forked from OSchip/llvm-project
1644 lines
61 KiB
C++
1644 lines
61 KiB
C++
//===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
/// Finalize v8.1-m low-overhead loops by converting the associated pseudo
|
|
/// instructions into machine operations.
|
|
/// The expectation is that the loop contains three pseudo instructions:
|
|
/// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop
|
|
/// form should be in the preheader, whereas the while form should be in the
|
|
/// preheaders only predecessor.
|
|
/// - t2LoopDec - placed within in the loop body.
|
|
/// - t2LoopEnd - the loop latch terminator.
|
|
///
|
|
/// In addition to this, we also look for the presence of the VCTP instruction,
|
|
/// which determines whether we can generated the tail-predicated low-overhead
|
|
/// loop form.
|
|
///
|
|
/// Assumptions and Dependencies:
|
|
/// Low-overhead loops are constructed and executed using a setup instruction:
|
|
/// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP.
|
|
/// WLS(TP) and LE(TP) are branching instructions with a (large) limited range
|
|
/// but fixed polarity: WLS can only branch forwards and LE can only branch
|
|
/// backwards. These restrictions mean that this pass is dependent upon block
|
|
/// layout and block sizes, which is why it's the last pass to run. The same is
|
|
/// true for ConstantIslands, but this pass does not increase the size of the
|
|
/// basic blocks, nor does it change the CFG. Instructions are mainly removed
|
|
/// during the transform and pseudo instructions are replaced by real ones. In
|
|
/// some cases, when we have to revert to a 'normal' loop, we have to introduce
|
|
/// multiple instructions for a single pseudo (see RevertWhile and
|
|
/// RevertLoopEnd). To handle this situation, t2WhileLoopStart and t2LoopEnd
|
|
/// are defined to be as large as this maximum sequence of replacement
|
|
/// instructions.
|
|
///
|
|
/// A note on VPR.P0 (the lane mask):
|
|
/// VPT, VCMP, VPNOT and VCTP won't overwrite VPR.P0 when they update it in a
|
|
/// "VPT Active" context (which includes low-overhead loops and vpt blocks).
|
|
/// They will simply "and" the result of their calculation with the current
|
|
/// value of VPR.P0. You can think of it like this:
|
|
/// \verbatim
|
|
/// if VPT active: ; Between a DLSTP/LETP, or for predicated instrs
|
|
/// VPR.P0 &= Value
|
|
/// else
|
|
/// VPR.P0 = Value
|
|
/// \endverbatim
|
|
/// When we're inside the low-overhead loop (between DLSTP and LETP), we always
|
|
/// fall in the "VPT active" case, so we can consider that all VPR writes by
|
|
/// one of those instruction is actually a "and".
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ARM.h"
|
|
#include "ARMBaseInstrInfo.h"
|
|
#include "ARMBaseRegisterInfo.h"
|
|
#include "ARMBasicBlockInfo.h"
|
|
#include "ARMSubtarget.h"
|
|
#include "Thumb2InstrInfo.h"
|
|
#include "llvm/ADT/SetOperations.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/CodeGen/LivePhysRegs.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/MachineLoopUtils.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/ReachingDefAnalysis.h"
|
|
#include "llvm/MC/MCInstrDesc.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "arm-low-overhead-loops"
|
|
#define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass"
|
|
|
|
namespace {
|
|
|
|
using InstSet = SmallPtrSetImpl<MachineInstr *>;
|
|
|
|
class PostOrderLoopTraversal {
|
|
MachineLoop &ML;
|
|
MachineLoopInfo &MLI;
|
|
SmallPtrSet<MachineBasicBlock*, 4> Visited;
|
|
SmallVector<MachineBasicBlock*, 4> Order;
|
|
|
|
public:
|
|
PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI)
|
|
: ML(ML), MLI(MLI) { }
|
|
|
|
const SmallVectorImpl<MachineBasicBlock*> &getOrder() const {
|
|
return Order;
|
|
}
|
|
|
|
// Visit all the blocks within the loop, as well as exit blocks and any
|
|
// blocks properly dominating the header.
|
|
void ProcessLoop() {
|
|
std::function<void(MachineBasicBlock*)> Search = [this, &Search]
|
|
(MachineBasicBlock *MBB) -> void {
|
|
if (Visited.count(MBB))
|
|
return;
|
|
|
|
Visited.insert(MBB);
|
|
for (auto *Succ : MBB->successors()) {
|
|
if (!ML.contains(Succ))
|
|
continue;
|
|
Search(Succ);
|
|
}
|
|
Order.push_back(MBB);
|
|
};
|
|
|
|
// Insert exit blocks.
|
|
SmallVector<MachineBasicBlock*, 2> ExitBlocks;
|
|
ML.getExitBlocks(ExitBlocks);
|
|
for (auto *MBB : ExitBlocks)
|
|
Order.push_back(MBB);
|
|
|
|
// Then add the loop body.
|
|
Search(ML.getHeader());
|
|
|
|
// Then try the preheader and its predecessors.
|
|
std::function<void(MachineBasicBlock*)> GetPredecessor =
|
|
[this, &GetPredecessor] (MachineBasicBlock *MBB) -> void {
|
|
Order.push_back(MBB);
|
|
if (MBB->pred_size() == 1)
|
|
GetPredecessor(*MBB->pred_begin());
|
|
};
|
|
|
|
if (auto *Preheader = ML.getLoopPreheader())
|
|
GetPredecessor(Preheader);
|
|
else if (auto *Preheader = MLI.findLoopPreheader(&ML, true))
|
|
GetPredecessor(Preheader);
|
|
}
|
|
};
|
|
|
|
struct PredicatedMI {
|
|
MachineInstr *MI = nullptr;
|
|
SetVector<MachineInstr*> Predicates;
|
|
|
|
public:
|
|
PredicatedMI(MachineInstr *I, SetVector<MachineInstr *> &Preds) : MI(I) {
|
|
assert(I && "Instruction must not be null!");
|
|
Predicates.insert(Preds.begin(), Preds.end());
|
|
}
|
|
};
|
|
|
|
// Represent a VPT block, a list of instructions that begins with a VPT/VPST
|
|
// and has a maximum of four proceeding instructions. All instructions within
|
|
// the block are predicated upon the vpr and we allow instructions to define
|
|
// the vpr within in the block too.
|
|
class VPTBlock {
|
|
// The predicate then instruction, which is either a VPT, or a VPST
|
|
// instruction.
|
|
std::unique_ptr<PredicatedMI> PredicateThen;
|
|
PredicatedMI *Divergent = nullptr;
|
|
SmallVector<PredicatedMI, 4> Insts;
|
|
|
|
public:
|
|
VPTBlock(MachineInstr *MI, SetVector<MachineInstr*> &Preds) {
|
|
PredicateThen = std::make_unique<PredicatedMI>(MI, Preds);
|
|
}
|
|
|
|
void addInst(MachineInstr *MI, SetVector<MachineInstr*> &Preds) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Adding predicated MI: " << *MI);
|
|
if (!Divergent && !set_difference(Preds, PredicateThen->Predicates).empty()) {
|
|
Divergent = &Insts.back();
|
|
LLVM_DEBUG(dbgs() << " - has divergent predicate: " << *Divergent->MI);
|
|
}
|
|
Insts.emplace_back(MI, Preds);
|
|
assert(Insts.size() <= 4 && "Too many instructions in VPT block!");
|
|
}
|
|
|
|
// Have we found an instruction within the block which defines the vpr? If
|
|
// so, not all the instructions in the block will have the same predicate.
|
|
bool HasNonUniformPredicate() const {
|
|
return Divergent != nullptr;
|
|
}
|
|
|
|
// Is the given instruction part of the predicate set controlling the entry
|
|
// to the block.
|
|
bool IsPredicatedOn(MachineInstr *MI) const {
|
|
return PredicateThen->Predicates.count(MI);
|
|
}
|
|
|
|
// Returns true if this is a VPT instruction.
|
|
bool isVPT() const { return !isVPST(); }
|
|
|
|
// Returns true if this is a VPST instruction.
|
|
bool isVPST() const {
|
|
return PredicateThen->MI->getOpcode() == ARM::MVE_VPST;
|
|
}
|
|
|
|
// Is the given instruction the only predicate which controls the entry to
|
|
// the block.
|
|
bool IsOnlyPredicatedOn(MachineInstr *MI) const {
|
|
return IsPredicatedOn(MI) && PredicateThen->Predicates.size() == 1;
|
|
}
|
|
|
|
unsigned size() const { return Insts.size(); }
|
|
SmallVectorImpl<PredicatedMI> &getInsts() { return Insts; }
|
|
MachineInstr *getPredicateThen() const { return PredicateThen->MI; }
|
|
PredicatedMI *getDivergent() const { return Divergent; }
|
|
};
|
|
|
|
struct Reduction {
|
|
MachineInstr *Init;
|
|
MachineInstr &Copy;
|
|
MachineInstr &Reduce;
|
|
MachineInstr &VPSEL;
|
|
|
|
Reduction(MachineInstr *Init, MachineInstr *Mov, MachineInstr *Add,
|
|
MachineInstr *Sel)
|
|
: Init(Init), Copy(*Mov), Reduce(*Add), VPSEL(*Sel) { }
|
|
};
|
|
|
|
struct LowOverheadLoop {
|
|
|
|
MachineLoop &ML;
|
|
MachineBasicBlock *Preheader = nullptr;
|
|
MachineLoopInfo &MLI;
|
|
ReachingDefAnalysis &RDA;
|
|
const TargetRegisterInfo &TRI;
|
|
const ARMBaseInstrInfo &TII;
|
|
MachineFunction *MF = nullptr;
|
|
MachineInstr *InsertPt = nullptr;
|
|
MachineInstr *Start = nullptr;
|
|
MachineInstr *Dec = nullptr;
|
|
MachineInstr *End = nullptr;
|
|
MachineInstr *VCTP = nullptr;
|
|
MachineOperand TPNumElements;
|
|
SmallPtrSet<MachineInstr*, 4> SecondaryVCTPs;
|
|
VPTBlock *CurrentBlock = nullptr;
|
|
SetVector<MachineInstr*> CurrentPredicate;
|
|
SmallVector<VPTBlock, 4> VPTBlocks;
|
|
SmallPtrSet<MachineInstr*, 4> ToRemove;
|
|
SmallVector<std::unique_ptr<Reduction>, 1> Reductions;
|
|
SmallPtrSet<MachineInstr*, 4> BlockMasksToRecompute;
|
|
bool Revert = false;
|
|
bool CannotTailPredicate = false;
|
|
|
|
LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI,
|
|
ReachingDefAnalysis &RDA, const TargetRegisterInfo &TRI,
|
|
const ARMBaseInstrInfo &TII)
|
|
: ML(ML), MLI(MLI), RDA(RDA), TRI(TRI), TII(TII),
|
|
TPNumElements(MachineOperand::CreateImm(0)) {
|
|
MF = ML.getHeader()->getParent();
|
|
if (auto *MBB = ML.getLoopPreheader())
|
|
Preheader = MBB;
|
|
else if (auto *MBB = MLI.findLoopPreheader(&ML, true))
|
|
Preheader = MBB;
|
|
}
|
|
|
|
// If this is an MVE instruction, check that we know how to use tail
|
|
// predication with it. Record VPT blocks and return whether the
|
|
// instruction is valid for tail predication.
|
|
bool ValidateMVEInst(MachineInstr *MI);
|
|
|
|
void AnalyseMVEInst(MachineInstr *MI) {
|
|
CannotTailPredicate = !ValidateMVEInst(MI);
|
|
}
|
|
|
|
bool IsTailPredicationLegal() const {
|
|
// For now, let's keep things really simple and only support a single
|
|
// block for tail predication.
|
|
return !Revert && FoundAllComponents() && VCTP &&
|
|
!CannotTailPredicate && ML.getNumBlocks() == 1;
|
|
}
|
|
|
|
// Check that the predication in the loop will be equivalent once we
|
|
// perform the conversion. Also ensure that we can provide the number
|
|
// of elements to the loop start instruction.
|
|
bool ValidateTailPredicate(MachineInstr *StartInsertPt);
|
|
|
|
// See whether the live-out instructions are a reduction that we can fixup
|
|
// later.
|
|
bool FindValidReduction(InstSet &LiveMIs, InstSet &LiveOutUsers);
|
|
|
|
// Check that any values available outside of the loop will be the same
|
|
// after tail predication conversion.
|
|
bool ValidateLiveOuts();
|
|
|
|
// Is it safe to define LR with DLS/WLS?
|
|
// LR can be defined if it is the operand to start, because it's the same
|
|
// value, or if it's going to be equivalent to the operand to Start.
|
|
MachineInstr *isSafeToDefineLR();
|
|
|
|
// Check the branch targets are within range and we satisfy our
|
|
// restrictions.
|
|
void CheckLegality(ARMBasicBlockUtils *BBUtils);
|
|
|
|
bool FoundAllComponents() const {
|
|
return Start && Dec && End;
|
|
}
|
|
|
|
SmallVectorImpl<VPTBlock> &getVPTBlocks() { return VPTBlocks; }
|
|
|
|
// Return the operand for the loop start instruction. This will be the loop
|
|
// iteration count, or the number of elements if we're tail predicating.
|
|
MachineOperand &getLoopStartOperand() {
|
|
return IsTailPredicationLegal() ? TPNumElements : Start->getOperand(0);
|
|
}
|
|
|
|
unsigned getStartOpcode() const {
|
|
bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart;
|
|
if (!IsTailPredicationLegal())
|
|
return IsDo ? ARM::t2DLS : ARM::t2WLS;
|
|
|
|
return VCTPOpcodeToLSTP(VCTP->getOpcode(), IsDo);
|
|
}
|
|
|
|
void dump() const {
|
|
if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start;
|
|
if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec;
|
|
if (End) dbgs() << "ARM Loops: Found Loop End: " << *End;
|
|
if (VCTP) dbgs() << "ARM Loops: Found VCTP: " << *VCTP;
|
|
if (!FoundAllComponents())
|
|
dbgs() << "ARM Loops: Not a low-overhead loop.\n";
|
|
else if (!(Start && Dec && End))
|
|
dbgs() << "ARM Loops: Failed to find all loop components.\n";
|
|
}
|
|
};
|
|
|
|
class ARMLowOverheadLoops : public MachineFunctionPass {
|
|
MachineFunction *MF = nullptr;
|
|
MachineLoopInfo *MLI = nullptr;
|
|
ReachingDefAnalysis *RDA = nullptr;
|
|
const ARMBaseInstrInfo *TII = nullptr;
|
|
MachineRegisterInfo *MRI = nullptr;
|
|
const TargetRegisterInfo *TRI = nullptr;
|
|
std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr;
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
ARMLowOverheadLoops() : MachineFunctionPass(ID) { }
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesCFG();
|
|
AU.addRequired<MachineLoopInfo>();
|
|
AU.addRequired<ReachingDefAnalysis>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
|
|
MachineFunctionProperties getRequiredProperties() const override {
|
|
return MachineFunctionProperties().set(
|
|
MachineFunctionProperties::Property::NoVRegs).set(
|
|
MachineFunctionProperties::Property::TracksLiveness);
|
|
}
|
|
|
|
StringRef getPassName() const override {
|
|
return ARM_LOW_OVERHEAD_LOOPS_NAME;
|
|
}
|
|
|
|
private:
|
|
bool ProcessLoop(MachineLoop *ML);
|
|
|
|
bool RevertNonLoops();
|
|
|
|
void RevertWhile(MachineInstr *MI) const;
|
|
|
|
bool RevertLoopDec(MachineInstr *MI) const;
|
|
|
|
void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const;
|
|
|
|
void ConvertVPTBlocks(LowOverheadLoop &LoLoop);
|
|
|
|
void FixupReductions(LowOverheadLoop &LoLoop) const;
|
|
|
|
MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop);
|
|
|
|
void Expand(LowOverheadLoop &LoLoop);
|
|
|
|
void IterationCountDCE(LowOverheadLoop &LoLoop);
|
|
};
|
|
}
|
|
|
|
char ARMLowOverheadLoops::ID = 0;
|
|
|
|
INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME,
|
|
false, false)
|
|
|
|
MachineInstr *LowOverheadLoop::isSafeToDefineLR() {
|
|
// We can define LR because LR already contains the same value.
|
|
if (Start->getOperand(0).getReg() == ARM::LR)
|
|
return Start;
|
|
|
|
unsigned CountReg = Start->getOperand(0).getReg();
|
|
auto IsMoveLR = [&CountReg](MachineInstr *MI) {
|
|
return MI->getOpcode() == ARM::tMOVr &&
|
|
MI->getOperand(0).getReg() == ARM::LR &&
|
|
MI->getOperand(1).getReg() == CountReg &&
|
|
MI->getOperand(2).getImm() == ARMCC::AL;
|
|
};
|
|
|
|
MachineBasicBlock *MBB = Start->getParent();
|
|
|
|
// Find an insertion point:
|
|
// - Is there a (mov lr, Count) before Start? If so, and nothing else writes
|
|
// to Count before Start, we can insert at that mov.
|
|
if (auto *LRDef = RDA.getUniqueReachingMIDef(Start, ARM::LR))
|
|
if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg))
|
|
return LRDef;
|
|
|
|
// - Is there a (mov lr, Count) after Start? If so, and nothing else writes
|
|
// to Count after Start, we can insert at that mov.
|
|
if (auto *LRDef = RDA.getLocalLiveOutMIDef(MBB, ARM::LR))
|
|
if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg))
|
|
return LRDef;
|
|
|
|
// We've found no suitable LR def and Start doesn't use LR directly. Can we
|
|
// just define LR anyway?
|
|
return RDA.isSafeToDefRegAt(Start, ARM::LR) ? Start : nullptr;
|
|
}
|
|
|
|
bool LowOverheadLoop::ValidateTailPredicate(MachineInstr *StartInsertPt) {
|
|
assert(VCTP && "VCTP instruction expected but is not set");
|
|
// All predication within the loop should be based on vctp. If the block
|
|
// isn't predicated on entry, check whether the vctp is within the block
|
|
// and that all other instructions are then predicated on it.
|
|
for (auto &Block : VPTBlocks) {
|
|
if (Block.IsPredicatedOn(VCTP))
|
|
continue;
|
|
if (Block.HasNonUniformPredicate() && !isVCTP(Block.getDivergent()->MI)) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Found unsupported diverging predicate: "
|
|
<< *Block.getDivergent()->MI);
|
|
return false;
|
|
}
|
|
SmallVectorImpl<PredicatedMI> &Insts = Block.getInsts();
|
|
for (auto &PredMI : Insts) {
|
|
// Check the instructions in the block and only allow:
|
|
// - VCTPs
|
|
// - Instructions predicated on the main VCTP
|
|
// - Any VCMP
|
|
// - VCMPs just "and" their result with VPR.P0. Whether they are
|
|
// located before/after the VCTP is irrelevant - the end result will
|
|
// be the same in both cases, so there's no point in requiring them
|
|
// to be located after the VCTP!
|
|
if (PredMI.Predicates.count(VCTP) || isVCTP(PredMI.MI) ||
|
|
VCMPOpcodeToVPT(PredMI.MI->getOpcode()) != 0)
|
|
continue;
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *PredMI.MI
|
|
<< " - which is predicated on:\n";
|
|
for (auto *MI : PredMI.Predicates)
|
|
dbgs() << " - " << *MI);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (!ValidateLiveOuts())
|
|
return false;
|
|
|
|
// For tail predication, we need to provide the number of elements, instead
|
|
// of the iteration count, to the loop start instruction. The number of
|
|
// elements is provided to the vctp instruction, so we need to check that
|
|
// we can use this register at InsertPt.
|
|
TPNumElements = VCTP->getOperand(1);
|
|
Register NumElements = TPNumElements.getReg();
|
|
|
|
// If the register is defined within loop, then we can't perform TP.
|
|
// TODO: Check whether this is just a mov of a register that would be
|
|
// available.
|
|
if (RDA.hasLocalDefBefore(VCTP, NumElements)) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n");
|
|
return false;
|
|
}
|
|
|
|
// The element count register maybe defined after InsertPt, in which case we
|
|
// need to try to move either InsertPt or the def so that the [w|d]lstp can
|
|
// use the value.
|
|
MachineBasicBlock *InsertBB = StartInsertPt->getParent();
|
|
|
|
if (!RDA.isReachingDefLiveOut(StartInsertPt, NumElements)) {
|
|
if (auto *ElemDef = RDA.getLocalLiveOutMIDef(InsertBB, NumElements)) {
|
|
if (RDA.isSafeToMoveForwards(ElemDef, StartInsertPt)) {
|
|
ElemDef->removeFromParent();
|
|
InsertBB->insert(MachineBasicBlock::iterator(StartInsertPt), ElemDef);
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Moved element count def: "
|
|
<< *ElemDef);
|
|
} else if (RDA.isSafeToMoveBackwards(StartInsertPt, ElemDef)) {
|
|
StartInsertPt->removeFromParent();
|
|
InsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef),
|
|
StartInsertPt);
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef);
|
|
} else {
|
|
// If we fail to move an instruction and the element count is provided
|
|
// by a mov, use the mov operand if it will have the same value at the
|
|
// insertion point
|
|
MachineOperand Operand = ElemDef->getOperand(1);
|
|
if (isMovRegOpcode(ElemDef->getOpcode()) &&
|
|
RDA.getUniqueReachingMIDef(ElemDef, Operand.getReg()) ==
|
|
RDA.getUniqueReachingMIDef(StartInsertPt, Operand.getReg())) {
|
|
TPNumElements = Operand;
|
|
NumElements = TPNumElements.getReg();
|
|
} else {
|
|
LLVM_DEBUG(dbgs()
|
|
<< "ARM Loops: Unable to move element count to loop "
|
|
<< "start instruction.\n");
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Especially in the case of while loops, InsertBB may not be the
|
|
// preheader, so we need to check that the register isn't redefined
|
|
// before entering the loop.
|
|
auto CannotProvideElements = [this](MachineBasicBlock *MBB,
|
|
Register NumElements) {
|
|
// NumElements is redefined in this block.
|
|
if (RDA.hasLocalDefBefore(&MBB->back(), NumElements))
|
|
return true;
|
|
|
|
// Don't continue searching up through multiple predecessors.
|
|
if (MBB->pred_size() > 1)
|
|
return true;
|
|
|
|
return false;
|
|
};
|
|
|
|
// First, find the block that looks like the preheader.
|
|
MachineBasicBlock *MBB = Preheader;
|
|
if (!MBB) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find preheader.\n");
|
|
return false;
|
|
}
|
|
|
|
// Then search backwards for a def, until we get to InsertBB.
|
|
while (MBB != InsertBB) {
|
|
if (CannotProvideElements(MBB, NumElements)) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n");
|
|
return false;
|
|
}
|
|
MBB = *MBB->pred_begin();
|
|
}
|
|
|
|
// Check that the value change of the element count is what we expect and
|
|
// that the predication will be equivalent. For this we need:
|
|
// NumElements = NumElements - VectorWidth. The sub will be a sub immediate
|
|
// and we can also allow register copies within the chain too.
|
|
auto IsValidSub = [](MachineInstr *MI, int ExpectedVecWidth) {
|
|
return -getAddSubImmediate(*MI) == ExpectedVecWidth;
|
|
};
|
|
|
|
MBB = VCTP->getParent();
|
|
if (auto *Def = RDA.getUniqueReachingMIDef(&MBB->back(), NumElements)) {
|
|
SmallPtrSet<MachineInstr*, 2> ElementChain;
|
|
SmallPtrSet<MachineInstr*, 2> Ignore = { VCTP };
|
|
unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode());
|
|
|
|
Ignore.insert(SecondaryVCTPs.begin(), SecondaryVCTPs.end());
|
|
|
|
if (RDA.isSafeToRemove(Def, ElementChain, Ignore)) {
|
|
bool FoundSub = false;
|
|
|
|
for (auto *MI : ElementChain) {
|
|
if (isMovRegOpcode(MI->getOpcode()))
|
|
continue;
|
|
|
|
if (isSubImmOpcode(MI->getOpcode())) {
|
|
if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth))
|
|
return false;
|
|
FoundSub = true;
|
|
} else
|
|
return false;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Will remove element count chain:\n";
|
|
for (auto *MI : ElementChain)
|
|
dbgs() << " - " << *MI);
|
|
ToRemove.insert(ElementChain.begin(), ElementChain.end());
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool isVectorPredicated(MachineInstr *MI) {
|
|
int PIdx = llvm::findFirstVPTPredOperandIdx(*MI);
|
|
return PIdx != -1 && MI->getOperand(PIdx + 1).getReg() == ARM::VPR;
|
|
}
|
|
|
|
static bool isRegInClass(const MachineOperand &MO,
|
|
const TargetRegisterClass *Class) {
|
|
return MO.isReg() && MO.getReg() && Class->contains(MO.getReg());
|
|
}
|
|
|
|
// MVE 'narrowing' operate on half a lane, reading from half and writing
|
|
// to half, which are referred to has the top and bottom half. The other
|
|
// half retains its previous value.
|
|
static bool retainsPreviousHalfElement(const MachineInstr &MI) {
|
|
const MCInstrDesc &MCID = MI.getDesc();
|
|
uint64_t Flags = MCID.TSFlags;
|
|
return (Flags & ARMII::RetainsPreviousHalfElement) != 0;
|
|
}
|
|
|
|
// Some MVE instructions read from the top/bottom halves of their operand(s)
|
|
// and generate a vector result with result elements that are double the
|
|
// width of the input.
|
|
static bool producesDoubleWidthResult(const MachineInstr &MI) {
|
|
const MCInstrDesc &MCID = MI.getDesc();
|
|
uint64_t Flags = MCID.TSFlags;
|
|
return (Flags & ARMII::DoubleWidthResult) != 0;
|
|
}
|
|
|
|
static bool isHorizontalReduction(const MachineInstr &MI) {
|
|
const MCInstrDesc &MCID = MI.getDesc();
|
|
uint64_t Flags = MCID.TSFlags;
|
|
return (Flags & ARMII::HorizontalReduction) != 0;
|
|
}
|
|
|
|
// Can this instruction generate a non-zero result when given only zeroed
|
|
// operands? This allows us to know that, given operands with false bytes
|
|
// zeroed by masked loads, that the result will also contain zeros in those
|
|
// bytes.
|
|
static bool canGenerateNonZeros(const MachineInstr &MI) {
|
|
|
|
// Check for instructions which can write into a larger element size,
|
|
// possibly writing into a previous zero'd lane.
|
|
if (producesDoubleWidthResult(MI))
|
|
return true;
|
|
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
break;
|
|
// FIXME: VNEG FP and -0? I think we'll need to handle this once we allow
|
|
// fp16 -> fp32 vector conversions.
|
|
// Instructions that perform a NOT will generate 1s from 0s.
|
|
case ARM::MVE_VMVN:
|
|
case ARM::MVE_VORN:
|
|
// Count leading zeros will do just that!
|
|
case ARM::MVE_VCLZs8:
|
|
case ARM::MVE_VCLZs16:
|
|
case ARM::MVE_VCLZs32:
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
// Look at its register uses to see if it only can only receive zeros
|
|
// into its false lanes which would then produce zeros. Also check that
|
|
// the output register is also defined by an FalseLanesZero instruction
|
|
// so that if tail-predication happens, the lanes that aren't updated will
|
|
// still be zeros.
|
|
static bool producesFalseLanesZero(MachineInstr &MI,
|
|
const TargetRegisterClass *QPRs,
|
|
const ReachingDefAnalysis &RDA,
|
|
InstSet &FalseLanesZero) {
|
|
if (canGenerateNonZeros(MI))
|
|
return false;
|
|
|
|
bool AllowScalars = isHorizontalReduction(MI);
|
|
for (auto &MO : MI.operands()) {
|
|
if (!MO.isReg() || !MO.getReg())
|
|
continue;
|
|
if (!isRegInClass(MO, QPRs) && AllowScalars)
|
|
continue;
|
|
if (auto *OpDef = RDA.getMIOperand(&MI, MO))
|
|
if (FalseLanesZero.count(OpDef))
|
|
continue;
|
|
return false;
|
|
}
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Always False Zeros: " << MI);
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
LowOverheadLoop::FindValidReduction(InstSet &LiveMIs, InstSet &LiveOutUsers) {
|
|
// Also check for reductions where the operation needs to be merging values
|
|
// from the last and previous loop iterations. This means an instruction
|
|
// producing a value and a vmov storing the value calculated in the previous
|
|
// iteration. So we can have two live-out regs, one produced by a vmov and
|
|
// both being consumed by a vpsel.
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Looking for reduction live-outs:\n";
|
|
for (auto *MI : LiveMIs)
|
|
dbgs() << " - " << *MI);
|
|
|
|
if (!Preheader)
|
|
return false;
|
|
|
|
// Expect a vmov, a vadd and a single vpsel user.
|
|
// TODO: This means we can't currently support multiple reductions in the
|
|
// loop.
|
|
if (LiveMIs.size() != 2 || LiveOutUsers.size() != 1)
|
|
return false;
|
|
|
|
MachineInstr *VPSEL = *LiveOutUsers.begin();
|
|
if (VPSEL->getOpcode() != ARM::MVE_VPSEL)
|
|
return false;
|
|
|
|
unsigned VPRIdx = llvm::findFirstVPTPredOperandIdx(*VPSEL) + 1;
|
|
MachineInstr *Pred = RDA.getMIOperand(VPSEL, VPRIdx);
|
|
if (!Pred || Pred != VCTP) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Not using equivalent predicate.\n");
|
|
return false;
|
|
}
|
|
|
|
MachineInstr *Reduce = RDA.getMIOperand(VPSEL, 1);
|
|
if (!Reduce)
|
|
return false;
|
|
|
|
assert(LiveMIs.count(Reduce) && "Expected MI to be live-out");
|
|
|
|
// TODO: Support more operations than VADD.
|
|
switch (VCTP->getOpcode()) {
|
|
default:
|
|
return false;
|
|
case ARM::MVE_VCTP8:
|
|
if (Reduce->getOpcode() != ARM::MVE_VADDi8)
|
|
return false;
|
|
break;
|
|
case ARM::MVE_VCTP16:
|
|
if (Reduce->getOpcode() != ARM::MVE_VADDi16)
|
|
return false;
|
|
break;
|
|
case ARM::MVE_VCTP32:
|
|
if (Reduce->getOpcode() != ARM::MVE_VADDi32)
|
|
return false;
|
|
break;
|
|
}
|
|
|
|
// Test that the reduce op is overwriting ones of its operands.
|
|
if (Reduce->getOperand(0).getReg() != Reduce->getOperand(1).getReg() &&
|
|
Reduce->getOperand(0).getReg() != Reduce->getOperand(2).getReg()) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Reducing op isn't overwriting itself.\n");
|
|
return false;
|
|
}
|
|
|
|
// Check that the VORR is actually a VMOV.
|
|
MachineInstr *Copy = RDA.getMIOperand(VPSEL, 2);
|
|
if (!Copy || Copy->getOpcode() != ARM::MVE_VORR ||
|
|
!Copy->getOperand(1).isReg() || !Copy->getOperand(2).isReg() ||
|
|
Copy->getOperand(1).getReg() != Copy->getOperand(2).getReg())
|
|
return false;
|
|
|
|
assert(LiveMIs.count(Copy) && "Expected MI to be live-out");
|
|
|
|
// Check that the vadd and vmov are only used by each other and the vpsel.
|
|
SmallPtrSet<MachineInstr*, 2> CopyUsers;
|
|
RDA.getGlobalUses(Copy, Copy->getOperand(0).getReg(), CopyUsers);
|
|
if (CopyUsers.size() > 2 || !CopyUsers.count(Reduce)) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Copy users unsupported.\n");
|
|
return false;
|
|
}
|
|
|
|
SmallPtrSet<MachineInstr*, 2> ReduceUsers;
|
|
RDA.getGlobalUses(Reduce, Reduce->getOperand(0).getReg(), ReduceUsers);
|
|
if (ReduceUsers.size() > 2 || !ReduceUsers.count(Copy)) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Reduce users unsupported.\n");
|
|
return false;
|
|
}
|
|
|
|
// Then find whether there's an instruction initialising the register that
|
|
// is storing the reduction.
|
|
SmallPtrSet<MachineInstr*, 2> Incoming;
|
|
RDA.getLiveOuts(Preheader, Copy->getOperand(1).getReg(), Incoming);
|
|
if (Incoming.size() > 1)
|
|
return false;
|
|
|
|
MachineInstr *Init = Incoming.empty() ? nullptr : *Incoming.begin();
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Found a reduction:\n"
|
|
<< " - " << *Copy
|
|
<< " - " << *Reduce
|
|
<< " - " << *VPSEL);
|
|
Reductions.push_back(std::make_unique<Reduction>(Init, Copy, Reduce, VPSEL));
|
|
return true;
|
|
}
|
|
|
|
bool LowOverheadLoop::ValidateLiveOuts() {
|
|
// We want to find out if the tail-predicated version of this loop will
|
|
// produce the same values as the loop in its original form. For this to
|
|
// be true, the newly inserted implicit predication must not change the
|
|
// the (observable) results.
|
|
// We're doing this because many instructions in the loop will not be
|
|
// predicated and so the conversion from VPT predication to tail-predication
|
|
// can result in different values being produced; due to the tail-predication
|
|
// preventing many instructions from updating their falsely predicated
|
|
// lanes. This analysis assumes that all the instructions perform lane-wise
|
|
// operations and don't perform any exchanges.
|
|
// A masked load, whether through VPT or tail predication, will write zeros
|
|
// to any of the falsely predicated bytes. So, from the loads, we know that
|
|
// the false lanes are zeroed and here we're trying to track that those false
|
|
// lanes remain zero, or where they change, the differences are masked away
|
|
// by their user(s).
|
|
// All MVE stores have to be predicated, so we know that any predicate load
|
|
// operands, or stored results are equivalent already. Other explicitly
|
|
// predicated instructions will perform the same operation in the original
|
|
// loop and the tail-predicated form too. Because of this, we can insert
|
|
// loads, stores and other predicated instructions into our Predicated
|
|
// set and build from there.
|
|
const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID);
|
|
SetVector<MachineInstr *> FalseLanesUnknown;
|
|
SmallPtrSet<MachineInstr *, 4> FalseLanesZero;
|
|
SmallPtrSet<MachineInstr *, 4> Predicated;
|
|
MachineBasicBlock *Header = ML.getHeader();
|
|
|
|
for (auto &MI : *Header) {
|
|
const MCInstrDesc &MCID = MI.getDesc();
|
|
uint64_t Flags = MCID.TSFlags;
|
|
if ((Flags & ARMII::DomainMask) != ARMII::DomainMVE)
|
|
continue;
|
|
|
|
if (isVCTP(&MI) || isVPTOpcode(MI.getOpcode()))
|
|
continue;
|
|
|
|
// Predicated loads will write zeros to the falsely predicated bytes of the
|
|
// destination register.
|
|
if (isVectorPredicated(&MI)) {
|
|
if (MI.mayLoad())
|
|
FalseLanesZero.insert(&MI);
|
|
Predicated.insert(&MI);
|
|
continue;
|
|
}
|
|
|
|
if (MI.getNumDefs() == 0)
|
|
continue;
|
|
|
|
if (!producesFalseLanesZero(MI, QPRs, RDA, FalseLanesZero)) {
|
|
// We require retaining and horizontal operations to operate upon zero'd
|
|
// false lanes to ensure the conversion doesn't change the output.
|
|
if (retainsPreviousHalfElement(MI) || isHorizontalReduction(MI))
|
|
return false;
|
|
// Otherwise we need to evaluate this instruction later to see whether
|
|
// unknown false lanes will get masked away by their user(s).
|
|
FalseLanesUnknown.insert(&MI);
|
|
} else if (!isHorizontalReduction(MI))
|
|
FalseLanesZero.insert(&MI);
|
|
}
|
|
|
|
auto HasPredicatedUsers = [this](MachineInstr *MI, const MachineOperand &MO,
|
|
SmallPtrSetImpl<MachineInstr *> &Predicated) {
|
|
SmallPtrSet<MachineInstr *, 2> Uses;
|
|
RDA.getGlobalUses(MI, MO.getReg(), Uses);
|
|
for (auto *Use : Uses) {
|
|
if (Use != MI && !Predicated.count(Use))
|
|
return false;
|
|
}
|
|
return true;
|
|
};
|
|
|
|
// Visit the unknowns in reverse so that we can start at the values being
|
|
// stored and then we can work towards the leaves, hopefully adding more
|
|
// instructions to Predicated. Successfully terminating the loop means that
|
|
// all the unknown values have to found to be masked by predicated user(s).
|
|
// For any unpredicated values, we store them in NonPredicated so that we
|
|
// can later check whether these form a reduction.
|
|
SmallPtrSet<MachineInstr*, 2> NonPredicated;
|
|
for (auto *MI : reverse(FalseLanesUnknown)) {
|
|
for (auto &MO : MI->operands()) {
|
|
if (!isRegInClass(MO, QPRs) || !MO.isDef())
|
|
continue;
|
|
if (!HasPredicatedUsers(MI, MO, Predicated)) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Found an unknown def of : "
|
|
<< TRI.getRegAsmName(MO.getReg()) << " at " << *MI);
|
|
NonPredicated.insert(MI);
|
|
continue;
|
|
}
|
|
}
|
|
// Any unknown false lanes have been masked away by the user(s).
|
|
Predicated.insert(MI);
|
|
}
|
|
|
|
SmallPtrSet<MachineInstr *, 2> LiveOutMIs;
|
|
SmallPtrSet<MachineInstr*, 2> LiveOutUsers;
|
|
SmallVector<MachineBasicBlock *, 2> ExitBlocks;
|
|
ML.getExitBlocks(ExitBlocks);
|
|
assert(ML.getNumBlocks() == 1 && "Expected single block loop!");
|
|
assert(ExitBlocks.size() == 1 && "Expected a single exit block");
|
|
MachineBasicBlock *ExitBB = ExitBlocks.front();
|
|
for (const MachineBasicBlock::RegisterMaskPair &RegMask : ExitBB->liveins()) {
|
|
// Check Q-regs that are live in the exit blocks. We don't collect scalars
|
|
// because they won't be affected by lane predication.
|
|
if (QPRs->contains(RegMask.PhysReg)) {
|
|
if (auto *MI = RDA.getLocalLiveOutMIDef(Header, RegMask.PhysReg))
|
|
LiveOutMIs.insert(MI);
|
|
RDA.getLiveInUses(ExitBB, RegMask.PhysReg, LiveOutUsers);
|
|
}
|
|
}
|
|
|
|
// If we have any non-predicated live-outs, they need to be part of a
|
|
// reduction that we can fixup later. The reduction that the form of an
|
|
// operation that uses its previous values through a vmov and then a vpsel
|
|
// resides in the exit blocks to select the final bytes from n and n-1
|
|
// iterations.
|
|
if (!NonPredicated.empty() &&
|
|
!FindValidReduction(NonPredicated, LiveOutUsers))
|
|
return false;
|
|
|
|
// We've already validated that any VPT predication within the loop will be
|
|
// equivalent when we perform the predication transformation; so we know that
|
|
// any VPT predicated instruction is predicated upon VCTP. Any live-out
|
|
// instruction needs to be predicated, so check this here. The instructions
|
|
// in NonPredicated have been found to be a reduction that we can ensure its
|
|
// legality.
|
|
for (auto *MI : LiveOutMIs)
|
|
if (!isVectorPredicated(MI) && !NonPredicated.count(MI))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void LowOverheadLoop::CheckLegality(ARMBasicBlockUtils *BBUtils) {
|
|
if (Revert)
|
|
return;
|
|
|
|
if (!End->getOperand(1).isMBB())
|
|
report_fatal_error("Expected LoopEnd to target basic block");
|
|
|
|
// TODO Maybe there's cases where the target doesn't have to be the header,
|
|
// but for now be safe and revert.
|
|
if (End->getOperand(1).getMBB() != ML.getHeader()) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targetting header.\n");
|
|
Revert = true;
|
|
return;
|
|
}
|
|
|
|
// The WLS and LE instructions have 12-bits for the label offset. WLS
|
|
// requires a positive offset, while LE uses negative.
|
|
if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) ||
|
|
!BBUtils->isBBInRange(End, ML.getHeader(), 4094)) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n");
|
|
Revert = true;
|
|
return;
|
|
}
|
|
|
|
if (Start->getOpcode() == ARM::t2WhileLoopStart &&
|
|
(BBUtils->getOffsetOf(Start) >
|
|
BBUtils->getOffsetOf(Start->getOperand(1).getMBB()) ||
|
|
!BBUtils->isBBInRange(Start, Start->getOperand(1).getMBB(), 4094))) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n");
|
|
Revert = true;
|
|
return;
|
|
}
|
|
|
|
InsertPt = Revert ? nullptr : isSafeToDefineLR();
|
|
if (!InsertPt) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Unable to find safe insertion point.\n");
|
|
Revert = true;
|
|
return;
|
|
} else
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Start insertion point: " << *InsertPt);
|
|
|
|
if (!IsTailPredicationLegal()) {
|
|
LLVM_DEBUG(if (!VCTP)
|
|
dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n";
|
|
dbgs() << "ARM Loops: Tail-predication is not valid.\n");
|
|
return;
|
|
}
|
|
|
|
assert(ML.getBlocks().size() == 1 &&
|
|
"Shouldn't be processing a loop with more than one block");
|
|
CannotTailPredicate = !ValidateTailPredicate(InsertPt);
|
|
LLVM_DEBUG(if (CannotTailPredicate)
|
|
dbgs() << "ARM Loops: Couldn't validate tail predicate.\n");
|
|
}
|
|
|
|
bool LowOverheadLoop::ValidateMVEInst(MachineInstr* MI) {
|
|
if (CannotTailPredicate)
|
|
return false;
|
|
|
|
if (isVCTP(MI)) {
|
|
// If we find another VCTP, check whether it uses the same value as the main VCTP.
|
|
// If it does, store it in the SecondaryVCTPs set, else refuse it.
|
|
if (VCTP) {
|
|
if (!VCTP->getOperand(1).isIdenticalTo(MI->getOperand(1)) ||
|
|
!RDA.hasSameReachingDef(VCTP, MI, MI->getOperand(1).getReg())) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Found VCTP with a different reaching "
|
|
"definition from the main VCTP");
|
|
return false;
|
|
}
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Found secondary VCTP: " << *MI);
|
|
SecondaryVCTPs.insert(MI);
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Found 'main' VCTP: " << *MI);
|
|
VCTP = MI;
|
|
}
|
|
} else if (isVPTOpcode(MI->getOpcode())) {
|
|
if (MI->getOpcode() != ARM::MVE_VPST) {
|
|
assert(MI->findRegisterDefOperandIdx(ARM::VPR) != -1 &&
|
|
"VPT does not implicitly define VPR?!");
|
|
CurrentPredicate.insert(MI);
|
|
}
|
|
|
|
VPTBlocks.emplace_back(MI, CurrentPredicate);
|
|
CurrentBlock = &VPTBlocks.back();
|
|
return true;
|
|
} else if (MI->getOpcode() == ARM::MVE_VPSEL ||
|
|
MI->getOpcode() == ARM::MVE_VPNOT) {
|
|
// TODO: Allow VPSEL and VPNOT, we currently cannot because:
|
|
// 1) It will use the VPR as a predicate operand, but doesn't have to be
|
|
// instead a VPT block, which means we can assert while building up
|
|
// the VPT block because we don't find another VPT or VPST to being a new
|
|
// one.
|
|
// 2) VPSEL still requires a VPR operand even after tail predicating,
|
|
// which means we can't remove it unless there is another
|
|
// instruction, such as vcmp, that can provide the VPR def.
|
|
return false;
|
|
}
|
|
|
|
bool IsUse = false;
|
|
bool IsDef = false;
|
|
const MCInstrDesc &MCID = MI->getDesc();
|
|
for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
|
|
const MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg() || MO.getReg() != ARM::VPR)
|
|
continue;
|
|
|
|
if (MO.isDef()) {
|
|
CurrentPredicate.insert(MI);
|
|
IsDef = true;
|
|
} else if (ARM::isVpred(MCID.OpInfo[i].OperandType)) {
|
|
CurrentBlock->addInst(MI, CurrentPredicate);
|
|
IsUse = true;
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// If we find a vpr def that is not already predicated on the vctp, we've
|
|
// got disjoint predicates that may not be equivalent when we do the
|
|
// conversion.
|
|
if (IsDef && !IsUse && VCTP && !isVCTP(MI)) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Found disjoint vpr def: " << *MI);
|
|
return false;
|
|
}
|
|
|
|
uint64_t Flags = MCID.TSFlags;
|
|
if ((Flags & ARMII::DomainMask) != ARMII::DomainMVE)
|
|
return true;
|
|
|
|
// If we find an instruction that has been marked as not valid for tail
|
|
// predication, only allow the instruction if it's contained within a valid
|
|
// VPT block.
|
|
if ((Flags & ARMII::ValidForTailPredication) == 0 && !IsUse) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Can't tail predicate: " << *MI);
|
|
return false;
|
|
}
|
|
|
|
// If the instruction is already explicitly predicated, then the conversion
|
|
// will be fine, but ensure that all store operations are predicated.
|
|
return !IsUse && MI->mayStore() ? false : true;
|
|
}
|
|
|
|
bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) {
|
|
const ARMSubtarget &ST = static_cast<const ARMSubtarget&>(mf.getSubtarget());
|
|
if (!ST.hasLOB())
|
|
return false;
|
|
|
|
MF = &mf;
|
|
LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n");
|
|
|
|
MLI = &getAnalysis<MachineLoopInfo>();
|
|
RDA = &getAnalysis<ReachingDefAnalysis>();
|
|
MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness);
|
|
MRI = &MF->getRegInfo();
|
|
TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo());
|
|
TRI = ST.getRegisterInfo();
|
|
BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF));
|
|
BBUtils->computeAllBlockSizes();
|
|
BBUtils->adjustBBOffsetsAfter(&MF->front());
|
|
|
|
bool Changed = false;
|
|
for (auto ML : *MLI) {
|
|
if (!ML->getParentLoop())
|
|
Changed |= ProcessLoop(ML);
|
|
}
|
|
Changed |= RevertNonLoops();
|
|
return Changed;
|
|
}
|
|
|
|
bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) {
|
|
|
|
bool Changed = false;
|
|
|
|
// Process inner loops first.
|
|
for (auto I = ML->begin(), E = ML->end(); I != E; ++I)
|
|
Changed |= ProcessLoop(*I);
|
|
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Processing loop containing:\n";
|
|
if (auto *Preheader = ML->getLoopPreheader())
|
|
dbgs() << " - " << Preheader->getName() << "\n";
|
|
else if (auto *Preheader = MLI->findLoopPreheader(ML))
|
|
dbgs() << " - " << Preheader->getName() << "\n";
|
|
else if (auto *Preheader = MLI->findLoopPreheader(ML, true))
|
|
dbgs() << " - " << Preheader->getName() << "\n";
|
|
for (auto *MBB : ML->getBlocks())
|
|
dbgs() << " - " << MBB->getName() << "\n";
|
|
);
|
|
|
|
// Search the given block for a loop start instruction. If one isn't found,
|
|
// and there's only one predecessor block, search that one too.
|
|
std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart =
|
|
[&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* {
|
|
for (auto &MI : *MBB) {
|
|
if (isLoopStart(MI))
|
|
return &MI;
|
|
}
|
|
if (MBB->pred_size() == 1)
|
|
return SearchForStart(*MBB->pred_begin());
|
|
return nullptr;
|
|
};
|
|
|
|
LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI, *TII);
|
|
// Search the preheader for the start intrinsic.
|
|
// FIXME: I don't see why we shouldn't be supporting multiple predecessors
|
|
// with potentially multiple set.loop.iterations, so we need to enable this.
|
|
if (LoLoop.Preheader)
|
|
LoLoop.Start = SearchForStart(LoLoop.Preheader);
|
|
else
|
|
return false;
|
|
|
|
// Find the low-overhead loop components and decide whether or not to fall
|
|
// back to a normal loop. Also look for a vctp instructions and decide
|
|
// whether we can convert that predicate using tail predication.
|
|
for (auto *MBB : reverse(ML->getBlocks())) {
|
|
for (auto &MI : *MBB) {
|
|
if (MI.isDebugValue())
|
|
continue;
|
|
else if (MI.getOpcode() == ARM::t2LoopDec)
|
|
LoLoop.Dec = &MI;
|
|
else if (MI.getOpcode() == ARM::t2LoopEnd)
|
|
LoLoop.End = &MI;
|
|
else if (isLoopStart(MI))
|
|
LoLoop.Start = &MI;
|
|
else if (MI.getDesc().isCall()) {
|
|
// TODO: Though the call will require LE to execute again, does this
|
|
// mean we should revert? Always executing LE hopefully should be
|
|
// faster than performing a sub,cmp,br or even subs,br.
|
|
LoLoop.Revert = true;
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n");
|
|
} else {
|
|
// Record VPR defs and build up their corresponding vpt blocks.
|
|
// Check we know how to tail predicate any mve instructions.
|
|
LoLoop.AnalyseMVEInst(&MI);
|
|
}
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(LoLoop.dump());
|
|
if (!LoLoop.FoundAllComponents()) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n");
|
|
return false;
|
|
}
|
|
|
|
// Check that the only instruction using LoopDec is LoopEnd.
|
|
// TODO: Check for copy chains that really have no effect.
|
|
SmallPtrSet<MachineInstr*, 2> Uses;
|
|
RDA->getReachingLocalUses(LoLoop.Dec, ARM::LR, Uses);
|
|
if (Uses.size() > 1 || !Uses.count(LoLoop.End)) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n");
|
|
LoLoop.Revert = true;
|
|
}
|
|
LoLoop.CheckLegality(BBUtils.get());
|
|
Expand(LoLoop);
|
|
return true;
|
|
}
|
|
|
|
// WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a
|
|
// beq that branches to the exit branch.
|
|
// TODO: We could also try to generate a cbz if the value in LR is also in
|
|
// another low register.
|
|
void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI);
|
|
MachineBasicBlock *MBB = MI->getParent();
|
|
MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(),
|
|
TII->get(ARM::t2CMPri));
|
|
MIB.add(MI->getOperand(0));
|
|
MIB.addImm(0);
|
|
MIB.addImm(ARMCC::AL);
|
|
MIB.addReg(ARM::NoRegister);
|
|
|
|
MachineBasicBlock *DestBB = MI->getOperand(1).getMBB();
|
|
unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ?
|
|
ARM::tBcc : ARM::t2Bcc;
|
|
|
|
MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc));
|
|
MIB.add(MI->getOperand(1)); // branch target
|
|
MIB.addImm(ARMCC::EQ); // condition code
|
|
MIB.addReg(ARM::CPSR);
|
|
MI->eraseFromParent();
|
|
}
|
|
|
|
bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI);
|
|
MachineBasicBlock *MBB = MI->getParent();
|
|
SmallPtrSet<MachineInstr*, 1> Ignore;
|
|
for (auto I = MachineBasicBlock::iterator(MI), E = MBB->end(); I != E; ++I) {
|
|
if (I->getOpcode() == ARM::t2LoopEnd) {
|
|
Ignore.insert(&*I);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS.
|
|
bool SetFlags = RDA->isSafeToDefRegAt(MI, ARM::CPSR, Ignore);
|
|
|
|
MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(),
|
|
TII->get(ARM::t2SUBri));
|
|
MIB.addDef(ARM::LR);
|
|
MIB.add(MI->getOperand(1));
|
|
MIB.add(MI->getOperand(2));
|
|
MIB.addImm(ARMCC::AL);
|
|
MIB.addReg(0);
|
|
|
|
if (SetFlags) {
|
|
MIB.addReg(ARM::CPSR);
|
|
MIB->getOperand(5).setIsDef(true);
|
|
} else
|
|
MIB.addReg(0);
|
|
|
|
MI->eraseFromParent();
|
|
return SetFlags;
|
|
}
|
|
|
|
// Generate a subs, or sub and cmp, and a branch instead of an LE.
|
|
void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI);
|
|
|
|
MachineBasicBlock *MBB = MI->getParent();
|
|
// Create cmp
|
|
if (!SkipCmp) {
|
|
MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(),
|
|
TII->get(ARM::t2CMPri));
|
|
MIB.addReg(ARM::LR);
|
|
MIB.addImm(0);
|
|
MIB.addImm(ARMCC::AL);
|
|
MIB.addReg(ARM::NoRegister);
|
|
}
|
|
|
|
MachineBasicBlock *DestBB = MI->getOperand(1).getMBB();
|
|
unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ?
|
|
ARM::tBcc : ARM::t2Bcc;
|
|
|
|
// Create bne
|
|
MachineInstrBuilder MIB =
|
|
BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc));
|
|
MIB.add(MI->getOperand(1)); // branch target
|
|
MIB.addImm(ARMCC::NE); // condition code
|
|
MIB.addReg(ARM::CPSR);
|
|
MI->eraseFromParent();
|
|
}
|
|
|
|
// Perform dead code elimation on the loop iteration count setup expression.
|
|
// If we are tail-predicating, the number of elements to be processed is the
|
|
// operand of the VCTP instruction in the vector body, see getCount(), which is
|
|
// register $r3 in this example:
|
|
//
|
|
// $lr = big-itercount-expression
|
|
// ..
|
|
// t2DoLoopStart renamable $lr
|
|
// vector.body:
|
|
// ..
|
|
// $vpr = MVE_VCTP32 renamable $r3
|
|
// renamable $lr = t2LoopDec killed renamable $lr, 1
|
|
// t2LoopEnd renamable $lr, %vector.body
|
|
// tB %end
|
|
//
|
|
// What we would like achieve here is to replace the do-loop start pseudo
|
|
// instruction t2DoLoopStart with:
|
|
//
|
|
// $lr = MVE_DLSTP_32 killed renamable $r3
|
|
//
|
|
// Thus, $r3 which defines the number of elements, is written to $lr,
|
|
// and then we want to delete the whole chain that used to define $lr,
|
|
// see the comment below how this chain could look like.
|
|
//
|
|
void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) {
|
|
if (!LoLoop.IsTailPredicationLegal())
|
|
return;
|
|
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n");
|
|
|
|
MachineInstr *Def = RDA->getMIOperand(LoLoop.Start, 0);
|
|
if (!Def) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n");
|
|
return;
|
|
}
|
|
|
|
// Collect and remove the users of iteration count.
|
|
SmallPtrSet<MachineInstr*, 4> Killed = { LoLoop.Start, LoLoop.Dec,
|
|
LoLoop.End, LoLoop.InsertPt };
|
|
SmallPtrSet<MachineInstr*, 2> Remove;
|
|
if (RDA->isSafeToRemove(Def, Remove, Killed))
|
|
LoLoop.ToRemove.insert(Remove.begin(), Remove.end());
|
|
else {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n");
|
|
return;
|
|
}
|
|
|
|
// Collect the dead code and the MBBs in which they reside.
|
|
RDA->collectKilledOperands(Def, Killed);
|
|
SmallPtrSet<MachineBasicBlock*, 2> BasicBlocks;
|
|
for (auto *MI : Killed)
|
|
BasicBlocks.insert(MI->getParent());
|
|
|
|
// Collect IT blocks in all affected basic blocks.
|
|
std::map<MachineInstr *, SmallPtrSet<MachineInstr *, 2>> ITBlocks;
|
|
for (auto *MBB : BasicBlocks) {
|
|
for (auto &MI : *MBB) {
|
|
if (MI.getOpcode() != ARM::t2IT)
|
|
continue;
|
|
RDA->getReachingLocalUses(&MI, ARM::ITSTATE, ITBlocks[&MI]);
|
|
}
|
|
}
|
|
|
|
// If we're removing all of the instructions within an IT block, then
|
|
// also remove the IT instruction.
|
|
SmallPtrSet<MachineInstr*, 2> ModifiedITs;
|
|
for (auto *MI : Killed) {
|
|
if (MachineOperand *MO = MI->findRegisterUseOperand(ARM::ITSTATE)) {
|
|
MachineInstr *IT = RDA->getMIOperand(MI, *MO);
|
|
auto &CurrentBlock = ITBlocks[IT];
|
|
CurrentBlock.erase(MI);
|
|
if (CurrentBlock.empty())
|
|
ModifiedITs.erase(IT);
|
|
else
|
|
ModifiedITs.insert(IT);
|
|
}
|
|
}
|
|
|
|
// Delete the killed instructions only if we don't have any IT blocks that
|
|
// need to be modified because we need to fixup the mask.
|
|
// TODO: Handle cases where IT blocks are modified.
|
|
if (ModifiedITs.empty()) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Will remove iteration count:\n";
|
|
for (auto *MI : Killed)
|
|
dbgs() << " - " << *MI);
|
|
LoLoop.ToRemove.insert(Killed.begin(), Killed.end());
|
|
} else
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Would need to modify IT block(s).\n");
|
|
}
|
|
|
|
MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n");
|
|
// When using tail-predication, try to delete the dead code that was used to
|
|
// calculate the number of loop iterations.
|
|
IterationCountDCE(LoLoop);
|
|
|
|
MachineInstr *InsertPt = LoLoop.InsertPt;
|
|
MachineInstr *Start = LoLoop.Start;
|
|
MachineBasicBlock *MBB = InsertPt->getParent();
|
|
bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart;
|
|
unsigned Opc = LoLoop.getStartOpcode();
|
|
MachineOperand &Count = LoLoop.getLoopStartOperand();
|
|
|
|
MachineInstrBuilder MIB =
|
|
BuildMI(*MBB, InsertPt, InsertPt->getDebugLoc(), TII->get(Opc));
|
|
|
|
MIB.addDef(ARM::LR);
|
|
MIB.add(Count);
|
|
if (!IsDo)
|
|
MIB.add(Start->getOperand(1));
|
|
|
|
// If we're inserting at a mov lr, then remove it as it's redundant.
|
|
if (InsertPt != Start)
|
|
LoLoop.ToRemove.insert(InsertPt);
|
|
LoLoop.ToRemove.insert(Start);
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB);
|
|
return &*MIB;
|
|
}
|
|
|
|
void ARMLowOverheadLoops::FixupReductions(LowOverheadLoop &LoLoop) const {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Fixing up reduction(s).\n");
|
|
auto BuildMov = [this](MachineInstr &InsertPt, Register To, Register From) {
|
|
MachineBasicBlock *MBB = InsertPt.getParent();
|
|
MachineInstrBuilder MIB =
|
|
BuildMI(*MBB, &InsertPt, InsertPt.getDebugLoc(), TII->get(ARM::MVE_VORR));
|
|
MIB.addDef(To);
|
|
MIB.addReg(From);
|
|
MIB.addReg(From);
|
|
MIB.addImm(0);
|
|
MIB.addReg(0);
|
|
MIB.addReg(To);
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Inserted VMOV: " << *MIB);
|
|
};
|
|
|
|
for (auto &Reduction : LoLoop.Reductions) {
|
|
MachineInstr &Copy = Reduction->Copy;
|
|
MachineInstr &Reduce = Reduction->Reduce;
|
|
Register DestReg = Copy.getOperand(0).getReg();
|
|
|
|
// Change the initialiser if present
|
|
if (Reduction->Init) {
|
|
MachineInstr *Init = Reduction->Init;
|
|
|
|
for (unsigned i = 0; i < Init->getNumOperands(); ++i) {
|
|
MachineOperand &MO = Init->getOperand(i);
|
|
if (MO.isReg() && MO.isUse() && MO.isTied() &&
|
|
Init->findTiedOperandIdx(i) == 0)
|
|
Init->getOperand(i).setReg(DestReg);
|
|
}
|
|
Init->getOperand(0).setReg(DestReg);
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Changed init regs: " << *Init);
|
|
} else
|
|
BuildMov(LoLoop.Preheader->instr_back(), DestReg, Copy.getOperand(1).getReg());
|
|
|
|
// Change the reducing op to write to the register that is used to copy
|
|
// its value on the next iteration. Also update the tied-def operand.
|
|
Reduce.getOperand(0).setReg(DestReg);
|
|
Reduce.getOperand(5).setReg(DestReg);
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Changed reduction regs: " << Reduce);
|
|
|
|
// Instead of a vpsel, just copy the register into the necessary one.
|
|
MachineInstr &VPSEL = Reduction->VPSEL;
|
|
if (VPSEL.getOperand(0).getReg() != DestReg)
|
|
BuildMov(VPSEL, VPSEL.getOperand(0).getReg(), DestReg);
|
|
|
|
// Remove the unnecessary instructions.
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Removing:\n"
|
|
<< " - " << Copy
|
|
<< " - " << VPSEL << "\n");
|
|
Copy.eraseFromParent();
|
|
VPSEL.eraseFromParent();
|
|
}
|
|
}
|
|
|
|
void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) {
|
|
auto RemovePredicate = [](MachineInstr *MI) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI);
|
|
if (int PIdx = llvm::findFirstVPTPredOperandIdx(*MI)) {
|
|
assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then &&
|
|
"Expected Then predicate!");
|
|
MI->getOperand(PIdx).setImm(ARMVCC::None);
|
|
MI->getOperand(PIdx+1).setReg(0);
|
|
} else
|
|
llvm_unreachable("trying to unpredicate a non-predicated instruction");
|
|
};
|
|
|
|
// There are a few scenarios which we have to fix up:
|
|
// 1. VPT Blocks with non-uniform predicates:
|
|
// - a. When the divergent instruction is a vctp
|
|
// - b. When the block uses a vpst, and is only predicated on the vctp
|
|
// - c. When the block uses a vpt and (optionally) contains one or more
|
|
// vctp.
|
|
// 2. VPT Blocks with uniform predicates:
|
|
// - a. The block uses a vpst, and is only predicated on the vctp
|
|
for (auto &Block : LoLoop.getVPTBlocks()) {
|
|
SmallVectorImpl<PredicatedMI> &Insts = Block.getInsts();
|
|
if (Block.HasNonUniformPredicate()) {
|
|
PredicatedMI *Divergent = Block.getDivergent();
|
|
if (isVCTP(Divergent->MI)) {
|
|
// The vctp will be removed, so the block mask of the vp(s)t will need
|
|
// to be recomputed.
|
|
LoLoop.BlockMasksToRecompute.insert(Block.getPredicateThen());
|
|
} else if (Block.isVPST() && Block.IsOnlyPredicatedOn(LoLoop.VCTP)) {
|
|
// The VPT block has a non-uniform predicate but it uses a vpst and its
|
|
// entry is guarded only by a vctp, which means we:
|
|
// - Need to remove the original vpst.
|
|
// - Then need to unpredicate any following instructions, until
|
|
// we come across the divergent vpr def.
|
|
// - Insert a new vpst to predicate the instruction(s) that following
|
|
// the divergent vpr def.
|
|
// TODO: We could be producing more VPT blocks than necessary and could
|
|
// fold the newly created one into a proceeding one.
|
|
for (auto I = ++MachineBasicBlock::iterator(Block.getPredicateThen()),
|
|
E = ++MachineBasicBlock::iterator(Divergent->MI); I != E; ++I)
|
|
RemovePredicate(&*I);
|
|
|
|
unsigned Size = 0;
|
|
auto E = MachineBasicBlock::reverse_iterator(Divergent->MI);
|
|
auto I = MachineBasicBlock::reverse_iterator(Insts.back().MI);
|
|
MachineInstr *InsertAt = nullptr;
|
|
while (I != E) {
|
|
InsertAt = &*I;
|
|
++Size;
|
|
++I;
|
|
}
|
|
// Create a VPST (with a null mask for now, we'll recompute it later).
|
|
MachineInstrBuilder MIB = BuildMI(*InsertAt->getParent(), InsertAt,
|
|
InsertAt->getDebugLoc(),
|
|
TII->get(ARM::MVE_VPST));
|
|
MIB.addImm(0);
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Block.getPredicateThen());
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB);
|
|
LoLoop.ToRemove.insert(Block.getPredicateThen());
|
|
LoLoop.BlockMasksToRecompute.insert(MIB.getInstr());
|
|
}
|
|
// Else, if the block uses a vpt, iterate over the block, removing the
|
|
// extra VCTPs it may contain.
|
|
else if (Block.isVPT()) {
|
|
bool RemovedVCTP = false;
|
|
for (PredicatedMI &Elt : Block.getInsts()) {
|
|
MachineInstr *MI = Elt.MI;
|
|
if (isVCTP(MI)) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Removing VCTP: " << *MI);
|
|
LoLoop.ToRemove.insert(MI);
|
|
RemovedVCTP = true;
|
|
continue;
|
|
}
|
|
}
|
|
if (RemovedVCTP)
|
|
LoLoop.BlockMasksToRecompute.insert(Block.getPredicateThen());
|
|
}
|
|
} else if (Block.IsOnlyPredicatedOn(LoLoop.VCTP) && Block.isVPST()) {
|
|
// A vpt block starting with VPST, is only predicated upon vctp and has no
|
|
// internal vpr defs:
|
|
// - Remove vpst.
|
|
// - Unpredicate the remaining instructions.
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Block.getPredicateThen());
|
|
LoLoop.ToRemove.insert(Block.getPredicateThen());
|
|
for (auto &PredMI : Insts)
|
|
RemovePredicate(PredMI.MI);
|
|
}
|
|
}
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Removing remaining VCTPs...\n");
|
|
// Remove the "main" VCTP
|
|
LoLoop.ToRemove.insert(LoLoop.VCTP);
|
|
LLVM_DEBUG(dbgs() << " " << *LoLoop.VCTP);
|
|
// Remove remaining secondary VCTPs
|
|
for (MachineInstr *VCTP : LoLoop.SecondaryVCTPs) {
|
|
// All VCTPs that aren't marked for removal yet should be unpredicated ones.
|
|
// The predicated ones should have already been marked for removal when
|
|
// visiting the VPT blocks.
|
|
if (LoLoop.ToRemove.insert(VCTP).second) {
|
|
assert(getVPTInstrPredicate(*VCTP) == ARMVCC::None &&
|
|
"Removing Predicated VCTP without updating the block mask!");
|
|
LLVM_DEBUG(dbgs() << " " << *VCTP);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) {
|
|
|
|
// Combine the LoopDec and LoopEnd instructions into LE(TP).
|
|
auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) {
|
|
MachineInstr *End = LoLoop.End;
|
|
MachineBasicBlock *MBB = End->getParent();
|
|
unsigned Opc = LoLoop.IsTailPredicationLegal() ?
|
|
ARM::MVE_LETP : ARM::t2LEUpdate;
|
|
MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(),
|
|
TII->get(Opc));
|
|
MIB.addDef(ARM::LR);
|
|
MIB.add(End->getOperand(0));
|
|
MIB.add(End->getOperand(1));
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB);
|
|
LoLoop.ToRemove.insert(LoLoop.Dec);
|
|
LoLoop.ToRemove.insert(End);
|
|
return &*MIB;
|
|
};
|
|
|
|
// TODO: We should be able to automatically remove these branches before we
|
|
// get here - probably by teaching analyzeBranch about the pseudo
|
|
// instructions.
|
|
// If there is an unconditional branch, after I, that just branches to the
|
|
// next block, remove it.
|
|
auto RemoveDeadBranch = [](MachineInstr *I) {
|
|
MachineBasicBlock *BB = I->getParent();
|
|
MachineInstr *Terminator = &BB->instr_back();
|
|
if (Terminator->isUnconditionalBranch() && I != Terminator) {
|
|
MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB();
|
|
if (BB->isLayoutSuccessor(Succ)) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator);
|
|
Terminator->eraseFromParent();
|
|
}
|
|
}
|
|
};
|
|
|
|
if (LoLoop.Revert) {
|
|
if (LoLoop.Start->getOpcode() == ARM::t2WhileLoopStart)
|
|
RevertWhile(LoLoop.Start);
|
|
else
|
|
LoLoop.Start->eraseFromParent();
|
|
bool FlagsAlreadySet = RevertLoopDec(LoLoop.Dec);
|
|
RevertLoopEnd(LoLoop.End, FlagsAlreadySet);
|
|
} else {
|
|
LoLoop.Start = ExpandLoopStart(LoLoop);
|
|
RemoveDeadBranch(LoLoop.Start);
|
|
LoLoop.End = ExpandLoopEnd(LoLoop);
|
|
RemoveDeadBranch(LoLoop.End);
|
|
if (LoLoop.IsTailPredicationLegal()) {
|
|
ConvertVPTBlocks(LoLoop);
|
|
FixupReductions(LoLoop);
|
|
}
|
|
for (auto *I : LoLoop.ToRemove) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I);
|
|
I->eraseFromParent();
|
|
}
|
|
for (auto *I : LoLoop.BlockMasksToRecompute) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Recomputing VPT/VPST Block Mask: " << *I);
|
|
recomputeVPTBlockMask(*I);
|
|
LLVM_DEBUG(dbgs() << " ... done: " << *I);
|
|
}
|
|
}
|
|
|
|
PostOrderLoopTraversal DFS(LoLoop.ML, *MLI);
|
|
DFS.ProcessLoop();
|
|
const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder();
|
|
for (auto *MBB : PostOrder) {
|
|
recomputeLiveIns(*MBB);
|
|
// FIXME: For some reason, the live-in print order is non-deterministic for
|
|
// our tests and I can't out why... So just sort them.
|
|
MBB->sortUniqueLiveIns();
|
|
}
|
|
|
|
for (auto *MBB : reverse(PostOrder))
|
|
recomputeLivenessFlags(*MBB);
|
|
|
|
// We've moved, removed and inserted new instructions, so update RDA.
|
|
RDA->reset();
|
|
}
|
|
|
|
bool ARMLowOverheadLoops::RevertNonLoops() {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n");
|
|
bool Changed = false;
|
|
|
|
for (auto &MBB : *MF) {
|
|
SmallVector<MachineInstr*, 4> Starts;
|
|
SmallVector<MachineInstr*, 4> Decs;
|
|
SmallVector<MachineInstr*, 4> Ends;
|
|
|
|
for (auto &I : MBB) {
|
|
if (isLoopStart(I))
|
|
Starts.push_back(&I);
|
|
else if (I.getOpcode() == ARM::t2LoopDec)
|
|
Decs.push_back(&I);
|
|
else if (I.getOpcode() == ARM::t2LoopEnd)
|
|
Ends.push_back(&I);
|
|
}
|
|
|
|
if (Starts.empty() && Decs.empty() && Ends.empty())
|
|
continue;
|
|
|
|
Changed = true;
|
|
|
|
for (auto *Start : Starts) {
|
|
if (Start->getOpcode() == ARM::t2WhileLoopStart)
|
|
RevertWhile(Start);
|
|
else
|
|
Start->eraseFromParent();
|
|
}
|
|
for (auto *Dec : Decs)
|
|
RevertLoopDec(Dec);
|
|
|
|
for (auto *End : Ends)
|
|
RevertLoopEnd(End);
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
FunctionPass *llvm::createARMLowOverheadLoopsPass() {
|
|
return new ARMLowOverheadLoops();
|
|
}
|