) {
|
|
SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
|
|
return ExprError();
|
|
}
|
|
|
|
ExprResult Initializer;
|
|
|
|
if (Tok.is(tok::l_paren)) {
|
|
SourceLocation ConstructorLParen, ConstructorRParen;
|
|
ExprVector ConstructorArgs;
|
|
BalancedDelimiterTracker T(*this, tok::l_paren);
|
|
T.consumeOpen();
|
|
ConstructorLParen = T.getOpenLocation();
|
|
if (Tok.isNot(tok::r_paren)) {
|
|
CommaLocsTy CommaLocs;
|
|
auto RunSignatureHelp = [&]() {
|
|
ParsedType TypeRep =
|
|
Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
|
|
QualType PreferredType;
|
|
// ActOnTypeName might adjust DeclaratorInfo and return a null type even
|
|
// the passing DeclaratorInfo is valid, e.g. running SignatureHelp on
|
|
// `new decltype(invalid) (^)`.
|
|
if (TypeRep)
|
|
PreferredType = Actions.ProduceConstructorSignatureHelp(
|
|
getCurScope(), TypeRep.get()->getCanonicalTypeInternal(),
|
|
DeclaratorInfo.getEndLoc(), ConstructorArgs, ConstructorLParen);
|
|
CalledSignatureHelp = true;
|
|
return PreferredType;
|
|
};
|
|
if (ParseExpressionList(ConstructorArgs, CommaLocs, [&] {
|
|
PreferredType.enterFunctionArgument(Tok.getLocation(),
|
|
RunSignatureHelp);
|
|
})) {
|
|
if (PP.isCodeCompletionReached() && !CalledSignatureHelp)
|
|
RunSignatureHelp();
|
|
SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
|
|
return ExprError();
|
|
}
|
|
}
|
|
T.consumeClose();
|
|
ConstructorRParen = T.getCloseLocation();
|
|
if (ConstructorRParen.isInvalid()) {
|
|
SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
|
|
return ExprError();
|
|
}
|
|
Initializer = Actions.ActOnParenListExpr(ConstructorLParen,
|
|
ConstructorRParen,
|
|
ConstructorArgs);
|
|
} else if (Tok.is(tok::l_brace) && getLangOpts().CPlusPlus11) {
|
|
Diag(Tok.getLocation(),
|
|
diag::warn_cxx98_compat_generalized_initializer_lists);
|
|
Initializer = ParseBraceInitializer();
|
|
}
|
|
if (Initializer.isInvalid())
|
|
return Initializer;
|
|
|
|
return Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen,
|
|
PlacementArgs, PlacementRParen,
|
|
TypeIdParens, DeclaratorInfo, Initializer.get());
|
|
}
|
|
|
|
/// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be
|
|
/// passed to ParseDeclaratorInternal.
|
|
///
|
|
/// direct-new-declarator:
|
|
/// '[' expression[opt] ']'
|
|
/// direct-new-declarator '[' constant-expression ']'
|
|
///
|
|
void Parser::ParseDirectNewDeclarator(Declarator &D) {
|
|
// Parse the array dimensions.
|
|
bool First = true;
|
|
while (Tok.is(tok::l_square)) {
|
|
// An array-size expression can't start with a lambda.
|
|
if (CheckProhibitedCXX11Attribute())
|
|
continue;
|
|
|
|
BalancedDelimiterTracker T(*this, tok::l_square);
|
|
T.consumeOpen();
|
|
|
|
ExprResult Size =
|
|
First ? (Tok.is(tok::r_square) ? ExprResult() : ParseExpression())
|
|
: ParseConstantExpression();
|
|
if (Size.isInvalid()) {
|
|
// Recover
|
|
SkipUntil(tok::r_square, StopAtSemi);
|
|
return;
|
|
}
|
|
First = false;
|
|
|
|
T.consumeClose();
|
|
|
|
// Attributes here appertain to the array type. C++11 [expr.new]p5.
|
|
ParsedAttributes Attrs(AttrFactory);
|
|
MaybeParseCXX11Attributes(Attrs);
|
|
|
|
D.AddTypeInfo(DeclaratorChunk::getArray(0,
|
|
/*isStatic=*/false, /*isStar=*/false,
|
|
Size.get(), T.getOpenLocation(),
|
|
T.getCloseLocation()),
|
|
std::move(Attrs), T.getCloseLocation());
|
|
|
|
if (T.getCloseLocation().isInvalid())
|
|
return;
|
|
}
|
|
}
|
|
|
|
/// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id.
|
|
/// This ambiguity appears in the syntax of the C++ new operator.
|
|
///
|
|
/// new-expression:
|
|
/// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
|
|
/// new-initializer[opt]
|
|
///
|
|
/// new-placement:
|
|
/// '(' expression-list ')'
|
|
///
|
|
bool Parser::ParseExpressionListOrTypeId(
|
|
SmallVectorImpl<Expr*> &PlacementArgs,
|
|
Declarator &D) {
|
|
// The '(' was already consumed.
|
|
if (isTypeIdInParens()) {
|
|
ParseSpecifierQualifierList(D.getMutableDeclSpec());
|
|
D.SetSourceRange(D.getDeclSpec().getSourceRange());
|
|
ParseDeclarator(D);
|
|
return D.isInvalidType();
|
|
}
|
|
|
|
// It's not a type, it has to be an expression list.
|
|
// Discard the comma locations - ActOnCXXNew has enough parameters.
|
|
CommaLocsTy CommaLocs;
|
|
return ParseExpressionList(PlacementArgs, CommaLocs);
|
|
}
|
|
|
|
/// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used
|
|
/// to free memory allocated by new.
|
|
///
|
|
/// This method is called to parse the 'delete' expression after the optional
|
|
/// '::' has been already parsed. If the '::' was present, "UseGlobal" is true
|
|
/// and "Start" is its location. Otherwise, "Start" is the location of the
|
|
/// 'delete' token.
|
|
///
|
|
/// delete-expression:
|
|
/// '::'[opt] 'delete' cast-expression
|
|
/// '::'[opt] 'delete' '[' ']' cast-expression
|
|
ExprResult
|
|
Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) {
|
|
assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword");
|
|
ConsumeToken(); // Consume 'delete'
|
|
|
|
// Array delete?
|
|
bool ArrayDelete = false;
|
|
if (Tok.is(tok::l_square) && NextToken().is(tok::r_square)) {
|
|
// C++11 [expr.delete]p1:
|
|
// Whenever the delete keyword is followed by empty square brackets, it
|
|
// shall be interpreted as [array delete].
|
|
// [Footnote: A lambda expression with a lambda-introducer that consists
|
|
// of empty square brackets can follow the delete keyword if
|
|
// the lambda expression is enclosed in parentheses.]
|
|
|
|
const Token Next = GetLookAheadToken(2);
|
|
|
|
// Basic lookahead to check if we have a lambda expression.
|
|
if (Next.isOneOf(tok::l_brace, tok::less) ||
|
|
(Next.is(tok::l_paren) &&
|
|
(GetLookAheadToken(3).is(tok::r_paren) ||
|
|
(GetLookAheadToken(3).is(tok::identifier) &&
|
|
GetLookAheadToken(4).is(tok::identifier))))) {
|
|
TentativeParsingAction TPA(*this);
|
|
SourceLocation LSquareLoc = Tok.getLocation();
|
|
SourceLocation RSquareLoc = NextToken().getLocation();
|
|
|
|
// SkipUntil can't skip pairs of </*...*/>; don't emit a FixIt in this
|
|
// case.
|
|
SkipUntil({tok::l_brace, tok::less}, StopBeforeMatch);
|
|
SourceLocation RBraceLoc;
|
|
bool EmitFixIt = false;
|
|
if (Tok.is(tok::l_brace)) {
|
|
ConsumeBrace();
|
|
SkipUntil(tok::r_brace, StopBeforeMatch);
|
|
RBraceLoc = Tok.getLocation();
|
|
EmitFixIt = true;
|
|
}
|
|
|
|
TPA.Revert();
|
|
|
|
if (EmitFixIt)
|
|
Diag(Start, diag::err_lambda_after_delete)
|
|
<< SourceRange(Start, RSquareLoc)
|
|
<< FixItHint::CreateInsertion(LSquareLoc, "(")
|
|
<< FixItHint::CreateInsertion(
|
|
Lexer::getLocForEndOfToken(
|
|
RBraceLoc, 0, Actions.getSourceManager(), getLangOpts()),
|
|
")");
|
|
else
|
|
Diag(Start, diag::err_lambda_after_delete)
|
|
<< SourceRange(Start, RSquareLoc);
|
|
|
|
// Warn that the non-capturing lambda isn't surrounded by parentheses
|
|
// to disambiguate it from 'delete[]'.
|
|
ExprResult Lambda = ParseLambdaExpression();
|
|
if (Lambda.isInvalid())
|
|
return ExprError();
|
|
|
|
// Evaluate any postfix expressions used on the lambda.
|
|
Lambda = ParsePostfixExpressionSuffix(Lambda);
|
|
if (Lambda.isInvalid())
|
|
return ExprError();
|
|
return Actions.ActOnCXXDelete(Start, UseGlobal, /*ArrayForm=*/false,
|
|
Lambda.get());
|
|
}
|
|
|
|
ArrayDelete = true;
|
|
BalancedDelimiterTracker T(*this, tok::l_square);
|
|
|
|
T.consumeOpen();
|
|
T.consumeClose();
|
|
if (T.getCloseLocation().isInvalid())
|
|
return ExprError();
|
|
}
|
|
|
|
ExprResult Operand(ParseCastExpression(AnyCastExpr));
|
|
if (Operand.isInvalid())
|
|
return Operand;
|
|
|
|
return Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete, Operand.get());
|
|
}
|
|
|
|
/// ParseRequiresExpression - Parse a C++2a requires-expression.
|
|
/// C++2a [expr.prim.req]p1
|
|
/// A requires-expression provides a concise way to express requirements on
|
|
/// template arguments. A requirement is one that can be checked by name
|
|
/// lookup (6.4) or by checking properties of types and expressions.
|
|
///
|
|
/// requires-expression:
|
|
/// 'requires' requirement-parameter-list[opt] requirement-body
|
|
///
|
|
/// requirement-parameter-list:
|
|
/// '(' parameter-declaration-clause[opt] ')'
|
|
///
|
|
/// requirement-body:
|
|
/// '{' requirement-seq '}'
|
|
///
|
|
/// requirement-seq:
|
|
/// requirement
|
|
/// requirement-seq requirement
|
|
///
|
|
/// requirement:
|
|
/// simple-requirement
|
|
/// type-requirement
|
|
/// compound-requirement
|
|
/// nested-requirement
|
|
ExprResult Parser::ParseRequiresExpression() {
|
|
assert(Tok.is(tok::kw_requires) && "Expected 'requires' keyword");
|
|
SourceLocation RequiresKWLoc = ConsumeToken(); // Consume 'requires'
|
|
|
|
llvm::SmallVector<ParmVarDecl *, 2> LocalParameterDecls;
|
|
if (Tok.is(tok::l_paren)) {
|
|
// requirement parameter list is present.
|
|
ParseScope LocalParametersScope(this, Scope::FunctionPrototypeScope |
|
|
Scope::DeclScope);
|
|
BalancedDelimiterTracker Parens(*this, tok::l_paren);
|
|
Parens.consumeOpen();
|
|
if (!Tok.is(tok::r_paren)) {
|
|
ParsedAttributes FirstArgAttrs(getAttrFactory());
|
|
SourceLocation EllipsisLoc;
|
|
llvm::SmallVector<DeclaratorChunk::ParamInfo, 2> LocalParameters;
|
|
ParseParameterDeclarationClause(DeclaratorContext::RequiresExpr,
|
|
FirstArgAttrs, LocalParameters,
|
|
EllipsisLoc);
|
|
if (EllipsisLoc.isValid())
|
|
Diag(EllipsisLoc, diag::err_requires_expr_parameter_list_ellipsis);
|
|
for (auto &ParamInfo : LocalParameters)
|
|
LocalParameterDecls.push_back(cast<ParmVarDecl>(ParamInfo.Param));
|
|
}
|
|
Parens.consumeClose();
|
|
}
|
|
|
|
BalancedDelimiterTracker Braces(*this, tok::l_brace);
|
|
if (Braces.expectAndConsume())
|
|
return ExprError();
|
|
|
|
// Start of requirement list
|
|
llvm::SmallVector<concepts::Requirement *, 2> Requirements;
|
|
|
|
// C++2a [expr.prim.req]p2
|
|
// Expressions appearing within a requirement-body are unevaluated operands.
|
|
EnterExpressionEvaluationContext Ctx(
|
|
Actions, Sema::ExpressionEvaluationContext::Unevaluated);
|
|
|
|
ParseScope BodyScope(this, Scope::DeclScope);
|
|
RequiresExprBodyDecl *Body = Actions.ActOnStartRequiresExpr(
|
|
RequiresKWLoc, LocalParameterDecls, getCurScope());
|
|
|
|
if (Tok.is(tok::r_brace)) {
|
|
// Grammar does not allow an empty body.
|
|
// requirement-body:
|
|
// { requirement-seq }
|
|
// requirement-seq:
|
|
// requirement
|
|
// requirement-seq requirement
|
|
Diag(Tok, diag::err_empty_requires_expr);
|
|
// Continue anyway and produce a requires expr with no requirements.
|
|
} else {
|
|
while (!Tok.is(tok::r_brace)) {
|
|
switch (Tok.getKind()) {
|
|
case tok::l_brace: {
|
|
// Compound requirement
|
|
// C++ [expr.prim.req.compound]
|
|
// compound-requirement:
|
|
// '{' expression '}' 'noexcept'[opt]
|
|
// return-type-requirement[opt] ';'
|
|
// return-type-requirement:
|
|
// trailing-return-type
|
|
// '->' cv-qualifier-seq[opt] constrained-parameter
|
|
// cv-qualifier-seq[opt] abstract-declarator[opt]
|
|
BalancedDelimiterTracker ExprBraces(*this, tok::l_brace);
|
|
ExprBraces.consumeOpen();
|
|
ExprResult Expression =
|
|
Actions.CorrectDelayedTyposInExpr(ParseExpression());
|
|
if (!Expression.isUsable()) {
|
|
ExprBraces.skipToEnd();
|
|
SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
|
|
break;
|
|
}
|
|
if (ExprBraces.consumeClose())
|
|
ExprBraces.skipToEnd();
|
|
|
|
concepts::Requirement *Req = nullptr;
|
|
SourceLocation NoexceptLoc;
|
|
TryConsumeToken(tok::kw_noexcept, NoexceptLoc);
|
|
if (Tok.is(tok::semi)) {
|
|
Req = Actions.ActOnCompoundRequirement(Expression.get(), NoexceptLoc);
|
|
if (Req)
|
|
Requirements.push_back(Req);
|
|
break;
|
|
}
|
|
if (!TryConsumeToken(tok::arrow))
|
|
// User probably forgot the arrow, remind them and try to continue.
|
|
Diag(Tok, diag::err_requires_expr_missing_arrow)
|
|
<< FixItHint::CreateInsertion(Tok.getLocation(), "->");
|
|
// Try to parse a 'type-constraint'
|
|
if (TryAnnotateTypeConstraint()) {
|
|
SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
|
|
break;
|
|
}
|
|
if (!isTypeConstraintAnnotation()) {
|
|
Diag(Tok, diag::err_requires_expr_expected_type_constraint);
|
|
SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
|
|
break;
|
|
}
|
|
CXXScopeSpec SS;
|
|
if (Tok.is(tok::annot_cxxscope)) {
|
|
Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
|
|
Tok.getAnnotationRange(),
|
|
SS);
|
|
ConsumeAnnotationToken();
|
|
}
|
|
|
|
Req = Actions.ActOnCompoundRequirement(
|
|
Expression.get(), NoexceptLoc, SS, takeTemplateIdAnnotation(Tok),
|
|
TemplateParameterDepth);
|
|
ConsumeAnnotationToken();
|
|
if (Req)
|
|
Requirements.push_back(Req);
|
|
break;
|
|
}
|
|
default: {
|
|
bool PossibleRequiresExprInSimpleRequirement = false;
|
|
if (Tok.is(tok::kw_requires)) {
|
|
auto IsNestedRequirement = [&] {
|
|
RevertingTentativeParsingAction TPA(*this);
|
|
ConsumeToken(); // 'requires'
|
|
if (Tok.is(tok::l_brace))
|
|
// This is a requires expression
|
|
// requires (T t) {
|
|
// requires { t++; };
|
|
// ... ^
|
|
// }
|
|
return false;
|
|
if (Tok.is(tok::l_paren)) {
|
|
// This might be the parameter list of a requires expression
|
|
ConsumeParen();
|
|
auto Res = TryParseParameterDeclarationClause();
|
|
if (Res != TPResult::False) {
|
|
// Skip to the closing parenthesis
|
|
// FIXME: Don't traverse these tokens twice (here and in
|
|
// TryParseParameterDeclarationClause).
|
|
unsigned Depth = 1;
|
|
while (Depth != 0) {
|
|
if (Tok.is(tok::l_paren))
|
|
Depth++;
|
|
else if (Tok.is(tok::r_paren))
|
|
Depth--;
|
|
ConsumeAnyToken();
|
|
}
|
|
// requires (T t) {
|
|
// requires () ?
|
|
// ... ^
|
|
// - OR -
|
|
// requires (int x) ?
|
|
// ... ^
|
|
// }
|
|
if (Tok.is(tok::l_brace))
|
|
// requires (...) {
|
|
// ^ - a requires expression as a
|
|
// simple-requirement.
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
};
|
|
if (IsNestedRequirement()) {
|
|
ConsumeToken();
|
|
// Nested requirement
|
|
// C++ [expr.prim.req.nested]
|
|
// nested-requirement:
|
|
// 'requires' constraint-expression ';'
|
|
ExprResult ConstraintExpr =
|
|
Actions.CorrectDelayedTyposInExpr(ParseConstraintExpression());
|
|
if (ConstraintExpr.isInvalid() || !ConstraintExpr.isUsable()) {
|
|
SkipUntil(tok::semi, tok::r_brace,
|
|
SkipUntilFlags::StopBeforeMatch);
|
|
break;
|
|
}
|
|
if (auto *Req =
|
|
Actions.ActOnNestedRequirement(ConstraintExpr.get()))
|
|
Requirements.push_back(Req);
|
|
else {
|
|
SkipUntil(tok::semi, tok::r_brace,
|
|
SkipUntilFlags::StopBeforeMatch);
|
|
break;
|
|
}
|
|
break;
|
|
} else
|
|
PossibleRequiresExprInSimpleRequirement = true;
|
|
} else if (Tok.is(tok::kw_typename)) {
|
|
// This might be 'typename T::value_type;' (a type requirement) or
|
|
// 'typename T::value_type{};' (a simple requirement).
|
|
TentativeParsingAction TPA(*this);
|
|
|
|
// We need to consume the typename to allow 'requires { typename a; }'
|
|
SourceLocation TypenameKWLoc = ConsumeToken();
|
|
if (TryAnnotateCXXScopeToken()) {
|
|
TPA.Commit();
|
|
SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
|
|
break;
|
|
}
|
|
CXXScopeSpec SS;
|
|
if (Tok.is(tok::annot_cxxscope)) {
|
|
Actions.RestoreNestedNameSpecifierAnnotation(
|
|
Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS);
|
|
ConsumeAnnotationToken();
|
|
}
|
|
|
|
if (Tok.isOneOf(tok::identifier, tok::annot_template_id) &&
|
|
!NextToken().isOneOf(tok::l_brace, tok::l_paren)) {
|
|
TPA.Commit();
|
|
SourceLocation NameLoc = Tok.getLocation();
|
|
IdentifierInfo *II = nullptr;
|
|
TemplateIdAnnotation *TemplateId = nullptr;
|
|
if (Tok.is(tok::identifier)) {
|
|
II = Tok.getIdentifierInfo();
|
|
ConsumeToken();
|
|
} else {
|
|
TemplateId = takeTemplateIdAnnotation(Tok);
|
|
ConsumeAnnotationToken();
|
|
if (TemplateId->isInvalid())
|
|
break;
|
|
}
|
|
|
|
if (auto *Req = Actions.ActOnTypeRequirement(TypenameKWLoc, SS,
|
|
NameLoc, II,
|
|
TemplateId)) {
|
|
Requirements.push_back(Req);
|
|
}
|
|
break;
|
|
}
|
|
TPA.Revert();
|
|
}
|
|
// Simple requirement
|
|
// C++ [expr.prim.req.simple]
|
|
// simple-requirement:
|
|
// expression ';'
|
|
SourceLocation StartLoc = Tok.getLocation();
|
|
ExprResult Expression =
|
|
Actions.CorrectDelayedTyposInExpr(ParseExpression());
|
|
if (!Expression.isUsable()) {
|
|
SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
|
|
break;
|
|
}
|
|
if (!Expression.isInvalid() && PossibleRequiresExprInSimpleRequirement)
|
|
Diag(StartLoc, diag::warn_requires_expr_in_simple_requirement)
|
|
<< FixItHint::CreateInsertion(StartLoc, "requires");
|
|
if (auto *Req = Actions.ActOnSimpleRequirement(Expression.get()))
|
|
Requirements.push_back(Req);
|
|
else {
|
|
SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
|
|
break;
|
|
}
|
|
// User may have tried to put some compound requirement stuff here
|
|
if (Tok.is(tok::kw_noexcept)) {
|
|
Diag(Tok, diag::err_requires_expr_simple_requirement_noexcept)
|
|
<< FixItHint::CreateInsertion(StartLoc, "{")
|
|
<< FixItHint::CreateInsertion(Tok.getLocation(), "}");
|
|
SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
if (ExpectAndConsumeSemi(diag::err_expected_semi_requirement)) {
|
|
SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
|
|
TryConsumeToken(tok::semi);
|
|
break;
|
|
}
|
|
}
|
|
if (Requirements.empty()) {
|
|
// Don't emit an empty requires expr here to avoid confusing the user with
|
|
// other diagnostics quoting an empty requires expression they never
|
|
// wrote.
|
|
Braces.consumeClose();
|
|
Actions.ActOnFinishRequiresExpr();
|
|
return ExprError();
|
|
}
|
|
}
|
|
Braces.consumeClose();
|
|
Actions.ActOnFinishRequiresExpr();
|
|
return Actions.ActOnRequiresExpr(RequiresKWLoc, Body, LocalParameterDecls,
|
|
Requirements, Braces.getCloseLocation());
|
|
}
|
|
|
|
static TypeTrait TypeTraitFromTokKind(tok::TokenKind kind) {
|
|
switch (kind) {
|
|
default: llvm_unreachable("Not a known type trait");
|
|
#define TYPE_TRAIT_1(Spelling, Name, Key) \
|
|
case tok::kw_ ## Spelling: return UTT_ ## Name;
|
|
#define TYPE_TRAIT_2(Spelling, Name, Key) \
|
|
case tok::kw_ ## Spelling: return BTT_ ## Name;
|
|
#include "clang/Basic/TokenKinds.def"
|
|
#define TYPE_TRAIT_N(Spelling, Name, Key) \
|
|
case tok::kw_ ## Spelling: return TT_ ## Name;
|
|
#include "clang/Basic/TokenKinds.def"
|
|
}
|
|
}
|
|
|
|
static ArrayTypeTrait ArrayTypeTraitFromTokKind(tok::TokenKind kind) {
|
|
switch (kind) {
|
|
default:
|
|
llvm_unreachable("Not a known array type trait");
|
|
#define ARRAY_TYPE_TRAIT(Spelling, Name, Key) \
|
|
case tok::kw_##Spelling: \
|
|
return ATT_##Name;
|
|
#include "clang/Basic/TokenKinds.def"
|
|
}
|
|
}
|
|
|
|
static ExpressionTrait ExpressionTraitFromTokKind(tok::TokenKind kind) {
|
|
switch (kind) {
|
|
default:
|
|
llvm_unreachable("Not a known unary expression trait.");
|
|
#define EXPRESSION_TRAIT(Spelling, Name, Key) \
|
|
case tok::kw_##Spelling: \
|
|
return ET_##Name;
|
|
#include "clang/Basic/TokenKinds.def"
|
|
}
|
|
}
|
|
|
|
static unsigned TypeTraitArity(tok::TokenKind kind) {
|
|
switch (kind) {
|
|
default: llvm_unreachable("Not a known type trait");
|
|
#define TYPE_TRAIT(N,Spelling,K) case tok::kw_##Spelling: return N;
|
|
#include "clang/Basic/TokenKinds.def"
|
|
}
|
|
}
|
|
|
|
/// Parse the built-in type-trait pseudo-functions that allow
|
|
/// implementation of the TR1/C++11 type traits templates.
|
|
///
|
|
/// primary-expression:
|
|
/// unary-type-trait '(' type-id ')'
|
|
/// binary-type-trait '(' type-id ',' type-id ')'
|
|
/// type-trait '(' type-id-seq ')'
|
|
///
|
|
/// type-id-seq:
|
|
/// type-id ...[opt] type-id-seq[opt]
|
|
///
|
|
ExprResult Parser::ParseTypeTrait() {
|
|
tok::TokenKind Kind = Tok.getKind();
|
|
unsigned Arity = TypeTraitArity(Kind);
|
|
|
|
SourceLocation Loc = ConsumeToken();
|
|
|
|
BalancedDelimiterTracker Parens(*this, tok::l_paren);
|
|
if (Parens.expectAndConsume())
|
|
return ExprError();
|
|
|
|
SmallVector<ParsedType, 2> Args;
|
|
do {
|
|
// Parse the next type.
|
|
TypeResult Ty = ParseTypeName();
|
|
if (Ty.isInvalid()) {
|
|
Parens.skipToEnd();
|
|
return ExprError();
|
|
}
|
|
|
|
// Parse the ellipsis, if present.
|
|
if (Tok.is(tok::ellipsis)) {
|
|
Ty = Actions.ActOnPackExpansion(Ty.get(), ConsumeToken());
|
|
if (Ty.isInvalid()) {
|
|
Parens.skipToEnd();
|
|
return ExprError();
|
|
}
|
|
}
|
|
|
|
// Add this type to the list of arguments.
|
|
Args.push_back(Ty.get());
|
|
} while (TryConsumeToken(tok::comma));
|
|
|
|
if (Parens.consumeClose())
|
|
return ExprError();
|
|
|
|
SourceLocation EndLoc = Parens.getCloseLocation();
|
|
|
|
if (Arity && Args.size() != Arity) {
|
|
Diag(EndLoc, diag::err_type_trait_arity)
|
|
<< Arity << 0 << (Arity > 1) << (int)Args.size() << SourceRange(Loc);
|
|
return ExprError();
|
|
}
|
|
|
|
if (!Arity && Args.empty()) {
|
|
Diag(EndLoc, diag::err_type_trait_arity)
|
|
<< 1 << 1 << 1 << (int)Args.size() << SourceRange(Loc);
|
|
return ExprError();
|
|
}
|
|
|
|
return Actions.ActOnTypeTrait(TypeTraitFromTokKind(Kind), Loc, Args, EndLoc);
|
|
}
|
|
|
|
/// ParseArrayTypeTrait - Parse the built-in array type-trait
|
|
/// pseudo-functions.
|
|
///
|
|
/// primary-expression:
|
|
/// [Embarcadero] '__array_rank' '(' type-id ')'
|
|
/// [Embarcadero] '__array_extent' '(' type-id ',' expression ')'
|
|
///
|
|
ExprResult Parser::ParseArrayTypeTrait() {
|
|
ArrayTypeTrait ATT = ArrayTypeTraitFromTokKind(Tok.getKind());
|
|
SourceLocation Loc = ConsumeToken();
|
|
|
|
BalancedDelimiterTracker T(*this, tok::l_paren);
|
|
if (T.expectAndConsume())
|
|
return ExprError();
|
|
|
|
TypeResult Ty = ParseTypeName();
|
|
if (Ty.isInvalid()) {
|
|
SkipUntil(tok::comma, StopAtSemi);
|
|
SkipUntil(tok::r_paren, StopAtSemi);
|
|
return ExprError();
|
|
}
|
|
|
|
switch (ATT) {
|
|
case ATT_ArrayRank: {
|
|
T.consumeClose();
|
|
return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), nullptr,
|
|
T.getCloseLocation());
|
|
}
|
|
case ATT_ArrayExtent: {
|
|
if (ExpectAndConsume(tok::comma)) {
|
|
SkipUntil(tok::r_paren, StopAtSemi);
|
|
return ExprError();
|
|
}
|
|
|
|
ExprResult DimExpr = ParseExpression();
|
|
T.consumeClose();
|
|
|
|
return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), DimExpr.get(),
|
|
T.getCloseLocation());
|
|
}
|
|
}
|
|
llvm_unreachable("Invalid ArrayTypeTrait!");
|
|
}
|
|
|
|
/// ParseExpressionTrait - Parse built-in expression-trait
|
|
/// pseudo-functions like __is_lvalue_expr( xxx ).
|
|
///
|
|
/// primary-expression:
|
|
/// [Embarcadero] expression-trait '(' expression ')'
|
|
///
|
|
ExprResult Parser::ParseExpressionTrait() {
|
|
ExpressionTrait ET = ExpressionTraitFromTokKind(Tok.getKind());
|
|
SourceLocation Loc = ConsumeToken();
|
|
|
|
BalancedDelimiterTracker T(*this, tok::l_paren);
|
|
if (T.expectAndConsume())
|
|
return ExprError();
|
|
|
|
ExprResult Expr = ParseExpression();
|
|
|
|
T.consumeClose();
|
|
|
|
return Actions.ActOnExpressionTrait(ET, Loc, Expr.get(),
|
|
T.getCloseLocation());
|
|
}
|
|
|
|
|
|
/// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a
|
|
/// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate
|
|
/// based on the context past the parens.
|
|
ExprResult
|
|
Parser::ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType,
|
|
ParsedType &CastTy,
|
|
BalancedDelimiterTracker &Tracker,
|
|
ColonProtectionRAIIObject &ColonProt) {
|
|
assert(getLangOpts().CPlusPlus && "Should only be called for C++!");
|
|
assert(ExprType == CastExpr && "Compound literals are not ambiguous!");
|
|
assert(isTypeIdInParens() && "Not a type-id!");
|
|
|
|
ExprResult Result(true);
|
|
CastTy = nullptr;
|
|
|
|
// We need to disambiguate a very ugly part of the C++ syntax:
|
|
//
|
|
// (T())x; - type-id
|
|
// (T())*x; - type-id
|
|
// (T())/x; - expression
|
|
// (T()); - expression
|
|
//
|
|
// The bad news is that we cannot use the specialized tentative parser, since
|
|
// it can only verify that the thing inside the parens can be parsed as
|
|
// type-id, it is not useful for determining the context past the parens.
|
|
//
|
|
// The good news is that the parser can disambiguate this part without
|
|
// making any unnecessary Action calls.
|
|
//
|
|
// It uses a scheme similar to parsing inline methods. The parenthesized
|
|
// tokens are cached, the context that follows is determined (possibly by
|
|
// parsing a cast-expression), and then we re-introduce the cached tokens
|
|
// into the token stream and parse them appropriately.
|
|
|
|
ParenParseOption ParseAs;
|
|
CachedTokens Toks;
|
|
|
|
// Store the tokens of the parentheses. We will parse them after we determine
|
|
// the context that follows them.
|
|
if (!ConsumeAndStoreUntil(tok::r_paren, Toks)) {
|
|
// We didn't find the ')' we expected.
|
|
Tracker.consumeClose();
|
|
return ExprError();
|
|
}
|
|
|
|
if (Tok.is(tok::l_brace)) {
|
|
ParseAs = CompoundLiteral;
|
|
} else {
|
|
bool NotCastExpr;
|
|
if (Tok.is(tok::l_paren) && NextToken().is(tok::r_paren)) {
|
|
NotCastExpr = true;
|
|
} else {
|
|
// Try parsing the cast-expression that may follow.
|
|
// If it is not a cast-expression, NotCastExpr will be true and no token
|
|
// will be consumed.
|
|
ColonProt.restore();
|
|
Result = ParseCastExpression(AnyCastExpr,
|
|
false/*isAddressofOperand*/,
|
|
NotCastExpr,
|
|
// type-id has priority.
|
|
IsTypeCast);
|
|
}
|
|
|
|
// If we parsed a cast-expression, it's really a type-id, otherwise it's
|
|
// an expression.
|
|
ParseAs = NotCastExpr ? SimpleExpr : CastExpr;
|
|
}
|
|
|
|
// Create a fake EOF to mark end of Toks buffer.
|
|
Token AttrEnd;
|
|
AttrEnd.startToken();
|
|
AttrEnd.setKind(tok::eof);
|
|
AttrEnd.setLocation(Tok.getLocation());
|
|
AttrEnd.setEofData(Toks.data());
|
|
Toks.push_back(AttrEnd);
|
|
|
|
// The current token should go after the cached tokens.
|
|
Toks.push_back(Tok);
|
|
// Re-enter the stored parenthesized tokens into the token stream, so we may
|
|
// parse them now.
|
|
PP.EnterTokenStream(Toks, /*DisableMacroExpansion*/ true,
|
|
/*IsReinject*/ true);
|
|
// Drop the current token and bring the first cached one. It's the same token
|
|
// as when we entered this function.
|
|
ConsumeAnyToken();
|
|
|
|
if (ParseAs >= CompoundLiteral) {
|
|
// Parse the type declarator.
|
|
DeclSpec DS(AttrFactory);
|
|
Declarator DeclaratorInfo(DS, DeclaratorContext::TypeName);
|
|
{
|
|
ColonProtectionRAIIObject InnerColonProtection(*this);
|
|
ParseSpecifierQualifierList(DS);
|
|
ParseDeclarator(DeclaratorInfo);
|
|
}
|
|
|
|
// Match the ')'.
|
|
Tracker.consumeClose();
|
|
ColonProt.restore();
|
|
|
|
// Consume EOF marker for Toks buffer.
|
|
assert(Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData());
|
|
ConsumeAnyToken();
|
|
|
|
if (ParseAs == CompoundLiteral) {
|
|
ExprType = CompoundLiteral;
|
|
if (DeclaratorInfo.isInvalidType())
|
|
return ExprError();
|
|
|
|
TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
|
|
return ParseCompoundLiteralExpression(Ty.get(),
|
|
Tracker.getOpenLocation(),
|
|
Tracker.getCloseLocation());
|
|
}
|
|
|
|
// We parsed '(' type-id ')' and the thing after it wasn't a '{'.
|
|
assert(ParseAs == CastExpr);
|
|
|
|
if (DeclaratorInfo.isInvalidType())
|
|
return ExprError();
|
|
|
|
// Result is what ParseCastExpression returned earlier.
|
|
if (!Result.isInvalid())
|
|
Result = Actions.ActOnCastExpr(getCurScope(), Tracker.getOpenLocation(),
|
|
DeclaratorInfo, CastTy,
|
|
Tracker.getCloseLocation(), Result.get());
|
|
return Result;
|
|
}
|
|
|
|
// Not a compound literal, and not followed by a cast-expression.
|
|
assert(ParseAs == SimpleExpr);
|
|
|
|
ExprType = SimpleExpr;
|
|
Result = ParseExpression();
|
|
if (!Result.isInvalid() && Tok.is(tok::r_paren))
|
|
Result = Actions.ActOnParenExpr(Tracker.getOpenLocation(),
|
|
Tok.getLocation(), Result.get());
|
|
|
|
// Match the ')'.
|
|
if (Result.isInvalid()) {
|
|
while (Tok.isNot(tok::eof))
|
|
ConsumeAnyToken();
|
|
assert(Tok.getEofData() == AttrEnd.getEofData());
|
|
ConsumeAnyToken();
|
|
return ExprError();
|
|
}
|
|
|
|
Tracker.consumeClose();
|
|
// Consume EOF marker for Toks buffer.
|
|
assert(Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData());
|
|
ConsumeAnyToken();
|
|
return Result;
|
|
}
|
|
|
|
/// Parse a __builtin_bit_cast(T, E).
|
|
ExprResult Parser::ParseBuiltinBitCast() {
|
|
SourceLocation KWLoc = ConsumeToken();
|
|
|
|
BalancedDelimiterTracker T(*this, tok::l_paren);
|
|
if (T.expectAndConsume(diag::err_expected_lparen_after, "__builtin_bit_cast"))
|
|
return ExprError();
|
|
|
|
// Parse the common declaration-specifiers piece.
|
|
DeclSpec DS(AttrFactory);
|
|
ParseSpecifierQualifierList(DS);
|
|
|
|
// Parse the abstract-declarator, if present.
|
|
Declarator DeclaratorInfo(DS, DeclaratorContext::TypeName);
|
|
ParseDeclarator(DeclaratorInfo);
|
|
|
|
if (ExpectAndConsume(tok::comma)) {
|
|
Diag(Tok.getLocation(), diag::err_expected) << tok::comma;
|
|
SkipUntil(tok::r_paren, StopAtSemi);
|
|
return ExprError();
|
|
}
|
|
|
|
ExprResult Operand = ParseExpression();
|
|
|
|
if (T.consumeClose())
|
|
return ExprError();
|
|
|
|
if (Operand.isInvalid() || DeclaratorInfo.isInvalidType())
|
|
return ExprError();
|
|
|
|
return Actions.ActOnBuiltinBitCastExpr(KWLoc, DeclaratorInfo, Operand,
|
|
T.getCloseLocation());
|
|
}
|