forked from OSchip/llvm-project
789 lines
24 KiB
C++
789 lines
24 KiB
C++
//===----- ScopDetection.cpp - Detect Scops --------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Detect the maximal Scops of a function.
|
|
//
|
|
// A static control part (Scop) is a subgraph of the control flow graph (CFG)
|
|
// that only has statically known control flow and can therefore be described
|
|
// within the polyhedral model.
|
|
//
|
|
// Every Scop fullfills these restrictions:
|
|
//
|
|
// * It is a single entry single exit region
|
|
//
|
|
// * Only affine linear bounds in the loops
|
|
//
|
|
// Every natural loop in a Scop must have a number of loop iterations that can
|
|
// be described as an affine linear function in surrounding loop iterators or
|
|
// parameters. (A parameter is a scalar that does not change its value during
|
|
// execution of the Scop).
|
|
//
|
|
// * Only comparisons of affine linear expressions in conditions
|
|
//
|
|
// * All loops and conditions perfectly nested
|
|
//
|
|
// The control flow needs to be structured such that it could be written using
|
|
// just 'for' and 'if' statements, without the need for any 'goto', 'break' or
|
|
// 'continue'.
|
|
//
|
|
// * Side effect free functions call
|
|
//
|
|
// Only function calls and intrinsics that do not have side effects are allowed
|
|
// (readnone).
|
|
//
|
|
// The Scop detection finds the largest Scops by checking if the largest
|
|
// region is a Scop. If this is not the case, its canonical subregions are
|
|
// checked until a region is a Scop. It is now tried to extend this Scop by
|
|
// creating a larger non canonical region.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "polly/ScopDetection.h"
|
|
|
|
#include "polly/LinkAllPasses.h"
|
|
#include "polly/Support/ScopHelper.h"
|
|
#include "polly/Support/AffineSCEVIterator.h"
|
|
|
|
#include "llvm/LLVMContext.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/RegionIterator.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Assembly/Writer.h"
|
|
|
|
#define DEBUG_TYPE "polly-detect"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
using namespace llvm;
|
|
using namespace polly;
|
|
|
|
static cl::opt<std::string>
|
|
OnlyFunction("polly-detect-only",
|
|
cl::desc("Only detect scops in function"), cl::Hidden,
|
|
cl::value_desc("The function name to detect scops in"),
|
|
cl::ValueRequired, cl::init(""));
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Statistics.
|
|
|
|
STATISTIC(ValidRegion, "Number of regions that a valid part of Scop");
|
|
|
|
#define BADSCOP_STAT(NAME, DESC) STATISTIC(Bad##NAME##ForScop, \
|
|
"Number of bad regions for Scop: "\
|
|
DESC)
|
|
|
|
#define STATSCOP(NAME); assert(!Context.Verifying && #NAME); \
|
|
if (!Context.Verifying) ++Bad##NAME##ForScop;
|
|
|
|
#define INVALID(NAME, MESSAGE) \
|
|
do { \
|
|
std::string Buf; \
|
|
raw_string_ostream fmt(Buf); \
|
|
fmt << MESSAGE; \
|
|
fmt.flush(); \
|
|
LastFailure = Buf; \
|
|
DEBUG(dbgs() << MESSAGE); \
|
|
DEBUG(dbgs() << "\n"); \
|
|
STATSCOP(NAME); \
|
|
return false; \
|
|
} while (0);
|
|
|
|
|
|
BADSCOP_STAT(CFG, "CFG too complex");
|
|
BADSCOP_STAT(IndVar, "Non canonical induction variable in loop");
|
|
BADSCOP_STAT(LoopBound, "Loop bounds can not be computed");
|
|
BADSCOP_STAT(FuncCall, "Function call with side effects appeared");
|
|
BADSCOP_STAT(AffFunc, "Expression not affine");
|
|
BADSCOP_STAT(Scalar, "Found scalar dependency");
|
|
BADSCOP_STAT(Alias, "Found base address alias");
|
|
BADSCOP_STAT(SimpleRegion, "Region not simple");
|
|
BADSCOP_STAT(Other, "Others");
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ScopDetection.
|
|
|
|
namespace SCEVType {
|
|
enum TYPE {INT, PARAM, IV, INVALID};
|
|
}
|
|
|
|
/// Check if a SCEV is valid in a SCoP.
|
|
struct SCEVValidator : public SCEVVisitor<SCEVValidator, SCEVType::TYPE> {
|
|
private:
|
|
const Region *R;
|
|
ScalarEvolution &SE;
|
|
const Value **BaseAddress;
|
|
|
|
public:
|
|
static bool isValid(const Region *R, const SCEV *Scev,
|
|
ScalarEvolution &SE,
|
|
const Value **BaseAddress = NULL) {
|
|
if (isa<SCEVCouldNotCompute>(Scev))
|
|
return false;
|
|
|
|
SCEVValidator Validator(R, SE, BaseAddress);
|
|
return Validator.visit(Scev) != SCEVType::INVALID;
|
|
}
|
|
|
|
SCEVValidator(const Region *R, ScalarEvolution &SE,
|
|
const Value **BaseAddress) : R(R), SE(SE),
|
|
BaseAddress(BaseAddress) {};
|
|
|
|
SCEVType::TYPE visitConstant(const SCEVConstant *Constant) {
|
|
return SCEVType::INT;
|
|
}
|
|
|
|
SCEVType::TYPE visitTruncateExpr(const SCEVTruncateExpr* Expr) {
|
|
SCEVType::TYPE Op = visit(Expr->getOperand());
|
|
|
|
// We cannot represent this as a affine expression yet. If it is constant
|
|
// during Scop execution treat this as a parameter, otherwise bail out.
|
|
if (Op == SCEVType::INT || Op == SCEVType::PARAM)
|
|
return SCEVType::PARAM;
|
|
|
|
return SCEVType::INVALID;
|
|
}
|
|
|
|
SCEVType::TYPE visitZeroExtendExpr(const SCEVZeroExtendExpr * Expr) {
|
|
SCEVType::TYPE Op = visit(Expr->getOperand());
|
|
|
|
// We cannot represent this as a affine expression yet. If it is constant
|
|
// during Scop execution treat this as a parameter, otherwise bail out.
|
|
if (Op == SCEVType::INT || Op == SCEVType::PARAM)
|
|
return SCEVType::PARAM;
|
|
|
|
return SCEVType::INVALID;
|
|
}
|
|
|
|
SCEVType::TYPE visitSignExtendExpr(const SCEVSignExtendExpr* Expr) {
|
|
// Assuming the value is signed, a sign extension is basically a noop.
|
|
// TODO: Reconsider this as soon as we support unsigned values.
|
|
return visit(Expr->getOperand());
|
|
}
|
|
|
|
SCEVType::TYPE visitAddExpr(const SCEVAddExpr* Expr) {
|
|
SCEVType::TYPE Return = SCEVType::INT;
|
|
|
|
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
|
|
SCEVType::TYPE OpType = visit(Expr->getOperand(i));
|
|
Return = std::max(Return, OpType);
|
|
}
|
|
|
|
// TODO: Check for NSW and NUW.
|
|
return Return;
|
|
}
|
|
|
|
SCEVType::TYPE visitMulExpr(const SCEVMulExpr* Expr) {
|
|
SCEVType::TYPE Return = SCEVType::INT;
|
|
|
|
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
|
|
SCEVType::TYPE OpType = visit(Expr->getOperand(i));
|
|
|
|
if (OpType == SCEVType::INVALID)
|
|
return SCEVType::INVALID;
|
|
|
|
if (OpType == SCEVType::IV) {
|
|
if (Return == SCEVType::PARAM || Return == SCEVType::IV)
|
|
return SCEVType::INVALID;
|
|
|
|
Return = OpType;
|
|
continue;
|
|
}
|
|
|
|
if (OpType == SCEVType::PARAM) {
|
|
if (Return == SCEVType::PARAM)
|
|
return SCEVType::INVALID;
|
|
|
|
Return = SCEVType::PARAM;
|
|
continue;
|
|
}
|
|
|
|
// OpType == SCEVType::INT, no need to change anything.
|
|
}
|
|
|
|
// TODO: Check for NSW and NUW.
|
|
return Return;
|
|
}
|
|
|
|
SCEVType::TYPE visitUDivExpr(const SCEVUDivExpr* Expr) {
|
|
// We do not yet support unsigned operations.
|
|
return SCEVType::INVALID;
|
|
}
|
|
|
|
SCEVType::TYPE visitAddRecExpr(const SCEVAddRecExpr* Expr) {
|
|
if (!Expr->isAffine())
|
|
return SCEVType::INVALID;
|
|
|
|
SCEVType::TYPE Start = visit(Expr->getStart());
|
|
|
|
if (Start == SCEVType::INVALID)
|
|
return Start;
|
|
|
|
SCEVType::TYPE Recurrence = visit(Expr->getStepRecurrence(SE));
|
|
if (Recurrence != SCEVType::INT)
|
|
return SCEVType::INVALID;
|
|
|
|
return SCEVType::PARAM;
|
|
}
|
|
|
|
SCEVType::TYPE visitSMaxExpr(const SCEVSMaxExpr* Expr) {
|
|
SCEVType::TYPE Return = SCEVType::INT;
|
|
|
|
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
|
|
SCEVType::TYPE OpType = visit(Expr->getOperand(i));
|
|
|
|
if (OpType == SCEVType::INVALID)
|
|
return SCEVType::INVALID;
|
|
if (OpType == SCEVType::PARAM)
|
|
Return = SCEVType::PARAM;
|
|
}
|
|
|
|
return Return;
|
|
}
|
|
|
|
SCEVType::TYPE visitUMaxExpr(const SCEVUMaxExpr* Expr) {
|
|
// We do not yet support unsigned operations. If 'Expr' is constant
|
|
// during Scop execution treat this as a parameter, otherwise bail out.
|
|
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
|
|
SCEVType::TYPE OpType = visit(Expr->getOperand(i));
|
|
|
|
if (OpType != SCEVType::INT && OpType != SCEVType::PARAM)
|
|
return SCEVType::PARAM;
|
|
}
|
|
|
|
return SCEVType::PARAM;
|
|
}
|
|
|
|
SCEVType::TYPE visitUnknown(const SCEVUnknown* Expr) {
|
|
if (Instruction *I = dyn_cast<Instruction>(Expr->getValue()))
|
|
if (R->contains(I))
|
|
return SCEVType::INVALID;
|
|
return SCEVType::PARAM;
|
|
}
|
|
};
|
|
|
|
bool ScopDetection::isMaxRegionInScop(const Region &R) const {
|
|
// The Region is valid only if it could be found in the set.
|
|
return ValidRegions.count(&R);
|
|
}
|
|
|
|
std::string ScopDetection::regionIsInvalidBecause(const Region *R) const {
|
|
if (!InvalidRegions.count(R))
|
|
return "";
|
|
|
|
return InvalidRegions.find(R)->second;
|
|
}
|
|
|
|
|
|
bool ScopDetection::isValidAffineFunction(const SCEV *S, Region &RefRegion,
|
|
Value **BasePtr) const {
|
|
assert(S && "S must not be null!");
|
|
bool isMemoryAccess = (BasePtr != 0);
|
|
if (isMemoryAccess) *BasePtr = 0;
|
|
DEBUG(dbgs() << "Checking " << *S << " ... ");
|
|
|
|
if (isa<SCEVCouldNotCompute>(S)) {
|
|
DEBUG(dbgs() << "Non Affine: SCEV could not be computed\n");
|
|
return false;
|
|
}
|
|
|
|
for (AffineSCEVIterator I = affine_begin(S, SE), E = affine_end(); I != E;
|
|
++I) {
|
|
// The constant part must be a SCEVConstant.
|
|
// TODO: support sizeof in coefficient.
|
|
if (!isa<SCEVConstant>(I->second)) {
|
|
DEBUG(dbgs() << "Non Affine: Right hand side is not constant\n");
|
|
return false;
|
|
}
|
|
|
|
const SCEV *Var = I->first;
|
|
|
|
// A constant offset is affine.
|
|
if(isa<SCEVConstant>(Var))
|
|
continue;
|
|
|
|
// Memory accesses are allowed to have a base pointer.
|
|
if (Var->getType()->isPointerTy()) {
|
|
if (!isMemoryAccess) {
|
|
DEBUG(dbgs() << "Non Affine: Pointer in non memory access\n");
|
|
return false;
|
|
}
|
|
|
|
assert(I->second->isOne() && "Only one as pointer coefficient allowed.\n");
|
|
const SCEVUnknown *BaseAddr = dyn_cast<SCEVUnknown>(Var);
|
|
|
|
if (!BaseAddr || isa<UndefValue>(BaseAddr->getValue())){
|
|
DEBUG(dbgs() << "Cannot handle base: " << *Var << "\n");
|
|
return false;
|
|
}
|
|
|
|
// BaseAddr must be invariant in Scop.
|
|
if (!isParameter(BaseAddr, RefRegion, *LI, *SE)) {
|
|
DEBUG(dbgs() << "Non Affine: Base address not invariant in SCoP\n");
|
|
return false;
|
|
}
|
|
|
|
assert(*BasePtr == 0 && "Found second base pointer.\n");
|
|
*BasePtr = BaseAddr->getValue();
|
|
continue;
|
|
}
|
|
|
|
if (isParameter(Var, RefRegion, *LI, *SE)
|
|
|| isIndVar(Var, RefRegion, *LI, *SE))
|
|
continue;
|
|
|
|
DEBUG(dbgs() << "Non Affine: " ;
|
|
Var->print(dbgs());
|
|
dbgs() << " is neither parameter nor induction variable\n");
|
|
return false;
|
|
}
|
|
|
|
DEBUG(dbgs() << " is affine.\n");
|
|
return !isMemoryAccess || (*BasePtr != 0);
|
|
}
|
|
|
|
bool ScopDetection::isValidCFG(BasicBlock &BB, DetectionContext &Context) const
|
|
{
|
|
Region &RefRegion = Context.CurRegion;
|
|
TerminatorInst *TI = BB.getTerminator();
|
|
|
|
// Return instructions are only valid if the region is the top level region.
|
|
if (isa<ReturnInst>(TI) && !RefRegion.getExit() && TI->getNumOperands() == 0)
|
|
return true;
|
|
|
|
BranchInst *Br = dyn_cast<BranchInst>(TI);
|
|
|
|
if (!Br)
|
|
INVALID(CFG, "Non branch instruction terminates BB: " + BB.getNameStr());
|
|
|
|
if (Br->isUnconditional()) return true;
|
|
|
|
Value *Condition = Br->getCondition();
|
|
|
|
// UndefValue is not allowed as condition.
|
|
if (isa<UndefValue>(Condition))
|
|
INVALID(AffFunc, "Condition based on 'undef' value in BB: "
|
|
+ BB.getNameStr());
|
|
|
|
// Only Constant and ICmpInst are allowed as condition.
|
|
if (!(isa<Constant>(Condition) || isa<ICmpInst>(Condition)))
|
|
INVALID(AffFunc, "Condition in BB '" + BB.getNameStr() + "' neither "
|
|
"constant nor an icmp instruction");
|
|
|
|
// Allow perfectly nested conditions.
|
|
assert(Br->getNumSuccessors() == 2 && "Unexpected number of successors");
|
|
|
|
if (ICmpInst *ICmp = dyn_cast<ICmpInst>(Condition)) {
|
|
// Unsigned comparisons are not allowed. They trigger overflow problems
|
|
// in the code generation.
|
|
//
|
|
// TODO: This is not sufficient and just hides bugs. However it does pretty
|
|
// well.
|
|
if(ICmp->isUnsigned())
|
|
return false;
|
|
|
|
// Are both operands of the ICmp affine?
|
|
if (isa<UndefValue>(ICmp->getOperand(0))
|
|
|| isa<UndefValue>(ICmp->getOperand(1)))
|
|
INVALID(AffFunc, "undef operand in branch at BB: " + BB.getNameStr());
|
|
|
|
const SCEV *ScevLHS = SE->getSCEV(ICmp->getOperand(0));
|
|
const SCEV *ScevRHS = SE->getSCEV(ICmp->getOperand(1));
|
|
|
|
bool affineLHS = isValidAffineFunction(ScevLHS, RefRegion);
|
|
bool affineRHS = isValidAffineFunction(ScevRHS, RefRegion);
|
|
|
|
if (!affineLHS || !affineRHS)
|
|
INVALID(AffFunc, "Non affine branch in BB: " + BB.getNameStr());
|
|
}
|
|
|
|
// Allow loop exit conditions.
|
|
Loop *L = LI->getLoopFor(&BB);
|
|
if (L && L->getExitingBlock() == &BB)
|
|
return true;
|
|
|
|
// Allow perfectly nested conditions.
|
|
Region *R = RI->getRegionFor(&BB);
|
|
if (R->getEntry() != &BB)
|
|
INVALID(CFG, "Not well structured condition at BB: " + BB.getNameStr());
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ScopDetection::isValidCallInst(CallInst &CI) {
|
|
if (CI.mayHaveSideEffects() || CI.doesNotReturn())
|
|
return false;
|
|
|
|
if (CI.doesNotAccessMemory())
|
|
return true;
|
|
|
|
Function *CalledFunction = CI.getCalledFunction();
|
|
|
|
// Indirect calls are not supported.
|
|
if (CalledFunction == 0)
|
|
return false;
|
|
|
|
// TODO: Intrinsics.
|
|
return false;
|
|
}
|
|
|
|
bool ScopDetection::isValidMemoryAccess(Instruction &Inst,
|
|
DetectionContext &Context) const {
|
|
Value *Ptr = getPointerOperand(Inst), *BasePtr;
|
|
const SCEV *AccessFunction = SE->getSCEV(Ptr);
|
|
|
|
if (!isValidAffineFunction(AccessFunction, Context.CurRegion, &BasePtr))
|
|
INVALID(AffFunc, "Bad memory address " << *AccessFunction);
|
|
|
|
// FIXME: Alias Analysis thinks IntToPtrInst aliases with alloca instructions
|
|
// created by IndependentBlocks Pass.
|
|
if (isa<IntToPtrInst>(BasePtr))
|
|
INVALID(Other, "Find bad intToptr prt: " << *BasePtr);
|
|
|
|
// Check if the base pointer of the memory access does alias with
|
|
// any other pointer. This cannot be handled at the moment.
|
|
AliasSet &AS =
|
|
Context.AST.getAliasSetForPointer(BasePtr, AliasAnalysis::UnknownSize,
|
|
Inst.getMetadata(LLVMContext::MD_tbaa));
|
|
if (!AS.isMustAlias()) {
|
|
DEBUG(dbgs() << "Bad pointer alias found:" << *BasePtr << "\nAS:\n" << AS);
|
|
|
|
// STATSCOP triggers an assertion if we are in verifying mode.
|
|
// This is generally good to check that we do not change the SCoP after we
|
|
// run the SCoP detection and consequently to ensure that we can still
|
|
// represent that SCoP. However, in case of aliasing this does not work.
|
|
// The independent blocks pass may create memory references which seem to
|
|
// alias, if -basicaa is not available. They actually do not. As we do not
|
|
// not know this and we would fail here if we verify it.
|
|
if (!Context.Verifying) {
|
|
STATSCOP(Alias);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
bool ScopDetection::hasScalarDependency(Instruction &Inst,
|
|
Region &RefRegion) const {
|
|
for (Instruction::use_iterator UI = Inst.use_begin(), UE = Inst.use_end();
|
|
UI != UE; ++UI)
|
|
if (Instruction *Use = dyn_cast<Instruction>(*UI))
|
|
if (!RefRegion.contains(Use->getParent())) {
|
|
// DirtyHack 1: PHINode user outside the Scop is not allow, if this
|
|
// PHINode is induction variable, the scalar to array transform may
|
|
// break it and introduce a non-indvar PHINode, which is not allow in
|
|
// Scop.
|
|
// This can be fix by:
|
|
// Introduce a IndependentBlockPrepare pass, which translate all
|
|
// PHINodes not in Scop to array.
|
|
// The IndependentBlockPrepare pass can also split the entry block of
|
|
// the function to hold the alloca instruction created by scalar to
|
|
// array. and split the exit block of the Scop so the new create load
|
|
// instruction for escape users will not break other Scops.
|
|
if (isa<PHINode>(Use))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool ScopDetection::isValidInstruction(Instruction &Inst,
|
|
DetectionContext &Context) const {
|
|
// Only canonical IVs are allowed.
|
|
if (PHINode *PN = dyn_cast<PHINode>(&Inst))
|
|
if (!isIndVar(PN, LI))
|
|
INVALID(IndVar, "Non canonical PHI node: " << Inst);
|
|
|
|
// Scalar dependencies are not allowed.
|
|
if (hasScalarDependency(Inst, Context.CurRegion))
|
|
INVALID(Scalar, "Scalar dependency found: " << Inst);
|
|
|
|
// We only check the call instruction but not invoke instruction.
|
|
if (CallInst *CI = dyn_cast<CallInst>(&Inst)) {
|
|
if (isValidCallInst(*CI))
|
|
return true;
|
|
|
|
INVALID(FuncCall, "Call instruction: " << Inst);
|
|
}
|
|
|
|
if (!Inst.mayWriteToMemory() && !Inst.mayReadFromMemory()) {
|
|
// Handle cast instruction.
|
|
if (isa<IntToPtrInst>(Inst) || isa<BitCastInst>(Inst))
|
|
INVALID(Other, "Cast instruction: " << Inst);
|
|
|
|
if (isa<AllocaInst>(Inst))
|
|
INVALID(Other, "Alloca instruction: " << Inst);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Check the access function.
|
|
if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst))
|
|
return isValidMemoryAccess(Inst, Context);
|
|
|
|
// We do not know this instruction, therefore we assume it is invalid.
|
|
INVALID(Other, "Unknown instruction: " << Inst);
|
|
}
|
|
|
|
bool ScopDetection::isValidBasicBlock(BasicBlock &BB,
|
|
DetectionContext &Context) const {
|
|
if (!isValidCFG(BB, Context))
|
|
return false;
|
|
|
|
// Check all instructions, except the terminator instruction.
|
|
for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
|
|
if (!isValidInstruction(*I, Context))
|
|
return false;
|
|
|
|
Loop *L = LI->getLoopFor(&BB);
|
|
if (L && L->getHeader() == &BB && !isValidLoop(L, Context))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ScopDetection::isValidLoop(Loop *L, DetectionContext &Context) const {
|
|
PHINode *IndVar = L->getCanonicalInductionVariable();
|
|
// No canonical induction variable.
|
|
if (!IndVar)
|
|
INVALID(IndVar, "No canonical IV at loop header: "
|
|
<< L->getHeader()->getNameStr());
|
|
|
|
// Is the loop count affine?
|
|
const SCEV *LoopCount = SE->getBackedgeTakenCount(L);
|
|
if (!SCEVValidator::isValid(&Context.CurRegion, LoopCount, *SE))
|
|
INVALID(LoopBound, "Non affine loop bound '" << *LoopCount << "' in loop: "
|
|
<< L->getHeader()->getNameStr());
|
|
|
|
return true;
|
|
}
|
|
|
|
Region *ScopDetection::expandRegion(Region &R) {
|
|
Region *CurrentRegion = &R;
|
|
Region *TmpRegion = R.getExpandedRegion();
|
|
|
|
DEBUG(dbgs() << "\tExpanding " << R.getNameStr() << "\n");
|
|
|
|
while (TmpRegion) {
|
|
DetectionContext Context(*TmpRegion, *AA, false /*verifying*/);
|
|
DEBUG(dbgs() << "\t\tTrying " << TmpRegion->getNameStr() << "\n");
|
|
|
|
if (!allBlocksValid(Context))
|
|
break;
|
|
|
|
if (isValidExit(Context)) {
|
|
if (CurrentRegion != &R)
|
|
delete CurrentRegion;
|
|
|
|
CurrentRegion = TmpRegion;
|
|
}
|
|
|
|
Region *TmpRegion2 = TmpRegion->getExpandedRegion();
|
|
|
|
if (TmpRegion != &R && TmpRegion != CurrentRegion)
|
|
delete TmpRegion;
|
|
|
|
TmpRegion = TmpRegion2;
|
|
}
|
|
|
|
if (&R == CurrentRegion)
|
|
return NULL;
|
|
|
|
DEBUG(dbgs() << "\tto " << CurrentRegion->getNameStr() << "\n");
|
|
|
|
return CurrentRegion;
|
|
}
|
|
|
|
|
|
void ScopDetection::findScops(Region &R) {
|
|
DetectionContext Context(R, *AA, false /*verifying*/);
|
|
|
|
if (isValidRegion(Context)) {
|
|
++ValidRegion;
|
|
ValidRegions.insert(&R);
|
|
return;
|
|
}
|
|
|
|
InvalidRegions[&R] = LastFailure;
|
|
|
|
for (Region::iterator I = R.begin(), E = R.end(); I != E; ++I)
|
|
findScops(**I);
|
|
|
|
// Try to expand regions.
|
|
//
|
|
// As the region tree normally only contains canonical regions, non canonical
|
|
// regions that form a Scop are not found. Therefore, those non canonical
|
|
// regions are checked by expanding the canonical ones.
|
|
|
|
std::vector<Region*> ToExpand;
|
|
|
|
for (Region::iterator I = R.begin(), E = R.end(); I != E; ++I)
|
|
ToExpand.push_back(*I);
|
|
|
|
for (std::vector<Region*>::iterator RI = ToExpand.begin(),
|
|
RE = ToExpand.end(); RI != RE; ++RI) {
|
|
Region *CurrentRegion = *RI;
|
|
|
|
// Skip invalid regions. Regions may become invalid, if they are element of
|
|
// an already expanded region.
|
|
if (ValidRegions.find(CurrentRegion) == ValidRegions.end())
|
|
continue;
|
|
|
|
Region *ExpandedR = expandRegion(*CurrentRegion);
|
|
|
|
if (!ExpandedR)
|
|
continue;
|
|
|
|
R.addSubRegion(ExpandedR, true);
|
|
ValidRegions.insert(ExpandedR);
|
|
ValidRegions.erase(CurrentRegion);
|
|
|
|
for (Region::iterator I = ExpandedR->begin(), E = ExpandedR->end(); I != E;
|
|
++I)
|
|
ValidRegions.erase(*I);
|
|
}
|
|
}
|
|
|
|
bool ScopDetection::allBlocksValid(DetectionContext &Context) const {
|
|
Region &R = Context.CurRegion;
|
|
|
|
for (Region::block_iterator I = R.block_begin(), E = R.block_end(); I != E;
|
|
++I)
|
|
if (!isValidBasicBlock(*(I->getNodeAs<BasicBlock>()), Context))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ScopDetection::isValidExit(DetectionContext &Context) const {
|
|
Region &R = Context.CurRegion;
|
|
|
|
// PHI nodes are not allowed in the exit basic block.
|
|
if (BasicBlock *Exit = R.getExit()) {
|
|
BasicBlock::iterator I = Exit->begin();
|
|
if (I != Exit->end() && isa<PHINode> (*I))
|
|
INVALID(Other, "PHI node in exit BB");
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ScopDetection::isValidRegion(DetectionContext &Context) const {
|
|
Region &R = Context.CurRegion;
|
|
|
|
DEBUG(dbgs() << "Checking region: " << R.getNameStr() << "\n\t");
|
|
|
|
// The toplevel region is no valid region.
|
|
if (!R.getParent()) {
|
|
DEBUG(dbgs() << "Top level region is invalid";
|
|
dbgs() << "\n");
|
|
return false;
|
|
}
|
|
|
|
// SCoP can not contains the entry block of the function, because we need
|
|
// to insert alloca instruction there when translate scalar to array.
|
|
if (R.getEntry() == &(R.getEntry()->getParent()->getEntryBlock()))
|
|
INVALID(Other, "Region containing entry block of function is invalid!");
|
|
|
|
// Only a simple region is allowed.
|
|
if (!R.isSimple())
|
|
INVALID(SimpleRegion, "Region not simple: " << R.getNameStr());
|
|
|
|
if (!allBlocksValid(Context))
|
|
return false;
|
|
|
|
if (!isValidExit(Context))
|
|
return false;
|
|
|
|
DEBUG(dbgs() << "OK\n");
|
|
return true;
|
|
}
|
|
|
|
bool ScopDetection::isValidFunction(llvm::Function &F) {
|
|
return !InvalidFunctions.count(&F);
|
|
}
|
|
|
|
bool ScopDetection::runOnFunction(llvm::Function &F) {
|
|
AA = &getAnalysis<AliasAnalysis>();
|
|
SE = &getAnalysis<ScalarEvolution>();
|
|
LI = &getAnalysis<LoopInfo>();
|
|
RI = &getAnalysis<RegionInfo>();
|
|
Region *TopRegion = RI->getTopLevelRegion();
|
|
|
|
releaseMemory();
|
|
|
|
if (OnlyFunction != "" && F.getNameStr() != OnlyFunction)
|
|
return false;
|
|
|
|
if(!isValidFunction(F))
|
|
return false;
|
|
|
|
findScops(*TopRegion);
|
|
return false;
|
|
}
|
|
|
|
|
|
void polly::ScopDetection::verifyRegion(const Region &R) const {
|
|
assert(isMaxRegionInScop(R) && "Expect R is a valid region.");
|
|
DetectionContext Context(const_cast<Region&>(R), *AA, true /*verifying*/);
|
|
isValidRegion(Context);
|
|
}
|
|
|
|
void polly::ScopDetection::verifyAnalysis() const {
|
|
for (RegionSet::const_iterator I = ValidRegions.begin(),
|
|
E = ValidRegions.end(); I != E; ++I)
|
|
verifyRegion(**I);
|
|
}
|
|
|
|
void ScopDetection::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequired<DominatorTree>();
|
|
AU.addRequired<PostDominatorTree>();
|
|
AU.addRequired<LoopInfo>();
|
|
AU.addRequired<ScalarEvolution>();
|
|
// We also need AA and RegionInfo when we are verifying analysis.
|
|
AU.addRequiredTransitive<AliasAnalysis>();
|
|
AU.addRequiredTransitive<RegionInfo>();
|
|
AU.setPreservesAll();
|
|
}
|
|
|
|
void ScopDetection::print(raw_ostream &OS, const Module *) const {
|
|
for (RegionSet::const_iterator I = ValidRegions.begin(),
|
|
E = ValidRegions.end(); I != E; ++I)
|
|
OS << "Valid Region for Scop: " << (*I)->getNameStr() << '\n';
|
|
|
|
OS << "\n";
|
|
}
|
|
|
|
void ScopDetection::releaseMemory() {
|
|
ValidRegions.clear();
|
|
InvalidRegions.clear();
|
|
// Do not clear the invalid function set.
|
|
}
|
|
|
|
char ScopDetection::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(ScopDetection, "polly-detect",
|
|
"Polly - Detect static control parts (SCoPs)", false,
|
|
false)
|
|
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTree)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
|
|
INITIALIZE_PASS_DEPENDENCY(PostDominatorTree)
|
|
INITIALIZE_PASS_DEPENDENCY(RegionInfo)
|
|
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
|
|
INITIALIZE_PASS_END(ScopDetection, "polly-detect",
|
|
"Polly - Detect static control parts (SCoPs)", false, false)
|
|
|
|
Pass *polly::createScopDetectionPass() {
|
|
return new ScopDetection();
|
|
}
|