forked from OSchip/llvm-project
831 lines
32 KiB
C++
831 lines
32 KiB
C++
//===- AArch64LegalizerInfo.cpp ----------------------------------*- C++ -*-==//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
/// This file implements the targeting of the Machinelegalizer class for
|
|
/// AArch64.
|
|
/// \todo This should be generated by TableGen.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AArch64LegalizerInfo.h"
|
|
#include "AArch64Subtarget.h"
|
|
#include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
|
|
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
|
|
#include "llvm/CodeGen/GlobalISel/Utils.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetOpcodes.h"
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Type.h"
|
|
|
|
#define DEBUG_TYPE "aarch64-legalinfo"
|
|
|
|
using namespace llvm;
|
|
using namespace LegalizeActions;
|
|
using namespace LegalizeMutations;
|
|
using namespace LegalityPredicates;
|
|
|
|
AArch64LegalizerInfo::AArch64LegalizerInfo(const AArch64Subtarget &ST)
|
|
: ST(&ST) {
|
|
using namespace TargetOpcode;
|
|
const LLT p0 = LLT::pointer(0, 64);
|
|
const LLT s1 = LLT::scalar(1);
|
|
const LLT s8 = LLT::scalar(8);
|
|
const LLT s16 = LLT::scalar(16);
|
|
const LLT s32 = LLT::scalar(32);
|
|
const LLT s64 = LLT::scalar(64);
|
|
const LLT s128 = LLT::scalar(128);
|
|
const LLT s256 = LLT::scalar(256);
|
|
const LLT s512 = LLT::scalar(512);
|
|
const LLT v16s8 = LLT::vector(16, 8);
|
|
const LLT v8s8 = LLT::vector(8, 8);
|
|
const LLT v4s8 = LLT::vector(4, 8);
|
|
const LLT v8s16 = LLT::vector(8, 16);
|
|
const LLT v4s16 = LLT::vector(4, 16);
|
|
const LLT v2s16 = LLT::vector(2, 16);
|
|
const LLT v2s32 = LLT::vector(2, 32);
|
|
const LLT v4s32 = LLT::vector(4, 32);
|
|
const LLT v2s64 = LLT::vector(2, 64);
|
|
const LLT v2p0 = LLT::vector(2, p0);
|
|
|
|
const TargetMachine &TM = ST.getTargetLowering()->getTargetMachine();
|
|
|
|
// FIXME: support subtargets which have neon/fp-armv8 disabled.
|
|
if (!ST.hasNEON() || !ST.hasFPARMv8()) {
|
|
computeTables();
|
|
return;
|
|
}
|
|
|
|
getActionDefinitionsBuilder({G_IMPLICIT_DEF, G_FREEZE})
|
|
.legalFor({p0, s1, s8, s16, s32, s64, v2s32, v4s32, v2s64, v16s8, v8s16})
|
|
.clampScalar(0, s1, s64)
|
|
.widenScalarToNextPow2(0, 8)
|
|
.fewerElementsIf(
|
|
[=](const LegalityQuery &Query) {
|
|
return Query.Types[0].isVector() &&
|
|
(Query.Types[0].getElementType() != s64 ||
|
|
Query.Types[0].getNumElements() != 2);
|
|
},
|
|
[=](const LegalityQuery &Query) {
|
|
LLT EltTy = Query.Types[0].getElementType();
|
|
if (EltTy == s64)
|
|
return std::make_pair(0, LLT::vector(2, 64));
|
|
return std::make_pair(0, EltTy);
|
|
});
|
|
|
|
getActionDefinitionsBuilder(G_PHI)
|
|
.legalFor({p0, s16, s32, s64, v2s32, v4s32, v2s64})
|
|
.clampScalar(0, s16, s64)
|
|
.widenScalarToNextPow2(0);
|
|
|
|
getActionDefinitionsBuilder(G_BSWAP)
|
|
.legalFor({s32, s64, v4s32, v2s32, v2s64})
|
|
.clampScalar(0, s32, s64)
|
|
.widenScalarToNextPow2(0);
|
|
|
|
getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL, G_AND, G_OR, G_XOR})
|
|
.legalFor({s32, s64, v2s32, v4s32, v2s64, v8s16, v16s8})
|
|
.clampScalar(0, s32, s64)
|
|
.widenScalarToNextPow2(0)
|
|
.clampNumElements(0, v2s32, v4s32)
|
|
.clampNumElements(0, v2s64, v2s64)
|
|
.moreElementsToNextPow2(0);
|
|
|
|
getActionDefinitionsBuilder(G_SHL)
|
|
.legalFor({{s32, s32}, {s64, s64},
|
|
{v2s32, v2s32}, {v4s32, v4s32}, {v2s64, v2s64}})
|
|
.clampScalar(1, s32, s64)
|
|
.clampScalar(0, s32, s64)
|
|
.widenScalarToNextPow2(0)
|
|
.clampNumElements(0, v2s32, v4s32)
|
|
.clampNumElements(0, v2s64, v2s64)
|
|
.moreElementsToNextPow2(0)
|
|
.minScalarSameAs(1, 0);
|
|
|
|
getActionDefinitionsBuilder(G_PTR_ADD)
|
|
.legalFor({{p0, s64}, {v2p0, v2s64}})
|
|
.clampScalar(1, s64, s64);
|
|
|
|
getActionDefinitionsBuilder(G_PTRMASK).legalFor({{p0, s64}});
|
|
|
|
getActionDefinitionsBuilder({G_SDIV, G_UDIV})
|
|
.legalFor({s32, s64})
|
|
.libcallFor({s128})
|
|
.clampScalar(0, s32, s64)
|
|
.widenScalarToNextPow2(0)
|
|
.scalarize(0);
|
|
|
|
getActionDefinitionsBuilder({G_LSHR, G_ASHR})
|
|
.customIf([=](const LegalityQuery &Query) {
|
|
const auto &SrcTy = Query.Types[0];
|
|
const auto &AmtTy = Query.Types[1];
|
|
return !SrcTy.isVector() && SrcTy.getSizeInBits() == 32 &&
|
|
AmtTy.getSizeInBits() == 32;
|
|
})
|
|
.legalFor({{s32, s32},
|
|
{s32, s64},
|
|
{s64, s64},
|
|
{v2s32, v2s32},
|
|
{v4s32, v4s32},
|
|
{v2s64, v2s64}})
|
|
.clampScalar(1, s32, s64)
|
|
.clampScalar(0, s32, s64)
|
|
.minScalarSameAs(1, 0);
|
|
|
|
getActionDefinitionsBuilder({G_SREM, G_UREM})
|
|
.lowerFor({s1, s8, s16, s32, s64});
|
|
|
|
getActionDefinitionsBuilder({G_SMULO, G_UMULO})
|
|
.lowerFor({{s64, s1}});
|
|
|
|
getActionDefinitionsBuilder({G_SMULH, G_UMULH}).legalFor({s32, s64});
|
|
|
|
getActionDefinitionsBuilder({G_UADDE, G_USUBE, G_SADDO, G_SSUBO, G_UADDO})
|
|
.legalFor({{s32, s1}, {s64, s1}})
|
|
.minScalar(0, s32);
|
|
|
|
getActionDefinitionsBuilder({G_FADD, G_FSUB, G_FMUL, G_FDIV, G_FNEG})
|
|
.legalFor({s32, s64, v2s64, v4s32, v2s32});
|
|
|
|
getActionDefinitionsBuilder(G_FREM).libcallFor({s32, s64});
|
|
|
|
getActionDefinitionsBuilder({G_FCEIL, G_FABS, G_FSQRT, G_FFLOOR, G_FRINT,
|
|
G_FMA, G_INTRINSIC_TRUNC, G_INTRINSIC_ROUND,
|
|
G_FNEARBYINT, G_INTRINSIC_LRINT})
|
|
// If we don't have full FP16 support, then scalarize the elements of
|
|
// vectors containing fp16 types.
|
|
.fewerElementsIf(
|
|
[=, &ST](const LegalityQuery &Query) {
|
|
const auto &Ty = Query.Types[0];
|
|
return Ty.isVector() && Ty.getElementType() == s16 &&
|
|
!ST.hasFullFP16();
|
|
},
|
|
[=](const LegalityQuery &Query) { return std::make_pair(0, s16); })
|
|
// If we don't have full FP16 support, then widen s16 to s32 if we
|
|
// encounter it.
|
|
.widenScalarIf(
|
|
[=, &ST](const LegalityQuery &Query) {
|
|
return Query.Types[0] == s16 && !ST.hasFullFP16();
|
|
},
|
|
[=](const LegalityQuery &Query) { return std::make_pair(0, s32); })
|
|
.legalFor({s16, s32, s64, v2s32, v4s32, v2s64, v2s16, v4s16, v8s16});
|
|
|
|
getActionDefinitionsBuilder(
|
|
{G_FCOS, G_FSIN, G_FLOG10, G_FLOG, G_FLOG2, G_FEXP, G_FEXP2, G_FPOW})
|
|
// We need a call for these, so we always need to scalarize.
|
|
.scalarize(0)
|
|
// Regardless of FP16 support, widen 16-bit elements to 32-bits.
|
|
.minScalar(0, s32)
|
|
.libcallFor({s32, s64, v2s32, v4s32, v2s64});
|
|
|
|
getActionDefinitionsBuilder(G_INSERT)
|
|
.unsupportedIf([=](const LegalityQuery &Query) {
|
|
return Query.Types[0].getSizeInBits() <= Query.Types[1].getSizeInBits();
|
|
})
|
|
.legalIf([=](const LegalityQuery &Query) {
|
|
const LLT &Ty0 = Query.Types[0];
|
|
const LLT &Ty1 = Query.Types[1];
|
|
if (Ty0 != s32 && Ty0 != s64 && Ty0 != p0)
|
|
return false;
|
|
return isPowerOf2_32(Ty1.getSizeInBits()) &&
|
|
(Ty1.getSizeInBits() == 1 || Ty1.getSizeInBits() >= 8);
|
|
})
|
|
.clampScalar(0, s32, s64)
|
|
.widenScalarToNextPow2(0)
|
|
.maxScalarIf(typeInSet(0, {s32}), 1, s16)
|
|
.maxScalarIf(typeInSet(0, {s64}), 1, s32)
|
|
.widenScalarToNextPow2(1);
|
|
|
|
getActionDefinitionsBuilder(G_EXTRACT)
|
|
.unsupportedIf([=](const LegalityQuery &Query) {
|
|
return Query.Types[0].getSizeInBits() >= Query.Types[1].getSizeInBits();
|
|
})
|
|
.legalIf([=](const LegalityQuery &Query) {
|
|
const LLT &Ty0 = Query.Types[0];
|
|
const LLT &Ty1 = Query.Types[1];
|
|
if (Ty1 != s32 && Ty1 != s64 && Ty1 != s128)
|
|
return false;
|
|
if (Ty1 == p0)
|
|
return true;
|
|
return isPowerOf2_32(Ty0.getSizeInBits()) &&
|
|
(Ty0.getSizeInBits() == 1 || Ty0.getSizeInBits() >= 8);
|
|
})
|
|
.clampScalar(1, s32, s128)
|
|
.widenScalarToNextPow2(1)
|
|
.maxScalarIf(typeInSet(1, {s32}), 0, s16)
|
|
.maxScalarIf(typeInSet(1, {s64}), 0, s32)
|
|
.widenScalarToNextPow2(0);
|
|
|
|
getActionDefinitionsBuilder({G_SEXTLOAD, G_ZEXTLOAD})
|
|
.legalForTypesWithMemDesc({{s32, p0, 8, 8},
|
|
{s32, p0, 16, 8},
|
|
{s32, p0, 32, 8},
|
|
{s64, p0, 8, 2},
|
|
{s64, p0, 16, 2},
|
|
{s64, p0, 32, 4},
|
|
{s64, p0, 64, 8},
|
|
{p0, p0, 64, 8},
|
|
{v2s32, p0, 64, 8}})
|
|
.clampScalar(0, s32, s64)
|
|
.widenScalarToNextPow2(0)
|
|
// TODO: We could support sum-of-pow2's but the lowering code doesn't know
|
|
// how to do that yet.
|
|
.unsupportedIfMemSizeNotPow2()
|
|
// Lower anything left over into G_*EXT and G_LOAD
|
|
.lower();
|
|
|
|
auto IsPtrVecPred = [=](const LegalityQuery &Query) {
|
|
const LLT &ValTy = Query.Types[0];
|
|
if (!ValTy.isVector())
|
|
return false;
|
|
const LLT EltTy = ValTy.getElementType();
|
|
return EltTy.isPointer() && EltTy.getAddressSpace() == 0;
|
|
};
|
|
|
|
getActionDefinitionsBuilder(G_LOAD)
|
|
.legalForTypesWithMemDesc({{s8, p0, 8, 8},
|
|
{s16, p0, 16, 8},
|
|
{s32, p0, 32, 8},
|
|
{s64, p0, 64, 8},
|
|
{p0, p0, 64, 8},
|
|
{s128, p0, 128, 8},
|
|
{v8s8, p0, 64, 8},
|
|
{v16s8, p0, 128, 8},
|
|
{v4s16, p0, 64, 8},
|
|
{v8s16, p0, 128, 8},
|
|
{v2s32, p0, 64, 8},
|
|
{v4s32, p0, 128, 8},
|
|
{v2s64, p0, 128, 8}})
|
|
// These extends are also legal
|
|
.legalForTypesWithMemDesc({{s32, p0, 8, 8},
|
|
{s32, p0, 16, 8}})
|
|
.clampScalar(0, s8, s64)
|
|
.lowerIfMemSizeNotPow2()
|
|
// Lower any any-extending loads left into G_ANYEXT and G_LOAD
|
|
.lowerIf([=](const LegalityQuery &Query) {
|
|
return Query.Types[0].getSizeInBits() != Query.MMODescrs[0].SizeInBits;
|
|
})
|
|
.widenScalarToNextPow2(0)
|
|
.clampMaxNumElements(0, s32, 2)
|
|
.clampMaxNumElements(0, s64, 1)
|
|
.customIf(IsPtrVecPred);
|
|
|
|
getActionDefinitionsBuilder(G_STORE)
|
|
.legalForTypesWithMemDesc({{s8, p0, 8, 8},
|
|
{s16, p0, 16, 8},
|
|
{s32, p0, 8, 8},
|
|
{s32, p0, 16, 8},
|
|
{s32, p0, 32, 8},
|
|
{s64, p0, 64, 8},
|
|
{p0, p0, 64, 8},
|
|
{s128, p0, 128, 8},
|
|
{v16s8, p0, 128, 8},
|
|
{v4s16, p0, 64, 8},
|
|
{v8s16, p0, 128, 8},
|
|
{v2s32, p0, 64, 8},
|
|
{v4s32, p0, 128, 8},
|
|
{v2s64, p0, 128, 8}})
|
|
.clampScalar(0, s8, s64)
|
|
.lowerIfMemSizeNotPow2()
|
|
.lowerIf([=](const LegalityQuery &Query) {
|
|
return Query.Types[0].isScalar() &&
|
|
Query.Types[0].getSizeInBits() != Query.MMODescrs[0].SizeInBits;
|
|
})
|
|
.clampMaxNumElements(0, s32, 2)
|
|
.clampMaxNumElements(0, s64, 1)
|
|
.customIf(IsPtrVecPred);
|
|
|
|
// Constants
|
|
getActionDefinitionsBuilder(G_CONSTANT)
|
|
.legalFor({p0, s8, s16, s32, s64})
|
|
.clampScalar(0, s8, s64)
|
|
.widenScalarToNextPow2(0);
|
|
getActionDefinitionsBuilder(G_FCONSTANT)
|
|
.legalFor({s32, s64})
|
|
.clampScalar(0, s32, s64);
|
|
|
|
getActionDefinitionsBuilder(G_ICMP)
|
|
.legalFor({{s32, s32},
|
|
{s32, s64},
|
|
{s32, p0},
|
|
{v4s32, v4s32},
|
|
{v2s32, v2s32},
|
|
{v2s64, v2s64},
|
|
{v2s64, v2p0},
|
|
{v4s16, v4s16},
|
|
{v8s16, v8s16},
|
|
{v8s8, v8s8},
|
|
{v16s8, v16s8}})
|
|
.clampScalar(1, s32, s64)
|
|
.clampScalar(0, s32, s32)
|
|
.minScalarEltSameAsIf(
|
|
[=](const LegalityQuery &Query) {
|
|
const LLT &Ty = Query.Types[0];
|
|
const LLT &SrcTy = Query.Types[1];
|
|
return Ty.isVector() && !SrcTy.getElementType().isPointer() &&
|
|
Ty.getElementType() != SrcTy.getElementType();
|
|
},
|
|
0, 1)
|
|
.minScalarOrEltIf(
|
|
[=](const LegalityQuery &Query) { return Query.Types[1] == v2s16; },
|
|
1, s32)
|
|
.minScalarOrEltIf(
|
|
[=](const LegalityQuery &Query) { return Query.Types[1] == v2p0; }, 0,
|
|
s64)
|
|
.widenScalarOrEltToNextPow2(1);
|
|
|
|
getActionDefinitionsBuilder(G_FCMP)
|
|
.legalFor({{s32, s32}, {s32, s64}})
|
|
.clampScalar(0, s32, s32)
|
|
.clampScalar(1, s32, s64)
|
|
.widenScalarToNextPow2(1);
|
|
|
|
// Extensions
|
|
auto ExtLegalFunc = [=](const LegalityQuery &Query) {
|
|
unsigned DstSize = Query.Types[0].getSizeInBits();
|
|
|
|
if (DstSize == 128 && !Query.Types[0].isVector())
|
|
return false; // Extending to a scalar s128 needs narrowing.
|
|
|
|
// Make sure that we have something that will fit in a register, and
|
|
// make sure it's a power of 2.
|
|
if (DstSize < 8 || DstSize > 128 || !isPowerOf2_32(DstSize))
|
|
return false;
|
|
|
|
const LLT &SrcTy = Query.Types[1];
|
|
|
|
// Special case for s1.
|
|
if (SrcTy == s1)
|
|
return true;
|
|
|
|
// Make sure we fit in a register otherwise. Don't bother checking that
|
|
// the source type is below 128 bits. We shouldn't be allowing anything
|
|
// through which is wider than the destination in the first place.
|
|
unsigned SrcSize = SrcTy.getSizeInBits();
|
|
if (SrcSize < 8 || !isPowerOf2_32(SrcSize))
|
|
return false;
|
|
|
|
return true;
|
|
};
|
|
getActionDefinitionsBuilder({G_ZEXT, G_SEXT, G_ANYEXT})
|
|
.legalIf(ExtLegalFunc)
|
|
.clampScalar(0, s64, s64); // Just for s128, others are handled above.
|
|
|
|
getActionDefinitionsBuilder(G_TRUNC).alwaysLegal();
|
|
|
|
getActionDefinitionsBuilder(G_SEXT_INREG)
|
|
.legalFor({s32, s64})
|
|
.lower();
|
|
|
|
// FP conversions
|
|
getActionDefinitionsBuilder(G_FPTRUNC).legalFor(
|
|
{{s16, s32}, {s16, s64}, {s32, s64}, {v4s16, v4s32}, {v2s32, v2s64}});
|
|
getActionDefinitionsBuilder(G_FPEXT).legalFor(
|
|
{{s32, s16}, {s64, s16}, {s64, s32}, {v4s32, v4s16}, {v2s64, v2s32}});
|
|
|
|
// Conversions
|
|
getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
|
|
.legalForCartesianProduct({s32, s64, v2s64, v4s32, v2s32})
|
|
.clampScalar(0, s32, s64)
|
|
.widenScalarToNextPow2(0)
|
|
.clampScalar(1, s32, s64)
|
|
.widenScalarToNextPow2(1);
|
|
|
|
getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
|
|
.legalForCartesianProduct({s32, s64, v2s64, v4s32, v2s32})
|
|
.clampScalar(1, s32, s64)
|
|
.minScalarSameAs(1, 0)
|
|
.clampScalar(0, s32, s64)
|
|
.widenScalarToNextPow2(0);
|
|
|
|
// Control-flow
|
|
getActionDefinitionsBuilder(G_BRCOND).legalFor({s1, s8, s16, s32});
|
|
getActionDefinitionsBuilder(G_BRINDIRECT).legalFor({p0});
|
|
|
|
// Select
|
|
// FIXME: We can probably do a bit better than just scalarizing vector
|
|
// selects.
|
|
getActionDefinitionsBuilder(G_SELECT)
|
|
.legalFor({{s32, s1}, {s64, s1}, {p0, s1}})
|
|
.clampScalar(0, s32, s64)
|
|
.widenScalarToNextPow2(0)
|
|
.scalarize(0);
|
|
|
|
// Pointer-handling
|
|
getActionDefinitionsBuilder(G_FRAME_INDEX).legalFor({p0});
|
|
|
|
if (TM.getCodeModel() == CodeModel::Small)
|
|
getActionDefinitionsBuilder(G_GLOBAL_VALUE).custom();
|
|
else
|
|
getActionDefinitionsBuilder(G_GLOBAL_VALUE).legalFor({p0});
|
|
|
|
getActionDefinitionsBuilder(G_PTRTOINT)
|
|
.legalForCartesianProduct({s1, s8, s16, s32, s64}, {p0})
|
|
.maxScalar(0, s64)
|
|
.widenScalarToNextPow2(0, /*Min*/ 8);
|
|
|
|
getActionDefinitionsBuilder(G_INTTOPTR)
|
|
.unsupportedIf([&](const LegalityQuery &Query) {
|
|
return Query.Types[0].getSizeInBits() != Query.Types[1].getSizeInBits();
|
|
})
|
|
.legalFor({{p0, s64}});
|
|
|
|
// Casts for 32 and 64-bit width type are just copies.
|
|
// Same for 128-bit width type, except they are on the FPR bank.
|
|
getActionDefinitionsBuilder(G_BITCAST)
|
|
// FIXME: This is wrong since G_BITCAST is not allowed to change the
|
|
// number of bits but it's what the previous code described and fixing
|
|
// it breaks tests.
|
|
.legalForCartesianProduct({s1, s8, s16, s32, s64, s128, v16s8, v8s8, v4s8,
|
|
v8s16, v4s16, v2s16, v4s32, v2s32, v2s64,
|
|
v2p0});
|
|
|
|
getActionDefinitionsBuilder(G_VASTART).legalFor({p0});
|
|
|
|
// va_list must be a pointer, but most sized types are pretty easy to handle
|
|
// as the destination.
|
|
getActionDefinitionsBuilder(G_VAARG)
|
|
.customForCartesianProduct({s8, s16, s32, s64, p0}, {p0})
|
|
.clampScalar(0, s8, s64)
|
|
.widenScalarToNextPow2(0, /*Min*/ 8);
|
|
|
|
if (ST.hasLSE()) {
|
|
getActionDefinitionsBuilder(G_ATOMIC_CMPXCHG_WITH_SUCCESS)
|
|
.lowerIf(all(
|
|
typeInSet(0, {s8, s16, s32, s64}), typeIs(1, s1), typeIs(2, p0),
|
|
atomicOrderingAtLeastOrStrongerThan(0, AtomicOrdering::Monotonic)));
|
|
|
|
getActionDefinitionsBuilder(
|
|
{G_ATOMICRMW_XCHG, G_ATOMICRMW_ADD, G_ATOMICRMW_SUB, G_ATOMICRMW_AND,
|
|
G_ATOMICRMW_OR, G_ATOMICRMW_XOR, G_ATOMICRMW_MIN, G_ATOMICRMW_MAX,
|
|
G_ATOMICRMW_UMIN, G_ATOMICRMW_UMAX, G_ATOMIC_CMPXCHG})
|
|
.legalIf(all(
|
|
typeInSet(0, {s8, s16, s32, s64}), typeIs(1, p0),
|
|
atomicOrderingAtLeastOrStrongerThan(0, AtomicOrdering::Monotonic)));
|
|
}
|
|
|
|
getActionDefinitionsBuilder(G_BLOCK_ADDR).legalFor({p0});
|
|
|
|
// Merge/Unmerge
|
|
for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) {
|
|
unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1;
|
|
unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0;
|
|
|
|
auto notValidElt = [](const LegalityQuery &Query, unsigned TypeIdx) {
|
|
const LLT &Ty = Query.Types[TypeIdx];
|
|
if (Ty.isVector()) {
|
|
const LLT &EltTy = Ty.getElementType();
|
|
if (EltTy.getSizeInBits() < 8 || EltTy.getSizeInBits() > 64)
|
|
return true;
|
|
if (!isPowerOf2_32(EltTy.getSizeInBits()))
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
|
|
// FIXME: This rule is horrible, but specifies the same as what we had
|
|
// before with the particularly strange definitions removed (e.g.
|
|
// s8 = G_MERGE_VALUES s32, s32).
|
|
// Part of the complexity comes from these ops being extremely flexible. For
|
|
// example, you can build/decompose vectors with it, concatenate vectors,
|
|
// etc. and in addition to this you can also bitcast with it at the same
|
|
// time. We've been considering breaking it up into multiple ops to make it
|
|
// more manageable throughout the backend.
|
|
getActionDefinitionsBuilder(Op)
|
|
// Break up vectors with weird elements into scalars
|
|
.fewerElementsIf(
|
|
[=](const LegalityQuery &Query) { return notValidElt(Query, 0); },
|
|
scalarize(0))
|
|
.fewerElementsIf(
|
|
[=](const LegalityQuery &Query) { return notValidElt(Query, 1); },
|
|
scalarize(1))
|
|
// Clamp the big scalar to s8-s512 and make it either a power of 2, 192,
|
|
// or 384.
|
|
.clampScalar(BigTyIdx, s8, s512)
|
|
.widenScalarIf(
|
|
[=](const LegalityQuery &Query) {
|
|
const LLT &Ty = Query.Types[BigTyIdx];
|
|
return !isPowerOf2_32(Ty.getSizeInBits()) &&
|
|
Ty.getSizeInBits() % 64 != 0;
|
|
},
|
|
[=](const LegalityQuery &Query) {
|
|
// Pick the next power of 2, or a multiple of 64 over 128.
|
|
// Whichever is smaller.
|
|
const LLT &Ty = Query.Types[BigTyIdx];
|
|
unsigned NewSizeInBits = 1
|
|
<< Log2_32_Ceil(Ty.getSizeInBits() + 1);
|
|
if (NewSizeInBits >= 256) {
|
|
unsigned RoundedTo = alignTo<64>(Ty.getSizeInBits() + 1);
|
|
if (RoundedTo < NewSizeInBits)
|
|
NewSizeInBits = RoundedTo;
|
|
}
|
|
return std::make_pair(BigTyIdx, LLT::scalar(NewSizeInBits));
|
|
})
|
|
// Clamp the little scalar to s8-s256 and make it a power of 2. It's not
|
|
// worth considering the multiples of 64 since 2*192 and 2*384 are not
|
|
// valid.
|
|
.clampScalar(LitTyIdx, s8, s256)
|
|
.widenScalarToNextPow2(LitTyIdx, /*Min*/ 8)
|
|
// So at this point, we have s8, s16, s32, s64, s128, s192, s256, s384,
|
|
// s512, <X x s8>, <X x s16>, <X x s32>, or <X x s64>.
|
|
// At this point it's simple enough to accept the legal types.
|
|
.legalIf([=](const LegalityQuery &Query) {
|
|
const LLT &BigTy = Query.Types[BigTyIdx];
|
|
const LLT &LitTy = Query.Types[LitTyIdx];
|
|
if (BigTy.isVector() && BigTy.getSizeInBits() < 32)
|
|
return false;
|
|
if (LitTy.isVector() && LitTy.getSizeInBits() < 32)
|
|
return false;
|
|
return BigTy.getSizeInBits() % LitTy.getSizeInBits() == 0;
|
|
})
|
|
// Any vectors left are the wrong size. Scalarize them.
|
|
.scalarize(0)
|
|
.scalarize(1);
|
|
}
|
|
|
|
getActionDefinitionsBuilder(G_EXTRACT_VECTOR_ELT)
|
|
.unsupportedIf([=](const LegalityQuery &Query) {
|
|
const LLT &EltTy = Query.Types[1].getElementType();
|
|
return Query.Types[0] != EltTy;
|
|
})
|
|
.minScalar(2, s64)
|
|
.legalIf([=](const LegalityQuery &Query) {
|
|
const LLT &VecTy = Query.Types[1];
|
|
return VecTy == v2s16 || VecTy == v4s16 || VecTy == v8s16 ||
|
|
VecTy == v4s32 || VecTy == v2s64 || VecTy == v2s32;
|
|
});
|
|
|
|
getActionDefinitionsBuilder(G_INSERT_VECTOR_ELT)
|
|
.legalIf([=](const LegalityQuery &Query) {
|
|
const LLT &VecTy = Query.Types[0];
|
|
// TODO: Support s8 and s16
|
|
return VecTy == v2s32 || VecTy == v4s32 || VecTy == v2s64;
|
|
});
|
|
|
|
getActionDefinitionsBuilder(G_BUILD_VECTOR)
|
|
.legalFor({{v4s16, s16},
|
|
{v8s16, s16},
|
|
{v2s32, s32},
|
|
{v4s32, s32},
|
|
{v2p0, p0},
|
|
{v2s64, s64}})
|
|
.clampNumElements(0, v4s32, v4s32)
|
|
.clampNumElements(0, v2s64, v2s64)
|
|
|
|
// Deal with larger scalar types, which will be implicitly truncated.
|
|
.legalIf([=](const LegalityQuery &Query) {
|
|
return Query.Types[0].getScalarSizeInBits() <
|
|
Query.Types[1].getSizeInBits();
|
|
})
|
|
.minScalarSameAs(1, 0);
|
|
|
|
getActionDefinitionsBuilder(G_CTLZ).legalForCartesianProduct(
|
|
{s32, s64, v8s8, v16s8, v4s16, v8s16, v2s32, v4s32})
|
|
.scalarize(1);
|
|
|
|
getActionDefinitionsBuilder(G_SHUFFLE_VECTOR)
|
|
.legalIf([=](const LegalityQuery &Query) {
|
|
const LLT &DstTy = Query.Types[0];
|
|
const LLT &SrcTy = Query.Types[1];
|
|
// For now just support the TBL2 variant which needs the source vectors
|
|
// to be the same size as the dest.
|
|
if (DstTy != SrcTy)
|
|
return false;
|
|
for (auto &Ty : {v2s32, v4s32, v2s64, v16s8, v8s16}) {
|
|
if (DstTy == Ty)
|
|
return true;
|
|
}
|
|
return false;
|
|
})
|
|
// G_SHUFFLE_VECTOR can have scalar sources (from 1 x s vectors), we
|
|
// just want those lowered into G_BUILD_VECTOR
|
|
.lowerIf([=](const LegalityQuery &Query) {
|
|
return !Query.Types[1].isVector();
|
|
})
|
|
.clampNumElements(0, v4s32, v4s32)
|
|
.clampNumElements(0, v2s64, v2s64);
|
|
|
|
getActionDefinitionsBuilder(G_CONCAT_VECTORS)
|
|
.legalFor({{v4s32, v2s32}, {v8s16, v4s16}});
|
|
|
|
getActionDefinitionsBuilder(G_JUMP_TABLE)
|
|
.legalFor({{p0}, {s64}});
|
|
|
|
getActionDefinitionsBuilder(G_BRJT).legalIf([=](const LegalityQuery &Query) {
|
|
return Query.Types[0] == p0 && Query.Types[1] == s64;
|
|
});
|
|
|
|
getActionDefinitionsBuilder(G_DYN_STACKALLOC).lower();
|
|
|
|
computeTables();
|
|
verify(*ST.getInstrInfo());
|
|
}
|
|
|
|
bool AArch64LegalizerInfo::legalizeCustom(LegalizerHelper &Helper,
|
|
MachineInstr &MI) const {
|
|
MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
|
|
MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
|
|
GISelChangeObserver &Observer = Helper.Observer;
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
// No idea what to do.
|
|
return false;
|
|
case TargetOpcode::G_VAARG:
|
|
return legalizeVaArg(MI, MRI, MIRBuilder);
|
|
case TargetOpcode::G_LOAD:
|
|
case TargetOpcode::G_STORE:
|
|
return legalizeLoadStore(MI, MRI, MIRBuilder, Observer);
|
|
case TargetOpcode::G_SHL:
|
|
case TargetOpcode::G_ASHR:
|
|
case TargetOpcode::G_LSHR:
|
|
return legalizeShlAshrLshr(MI, MRI, MIRBuilder, Observer);
|
|
case TargetOpcode::G_GLOBAL_VALUE:
|
|
return legalizeSmallCMGlobalValue(MI, MRI, MIRBuilder, Observer);
|
|
}
|
|
|
|
llvm_unreachable("expected switch to return");
|
|
}
|
|
|
|
bool AArch64LegalizerInfo::legalizeSmallCMGlobalValue(MachineInstr &MI,
|
|
MachineRegisterInfo &MRI,
|
|
MachineIRBuilder &MIRBuilder,
|
|
GISelChangeObserver &Observer) const {
|
|
assert(MI.getOpcode() == TargetOpcode::G_GLOBAL_VALUE);
|
|
// We do this custom legalization to convert G_GLOBAL_VALUE into target ADRP +
|
|
// G_ADD_LOW instructions.
|
|
// By splitting this here, we can optimize accesses in the small code model by
|
|
// folding in the G_ADD_LOW into the load/store offset.
|
|
auto GV = MI.getOperand(1).getGlobal();
|
|
if (GV->isThreadLocal())
|
|
return true; // Don't want to modify TLS vars.
|
|
|
|
auto &TM = ST->getTargetLowering()->getTargetMachine();
|
|
unsigned OpFlags = ST->ClassifyGlobalReference(GV, TM);
|
|
|
|
if (OpFlags & AArch64II::MO_GOT)
|
|
return true;
|
|
|
|
Register DstReg = MI.getOperand(0).getReg();
|
|
auto ADRP = MIRBuilder.buildInstr(AArch64::ADRP, {LLT::pointer(0, 64)}, {})
|
|
.addGlobalAddress(GV, 0, OpFlags | AArch64II::MO_PAGE);
|
|
// Set the regclass on the dest reg too.
|
|
MRI.setRegClass(ADRP.getReg(0), &AArch64::GPR64RegClass);
|
|
|
|
// MO_TAGGED on the page indicates a tagged address. Set the tag now. We do so
|
|
// by creating a MOVK that sets bits 48-63 of the register to (global address
|
|
// + 0x100000000 - PC) >> 48. The additional 0x100000000 offset here is to
|
|
// prevent an incorrect tag being generated during relocation when the the
|
|
// global appears before the code section. Without the offset, a global at
|
|
// `0x0f00'0000'0000'1000` (i.e. at `0x1000` with tag `0xf`) that's referenced
|
|
// by code at `0x2000` would result in `0x0f00'0000'0000'1000 - 0x2000 =
|
|
// 0x0eff'ffff'ffff'f000`, meaning the tag would be incorrectly set to `0xe`
|
|
// instead of `0xf`.
|
|
// This assumes that we're in the small code model so we can assume a binary
|
|
// size of <= 4GB, which makes the untagged PC relative offset positive. The
|
|
// binary must also be loaded into address range [0, 2^48). Both of these
|
|
// properties need to be ensured at runtime when using tagged addresses.
|
|
if (OpFlags & AArch64II::MO_TAGGED) {
|
|
ADRP = MIRBuilder.buildInstr(AArch64::MOVKXi, {LLT::pointer(0, 64)}, {ADRP})
|
|
.addGlobalAddress(GV, 0x100000000,
|
|
AArch64II::MO_PREL | AArch64II::MO_G3)
|
|
.addImm(48);
|
|
MRI.setRegClass(ADRP.getReg(0), &AArch64::GPR64RegClass);
|
|
}
|
|
|
|
MIRBuilder.buildInstr(AArch64::G_ADD_LOW, {DstReg}, {ADRP})
|
|
.addGlobalAddress(GV, 0,
|
|
OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
bool AArch64LegalizerInfo::legalizeIntrinsic(
|
|
LegalizerHelper &Helper, MachineInstr &MI) const {
|
|
MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
|
|
switch (MI.getIntrinsicID()) {
|
|
case Intrinsic::memcpy:
|
|
case Intrinsic::memset:
|
|
case Intrinsic::memmove:
|
|
if (createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI) ==
|
|
LegalizerHelper::UnableToLegalize)
|
|
return false;
|
|
MI.eraseFromParent();
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool AArch64LegalizerInfo::legalizeShlAshrLshr(
|
|
MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder,
|
|
GISelChangeObserver &Observer) const {
|
|
assert(MI.getOpcode() == TargetOpcode::G_ASHR ||
|
|
MI.getOpcode() == TargetOpcode::G_LSHR ||
|
|
MI.getOpcode() == TargetOpcode::G_SHL);
|
|
// If the shift amount is a G_CONSTANT, promote it to a 64 bit type so the
|
|
// imported patterns can select it later. Either way, it will be legal.
|
|
Register AmtReg = MI.getOperand(2).getReg();
|
|
auto *CstMI = MRI.getVRegDef(AmtReg);
|
|
assert(CstMI && "expected to find a vreg def");
|
|
if (CstMI->getOpcode() != TargetOpcode::G_CONSTANT)
|
|
return true;
|
|
// Check the shift amount is in range for an immediate form.
|
|
unsigned Amount = CstMI->getOperand(1).getCImm()->getZExtValue();
|
|
if (Amount > 31)
|
|
return true; // This will have to remain a register variant.
|
|
assert(MRI.getType(AmtReg).getSizeInBits() == 32);
|
|
auto ExtCst = MIRBuilder.buildZExt(LLT::scalar(64), AmtReg);
|
|
MI.getOperand(2).setReg(ExtCst.getReg(0));
|
|
return true;
|
|
}
|
|
|
|
bool AArch64LegalizerInfo::legalizeLoadStore(
|
|
MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder,
|
|
GISelChangeObserver &Observer) const {
|
|
assert(MI.getOpcode() == TargetOpcode::G_STORE ||
|
|
MI.getOpcode() == TargetOpcode::G_LOAD);
|
|
// Here we just try to handle vector loads/stores where our value type might
|
|
// have pointer elements, which the SelectionDAG importer can't handle. To
|
|
// allow the existing patterns for s64 to fire for p0, we just try to bitcast
|
|
// the value to use s64 types.
|
|
|
|
// Custom legalization requires the instruction, if not deleted, must be fully
|
|
// legalized. In order to allow further legalization of the inst, we create
|
|
// a new instruction and erase the existing one.
|
|
|
|
Register ValReg = MI.getOperand(0).getReg();
|
|
const LLT ValTy = MRI.getType(ValReg);
|
|
|
|
if (!ValTy.isVector() || !ValTy.getElementType().isPointer() ||
|
|
ValTy.getElementType().getAddressSpace() != 0) {
|
|
LLVM_DEBUG(dbgs() << "Tried to do custom legalization on wrong load/store");
|
|
return false;
|
|
}
|
|
|
|
unsigned PtrSize = ValTy.getElementType().getSizeInBits();
|
|
const LLT NewTy = LLT::vector(ValTy.getNumElements(), PtrSize);
|
|
auto &MMO = **MI.memoperands_begin();
|
|
if (MI.getOpcode() == TargetOpcode::G_STORE) {
|
|
auto Bitcast = MIRBuilder.buildBitcast(NewTy, ValReg);
|
|
MIRBuilder.buildStore(Bitcast.getReg(0), MI.getOperand(1), MMO);
|
|
} else {
|
|
auto NewLoad = MIRBuilder.buildLoad(NewTy, MI.getOperand(1), MMO);
|
|
MIRBuilder.buildBitcast(ValReg, NewLoad);
|
|
}
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
bool AArch64LegalizerInfo::legalizeVaArg(MachineInstr &MI,
|
|
MachineRegisterInfo &MRI,
|
|
MachineIRBuilder &MIRBuilder) const {
|
|
MachineFunction &MF = MIRBuilder.getMF();
|
|
Align Alignment(MI.getOperand(2).getImm());
|
|
Register Dst = MI.getOperand(0).getReg();
|
|
Register ListPtr = MI.getOperand(1).getReg();
|
|
|
|
LLT PtrTy = MRI.getType(ListPtr);
|
|
LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
|
|
|
|
const unsigned PtrSize = PtrTy.getSizeInBits() / 8;
|
|
const Align PtrAlign = Align(PtrSize);
|
|
auto List = MIRBuilder.buildLoad(
|
|
PtrTy, ListPtr,
|
|
*MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOLoad,
|
|
PtrSize, PtrAlign));
|
|
|
|
MachineInstrBuilder DstPtr;
|
|
if (Alignment > PtrAlign) {
|
|
// Realign the list to the actual required alignment.
|
|
auto AlignMinus1 =
|
|
MIRBuilder.buildConstant(IntPtrTy, Alignment.value() - 1);
|
|
auto ListTmp = MIRBuilder.buildPtrAdd(PtrTy, List, AlignMinus1.getReg(0));
|
|
DstPtr = MIRBuilder.buildMaskLowPtrBits(PtrTy, ListTmp, Log2(Alignment));
|
|
} else
|
|
DstPtr = List;
|
|
|
|
uint64_t ValSize = MRI.getType(Dst).getSizeInBits() / 8;
|
|
MIRBuilder.buildLoad(
|
|
Dst, DstPtr,
|
|
*MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOLoad,
|
|
ValSize, std::max(Alignment, PtrAlign)));
|
|
|
|
auto Size = MIRBuilder.buildConstant(IntPtrTy, alignTo(ValSize, PtrAlign));
|
|
|
|
auto NewList = MIRBuilder.buildPtrAdd(PtrTy, DstPtr, Size.getReg(0));
|
|
|
|
MIRBuilder.buildStore(NewList, ListPtr,
|
|
*MF.getMachineMemOperand(MachinePointerInfo(),
|
|
MachineMemOperand::MOStore,
|
|
PtrSize, PtrAlign));
|
|
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|