llvm-project/llvm/lib/Target/AArch64/AArch64FastISel.cpp

5243 lines
172 KiB
C++

//===- AArch6464FastISel.cpp - AArch64 FastISel implementation ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the AArch64-specific support for the FastISel class. Some
// of the target-specific code is generated by tablegen in the file
// AArch64GenFastISel.inc, which is #included here.
//
//===----------------------------------------------------------------------===//
#include "AArch64.h"
#include "AArch64CallingConvention.h"
#include "AArch64RegisterInfo.h"
#include "AArch64Subtarget.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "Utils/AArch64BaseInfo.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/FastISel.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RuntimeLibcalls.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <utility>
using namespace llvm;
namespace {
class AArch64FastISel final : public FastISel {
class Address {
public:
using BaseKind = enum {
RegBase,
FrameIndexBase
};
private:
BaseKind Kind = RegBase;
AArch64_AM::ShiftExtendType ExtType = AArch64_AM::InvalidShiftExtend;
union {
unsigned Reg;
int FI;
} Base;
unsigned OffsetReg = 0;
unsigned Shift = 0;
int64_t Offset = 0;
const GlobalValue *GV = nullptr;
public:
Address() { Base.Reg = 0; }
void setKind(BaseKind K) { Kind = K; }
BaseKind getKind() const { return Kind; }
void setExtendType(AArch64_AM::ShiftExtendType E) { ExtType = E; }
AArch64_AM::ShiftExtendType getExtendType() const { return ExtType; }
bool isRegBase() const { return Kind == RegBase; }
bool isFIBase() const { return Kind == FrameIndexBase; }
void setReg(unsigned Reg) {
assert(isRegBase() && "Invalid base register access!");
Base.Reg = Reg;
}
unsigned getReg() const {
assert(isRegBase() && "Invalid base register access!");
return Base.Reg;
}
void setOffsetReg(unsigned Reg) {
OffsetReg = Reg;
}
unsigned getOffsetReg() const {
return OffsetReg;
}
void setFI(unsigned FI) {
assert(isFIBase() && "Invalid base frame index access!");
Base.FI = FI;
}
unsigned getFI() const {
assert(isFIBase() && "Invalid base frame index access!");
return Base.FI;
}
void setOffset(int64_t O) { Offset = O; }
int64_t getOffset() { return Offset; }
void setShift(unsigned S) { Shift = S; }
unsigned getShift() { return Shift; }
void setGlobalValue(const GlobalValue *G) { GV = G; }
const GlobalValue *getGlobalValue() { return GV; }
};
/// Subtarget - Keep a pointer to the AArch64Subtarget around so that we can
/// make the right decision when generating code for different targets.
const AArch64Subtarget *Subtarget;
LLVMContext *Context;
bool fastLowerArguments() override;
bool fastLowerCall(CallLoweringInfo &CLI) override;
bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
private:
// Selection routines.
bool selectAddSub(const Instruction *I);
bool selectLogicalOp(const Instruction *I);
bool selectLoad(const Instruction *I);
bool selectStore(const Instruction *I);
bool selectBranch(const Instruction *I);
bool selectIndirectBr(const Instruction *I);
bool selectCmp(const Instruction *I);
bool selectSelect(const Instruction *I);
bool selectFPExt(const Instruction *I);
bool selectFPTrunc(const Instruction *I);
bool selectFPToInt(const Instruction *I, bool Signed);
bool selectIntToFP(const Instruction *I, bool Signed);
bool selectRem(const Instruction *I, unsigned ISDOpcode);
bool selectRet(const Instruction *I);
bool selectTrunc(const Instruction *I);
bool selectIntExt(const Instruction *I);
bool selectMul(const Instruction *I);
bool selectShift(const Instruction *I);
bool selectBitCast(const Instruction *I);
bool selectFRem(const Instruction *I);
bool selectSDiv(const Instruction *I);
bool selectGetElementPtr(const Instruction *I);
bool selectAtomicCmpXchg(const AtomicCmpXchgInst *I);
// Utility helper routines.
bool isTypeLegal(Type *Ty, MVT &VT);
bool isTypeSupported(Type *Ty, MVT &VT, bool IsVectorAllowed = false);
bool isValueAvailable(const Value *V) const;
bool computeAddress(const Value *Obj, Address &Addr, Type *Ty = nullptr);
bool computeCallAddress(const Value *V, Address &Addr);
bool simplifyAddress(Address &Addr, MVT VT);
void addLoadStoreOperands(Address &Addr, const MachineInstrBuilder &MIB,
MachineMemOperand::Flags Flags,
unsigned ScaleFactor, MachineMemOperand *MMO);
bool isMemCpySmall(uint64_t Len, unsigned Alignment);
bool tryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
unsigned Alignment);
bool foldXALUIntrinsic(AArch64CC::CondCode &CC, const Instruction *I,
const Value *Cond);
bool optimizeIntExtLoad(const Instruction *I, MVT RetVT, MVT SrcVT);
bool optimizeSelect(const SelectInst *SI);
std::pair<unsigned, bool> getRegForGEPIndex(const Value *Idx);
// Emit helper routines.
unsigned emitAddSub(bool UseAdd, MVT RetVT, const Value *LHS,
const Value *RHS, bool SetFlags = false,
bool WantResult = true, bool IsZExt = false);
unsigned emitAddSub_rr(bool UseAdd, MVT RetVT, unsigned LHSReg,
bool LHSIsKill, unsigned RHSReg, bool RHSIsKill,
bool SetFlags = false, bool WantResult = true);
unsigned emitAddSub_ri(bool UseAdd, MVT RetVT, unsigned LHSReg,
bool LHSIsKill, uint64_t Imm, bool SetFlags = false,
bool WantResult = true);
unsigned emitAddSub_rs(bool UseAdd, MVT RetVT, unsigned LHSReg,
bool LHSIsKill, unsigned RHSReg, bool RHSIsKill,
AArch64_AM::ShiftExtendType ShiftType,
uint64_t ShiftImm, bool SetFlags = false,
bool WantResult = true);
unsigned emitAddSub_rx(bool UseAdd, MVT RetVT, unsigned LHSReg,
bool LHSIsKill, unsigned RHSReg, bool RHSIsKill,
AArch64_AM::ShiftExtendType ExtType,
uint64_t ShiftImm, bool SetFlags = false,
bool WantResult = true);
// Emit functions.
bool emitCompareAndBranch(const BranchInst *BI);
bool emitCmp(const Value *LHS, const Value *RHS, bool IsZExt);
bool emitICmp(MVT RetVT, const Value *LHS, const Value *RHS, bool IsZExt);
bool emitICmp_ri(MVT RetVT, unsigned LHSReg, bool LHSIsKill, uint64_t Imm);
bool emitFCmp(MVT RetVT, const Value *LHS, const Value *RHS);
unsigned emitLoad(MVT VT, MVT ResultVT, Address Addr, bool WantZExt = true,
MachineMemOperand *MMO = nullptr);
bool emitStore(MVT VT, unsigned SrcReg, Address Addr,
MachineMemOperand *MMO = nullptr);
bool emitStoreRelease(MVT VT, unsigned SrcReg, unsigned AddrReg,
MachineMemOperand *MMO = nullptr);
unsigned emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
unsigned emiti1Ext(unsigned SrcReg, MVT DestVT, bool isZExt);
unsigned emitAdd(MVT RetVT, const Value *LHS, const Value *RHS,
bool SetFlags = false, bool WantResult = true,
bool IsZExt = false);
unsigned emitAdd_ri_(MVT VT, unsigned Op0, bool Op0IsKill, int64_t Imm);
unsigned emitSub(MVT RetVT, const Value *LHS, const Value *RHS,
bool SetFlags = false, bool WantResult = true,
bool IsZExt = false);
unsigned emitSubs_rr(MVT RetVT, unsigned LHSReg, bool LHSIsKill,
unsigned RHSReg, bool RHSIsKill, bool WantResult = true);
unsigned emitSubs_rs(MVT RetVT, unsigned LHSReg, bool LHSIsKill,
unsigned RHSReg, bool RHSIsKill,
AArch64_AM::ShiftExtendType ShiftType, uint64_t ShiftImm,
bool WantResult = true);
unsigned emitLogicalOp(unsigned ISDOpc, MVT RetVT, const Value *LHS,
const Value *RHS);
unsigned emitLogicalOp_ri(unsigned ISDOpc, MVT RetVT, unsigned LHSReg,
bool LHSIsKill, uint64_t Imm);
unsigned emitLogicalOp_rs(unsigned ISDOpc, MVT RetVT, unsigned LHSReg,
bool LHSIsKill, unsigned RHSReg, bool RHSIsKill,
uint64_t ShiftImm);
unsigned emitAnd_ri(MVT RetVT, unsigned LHSReg, bool LHSIsKill, uint64_t Imm);
unsigned emitMul_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill);
unsigned emitSMULL_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill);
unsigned emitUMULL_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill);
unsigned emitLSL_rr(MVT RetVT, unsigned Op0Reg, bool Op0IsKill,
unsigned Op1Reg, bool Op1IsKill);
unsigned emitLSL_ri(MVT RetVT, MVT SrcVT, unsigned Op0Reg, bool Op0IsKill,
uint64_t Imm, bool IsZExt = true);
unsigned emitLSR_rr(MVT RetVT, unsigned Op0Reg, bool Op0IsKill,
unsigned Op1Reg, bool Op1IsKill);
unsigned emitLSR_ri(MVT RetVT, MVT SrcVT, unsigned Op0Reg, bool Op0IsKill,
uint64_t Imm, bool IsZExt = true);
unsigned emitASR_rr(MVT RetVT, unsigned Op0Reg, bool Op0IsKill,
unsigned Op1Reg, bool Op1IsKill);
unsigned emitASR_ri(MVT RetVT, MVT SrcVT, unsigned Op0Reg, bool Op0IsKill,
uint64_t Imm, bool IsZExt = false);
unsigned materializeInt(const ConstantInt *CI, MVT VT);
unsigned materializeFP(const ConstantFP *CFP, MVT VT);
unsigned materializeGV(const GlobalValue *GV);
// Call handling routines.
private:
CCAssignFn *CCAssignFnForCall(CallingConv::ID CC) const;
bool processCallArgs(CallLoweringInfo &CLI, SmallVectorImpl<MVT> &ArgVTs,
unsigned &NumBytes);
bool finishCall(CallLoweringInfo &CLI, MVT RetVT, unsigned NumBytes);
public:
// Backend specific FastISel code.
unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
unsigned fastMaterializeConstant(const Constant *C) override;
unsigned fastMaterializeFloatZero(const ConstantFP* CF) override;
explicit AArch64FastISel(FunctionLoweringInfo &FuncInfo,
const TargetLibraryInfo *LibInfo)
: FastISel(FuncInfo, LibInfo, /*SkipTargetIndependentISel=*/true) {
Subtarget =
&static_cast<const AArch64Subtarget &>(FuncInfo.MF->getSubtarget());
Context = &FuncInfo.Fn->getContext();
}
bool fastSelectInstruction(const Instruction *I) override;
#include "AArch64GenFastISel.inc"
};
} // end anonymous namespace
/// Check if the sign-/zero-extend will be a noop.
static bool isIntExtFree(const Instruction *I) {
assert((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
"Unexpected integer extend instruction.");
assert(!I->getType()->isVectorTy() && I->getType()->isIntegerTy() &&
"Unexpected value type.");
bool IsZExt = isa<ZExtInst>(I);
if (const auto *LI = dyn_cast<LoadInst>(I->getOperand(0)))
if (LI->hasOneUse())
return true;
if (const auto *Arg = dyn_cast<Argument>(I->getOperand(0)))
if ((IsZExt && Arg->hasZExtAttr()) || (!IsZExt && Arg->hasSExtAttr()))
return true;
return false;
}
/// Determine the implicit scale factor that is applied by a memory
/// operation for a given value type.
static unsigned getImplicitScaleFactor(MVT VT) {
switch (VT.SimpleTy) {
default:
return 0; // invalid
case MVT::i1: // fall-through
case MVT::i8:
return 1;
case MVT::i16:
return 2;
case MVT::i32: // fall-through
case MVT::f32:
return 4;
case MVT::i64: // fall-through
case MVT::f64:
return 8;
}
}
CCAssignFn *AArch64FastISel::CCAssignFnForCall(CallingConv::ID CC) const {
if (CC == CallingConv::WebKit_JS)
return CC_AArch64_WebKit_JS;
if (CC == CallingConv::GHC)
return CC_AArch64_GHC;
if (CC == CallingConv::CFGuard_Check)
return CC_AArch64_Win64_CFGuard_Check;
return Subtarget->isTargetDarwin() ? CC_AArch64_DarwinPCS : CC_AArch64_AAPCS;
}
unsigned AArch64FastISel::fastMaterializeAlloca(const AllocaInst *AI) {
assert(TLI.getValueType(DL, AI->getType(), true) == MVT::i64 &&
"Alloca should always return a pointer.");
// Don't handle dynamic allocas.
if (!FuncInfo.StaticAllocaMap.count(AI))
return 0;
DenseMap<const AllocaInst *, int>::iterator SI =
FuncInfo.StaticAllocaMap.find(AI);
if (SI != FuncInfo.StaticAllocaMap.end()) {
unsigned ResultReg = createResultReg(&AArch64::GPR64spRegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADDXri),
ResultReg)
.addFrameIndex(SI->second)
.addImm(0)
.addImm(0);
return ResultReg;
}
return 0;
}
unsigned AArch64FastISel::materializeInt(const ConstantInt *CI, MVT VT) {
if (VT > MVT::i64)
return 0;
if (!CI->isZero())
return fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
// Create a copy from the zero register to materialize a "0" value.
const TargetRegisterClass *RC = (VT == MVT::i64) ? &AArch64::GPR64RegClass
: &AArch64::GPR32RegClass;
unsigned ZeroReg = (VT == MVT::i64) ? AArch64::XZR : AArch64::WZR;
unsigned ResultReg = createResultReg(RC);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
ResultReg).addReg(ZeroReg, getKillRegState(true));
return ResultReg;
}
unsigned AArch64FastISel::materializeFP(const ConstantFP *CFP, MVT VT) {
// Positive zero (+0.0) has to be materialized with a fmov from the zero
// register, because the immediate version of fmov cannot encode zero.
if (CFP->isNullValue())
return fastMaterializeFloatZero(CFP);
if (VT != MVT::f32 && VT != MVT::f64)
return 0;
const APFloat Val = CFP->getValueAPF();
bool Is64Bit = (VT == MVT::f64);
// This checks to see if we can use FMOV instructions to materialize
// a constant, otherwise we have to materialize via the constant pool.
int Imm =
Is64Bit ? AArch64_AM::getFP64Imm(Val) : AArch64_AM::getFP32Imm(Val);
if (Imm != -1) {
unsigned Opc = Is64Bit ? AArch64::FMOVDi : AArch64::FMOVSi;
return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm);
}
// For the MachO large code model materialize the FP constant in code.
if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) {
unsigned Opc1 = Is64Bit ? AArch64::MOVi64imm : AArch64::MOVi32imm;
const TargetRegisterClass *RC = Is64Bit ?
&AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
unsigned TmpReg = createResultReg(RC);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc1), TmpReg)
.addImm(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), ResultReg)
.addReg(TmpReg, getKillRegState(true));
return ResultReg;
}
// Materialize via constant pool. MachineConstantPool wants an explicit
// alignment.
Align Alignment = DL.getPrefTypeAlign(CFP->getType());
unsigned CPI = MCP.getConstantPoolIndex(cast<Constant>(CFP), Alignment);
unsigned ADRPReg = createResultReg(&AArch64::GPR64commonRegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
ADRPReg).addConstantPoolIndex(CPI, 0, AArch64II::MO_PAGE);
unsigned Opc = Is64Bit ? AArch64::LDRDui : AArch64::LDRSui;
unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
.addReg(ADRPReg)
.addConstantPoolIndex(CPI, 0, AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
return ResultReg;
}
unsigned AArch64FastISel::materializeGV(const GlobalValue *GV) {
// We can't handle thread-local variables quickly yet.
if (GV->isThreadLocal())
return 0;
// MachO still uses GOT for large code-model accesses, but ELF requires
// movz/movk sequences, which FastISel doesn't handle yet.
if (!Subtarget->useSmallAddressing() && !Subtarget->isTargetMachO())
return 0;
unsigned OpFlags = Subtarget->ClassifyGlobalReference(GV, TM);
EVT DestEVT = TLI.getValueType(DL, GV->getType(), true);
if (!DestEVT.isSimple())
return 0;
unsigned ADRPReg = createResultReg(&AArch64::GPR64commonRegClass);
unsigned ResultReg;
if (OpFlags & AArch64II::MO_GOT) {
// ADRP + LDRX
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
ADRPReg)
.addGlobalAddress(GV, 0, AArch64II::MO_PAGE | OpFlags);
unsigned LdrOpc;
if (Subtarget->isTargetILP32()) {
ResultReg = createResultReg(&AArch64::GPR32RegClass);
LdrOpc = AArch64::LDRWui;
} else {
ResultReg = createResultReg(&AArch64::GPR64RegClass);
LdrOpc = AArch64::LDRXui;
}
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(LdrOpc),
ResultReg)
.addReg(ADRPReg)
.addGlobalAddress(GV, 0, AArch64II::MO_GOT | AArch64II::MO_PAGEOFF |
AArch64II::MO_NC | OpFlags);
if (!Subtarget->isTargetILP32())
return ResultReg;
// LDRWui produces a 32-bit register, but pointers in-register are 64-bits
// so we must extend the result on ILP32.
unsigned Result64 = createResultReg(&AArch64::GPR64RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::SUBREG_TO_REG))
.addDef(Result64)
.addImm(0)
.addReg(ResultReg, RegState::Kill)
.addImm(AArch64::sub_32);
return Result64;
} else {
// ADRP + ADDX
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
ADRPReg)
.addGlobalAddress(GV, 0, AArch64II::MO_PAGE | OpFlags);
ResultReg = createResultReg(&AArch64::GPR64spRegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADDXri),
ResultReg)
.addReg(ADRPReg)
.addGlobalAddress(GV, 0,
AArch64II::MO_PAGEOFF | AArch64II::MO_NC | OpFlags)
.addImm(0);
}
return ResultReg;
}
unsigned AArch64FastISel::fastMaterializeConstant(const Constant *C) {
EVT CEVT = TLI.getValueType(DL, C->getType(), true);
// Only handle simple types.
if (!CEVT.isSimple())
return 0;
MVT VT = CEVT.getSimpleVT();
// arm64_32 has 32-bit pointers held in 64-bit registers. Because of that,
// 'null' pointers need to have a somewhat special treatment.
if (const auto *CPN = dyn_cast<ConstantPointerNull>(C)) {
(void)CPN;
assert(CPN->getType()->getPointerAddressSpace() == 0 &&
"Unexpected address space");
assert(VT == MVT::i64 && "Expected 64-bit pointers");
return materializeInt(ConstantInt::get(Type::getInt64Ty(*Context), 0), VT);
}
if (const auto *CI = dyn_cast<ConstantInt>(C))
return materializeInt(CI, VT);
else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
return materializeFP(CFP, VT);
else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
return materializeGV(GV);
return 0;
}
unsigned AArch64FastISel::fastMaterializeFloatZero(const ConstantFP* CFP) {
assert(CFP->isNullValue() &&
"Floating-point constant is not a positive zero.");
MVT VT;
if (!isTypeLegal(CFP->getType(), VT))
return 0;
if (VT != MVT::f32 && VT != MVT::f64)
return 0;
bool Is64Bit = (VT == MVT::f64);
unsigned ZReg = Is64Bit ? AArch64::XZR : AArch64::WZR;
unsigned Opc = Is64Bit ? AArch64::FMOVXDr : AArch64::FMOVWSr;
return fastEmitInst_r(Opc, TLI.getRegClassFor(VT), ZReg, /*IsKill=*/true);
}
/// Check if the multiply is by a power-of-2 constant.
static bool isMulPowOf2(const Value *I) {
if (const auto *MI = dyn_cast<MulOperator>(I)) {
if (const auto *C = dyn_cast<ConstantInt>(MI->getOperand(0)))
if (C->getValue().isPowerOf2())
return true;
if (const auto *C = dyn_cast<ConstantInt>(MI->getOperand(1)))
if (C->getValue().isPowerOf2())
return true;
}
return false;
}
// Computes the address to get to an object.
bool AArch64FastISel::computeAddress(const Value *Obj, Address &Addr, Type *Ty)
{
const User *U = nullptr;
unsigned Opcode = Instruction::UserOp1;
if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
// Don't walk into other basic blocks unless the object is an alloca from
// another block, otherwise it may not have a virtual register assigned.
if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
Opcode = I->getOpcode();
U = I;
}
} else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
Opcode = C->getOpcode();
U = C;
}
if (auto *Ty = dyn_cast<PointerType>(Obj->getType()))
if (Ty->getAddressSpace() > 255)
// Fast instruction selection doesn't support the special
// address spaces.
return false;
switch (Opcode) {
default:
break;
case Instruction::BitCast:
// Look through bitcasts.
return computeAddress(U->getOperand(0), Addr, Ty);
case Instruction::IntToPtr:
// Look past no-op inttoptrs.
if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
TLI.getPointerTy(DL))
return computeAddress(U->getOperand(0), Addr, Ty);
break;
case Instruction::PtrToInt:
// Look past no-op ptrtoints.
if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
return computeAddress(U->getOperand(0), Addr, Ty);
break;
case Instruction::GetElementPtr: {
Address SavedAddr = Addr;
uint64_t TmpOffset = Addr.getOffset();
// Iterate through the GEP folding the constants into offsets where
// we can.
for (gep_type_iterator GTI = gep_type_begin(U), E = gep_type_end(U);
GTI != E; ++GTI) {
const Value *Op = GTI.getOperand();
if (StructType *STy = GTI.getStructTypeOrNull()) {
const StructLayout *SL = DL.getStructLayout(STy);
unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
TmpOffset += SL->getElementOffset(Idx);
} else {
uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
while (true) {
if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
// Constant-offset addressing.
TmpOffset += CI->getSExtValue() * S;
break;
}
if (canFoldAddIntoGEP(U, Op)) {
// A compatible add with a constant operand. Fold the constant.
ConstantInt *CI =
cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
TmpOffset += CI->getSExtValue() * S;
// Iterate on the other operand.
Op = cast<AddOperator>(Op)->getOperand(0);
continue;
}
// Unsupported
goto unsupported_gep;
}
}
}
// Try to grab the base operand now.
Addr.setOffset(TmpOffset);
if (computeAddress(U->getOperand(0), Addr, Ty))
return true;
// We failed, restore everything and try the other options.
Addr = SavedAddr;
unsupported_gep:
break;
}
case Instruction::Alloca: {
const AllocaInst *AI = cast<AllocaInst>(Obj);
DenseMap<const AllocaInst *, int>::iterator SI =
FuncInfo.StaticAllocaMap.find(AI);
if (SI != FuncInfo.StaticAllocaMap.end()) {
Addr.setKind(Address::FrameIndexBase);
Addr.setFI(SI->second);
return true;
}
break;
}
case Instruction::Add: {
// Adds of constants are common and easy enough.
const Value *LHS = U->getOperand(0);
const Value *RHS = U->getOperand(1);
if (isa<ConstantInt>(LHS))
std::swap(LHS, RHS);
if (const ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
Addr.setOffset(Addr.getOffset() + CI->getSExtValue());
return computeAddress(LHS, Addr, Ty);
}
Address Backup = Addr;
if (computeAddress(LHS, Addr, Ty) && computeAddress(RHS, Addr, Ty))
return true;
Addr = Backup;
break;
}
case Instruction::Sub: {
// Subs of constants are common and easy enough.
const Value *LHS = U->getOperand(0);
const Value *RHS = U->getOperand(1);
if (const ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
Addr.setOffset(Addr.getOffset() - CI->getSExtValue());
return computeAddress(LHS, Addr, Ty);
}
break;
}
case Instruction::Shl: {
if (Addr.getOffsetReg())
break;
const auto *CI = dyn_cast<ConstantInt>(U->getOperand(1));
if (!CI)
break;
unsigned Val = CI->getZExtValue();
if (Val < 1 || Val > 3)
break;
uint64_t NumBytes = 0;
if (Ty && Ty->isSized()) {
uint64_t NumBits = DL.getTypeSizeInBits(Ty);
NumBytes = NumBits / 8;
if (!isPowerOf2_64(NumBits))
NumBytes = 0;
}
if (NumBytes != (1ULL << Val))
break;
Addr.setShift(Val);
Addr.setExtendType(AArch64_AM::LSL);
const Value *Src = U->getOperand(0);
if (const auto *I = dyn_cast<Instruction>(Src)) {
if (FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
// Fold the zext or sext when it won't become a noop.
if (const auto *ZE = dyn_cast<ZExtInst>(I)) {
if (!isIntExtFree(ZE) &&
ZE->getOperand(0)->getType()->isIntegerTy(32)) {
Addr.setExtendType(AArch64_AM::UXTW);
Src = ZE->getOperand(0);
}
} else if (const auto *SE = dyn_cast<SExtInst>(I)) {
if (!isIntExtFree(SE) &&
SE->getOperand(0)->getType()->isIntegerTy(32)) {
Addr.setExtendType(AArch64_AM::SXTW);
Src = SE->getOperand(0);
}
}
}
}
if (const auto *AI = dyn_cast<BinaryOperator>(Src))
if (AI->getOpcode() == Instruction::And) {
const Value *LHS = AI->getOperand(0);
const Value *RHS = AI->getOperand(1);
if (const auto *C = dyn_cast<ConstantInt>(LHS))
if (C->getValue() == 0xffffffff)
std::swap(LHS, RHS);
if (const auto *C = dyn_cast<ConstantInt>(RHS))
if (C->getValue() == 0xffffffff) {
Addr.setExtendType(AArch64_AM::UXTW);
unsigned Reg = getRegForValue(LHS);
if (!Reg)
return false;
bool RegIsKill = hasTrivialKill(LHS);
Reg = fastEmitInst_extractsubreg(MVT::i32, Reg, RegIsKill,
AArch64::sub_32);
Addr.setOffsetReg(Reg);
return true;
}
}
unsigned Reg = getRegForValue(Src);
if (!Reg)
return false;
Addr.setOffsetReg(Reg);
return true;
}
case Instruction::Mul: {
if (Addr.getOffsetReg())
break;
if (!isMulPowOf2(U))
break;
const Value *LHS = U->getOperand(0);
const Value *RHS = U->getOperand(1);
// Canonicalize power-of-2 value to the RHS.
if (const auto *C = dyn_cast<ConstantInt>(LHS))
if (C->getValue().isPowerOf2())
std::swap(LHS, RHS);
assert(isa<ConstantInt>(RHS) && "Expected an ConstantInt.");
const auto *C = cast<ConstantInt>(RHS);
unsigned Val = C->getValue().logBase2();
if (Val < 1 || Val > 3)
break;
uint64_t NumBytes = 0;
if (Ty && Ty->isSized()) {
uint64_t NumBits = DL.getTypeSizeInBits(Ty);
NumBytes = NumBits / 8;
if (!isPowerOf2_64(NumBits))
NumBytes = 0;
}
if (NumBytes != (1ULL << Val))
break;
Addr.setShift(Val);
Addr.setExtendType(AArch64_AM::LSL);
const Value *Src = LHS;
if (const auto *I = dyn_cast<Instruction>(Src)) {
if (FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
// Fold the zext or sext when it won't become a noop.
if (const auto *ZE = dyn_cast<ZExtInst>(I)) {
if (!isIntExtFree(ZE) &&
ZE->getOperand(0)->getType()->isIntegerTy(32)) {
Addr.setExtendType(AArch64_AM::UXTW);
Src = ZE->getOperand(0);
}
} else if (const auto *SE = dyn_cast<SExtInst>(I)) {
if (!isIntExtFree(SE) &&
SE->getOperand(0)->getType()->isIntegerTy(32)) {
Addr.setExtendType(AArch64_AM::SXTW);
Src = SE->getOperand(0);
}
}
}
}
unsigned Reg = getRegForValue(Src);
if (!Reg)
return false;
Addr.setOffsetReg(Reg);
return true;
}
case Instruction::And: {
if (Addr.getOffsetReg())
break;
if (!Ty || DL.getTypeSizeInBits(Ty) != 8)
break;
const Value *LHS = U->getOperand(0);
const Value *RHS = U->getOperand(1);
if (const auto *C = dyn_cast<ConstantInt>(LHS))
if (C->getValue() == 0xffffffff)
std::swap(LHS, RHS);
if (const auto *C = dyn_cast<ConstantInt>(RHS))
if (C->getValue() == 0xffffffff) {
Addr.setShift(0);
Addr.setExtendType(AArch64_AM::LSL);
Addr.setExtendType(AArch64_AM::UXTW);
unsigned Reg = getRegForValue(LHS);
if (!Reg)
return false;
bool RegIsKill = hasTrivialKill(LHS);
Reg = fastEmitInst_extractsubreg(MVT::i32, Reg, RegIsKill,
AArch64::sub_32);
Addr.setOffsetReg(Reg);
return true;
}
break;
}
case Instruction::SExt:
case Instruction::ZExt: {
if (!Addr.getReg() || Addr.getOffsetReg())
break;
const Value *Src = nullptr;
// Fold the zext or sext when it won't become a noop.
if (const auto *ZE = dyn_cast<ZExtInst>(U)) {
if (!isIntExtFree(ZE) && ZE->getOperand(0)->getType()->isIntegerTy(32)) {
Addr.setExtendType(AArch64_AM::UXTW);
Src = ZE->getOperand(0);
}
} else if (const auto *SE = dyn_cast<SExtInst>(U)) {
if (!isIntExtFree(SE) && SE->getOperand(0)->getType()->isIntegerTy(32)) {
Addr.setExtendType(AArch64_AM::SXTW);
Src = SE->getOperand(0);
}
}
if (!Src)
break;
Addr.setShift(0);
unsigned Reg = getRegForValue(Src);
if (!Reg)
return false;
Addr.setOffsetReg(Reg);
return true;
}
} // end switch
if (Addr.isRegBase() && !Addr.getReg()) {
unsigned Reg = getRegForValue(Obj);
if (!Reg)
return false;
Addr.setReg(Reg);
return true;
}
if (!Addr.getOffsetReg()) {
unsigned Reg = getRegForValue(Obj);
if (!Reg)
return false;
Addr.setOffsetReg(Reg);
return true;
}
return false;
}
bool AArch64FastISel::computeCallAddress(const Value *V, Address &Addr) {
const User *U = nullptr;
unsigned Opcode = Instruction::UserOp1;
bool InMBB = true;
if (const auto *I = dyn_cast<Instruction>(V)) {
Opcode = I->getOpcode();
U = I;
InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock();
} else if (const auto *C = dyn_cast<ConstantExpr>(V)) {
Opcode = C->getOpcode();
U = C;
}
switch (Opcode) {
default: break;
case Instruction::BitCast:
// Look past bitcasts if its operand is in the same BB.
if (InMBB)
return computeCallAddress(U->getOperand(0), Addr);
break;
case Instruction::IntToPtr:
// Look past no-op inttoptrs if its operand is in the same BB.
if (InMBB &&
TLI.getValueType(DL, U->getOperand(0)->getType()) ==
TLI.getPointerTy(DL))
return computeCallAddress(U->getOperand(0), Addr);
break;
case Instruction::PtrToInt:
// Look past no-op ptrtoints if its operand is in the same BB.
if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
return computeCallAddress(U->getOperand(0), Addr);
break;
}
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
Addr.setGlobalValue(GV);
return true;
}
// If all else fails, try to materialize the value in a register.
if (!Addr.getGlobalValue()) {
Addr.setReg(getRegForValue(V));
return Addr.getReg() != 0;
}
return false;
}
bool AArch64FastISel::isTypeLegal(Type *Ty, MVT &VT) {
EVT evt = TLI.getValueType(DL, Ty, true);
if (Subtarget->isTargetILP32() && Ty->isPointerTy())
return false;
// Only handle simple types.
if (evt == MVT::Other || !evt.isSimple())
return false;
VT = evt.getSimpleVT();
// This is a legal type, but it's not something we handle in fast-isel.
if (VT == MVT::f128)
return false;
// Handle all other legal types, i.e. a register that will directly hold this
// value.
return TLI.isTypeLegal(VT);
}
/// Determine if the value type is supported by FastISel.
///
/// FastISel for AArch64 can handle more value types than are legal. This adds
/// simple value type such as i1, i8, and i16.
bool AArch64FastISel::isTypeSupported(Type *Ty, MVT &VT, bool IsVectorAllowed) {
if (Ty->isVectorTy() && !IsVectorAllowed)
return false;
if (isTypeLegal(Ty, VT))
return true;
// If this is a type than can be sign or zero-extended to a basic operation
// go ahead and accept it now.
if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
return true;
return false;
}
bool AArch64FastISel::isValueAvailable(const Value *V) const {
if (!isa<Instruction>(V))
return true;
const auto *I = cast<Instruction>(V);
return FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB;
}
bool AArch64FastISel::simplifyAddress(Address &Addr, MVT VT) {
if (Subtarget->isTargetILP32())
return false;
unsigned ScaleFactor = getImplicitScaleFactor(VT);
if (!ScaleFactor)
return false;
bool ImmediateOffsetNeedsLowering = false;
bool RegisterOffsetNeedsLowering = false;
int64_t Offset = Addr.getOffset();
if (((Offset < 0) || (Offset & (ScaleFactor - 1))) && !isInt<9>(Offset))
ImmediateOffsetNeedsLowering = true;
else if (Offset > 0 && !(Offset & (ScaleFactor - 1)) &&
!isUInt<12>(Offset / ScaleFactor))
ImmediateOffsetNeedsLowering = true;
// Cannot encode an offset register and an immediate offset in the same
// instruction. Fold the immediate offset into the load/store instruction and
// emit an additional add to take care of the offset register.
if (!ImmediateOffsetNeedsLowering && Addr.getOffset() && Addr.getOffsetReg())
RegisterOffsetNeedsLowering = true;
// Cannot encode zero register as base.
if (Addr.isRegBase() && Addr.getOffsetReg() && !Addr.getReg())
RegisterOffsetNeedsLowering = true;
// If this is a stack pointer and the offset needs to be simplified then put
// the alloca address into a register, set the base type back to register and
// continue. This should almost never happen.
if ((ImmediateOffsetNeedsLowering || Addr.getOffsetReg()) && Addr.isFIBase())
{
unsigned ResultReg = createResultReg(&AArch64::GPR64spRegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADDXri),
ResultReg)
.addFrameIndex(Addr.getFI())
.addImm(0)
.addImm(0);
Addr.setKind(Address::RegBase);
Addr.setReg(ResultReg);
}
if (RegisterOffsetNeedsLowering) {
unsigned ResultReg = 0;
if (Addr.getReg()) {
if (Addr.getExtendType() == AArch64_AM::SXTW ||
Addr.getExtendType() == AArch64_AM::UXTW )
ResultReg = emitAddSub_rx(/*UseAdd=*/true, MVT::i64, Addr.getReg(),
/*TODO:IsKill=*/false, Addr.getOffsetReg(),
/*TODO:IsKill=*/false, Addr.getExtendType(),
Addr.getShift());
else
ResultReg = emitAddSub_rs(/*UseAdd=*/true, MVT::i64, Addr.getReg(),
/*TODO:IsKill=*/false, Addr.getOffsetReg(),
/*TODO:IsKill=*/false, AArch64_AM::LSL,
Addr.getShift());
} else {
if (Addr.getExtendType() == AArch64_AM::UXTW)
ResultReg = emitLSL_ri(MVT::i64, MVT::i32, Addr.getOffsetReg(),
/*Op0IsKill=*/false, Addr.getShift(),
/*IsZExt=*/true);
else if (Addr.getExtendType() == AArch64_AM::SXTW)
ResultReg = emitLSL_ri(MVT::i64, MVT::i32, Addr.getOffsetReg(),
/*Op0IsKill=*/false, Addr.getShift(),
/*IsZExt=*/false);
else
ResultReg = emitLSL_ri(MVT::i64, MVT::i64, Addr.getOffsetReg(),
/*Op0IsKill=*/false, Addr.getShift());
}
if (!ResultReg)
return false;
Addr.setReg(ResultReg);
Addr.setOffsetReg(0);
Addr.setShift(0);
Addr.setExtendType(AArch64_AM::InvalidShiftExtend);
}
// Since the offset is too large for the load/store instruction get the
// reg+offset into a register.
if (ImmediateOffsetNeedsLowering) {
unsigned ResultReg;
if (Addr.getReg())
// Try to fold the immediate into the add instruction.
ResultReg = emitAdd_ri_(MVT::i64, Addr.getReg(), /*IsKill=*/false, Offset);
else
ResultReg = fastEmit_i(MVT::i64, MVT::i64, ISD::Constant, Offset);
if (!ResultReg)
return false;
Addr.setReg(ResultReg);
Addr.setOffset(0);
}
return true;
}
void AArch64FastISel::addLoadStoreOperands(Address &Addr,
const MachineInstrBuilder &MIB,
MachineMemOperand::Flags Flags,
unsigned ScaleFactor,
MachineMemOperand *MMO) {
int64_t Offset = Addr.getOffset() / ScaleFactor;
// Frame base works a bit differently. Handle it separately.
if (Addr.isFIBase()) {
int FI = Addr.getFI();
// FIXME: We shouldn't be using getObjectSize/getObjectAlignment. The size
// and alignment should be based on the VT.
MMO = FuncInfo.MF->getMachineMemOperand(
MachinePointerInfo::getFixedStack(*FuncInfo.MF, FI, Offset), Flags,
MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
// Now add the rest of the operands.
MIB.addFrameIndex(FI).addImm(Offset);
} else {
assert(Addr.isRegBase() && "Unexpected address kind.");
const MCInstrDesc &II = MIB->getDesc();
unsigned Idx = (Flags & MachineMemOperand::MOStore) ? 1 : 0;
Addr.setReg(
constrainOperandRegClass(II, Addr.getReg(), II.getNumDefs()+Idx));
Addr.setOffsetReg(
constrainOperandRegClass(II, Addr.getOffsetReg(), II.getNumDefs()+Idx+1));
if (Addr.getOffsetReg()) {
assert(Addr.getOffset() == 0 && "Unexpected offset");
bool IsSigned = Addr.getExtendType() == AArch64_AM::SXTW ||
Addr.getExtendType() == AArch64_AM::SXTX;
MIB.addReg(Addr.getReg());
MIB.addReg(Addr.getOffsetReg());
MIB.addImm(IsSigned);
MIB.addImm(Addr.getShift() != 0);
} else
MIB.addReg(Addr.getReg()).addImm(Offset);
}
if (MMO)
MIB.addMemOperand(MMO);
}
unsigned AArch64FastISel::emitAddSub(bool UseAdd, MVT RetVT, const Value *LHS,
const Value *RHS, bool SetFlags,
bool WantResult, bool IsZExt) {
AArch64_AM::ShiftExtendType ExtendType = AArch64_AM::InvalidShiftExtend;
bool NeedExtend = false;
switch (RetVT.SimpleTy) {
default:
return 0;
case MVT::i1:
NeedExtend = true;
break;
case MVT::i8:
NeedExtend = true;
ExtendType = IsZExt ? AArch64_AM::UXTB : AArch64_AM::SXTB;
break;
case MVT::i16:
NeedExtend = true;
ExtendType = IsZExt ? AArch64_AM::UXTH : AArch64_AM::SXTH;
break;
case MVT::i32: // fall-through
case MVT::i64:
break;
}
MVT SrcVT = RetVT;
RetVT.SimpleTy = std::max(RetVT.SimpleTy, MVT::i32);
// Canonicalize immediates to the RHS first.
if (UseAdd && isa<Constant>(LHS) && !isa<Constant>(RHS))
std::swap(LHS, RHS);
// Canonicalize mul by power of 2 to the RHS.
if (UseAdd && LHS->hasOneUse() && isValueAvailable(LHS))
if (isMulPowOf2(LHS))
std::swap(LHS, RHS);
// Canonicalize shift immediate to the RHS.
if (UseAdd && LHS->hasOneUse() && isValueAvailable(LHS))
if (const auto *SI = dyn_cast<BinaryOperator>(LHS))
if (isa<ConstantInt>(SI->getOperand(1)))
if (SI->getOpcode() == Instruction::Shl ||
SI->getOpcode() == Instruction::LShr ||
SI->getOpcode() == Instruction::AShr )
std::swap(LHS, RHS);
unsigned LHSReg = getRegForValue(LHS);
if (!LHSReg)
return 0;
bool LHSIsKill = hasTrivialKill(LHS);
if (NeedExtend)
LHSReg = emitIntExt(SrcVT, LHSReg, RetVT, IsZExt);
unsigned ResultReg = 0;
if (const auto *C = dyn_cast<ConstantInt>(RHS)) {
uint64_t Imm = IsZExt ? C->getZExtValue() : C->getSExtValue();
if (C->isNegative())
ResultReg = emitAddSub_ri(!UseAdd, RetVT, LHSReg, LHSIsKill, -Imm,
SetFlags, WantResult);
else
ResultReg = emitAddSub_ri(UseAdd, RetVT, LHSReg, LHSIsKill, Imm, SetFlags,
WantResult);
} else if (const auto *C = dyn_cast<Constant>(RHS))
if (C->isNullValue())
ResultReg = emitAddSub_ri(UseAdd, RetVT, LHSReg, LHSIsKill, 0, SetFlags,
WantResult);
if (ResultReg)
return ResultReg;
// Only extend the RHS within the instruction if there is a valid extend type.
if (ExtendType != AArch64_AM::InvalidShiftExtend && RHS->hasOneUse() &&
isValueAvailable(RHS)) {
if (const auto *SI = dyn_cast<BinaryOperator>(RHS))
if (const auto *C = dyn_cast<ConstantInt>(SI->getOperand(1)))
if ((SI->getOpcode() == Instruction::Shl) && (C->getZExtValue() < 4)) {
unsigned RHSReg = getRegForValue(SI->getOperand(0));
if (!RHSReg)
return 0;
bool RHSIsKill = hasTrivialKill(SI->getOperand(0));
return emitAddSub_rx(UseAdd, RetVT, LHSReg, LHSIsKill, RHSReg,
RHSIsKill, ExtendType, C->getZExtValue(),
SetFlags, WantResult);
}
unsigned RHSReg = getRegForValue(RHS);
if (!RHSReg)
return 0;
bool RHSIsKill = hasTrivialKill(RHS);
return emitAddSub_rx(UseAdd, RetVT, LHSReg, LHSIsKill, RHSReg, RHSIsKill,
ExtendType, 0, SetFlags, WantResult);
}
// Check if the mul can be folded into the instruction.
if (RHS->hasOneUse() && isValueAvailable(RHS)) {
if (isMulPowOf2(RHS)) {
const Value *MulLHS = cast<MulOperator>(RHS)->getOperand(0);
const Value *MulRHS = cast<MulOperator>(RHS)->getOperand(1);
if (const auto *C = dyn_cast<ConstantInt>(MulLHS))
if (C->getValue().isPowerOf2())
std::swap(MulLHS, MulRHS);
assert(isa<ConstantInt>(MulRHS) && "Expected a ConstantInt.");
uint64_t ShiftVal = cast<ConstantInt>(MulRHS)->getValue().logBase2();
unsigned RHSReg = getRegForValue(MulLHS);
if (!RHSReg)
return 0;
bool RHSIsKill = hasTrivialKill(MulLHS);
ResultReg = emitAddSub_rs(UseAdd, RetVT, LHSReg, LHSIsKill, RHSReg,
RHSIsKill, AArch64_AM::LSL, ShiftVal, SetFlags,
WantResult);
if (ResultReg)
return ResultReg;
}
}
// Check if the shift can be folded into the instruction.
if (RHS->hasOneUse() && isValueAvailable(RHS)) {
if (const auto *SI = dyn_cast<BinaryOperator>(RHS)) {
if (const auto *C = dyn_cast<ConstantInt>(SI->getOperand(1))) {
AArch64_AM::ShiftExtendType ShiftType = AArch64_AM::InvalidShiftExtend;
switch (SI->getOpcode()) {
default: break;
case Instruction::Shl: ShiftType = AArch64_AM::LSL; break;
case Instruction::LShr: ShiftType = AArch64_AM::LSR; break;
case Instruction::AShr: ShiftType = AArch64_AM::ASR; break;
}
uint64_t ShiftVal = C->getZExtValue();
if (ShiftType != AArch64_AM::InvalidShiftExtend) {
unsigned RHSReg = getRegForValue(SI->getOperand(0));
if (!RHSReg)
return 0;
bool RHSIsKill = hasTrivialKill(SI->getOperand(0));
ResultReg = emitAddSub_rs(UseAdd, RetVT, LHSReg, LHSIsKill, RHSReg,
RHSIsKill, ShiftType, ShiftVal, SetFlags,
WantResult);
if (ResultReg)
return ResultReg;
}
}
}
}
unsigned RHSReg = getRegForValue(RHS);
if (!RHSReg)
return 0;
bool RHSIsKill = hasTrivialKill(RHS);
if (NeedExtend)
RHSReg = emitIntExt(SrcVT, RHSReg, RetVT, IsZExt);
return emitAddSub_rr(UseAdd, RetVT, LHSReg, LHSIsKill, RHSReg, RHSIsKill,
SetFlags, WantResult);
}
unsigned AArch64FastISel::emitAddSub_rr(bool UseAdd, MVT RetVT, unsigned LHSReg,
bool LHSIsKill, unsigned RHSReg,
bool RHSIsKill, bool SetFlags,
bool WantResult) {
assert(LHSReg && RHSReg && "Invalid register number.");
if (LHSReg == AArch64::SP || LHSReg == AArch64::WSP ||
RHSReg == AArch64::SP || RHSReg == AArch64::WSP)
return 0;
if (RetVT != MVT::i32 && RetVT != MVT::i64)
return 0;
static const unsigned OpcTable[2][2][2] = {
{ { AArch64::SUBWrr, AArch64::SUBXrr },
{ AArch64::ADDWrr, AArch64::ADDXrr } },
{ { AArch64::SUBSWrr, AArch64::SUBSXrr },
{ AArch64::ADDSWrr, AArch64::ADDSXrr } }
};
bool Is64Bit = RetVT == MVT::i64;
unsigned Opc = OpcTable[SetFlags][UseAdd][Is64Bit];
const TargetRegisterClass *RC =
Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
unsigned ResultReg;
if (WantResult)
ResultReg = createResultReg(RC);
else
ResultReg = Is64Bit ? AArch64::XZR : AArch64::WZR;
const MCInstrDesc &II = TII.get(Opc);
LHSReg = constrainOperandRegClass(II, LHSReg, II.getNumDefs());
RHSReg = constrainOperandRegClass(II, RHSReg, II.getNumDefs() + 1);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
.addReg(LHSReg, getKillRegState(LHSIsKill))
.addReg(RHSReg, getKillRegState(RHSIsKill));
return ResultReg;
}
unsigned AArch64FastISel::emitAddSub_ri(bool UseAdd, MVT RetVT, unsigned LHSReg,
bool LHSIsKill, uint64_t Imm,
bool SetFlags, bool WantResult) {
assert(LHSReg && "Invalid register number.");
if (RetVT != MVT::i32 && RetVT != MVT::i64)
return 0;
unsigned ShiftImm;
if (isUInt<12>(Imm))
ShiftImm = 0;
else if ((Imm & 0xfff000) == Imm) {
ShiftImm = 12;
Imm >>= 12;
} else
return 0;
static const unsigned OpcTable[2][2][2] = {
{ { AArch64::SUBWri, AArch64::SUBXri },
{ AArch64::ADDWri, AArch64::ADDXri } },
{ { AArch64::SUBSWri, AArch64::SUBSXri },
{ AArch64::ADDSWri, AArch64::ADDSXri } }
};
bool Is64Bit = RetVT == MVT::i64;
unsigned Opc = OpcTable[SetFlags][UseAdd][Is64Bit];
const TargetRegisterClass *RC;
if (SetFlags)
RC = Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
else
RC = Is64Bit ? &AArch64::GPR64spRegClass : &AArch64::GPR32spRegClass;
unsigned ResultReg;
if (WantResult)
ResultReg = createResultReg(RC);
else
ResultReg = Is64Bit ? AArch64::XZR : AArch64::WZR;
const MCInstrDesc &II = TII.get(Opc);
LHSReg = constrainOperandRegClass(II, LHSReg, II.getNumDefs());
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
.addReg(LHSReg, getKillRegState(LHSIsKill))
.addImm(Imm)
.addImm(getShifterImm(AArch64_AM::LSL, ShiftImm));
return ResultReg;
}
unsigned AArch64FastISel::emitAddSub_rs(bool UseAdd, MVT RetVT, unsigned LHSReg,
bool LHSIsKill, unsigned RHSReg,
bool RHSIsKill,
AArch64_AM::ShiftExtendType ShiftType,
uint64_t ShiftImm, bool SetFlags,
bool WantResult) {
assert(LHSReg && RHSReg && "Invalid register number.");
assert(LHSReg != AArch64::SP && LHSReg != AArch64::WSP &&
RHSReg != AArch64::SP && RHSReg != AArch64::WSP);
if (RetVT != MVT::i32 && RetVT != MVT::i64)
return 0;
// Don't deal with undefined shifts.
if (ShiftImm >= RetVT.getSizeInBits())
return 0;
static const unsigned OpcTable[2][2][2] = {
{ { AArch64::SUBWrs, AArch64::SUBXrs },
{ AArch64::ADDWrs, AArch64::ADDXrs } },
{ { AArch64::SUBSWrs, AArch64::SUBSXrs },
{ AArch64::ADDSWrs, AArch64::ADDSXrs } }
};
bool Is64Bit = RetVT == MVT::i64;
unsigned Opc = OpcTable[SetFlags][UseAdd][Is64Bit];
const TargetRegisterClass *RC =
Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
unsigned ResultReg;
if (WantResult)
ResultReg = createResultReg(RC);
else
ResultReg = Is64Bit ? AArch64::XZR : AArch64::WZR;
const MCInstrDesc &II = TII.get(Opc);
LHSReg = constrainOperandRegClass(II, LHSReg, II.getNumDefs());
RHSReg = constrainOperandRegClass(II, RHSReg, II.getNumDefs() + 1);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
.addReg(LHSReg, getKillRegState(LHSIsKill))
.addReg(RHSReg, getKillRegState(RHSIsKill))
.addImm(getShifterImm(ShiftType, ShiftImm));
return ResultReg;
}
unsigned AArch64FastISel::emitAddSub_rx(bool UseAdd, MVT RetVT, unsigned LHSReg,
bool LHSIsKill, unsigned RHSReg,
bool RHSIsKill,
AArch64_AM::ShiftExtendType ExtType,
uint64_t ShiftImm, bool SetFlags,
bool WantResult) {
assert(LHSReg && RHSReg && "Invalid register number.");
assert(LHSReg != AArch64::XZR && LHSReg != AArch64::WZR &&
RHSReg != AArch64::XZR && RHSReg != AArch64::WZR);
if (RetVT != MVT::i32 && RetVT != MVT::i64)
return 0;
if (ShiftImm >= 4)
return 0;
static const unsigned OpcTable[2][2][2] = {
{ { AArch64::SUBWrx, AArch64::SUBXrx },
{ AArch64::ADDWrx, AArch64::ADDXrx } },
{ { AArch64::SUBSWrx, AArch64::SUBSXrx },
{ AArch64::ADDSWrx, AArch64::ADDSXrx } }
};
bool Is64Bit = RetVT == MVT::i64;
unsigned Opc = OpcTable[SetFlags][UseAdd][Is64Bit];
const TargetRegisterClass *RC = nullptr;
if (SetFlags)
RC = Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
else
RC = Is64Bit ? &AArch64::GPR64spRegClass : &AArch64::GPR32spRegClass;
unsigned ResultReg;
if (WantResult)
ResultReg = createResultReg(RC);
else
ResultReg = Is64Bit ? AArch64::XZR : AArch64::WZR;
const MCInstrDesc &II = TII.get(Opc);
LHSReg = constrainOperandRegClass(II, LHSReg, II.getNumDefs());
RHSReg = constrainOperandRegClass(II, RHSReg, II.getNumDefs() + 1);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
.addReg(LHSReg, getKillRegState(LHSIsKill))
.addReg(RHSReg, getKillRegState(RHSIsKill))
.addImm(getArithExtendImm(ExtType, ShiftImm));
return ResultReg;
}
bool AArch64FastISel::emitCmp(const Value *LHS, const Value *RHS, bool IsZExt) {
Type *Ty = LHS->getType();
EVT EVT = TLI.getValueType(DL, Ty, true);
if (!EVT.isSimple())
return false;
MVT VT = EVT.getSimpleVT();
switch (VT.SimpleTy) {
default:
return false;
case MVT::i1:
case MVT::i8:
case MVT::i16:
case MVT::i32:
case MVT::i64:
return emitICmp(VT, LHS, RHS, IsZExt);
case MVT::f32:
case MVT::f64:
return emitFCmp(VT, LHS, RHS);
}
}
bool AArch64FastISel::emitICmp(MVT RetVT, const Value *LHS, const Value *RHS,
bool IsZExt) {
return emitSub(RetVT, LHS, RHS, /*SetFlags=*/true, /*WantResult=*/false,
IsZExt) != 0;
}
bool AArch64FastISel::emitICmp_ri(MVT RetVT, unsigned LHSReg, bool LHSIsKill,
uint64_t Imm) {
return emitAddSub_ri(/*UseAdd=*/false, RetVT, LHSReg, LHSIsKill, Imm,
/*SetFlags=*/true, /*WantResult=*/false) != 0;
}
bool AArch64FastISel::emitFCmp(MVT RetVT, const Value *LHS, const Value *RHS) {
if (RetVT != MVT::f32 && RetVT != MVT::f64)
return false;
// Check to see if the 2nd operand is a constant that we can encode directly
// in the compare.
bool UseImm = false;
if (const auto *CFP = dyn_cast<ConstantFP>(RHS))
if (CFP->isZero() && !CFP->isNegative())
UseImm = true;
unsigned LHSReg = getRegForValue(LHS);
if (!LHSReg)
return false;
bool LHSIsKill = hasTrivialKill(LHS);
if (UseImm) {
unsigned Opc = (RetVT == MVT::f64) ? AArch64::FCMPDri : AArch64::FCMPSri;
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
.addReg(LHSReg, getKillRegState(LHSIsKill));
return true;
}
unsigned RHSReg = getRegForValue(RHS);
if (!RHSReg)
return false;
bool RHSIsKill = hasTrivialKill(RHS);
unsigned Opc = (RetVT == MVT::f64) ? AArch64::FCMPDrr : AArch64::FCMPSrr;
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
.addReg(LHSReg, getKillRegState(LHSIsKill))
.addReg(RHSReg, getKillRegState(RHSIsKill));
return true;
}
unsigned AArch64FastISel::emitAdd(MVT RetVT, const Value *LHS, const Value *RHS,
bool SetFlags, bool WantResult, bool IsZExt) {
return emitAddSub(/*UseAdd=*/true, RetVT, LHS, RHS, SetFlags, WantResult,
IsZExt);
}
/// This method is a wrapper to simplify add emission.
///
/// First try to emit an add with an immediate operand using emitAddSub_ri. If
/// that fails, then try to materialize the immediate into a register and use
/// emitAddSub_rr instead.
unsigned AArch64FastISel::emitAdd_ri_(MVT VT, unsigned Op0, bool Op0IsKill,
int64_t Imm) {
unsigned ResultReg;
if (Imm < 0)
ResultReg = emitAddSub_ri(false, VT, Op0, Op0IsKill, -Imm);
else
ResultReg = emitAddSub_ri(true, VT, Op0, Op0IsKill, Imm);
if (ResultReg)
return ResultReg;
unsigned CReg = fastEmit_i(VT, VT, ISD::Constant, Imm);
if (!CReg)
return 0;
ResultReg = emitAddSub_rr(true, VT, Op0, Op0IsKill, CReg, true);
return ResultReg;
}
unsigned AArch64FastISel::emitSub(MVT RetVT, const Value *LHS, const Value *RHS,
bool SetFlags, bool WantResult, bool IsZExt) {
return emitAddSub(/*UseAdd=*/false, RetVT, LHS, RHS, SetFlags, WantResult,
IsZExt);
}
unsigned AArch64FastISel::emitSubs_rr(MVT RetVT, unsigned LHSReg,
bool LHSIsKill, unsigned RHSReg,
bool RHSIsKill, bool WantResult) {
return emitAddSub_rr(/*UseAdd=*/false, RetVT, LHSReg, LHSIsKill, RHSReg,
RHSIsKill, /*SetFlags=*/true, WantResult);
}
unsigned AArch64FastISel::emitSubs_rs(MVT RetVT, unsigned LHSReg,
bool LHSIsKill, unsigned RHSReg,
bool RHSIsKill,
AArch64_AM::ShiftExtendType ShiftType,
uint64_t ShiftImm, bool WantResult) {
return emitAddSub_rs(/*UseAdd=*/false, RetVT, LHSReg, LHSIsKill, RHSReg,
RHSIsKill, ShiftType, ShiftImm, /*SetFlags=*/true,
WantResult);
}
unsigned AArch64FastISel::emitLogicalOp(unsigned ISDOpc, MVT RetVT,
const Value *LHS, const Value *RHS) {
// Canonicalize immediates to the RHS first.
if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS))
std::swap(LHS, RHS);
// Canonicalize mul by power-of-2 to the RHS.
if (LHS->hasOneUse() && isValueAvailable(LHS))
if (isMulPowOf2(LHS))
std::swap(LHS, RHS);
// Canonicalize shift immediate to the RHS.
if (LHS->hasOneUse() && isValueAvailable(LHS))
if (const auto *SI = dyn_cast<ShlOperator>(LHS))
if (isa<ConstantInt>(SI->getOperand(1)))
std::swap(LHS, RHS);
unsigned LHSReg = getRegForValue(LHS);
if (!LHSReg)
return 0;
bool LHSIsKill = hasTrivialKill(LHS);
unsigned ResultReg = 0;
if (const auto *C = dyn_cast<ConstantInt>(RHS)) {
uint64_t Imm = C->getZExtValue();
ResultReg = emitLogicalOp_ri(ISDOpc, RetVT, LHSReg, LHSIsKill, Imm);
}
if (ResultReg)
return ResultReg;
// Check if the mul can be folded into the instruction.
if (RHS->hasOneUse() && isValueAvailable(RHS)) {
if (isMulPowOf2(RHS)) {
const Value *MulLHS = cast<MulOperator>(RHS)->getOperand(0);
const Value *MulRHS = cast<MulOperator>(RHS)->getOperand(1);
if (const auto *C = dyn_cast<ConstantInt>(MulLHS))
if (C->getValue().isPowerOf2())
std::swap(MulLHS, MulRHS);
assert(isa<ConstantInt>(MulRHS) && "Expected a ConstantInt.");
uint64_t ShiftVal = cast<ConstantInt>(MulRHS)->getValue().logBase2();
unsigned RHSReg = getRegForValue(MulLHS);
if (!RHSReg)
return 0;
bool RHSIsKill = hasTrivialKill(MulLHS);
ResultReg = emitLogicalOp_rs(ISDOpc, RetVT, LHSReg, LHSIsKill, RHSReg,
RHSIsKill, ShiftVal);
if (ResultReg)
return ResultReg;
}
}
// Check if the shift can be folded into the instruction.
if (RHS->hasOneUse() && isValueAvailable(RHS)) {
if (const auto *SI = dyn_cast<ShlOperator>(RHS))
if (const auto *C = dyn_cast<ConstantInt>(SI->getOperand(1))) {
uint64_t ShiftVal = C->getZExtValue();
unsigned RHSReg = getRegForValue(SI->getOperand(0));
if (!RHSReg)
return 0;
bool RHSIsKill = hasTrivialKill(SI->getOperand(0));
ResultReg = emitLogicalOp_rs(ISDOpc, RetVT, LHSReg, LHSIsKill, RHSReg,
RHSIsKill, ShiftVal);
if (ResultReg)
return ResultReg;
}
}
unsigned RHSReg = getRegForValue(RHS);
if (!RHSReg)
return 0;
bool RHSIsKill = hasTrivialKill(RHS);
MVT VT = std::max(MVT::i32, RetVT.SimpleTy);
ResultReg = fastEmit_rr(VT, VT, ISDOpc, LHSReg, LHSIsKill, RHSReg, RHSIsKill);
if (RetVT >= MVT::i8 && RetVT <= MVT::i16) {
uint64_t Mask = (RetVT == MVT::i8) ? 0xff : 0xffff;
ResultReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, Mask);
}
return ResultReg;
}
unsigned AArch64FastISel::emitLogicalOp_ri(unsigned ISDOpc, MVT RetVT,
unsigned LHSReg, bool LHSIsKill,
uint64_t Imm) {
static_assert((ISD::AND + 1 == ISD::OR) && (ISD::AND + 2 == ISD::XOR),
"ISD nodes are not consecutive!");
static const unsigned OpcTable[3][2] = {
{ AArch64::ANDWri, AArch64::ANDXri },
{ AArch64::ORRWri, AArch64::ORRXri },
{ AArch64::EORWri, AArch64::EORXri }
};
const TargetRegisterClass *RC;
unsigned Opc;
unsigned RegSize;
switch (RetVT.SimpleTy) {
default:
return 0;
case MVT::i1:
case MVT::i8:
case MVT::i16:
case MVT::i32: {
unsigned Idx = ISDOpc - ISD::AND;
Opc = OpcTable[Idx][0];
RC = &AArch64::GPR32spRegClass;
RegSize = 32;
break;
}
case MVT::i64:
Opc = OpcTable[ISDOpc - ISD::AND][1];
RC = &AArch64::GPR64spRegClass;
RegSize = 64;
break;
}
if (!AArch64_AM::isLogicalImmediate(Imm, RegSize))
return 0;
unsigned ResultReg =
fastEmitInst_ri(Opc, RC, LHSReg, LHSIsKill,
AArch64_AM::encodeLogicalImmediate(Imm, RegSize));
if (RetVT >= MVT::i8 && RetVT <= MVT::i16 && ISDOpc != ISD::AND) {
uint64_t Mask = (RetVT == MVT::i8) ? 0xff : 0xffff;
ResultReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, Mask);
}
return ResultReg;
}
unsigned AArch64FastISel::emitLogicalOp_rs(unsigned ISDOpc, MVT RetVT,
unsigned LHSReg, bool LHSIsKill,
unsigned RHSReg, bool RHSIsKill,
uint64_t ShiftImm) {
static_assert((ISD::AND + 1 == ISD::OR) && (ISD::AND + 2 == ISD::XOR),
"ISD nodes are not consecutive!");
static const unsigned OpcTable[3][2] = {
{ AArch64::ANDWrs, AArch64::ANDXrs },
{ AArch64::ORRWrs, AArch64::ORRXrs },
{ AArch64::EORWrs, AArch64::EORXrs }
};
// Don't deal with undefined shifts.
if (ShiftImm >= RetVT.getSizeInBits())
return 0;
const TargetRegisterClass *RC;
unsigned Opc;
switch (RetVT.SimpleTy) {
default:
return 0;
case MVT::i1:
case MVT::i8:
case MVT::i16:
case MVT::i32:
Opc = OpcTable[ISDOpc - ISD::AND][0];
RC = &AArch64::GPR32RegClass;
break;
case MVT::i64:
Opc = OpcTable[ISDOpc - ISD::AND][1];
RC = &AArch64::GPR64RegClass;
break;
}
unsigned ResultReg =
fastEmitInst_rri(Opc, RC, LHSReg, LHSIsKill, RHSReg, RHSIsKill,
AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftImm));
if (RetVT >= MVT::i8 && RetVT <= MVT::i16) {
uint64_t Mask = (RetVT == MVT::i8) ? 0xff : 0xffff;
ResultReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, Mask);
}
return ResultReg;
}
unsigned AArch64FastISel::emitAnd_ri(MVT RetVT, unsigned LHSReg, bool LHSIsKill,
uint64_t Imm) {
return emitLogicalOp_ri(ISD::AND, RetVT, LHSReg, LHSIsKill, Imm);
}
unsigned AArch64FastISel::emitLoad(MVT VT, MVT RetVT, Address Addr,
bool WantZExt, MachineMemOperand *MMO) {
if (!TLI.allowsMisalignedMemoryAccesses(VT))
return 0;
// Simplify this down to something we can handle.
if (!simplifyAddress(Addr, VT))
return 0;
unsigned ScaleFactor = getImplicitScaleFactor(VT);
if (!ScaleFactor)
llvm_unreachable("Unexpected value type.");
// Negative offsets require unscaled, 9-bit, signed immediate offsets.
// Otherwise, we try using scaled, 12-bit, unsigned immediate offsets.
bool UseScaled = true;
if ((Addr.getOffset() < 0) || (Addr.getOffset() & (ScaleFactor - 1))) {
UseScaled = false;
ScaleFactor = 1;
}
static const unsigned GPOpcTable[2][8][4] = {
// Sign-extend.
{ { AArch64::LDURSBWi, AArch64::LDURSHWi, AArch64::LDURWi,
AArch64::LDURXi },
{ AArch64::LDURSBXi, AArch64::LDURSHXi, AArch64::LDURSWi,
AArch64::LDURXi },
{ AArch64::LDRSBWui, AArch64::LDRSHWui, AArch64::LDRWui,
AArch64::LDRXui },
{ AArch64::LDRSBXui, AArch64::LDRSHXui, AArch64::LDRSWui,
AArch64::LDRXui },
{ AArch64::LDRSBWroX, AArch64::LDRSHWroX, AArch64::LDRWroX,
AArch64::LDRXroX },
{ AArch64::LDRSBXroX, AArch64::LDRSHXroX, AArch64::LDRSWroX,
AArch64::LDRXroX },
{ AArch64::LDRSBWroW, AArch64::LDRSHWroW, AArch64::LDRWroW,
AArch64::LDRXroW },
{ AArch64::LDRSBXroW, AArch64::LDRSHXroW, AArch64::LDRSWroW,
AArch64::LDRXroW }
},
// Zero-extend.
{ { AArch64::LDURBBi, AArch64::LDURHHi, AArch64::LDURWi,
AArch64::LDURXi },
{ AArch64::LDURBBi, AArch64::LDURHHi, AArch64::LDURWi,
AArch64::LDURXi },
{ AArch64::LDRBBui, AArch64::LDRHHui, AArch64::LDRWui,
AArch64::LDRXui },
{ AArch64::LDRBBui, AArch64::LDRHHui, AArch64::LDRWui,
AArch64::LDRXui },
{ AArch64::LDRBBroX, AArch64::LDRHHroX, AArch64::LDRWroX,
AArch64::LDRXroX },
{ AArch64::LDRBBroX, AArch64::LDRHHroX, AArch64::LDRWroX,
AArch64::LDRXroX },
{ AArch64::LDRBBroW, AArch64::LDRHHroW, AArch64::LDRWroW,
AArch64::LDRXroW },
{ AArch64::LDRBBroW, AArch64::LDRHHroW, AArch64::LDRWroW,
AArch64::LDRXroW }
}
};
static const unsigned FPOpcTable[4][2] = {
{ AArch64::LDURSi, AArch64::LDURDi },
{ AArch64::LDRSui, AArch64::LDRDui },
{ AArch64::LDRSroX, AArch64::LDRDroX },
{ AArch64::LDRSroW, AArch64::LDRDroW }
};
unsigned Opc;
const TargetRegisterClass *RC;
bool UseRegOffset = Addr.isRegBase() && !Addr.getOffset() && Addr.getReg() &&
Addr.getOffsetReg();
unsigned Idx = UseRegOffset ? 2 : UseScaled ? 1 : 0;
if (Addr.getExtendType() == AArch64_AM::UXTW ||
Addr.getExtendType() == AArch64_AM::SXTW)
Idx++;
bool IsRet64Bit = RetVT == MVT::i64;
switch (VT.SimpleTy) {
default:
llvm_unreachable("Unexpected value type.");
case MVT::i1: // Intentional fall-through.
case MVT::i8:
Opc = GPOpcTable[WantZExt][2 * Idx + IsRet64Bit][0];
RC = (IsRet64Bit && !WantZExt) ?
&AArch64::GPR64RegClass: &AArch64::GPR32RegClass;
break;
case MVT::i16:
Opc = GPOpcTable[WantZExt][2 * Idx + IsRet64Bit][1];
RC = (IsRet64Bit && !WantZExt) ?
&AArch64::GPR64RegClass: &AArch64::GPR32RegClass;
break;
case MVT::i32:
Opc = GPOpcTable[WantZExt][2 * Idx + IsRet64Bit][2];
RC = (IsRet64Bit && !WantZExt) ?
&AArch64::GPR64RegClass: &AArch64::GPR32RegClass;
break;
case MVT::i64:
Opc = GPOpcTable[WantZExt][2 * Idx + IsRet64Bit][3];
RC = &AArch64::GPR64RegClass;
break;
case MVT::f32:
Opc = FPOpcTable[Idx][0];
RC = &AArch64::FPR32RegClass;
break;
case MVT::f64:
Opc = FPOpcTable[Idx][1];
RC = &AArch64::FPR64RegClass;
break;
}
// Create the base instruction, then add the operands.
unsigned ResultReg = createResultReg(RC);
MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(Opc), ResultReg);
addLoadStoreOperands(Addr, MIB, MachineMemOperand::MOLoad, ScaleFactor, MMO);
// Loading an i1 requires special handling.
if (VT == MVT::i1) {
unsigned ANDReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, 1);
assert(ANDReg && "Unexpected AND instruction emission failure.");
ResultReg = ANDReg;
}
// For zero-extending loads to 64bit we emit a 32bit load and then convert
// the 32bit reg to a 64bit reg.
if (WantZExt && RetVT == MVT::i64 && VT <= MVT::i32) {
unsigned Reg64 = createResultReg(&AArch64::GPR64RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(AArch64::SUBREG_TO_REG), Reg64)
.addImm(0)
.addReg(ResultReg, getKillRegState(true))
.addImm(AArch64::sub_32);
ResultReg = Reg64;
}
return ResultReg;
}
bool AArch64FastISel::selectAddSub(const Instruction *I) {
MVT VT;
if (!isTypeSupported(I->getType(), VT, /*IsVectorAllowed=*/true))
return false;
if (VT.isVector())
return selectOperator(I, I->getOpcode());
unsigned ResultReg;
switch (I->getOpcode()) {
default:
llvm_unreachable("Unexpected instruction.");
case Instruction::Add:
ResultReg = emitAdd(VT, I->getOperand(0), I->getOperand(1));
break;
case Instruction::Sub:
ResultReg = emitSub(VT, I->getOperand(0), I->getOperand(1));
break;
}
if (!ResultReg)
return false;
updateValueMap(I, ResultReg);
return true;
}
bool AArch64FastISel::selectLogicalOp(const Instruction *I) {
MVT VT;
if (!isTypeSupported(I->getType(), VT, /*IsVectorAllowed=*/true))
return false;
if (VT.isVector())
return selectOperator(I, I->getOpcode());
unsigned ResultReg;
switch (I->getOpcode()) {
default:
llvm_unreachable("Unexpected instruction.");
case Instruction::And:
ResultReg = emitLogicalOp(ISD::AND, VT, I->getOperand(0), I->getOperand(1));
break;
case Instruction::Or:
ResultReg = emitLogicalOp(ISD::OR, VT, I->getOperand(0), I->getOperand(1));
break;
case Instruction::Xor:
ResultReg = emitLogicalOp(ISD::XOR, VT, I->getOperand(0), I->getOperand(1));
break;
}
if (!ResultReg)
return false;
updateValueMap(I, ResultReg);
return true;
}
bool AArch64FastISel::selectLoad(const Instruction *I) {
MVT VT;
// Verify we have a legal type before going any further. Currently, we handle
// simple types that will directly fit in a register (i32/f32/i64/f64) or
// those that can be sign or zero-extended to a basic operation (i1/i8/i16).
if (!isTypeSupported(I->getType(), VT, /*IsVectorAllowed=*/true) ||
cast<LoadInst>(I)->isAtomic())
return false;
const Value *SV = I->getOperand(0);
if (TLI.supportSwiftError()) {
// Swifterror values can come from either a function parameter with
// swifterror attribute or an alloca with swifterror attribute.
if (const Argument *Arg = dyn_cast<Argument>(SV)) {
if (Arg->hasSwiftErrorAttr())
return false;
}
if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
if (Alloca->isSwiftError())
return false;
}
}
// See if we can handle this address.
Address Addr;
if (!computeAddress(I->getOperand(0), Addr, I->getType()))
return false;
// Fold the following sign-/zero-extend into the load instruction.
bool WantZExt = true;
MVT RetVT = VT;
const Value *IntExtVal = nullptr;
if (I->hasOneUse()) {
if (const auto *ZE = dyn_cast<ZExtInst>(I->use_begin()->getUser())) {
if (isTypeSupported(ZE->getType(), RetVT))
IntExtVal = ZE;
else
RetVT = VT;
} else if (const auto *SE = dyn_cast<SExtInst>(I->use_begin()->getUser())) {
if (isTypeSupported(SE->getType(), RetVT))
IntExtVal = SE;
else
RetVT = VT;
WantZExt = false;
}
}
unsigned ResultReg =
emitLoad(VT, RetVT, Addr, WantZExt, createMachineMemOperandFor(I));
if (!ResultReg)
return false;
// There are a few different cases we have to handle, because the load or the
// sign-/zero-extend might not be selected by FastISel if we fall-back to
// SelectionDAG. There is also an ordering issue when both instructions are in
// different basic blocks.
// 1.) The load instruction is selected by FastISel, but the integer extend
// not. This usually happens when the integer extend is in a different
// basic block and SelectionDAG took over for that basic block.
// 2.) The load instruction is selected before the integer extend. This only
// happens when the integer extend is in a different basic block.
// 3.) The load instruction is selected by SelectionDAG and the integer extend
// by FastISel. This happens if there are instructions between the load
// and the integer extend that couldn't be selected by FastISel.
if (IntExtVal) {
// The integer extend hasn't been emitted yet. FastISel or SelectionDAG
// could select it. Emit a copy to subreg if necessary. FastISel will remove
// it when it selects the integer extend.
unsigned Reg = lookUpRegForValue(IntExtVal);
auto *MI = MRI.getUniqueVRegDef(Reg);
if (!MI) {
if (RetVT == MVT::i64 && VT <= MVT::i32) {
if (WantZExt) {
// Delete the last emitted instruction from emitLoad (SUBREG_TO_REG).
MachineBasicBlock::iterator I(std::prev(FuncInfo.InsertPt));
ResultReg = std::prev(I)->getOperand(0).getReg();
removeDeadCode(I, std::next(I));
} else
ResultReg = fastEmitInst_extractsubreg(MVT::i32, ResultReg,
/*IsKill=*/true,
AArch64::sub_32);
}
updateValueMap(I, ResultReg);
return true;
}
// The integer extend has already been emitted - delete all the instructions
// that have been emitted by the integer extend lowering code and use the
// result from the load instruction directly.
while (MI) {
Reg = 0;
for (auto &Opnd : MI->uses()) {
if (Opnd.isReg()) {
Reg = Opnd.getReg();
break;
}
}
MachineBasicBlock::iterator I(MI);
removeDeadCode(I, std::next(I));
MI = nullptr;
if (Reg)
MI = MRI.getUniqueVRegDef(Reg);
}
updateValueMap(IntExtVal, ResultReg);
return true;
}
updateValueMap(I, ResultReg);
return true;
}
bool AArch64FastISel::emitStoreRelease(MVT VT, unsigned SrcReg,
unsigned AddrReg,
MachineMemOperand *MMO) {
unsigned Opc;
switch (VT.SimpleTy) {
default: return false;
case MVT::i8: Opc = AArch64::STLRB; break;
case MVT::i16: Opc = AArch64::STLRH; break;
case MVT::i32: Opc = AArch64::STLRW; break;
case MVT::i64: Opc = AArch64::STLRX; break;
}
const MCInstrDesc &II = TII.get(Opc);
SrcReg = constrainOperandRegClass(II, SrcReg, 0);
AddrReg = constrainOperandRegClass(II, AddrReg, 1);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
.addReg(SrcReg)
.addReg(AddrReg)
.addMemOperand(MMO);
return true;
}
bool AArch64FastISel::emitStore(MVT VT, unsigned SrcReg, Address Addr,
MachineMemOperand *MMO) {
if (!TLI.allowsMisalignedMemoryAccesses(VT))
return false;
// Simplify this down to something we can handle.
if (!simplifyAddress(Addr, VT))
return false;
unsigned ScaleFactor = getImplicitScaleFactor(VT);
if (!ScaleFactor)
llvm_unreachable("Unexpected value type.");
// Negative offsets require unscaled, 9-bit, signed immediate offsets.
// Otherwise, we try using scaled, 12-bit, unsigned immediate offsets.
bool UseScaled = true;
if ((Addr.getOffset() < 0) || (Addr.getOffset() & (ScaleFactor - 1))) {
UseScaled = false;
ScaleFactor = 1;
}
static const unsigned OpcTable[4][6] = {
{ AArch64::STURBBi, AArch64::STURHHi, AArch64::STURWi, AArch64::STURXi,
AArch64::STURSi, AArch64::STURDi },
{ AArch64::STRBBui, AArch64::STRHHui, AArch64::STRWui, AArch64::STRXui,
AArch64::STRSui, AArch64::STRDui },
{ AArch64::STRBBroX, AArch64::STRHHroX, AArch64::STRWroX, AArch64::STRXroX,
AArch64::STRSroX, AArch64::STRDroX },
{ AArch64::STRBBroW, AArch64::STRHHroW, AArch64::STRWroW, AArch64::STRXroW,
AArch64::STRSroW, AArch64::STRDroW }
};
unsigned Opc;
bool VTIsi1 = false;
bool UseRegOffset = Addr.isRegBase() && !Addr.getOffset() && Addr.getReg() &&
Addr.getOffsetReg();
unsigned Idx = UseRegOffset ? 2 : UseScaled ? 1 : 0;
if (Addr.getExtendType() == AArch64_AM::UXTW ||
Addr.getExtendType() == AArch64_AM::SXTW)
Idx++;
switch (VT.SimpleTy) {
default: llvm_unreachable("Unexpected value type.");
case MVT::i1: VTIsi1 = true; LLVM_FALLTHROUGH;
case MVT::i8: Opc = OpcTable[Idx][0]; break;
case MVT::i16: Opc = OpcTable[Idx][1]; break;
case MVT::i32: Opc = OpcTable[Idx][2]; break;
case MVT::i64: Opc = OpcTable[Idx][3]; break;
case MVT::f32: Opc = OpcTable[Idx][4]; break;
case MVT::f64: Opc = OpcTable[Idx][5]; break;
}
// Storing an i1 requires special handling.
if (VTIsi1 && SrcReg != AArch64::WZR) {
unsigned ANDReg = emitAnd_ri(MVT::i32, SrcReg, /*TODO:IsKill=*/false, 1);
assert(ANDReg && "Unexpected AND instruction emission failure.");
SrcReg = ANDReg;
}
// Create the base instruction, then add the operands.
const MCInstrDesc &II = TII.get(Opc);
SrcReg = constrainOperandRegClass(II, SrcReg, II.getNumDefs());
MachineInstrBuilder MIB =
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addReg(SrcReg);
addLoadStoreOperands(Addr, MIB, MachineMemOperand::MOStore, ScaleFactor, MMO);
return true;
}
bool AArch64FastISel::selectStore(const Instruction *I) {
MVT VT;
const Value *Op0 = I->getOperand(0);
// Verify we have a legal type before going any further. Currently, we handle
// simple types that will directly fit in a register (i32/f32/i64/f64) or
// those that can be sign or zero-extended to a basic operation (i1/i8/i16).
if (!isTypeSupported(Op0->getType(), VT, /*IsVectorAllowed=*/true))
return false;
const Value *PtrV = I->getOperand(1);
if (TLI.supportSwiftError()) {
// Swifterror values can come from either a function parameter with
// swifterror attribute or an alloca with swifterror attribute.
if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
if (Arg->hasSwiftErrorAttr())
return false;
}
if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
if (Alloca->isSwiftError())
return false;
}
}
// Get the value to be stored into a register. Use the zero register directly
// when possible to avoid an unnecessary copy and a wasted register.
unsigned SrcReg = 0;
if (const auto *CI = dyn_cast<ConstantInt>(Op0)) {
if (CI->isZero())
SrcReg = (VT == MVT::i64) ? AArch64::XZR : AArch64::WZR;
} else if (const auto *CF = dyn_cast<ConstantFP>(Op0)) {
if (CF->isZero() && !CF->isNegative()) {
VT = MVT::getIntegerVT(VT.getSizeInBits());
SrcReg = (VT == MVT::i64) ? AArch64::XZR : AArch64::WZR;
}
}
if (!SrcReg)
SrcReg = getRegForValue(Op0);
if (!SrcReg)
return false;
auto *SI = cast<StoreInst>(I);
// Try to emit a STLR for seq_cst/release.
if (SI->isAtomic()) {
AtomicOrdering Ord = SI->getOrdering();
// The non-atomic instructions are sufficient for relaxed stores.
if (isReleaseOrStronger(Ord)) {
// The STLR addressing mode only supports a base reg; pass that directly.
unsigned AddrReg = getRegForValue(PtrV);
return emitStoreRelease(VT, SrcReg, AddrReg,
createMachineMemOperandFor(I));
}
}
// See if we can handle this address.
Address Addr;
if (!computeAddress(PtrV, Addr, Op0->getType()))
return false;
if (!emitStore(VT, SrcReg, Addr, createMachineMemOperandFor(I)))
return false;
return true;
}
static AArch64CC::CondCode getCompareCC(CmpInst::Predicate Pred) {
switch (Pred) {
case CmpInst::FCMP_ONE:
case CmpInst::FCMP_UEQ:
default:
// AL is our "false" for now. The other two need more compares.
return AArch64CC::AL;
case CmpInst::ICMP_EQ:
case CmpInst::FCMP_OEQ:
return AArch64CC::EQ;
case CmpInst::ICMP_SGT:
case CmpInst::FCMP_OGT:
return AArch64CC::GT;
case CmpInst::ICMP_SGE:
case CmpInst::FCMP_OGE:
return AArch64CC::GE;
case CmpInst::ICMP_UGT:
case CmpInst::FCMP_UGT:
return AArch64CC::HI;
case CmpInst::FCMP_OLT:
return AArch64CC::MI;
case CmpInst::ICMP_ULE:
case CmpInst::FCMP_OLE:
return AArch64CC::LS;
case CmpInst::FCMP_ORD:
return AArch64CC::VC;
case CmpInst::FCMP_UNO:
return AArch64CC::VS;
case CmpInst::FCMP_UGE:
return AArch64CC::PL;
case CmpInst::ICMP_SLT:
case CmpInst::FCMP_ULT:
return AArch64CC::LT;
case CmpInst::ICMP_SLE:
case CmpInst::FCMP_ULE:
return AArch64CC::LE;
case CmpInst::FCMP_UNE:
case CmpInst::ICMP_NE:
return AArch64CC::NE;
case CmpInst::ICMP_UGE:
return AArch64CC::HS;
case CmpInst::ICMP_ULT:
return AArch64CC::LO;
}
}
/// Try to emit a combined compare-and-branch instruction.
bool AArch64FastISel::emitCompareAndBranch(const BranchInst *BI) {
// Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z instructions
// will not be produced, as they are conditional branch instructions that do
// not set flags.
if (FuncInfo.MF->getFunction().hasFnAttribute(
Attribute::SpeculativeLoadHardening))
return false;
assert(isa<CmpInst>(BI->getCondition()) && "Expected cmp instruction");
const CmpInst *CI = cast<CmpInst>(BI->getCondition());
CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
const Value *LHS = CI->getOperand(0);
const Value *RHS = CI->getOperand(1);
MVT VT;
if (!isTypeSupported(LHS->getType(), VT))
return false;
unsigned BW = VT.getSizeInBits();
if (BW > 64)
return false;
MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
// Try to take advantage of fallthrough opportunities.
if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
std::swap(TBB, FBB);
Predicate = CmpInst::getInversePredicate(Predicate);
}
int TestBit = -1;
bool IsCmpNE;
switch (Predicate) {
default:
return false;
case CmpInst::ICMP_EQ:
case CmpInst::ICMP_NE:
if (isa<Constant>(LHS) && cast<Constant>(LHS)->isNullValue())
std::swap(LHS, RHS);
if (!isa<Constant>(RHS) || !cast<Constant>(RHS)->isNullValue())
return false;
if (const auto *AI = dyn_cast<BinaryOperator>(LHS))
if (AI->getOpcode() == Instruction::And && isValueAvailable(AI)) {
const Value *AndLHS = AI->getOperand(0);
const Value *AndRHS = AI->getOperand(1);
if (const auto *C = dyn_cast<ConstantInt>(AndLHS))
if (C->getValue().isPowerOf2())
std::swap(AndLHS, AndRHS);
if (const auto *C = dyn_cast<ConstantInt>(AndRHS))
if (C->getValue().isPowerOf2()) {
TestBit = C->getValue().logBase2();
LHS = AndLHS;
}
}
if (VT == MVT::i1)
TestBit = 0;
IsCmpNE = Predicate == CmpInst::ICMP_NE;
break;
case CmpInst::ICMP_SLT:
case CmpInst::ICMP_SGE:
if (!isa<Constant>(RHS) || !cast<Constant>(RHS)->isNullValue())
return false;
TestBit = BW - 1;
IsCmpNE = Predicate == CmpInst::ICMP_SLT;
break;
case CmpInst::ICMP_SGT:
case CmpInst::ICMP_SLE:
if (!isa<ConstantInt>(RHS))
return false;
if (cast<ConstantInt>(RHS)->getValue() != APInt(BW, -1, true))
return false;
TestBit = BW - 1;
IsCmpNE = Predicate == CmpInst::ICMP_SLE;
break;
} // end switch
static const unsigned OpcTable[2][2][2] = {
{ {AArch64::CBZW, AArch64::CBZX },
{AArch64::CBNZW, AArch64::CBNZX} },
{ {AArch64::TBZW, AArch64::TBZX },
{AArch64::TBNZW, AArch64::TBNZX} }
};
bool IsBitTest = TestBit != -1;
bool Is64Bit = BW == 64;
if (TestBit < 32 && TestBit >= 0)
Is64Bit = false;
unsigned Opc = OpcTable[IsBitTest][IsCmpNE][Is64Bit];
const MCInstrDesc &II = TII.get(Opc);
unsigned SrcReg = getRegForValue(LHS);
if (!SrcReg)
return false;
bool SrcIsKill = hasTrivialKill(LHS);
if (BW == 64 && !Is64Bit)
SrcReg = fastEmitInst_extractsubreg(MVT::i32, SrcReg, SrcIsKill,
AArch64::sub_32);
if ((BW < 32) && !IsBitTest)
SrcReg = emitIntExt(VT, SrcReg, MVT::i32, /*isZExt=*/true);
// Emit the combined compare and branch instruction.
SrcReg = constrainOperandRegClass(II, SrcReg, II.getNumDefs());
MachineInstrBuilder MIB =
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
.addReg(SrcReg, getKillRegState(SrcIsKill));
if (IsBitTest)
MIB.addImm(TestBit);
MIB.addMBB(TBB);
finishCondBranch(BI->getParent(), TBB, FBB);
return true;
}
bool AArch64FastISel::selectBranch(const Instruction *I) {
const BranchInst *BI = cast<BranchInst>(I);
if (BI->isUnconditional()) {
MachineBasicBlock *MSucc = FuncInfo.MBBMap[BI->getSuccessor(0)];
fastEmitBranch(MSucc, BI->getDebugLoc());
return true;
}
MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
if (CI->hasOneUse() && isValueAvailable(CI)) {
// Try to optimize or fold the cmp.
CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
switch (Predicate) {
default:
break;
case CmpInst::FCMP_FALSE:
fastEmitBranch(FBB, DbgLoc);
return true;
case CmpInst::FCMP_TRUE:
fastEmitBranch(TBB, DbgLoc);
return true;
}
// Try to emit a combined compare-and-branch first.
if (emitCompareAndBranch(BI))
return true;
// Try to take advantage of fallthrough opportunities.
if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
std::swap(TBB, FBB);
Predicate = CmpInst::getInversePredicate(Predicate);
}
// Emit the cmp.
if (!emitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
return false;
// FCMP_UEQ and FCMP_ONE cannot be checked with a single branch
// instruction.
AArch64CC::CondCode CC = getCompareCC(Predicate);
AArch64CC::CondCode ExtraCC = AArch64CC::AL;
switch (Predicate) {
default:
break;
case CmpInst::FCMP_UEQ:
ExtraCC = AArch64CC::EQ;
CC = AArch64CC::VS;
break;
case CmpInst::FCMP_ONE:
ExtraCC = AArch64CC::MI;
CC = AArch64CC::GT;
break;
}
assert((CC != AArch64CC::AL) && "Unexpected condition code.");
// Emit the extra branch for FCMP_UEQ and FCMP_ONE.
if (ExtraCC != AArch64CC::AL) {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
.addImm(ExtraCC)
.addMBB(TBB);
}
// Emit the branch.
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
.addImm(CC)
.addMBB(TBB);
finishCondBranch(BI->getParent(), TBB, FBB);
return true;
}
} else if (const auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
uint64_t Imm = CI->getZExtValue();
MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::B))
.addMBB(Target);
// Obtain the branch probability and add the target to the successor list.
if (FuncInfo.BPI) {
auto BranchProbability = FuncInfo.BPI->getEdgeProbability(
BI->getParent(), Target->getBasicBlock());
FuncInfo.MBB->addSuccessor(Target, BranchProbability);
} else
FuncInfo.MBB->addSuccessorWithoutProb(Target);
return true;
} else {
AArch64CC::CondCode CC = AArch64CC::NE;
if (foldXALUIntrinsic(CC, I, BI->getCondition())) {
// Fake request the condition, otherwise the intrinsic might be completely
// optimized away.
unsigned CondReg = getRegForValue(BI->getCondition());
if (!CondReg)
return false;
// Emit the branch.
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
.addImm(CC)
.addMBB(TBB);
finishCondBranch(BI->getParent(), TBB, FBB);
return true;
}
}
unsigned CondReg = getRegForValue(BI->getCondition());
if (CondReg == 0)
return false;
bool CondRegIsKill = hasTrivialKill(BI->getCondition());
// i1 conditions come as i32 values, test the lowest bit with tb(n)z.
unsigned Opcode = AArch64::TBNZW;
if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
std::swap(TBB, FBB);
Opcode = AArch64::TBZW;
}
const MCInstrDesc &II = TII.get(Opcode);
unsigned ConstrainedCondReg
= constrainOperandRegClass(II, CondReg, II.getNumDefs());
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
.addReg(ConstrainedCondReg, getKillRegState(CondRegIsKill))
.addImm(0)
.addMBB(TBB);
finishCondBranch(BI->getParent(), TBB, FBB);
return true;
}
bool AArch64FastISel::selectIndirectBr(const Instruction *I) {
const IndirectBrInst *BI = cast<IndirectBrInst>(I);
unsigned AddrReg = getRegForValue(BI->getOperand(0));
if (AddrReg == 0)
return false;
// Emit the indirect branch.
const MCInstrDesc &II = TII.get(AArch64::BR);
AddrReg = constrainOperandRegClass(II, AddrReg, II.getNumDefs());
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addReg(AddrReg);
// Make sure the CFG is up-to-date.
for (auto *Succ : BI->successors())
FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[Succ]);
return true;
}
bool AArch64FastISel::selectCmp(const Instruction *I) {
const CmpInst *CI = cast<CmpInst>(I);
// Vectors of i1 are weird: bail out.
if (CI->getType()->isVectorTy())
return false;
// Try to optimize or fold the cmp.
CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
unsigned ResultReg = 0;
switch (Predicate) {
default:
break;
case CmpInst::FCMP_FALSE:
ResultReg = createResultReg(&AArch64::GPR32RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), ResultReg)
.addReg(AArch64::WZR, getKillRegState(true));
break;
case CmpInst::FCMP_TRUE:
ResultReg = fastEmit_i(MVT::i32, MVT::i32, ISD::Constant, 1);
break;
}
if (ResultReg) {
updateValueMap(I, ResultReg);
return true;
}
// Emit the cmp.
if (!emitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
return false;
ResultReg = createResultReg(&AArch64::GPR32RegClass);
// FCMP_UEQ and FCMP_ONE cannot be checked with a single instruction. These
// condition codes are inverted, because they are used by CSINC.
static unsigned CondCodeTable[2][2] = {
{ AArch64CC::NE, AArch64CC::VC },
{ AArch64CC::PL, AArch64CC::LE }
};
unsigned *CondCodes = nullptr;
switch (Predicate) {
default:
break;
case CmpInst::FCMP_UEQ:
CondCodes = &CondCodeTable[0][0];
break;
case CmpInst::FCMP_ONE:
CondCodes = &CondCodeTable[1][0];
break;
}
if (CondCodes) {
unsigned TmpReg1 = createResultReg(&AArch64::GPR32RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::CSINCWr),
TmpReg1)
.addReg(AArch64::WZR, getKillRegState(true))
.addReg(AArch64::WZR, getKillRegState(true))
.addImm(CondCodes[0]);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::CSINCWr),
ResultReg)
.addReg(TmpReg1, getKillRegState(true))
.addReg(AArch64::WZR, getKillRegState(true))
.addImm(CondCodes[1]);
updateValueMap(I, ResultReg);
return true;
}
// Now set a register based on the comparison.
AArch64CC::CondCode CC = getCompareCC(Predicate);
assert((CC != AArch64CC::AL) && "Unexpected condition code.");
AArch64CC::CondCode invertedCC = getInvertedCondCode(CC);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::CSINCWr),
ResultReg)
.addReg(AArch64::WZR, getKillRegState(true))
.addReg(AArch64::WZR, getKillRegState(true))
.addImm(invertedCC);
updateValueMap(I, ResultReg);
return true;
}
/// Optimize selects of i1 if one of the operands has a 'true' or 'false'
/// value.
bool AArch64FastISel::optimizeSelect(const SelectInst *SI) {
if (!SI->getType()->isIntegerTy(1))
return false;
const Value *Src1Val, *Src2Val;
unsigned Opc = 0;
bool NeedExtraOp = false;
if (auto *CI = dyn_cast<ConstantInt>(SI->getTrueValue())) {
if (CI->isOne()) {
Src1Val = SI->getCondition();
Src2Val = SI->getFalseValue();
Opc = AArch64::ORRWrr;
} else {
assert(CI->isZero());
Src1Val = SI->getFalseValue();
Src2Val = SI->getCondition();
Opc = AArch64::BICWrr;
}
} else if (auto *CI = dyn_cast<ConstantInt>(SI->getFalseValue())) {
if (CI->isOne()) {
Src1Val = SI->getCondition();
Src2Val = SI->getTrueValue();
Opc = AArch64::ORRWrr;
NeedExtraOp = true;
} else {
assert(CI->isZero());
Src1Val = SI->getCondition();
Src2Val = SI->getTrueValue();
Opc = AArch64::ANDWrr;
}
}
if (!Opc)
return false;
unsigned Src1Reg = getRegForValue(Src1Val);
if (!Src1Reg)
return false;
bool Src1IsKill = hasTrivialKill(Src1Val);
unsigned Src2Reg = getRegForValue(Src2Val);
if (!Src2Reg)
return false;
bool Src2IsKill = hasTrivialKill(Src2Val);
if (NeedExtraOp) {
Src1Reg = emitLogicalOp_ri(ISD::XOR, MVT::i32, Src1Reg, Src1IsKill, 1);
Src1IsKill = true;
}
unsigned ResultReg = fastEmitInst_rr(Opc, &AArch64::GPR32RegClass, Src1Reg,
Src1IsKill, Src2Reg, Src2IsKill);
updateValueMap(SI, ResultReg);
return true;
}
bool AArch64FastISel::selectSelect(const Instruction *I) {
assert(isa<SelectInst>(I) && "Expected a select instruction.");
MVT VT;
if (!isTypeSupported(I->getType(), VT))
return false;
unsigned Opc;
const TargetRegisterClass *RC;
switch (VT.SimpleTy) {
default:
return false;
case MVT::i1:
case MVT::i8:
case MVT::i16:
case MVT::i32:
Opc = AArch64::CSELWr;
RC = &AArch64::GPR32RegClass;
break;
case MVT::i64:
Opc = AArch64::CSELXr;
RC = &AArch64::GPR64RegClass;
break;
case MVT::f32:
Opc = AArch64::FCSELSrrr;
RC = &AArch64::FPR32RegClass;
break;
case MVT::f64:
Opc = AArch64::FCSELDrrr;
RC = &AArch64::FPR64RegClass;
break;
}
const SelectInst *SI = cast<SelectInst>(I);
const Value *Cond = SI->getCondition();
AArch64CC::CondCode CC = AArch64CC::NE;
AArch64CC::CondCode ExtraCC = AArch64CC::AL;
if (optimizeSelect(SI))
return true;
// Try to pickup the flags, so we don't have to emit another compare.
if (foldXALUIntrinsic(CC, I, Cond)) {
// Fake request the condition to force emission of the XALU intrinsic.
unsigned CondReg = getRegForValue(Cond);
if (!CondReg)
return false;
} else if (isa<CmpInst>(Cond) && cast<CmpInst>(Cond)->hasOneUse() &&
isValueAvailable(Cond)) {
const auto *Cmp = cast<CmpInst>(Cond);
// Try to optimize or fold the cmp.
CmpInst::Predicate Predicate = optimizeCmpPredicate(Cmp);
const Value *FoldSelect = nullptr;
switch (Predicate) {
default:
break;
case CmpInst::FCMP_FALSE:
FoldSelect = SI->getFalseValue();
break;
case CmpInst::FCMP_TRUE:
FoldSelect = SI->getTrueValue();
break;
}
if (FoldSelect) {
unsigned SrcReg = getRegForValue(FoldSelect);
if (!SrcReg)
return false;
unsigned UseReg = lookUpRegForValue(SI);
if (UseReg)
MRI.clearKillFlags(UseReg);
updateValueMap(I, SrcReg);
return true;
}
// Emit the cmp.
if (!emitCmp(Cmp->getOperand(0), Cmp->getOperand(1), Cmp->isUnsigned()))
return false;
// FCMP_UEQ and FCMP_ONE cannot be checked with a single select instruction.
CC = getCompareCC(Predicate);
switch (Predicate) {
default:
break;
case CmpInst::FCMP_UEQ:
ExtraCC = AArch64CC::EQ;
CC = AArch64CC::VS;
break;
case CmpInst::FCMP_ONE:
ExtraCC = AArch64CC::MI;
CC = AArch64CC::GT;
break;
}
assert((CC != AArch64CC::AL) && "Unexpected condition code.");
} else {
unsigned CondReg = getRegForValue(Cond);
if (!CondReg)
return false;
bool CondIsKill = hasTrivialKill(Cond);
const MCInstrDesc &II = TII.get(AArch64::ANDSWri);
CondReg = constrainOperandRegClass(II, CondReg, 1);
// Emit a TST instruction (ANDS wzr, reg, #imm).
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II,
AArch64::WZR)
.addReg(CondReg, getKillRegState(CondIsKill))
.addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
}
unsigned Src1Reg = getRegForValue(SI->getTrueValue());
bool Src1IsKill = hasTrivialKill(SI->getTrueValue());
unsigned Src2Reg = getRegForValue(SI->getFalseValue());
bool Src2IsKill = hasTrivialKill(SI->getFalseValue());
if (!Src1Reg || !Src2Reg)
return false;
if (ExtraCC != AArch64CC::AL) {
Src2Reg = fastEmitInst_rri(Opc, RC, Src1Reg, Src1IsKill, Src2Reg,
Src2IsKill, ExtraCC);
Src2IsKill = true;
}
unsigned ResultReg = fastEmitInst_rri(Opc, RC, Src1Reg, Src1IsKill, Src2Reg,
Src2IsKill, CC);
updateValueMap(I, ResultReg);
return true;
}
bool AArch64FastISel::selectFPExt(const Instruction *I) {
Value *V = I->getOperand(0);
if (!I->getType()->isDoubleTy() || !V->getType()->isFloatTy())
return false;
unsigned Op = getRegForValue(V);
if (Op == 0)
return false;
unsigned ResultReg = createResultReg(&AArch64::FPR64RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::FCVTDSr),
ResultReg).addReg(Op);
updateValueMap(I, ResultReg);
return true;
}
bool AArch64FastISel::selectFPTrunc(const Instruction *I) {
Value *V = I->getOperand(0);
if (!I->getType()->isFloatTy() || !V->getType()->isDoubleTy())
return false;
unsigned Op = getRegForValue(V);
if (Op == 0)
return false;
unsigned ResultReg = createResultReg(&AArch64::FPR32RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::FCVTSDr),
ResultReg).addReg(Op);
updateValueMap(I, ResultReg);
return true;
}
// FPToUI and FPToSI
bool AArch64FastISel::selectFPToInt(const Instruction *I, bool Signed) {
MVT DestVT;
if (!isTypeLegal(I->getType(), DestVT) || DestVT.isVector())
return false;
unsigned SrcReg = getRegForValue(I->getOperand(0));
if (SrcReg == 0)
return false;
EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType(), true);
if (SrcVT == MVT::f128 || SrcVT == MVT::f16)
return false;
unsigned Opc;
if (SrcVT == MVT::f64) {
if (Signed)
Opc = (DestVT == MVT::i32) ? AArch64::FCVTZSUWDr : AArch64::FCVTZSUXDr;
else
Opc = (DestVT == MVT::i32) ? AArch64::FCVTZUUWDr : AArch64::FCVTZUUXDr;
} else {
if (Signed)
Opc = (DestVT == MVT::i32) ? AArch64::FCVTZSUWSr : AArch64::FCVTZSUXSr;
else
Opc = (DestVT == MVT::i32) ? AArch64::FCVTZUUWSr : AArch64::FCVTZUUXSr;
}
unsigned ResultReg = createResultReg(
DestVT == MVT::i32 ? &AArch64::GPR32RegClass : &AArch64::GPR64RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
.addReg(SrcReg);
updateValueMap(I, ResultReg);
return true;
}
bool AArch64FastISel::selectIntToFP(const Instruction *I, bool Signed) {
MVT DestVT;
if (!isTypeLegal(I->getType(), DestVT) || DestVT.isVector())
return false;
// Let regular ISEL handle FP16
if (DestVT == MVT::f16)
return false;
assert((DestVT == MVT::f32 || DestVT == MVT::f64) &&
"Unexpected value type.");
unsigned SrcReg = getRegForValue(I->getOperand(0));
if (!SrcReg)
return false;
bool SrcIsKill = hasTrivialKill(I->getOperand(0));
EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType(), true);
// Handle sign-extension.
if (SrcVT == MVT::i16 || SrcVT == MVT::i8 || SrcVT == MVT::i1) {
SrcReg =
emitIntExt(SrcVT.getSimpleVT(), SrcReg, MVT::i32, /*isZExt*/ !Signed);
if (!SrcReg)
return false;
SrcIsKill = true;
}
unsigned Opc;
if (SrcVT == MVT::i64) {
if (Signed)
Opc = (DestVT == MVT::f32) ? AArch64::SCVTFUXSri : AArch64::SCVTFUXDri;
else
Opc = (DestVT == MVT::f32) ? AArch64::UCVTFUXSri : AArch64::UCVTFUXDri;
} else {
if (Signed)
Opc = (DestVT == MVT::f32) ? AArch64::SCVTFUWSri : AArch64::SCVTFUWDri;
else
Opc = (DestVT == MVT::f32) ? AArch64::UCVTFUWSri : AArch64::UCVTFUWDri;
}
unsigned ResultReg = fastEmitInst_r(Opc, TLI.getRegClassFor(DestVT), SrcReg,
SrcIsKill);
updateValueMap(I, ResultReg);
return true;
}
bool AArch64FastISel::fastLowerArguments() {
if (!FuncInfo.CanLowerReturn)
return false;
const Function *F = FuncInfo.Fn;
if (F->isVarArg())
return false;
CallingConv::ID CC = F->getCallingConv();
if (CC != CallingConv::C && CC != CallingConv::Swift)
return false;
if (Subtarget->hasCustomCallingConv())
return false;
// Only handle simple cases of up to 8 GPR and FPR each.
unsigned GPRCnt = 0;
unsigned FPRCnt = 0;
for (auto const &Arg : F->args()) {
if (Arg.hasAttribute(Attribute::ByVal) ||
Arg.hasAttribute(Attribute::InReg) ||
Arg.hasAttribute(Attribute::StructRet) ||
Arg.hasAttribute(Attribute::SwiftSelf) ||
Arg.hasAttribute(Attribute::SwiftError) ||
Arg.hasAttribute(Attribute::Nest))
return false;
Type *ArgTy = Arg.getType();
if (ArgTy->isStructTy() || ArgTy->isArrayTy())
return false;
EVT ArgVT = TLI.getValueType(DL, ArgTy);
if (!ArgVT.isSimple())
return false;
MVT VT = ArgVT.getSimpleVT().SimpleTy;
if (VT.isFloatingPoint() && !Subtarget->hasFPARMv8())
return false;
if (VT.isVector() &&
(!Subtarget->hasNEON() || !Subtarget->isLittleEndian()))
return false;
if (VT >= MVT::i1 && VT <= MVT::i64)
++GPRCnt;
else if ((VT >= MVT::f16 && VT <= MVT::f64) || VT.is64BitVector() ||
VT.is128BitVector())
++FPRCnt;
else
return false;
if (GPRCnt > 8 || FPRCnt > 8)
return false;
}
static const MCPhysReg Registers[6][8] = {
{ AArch64::W0, AArch64::W1, AArch64::W2, AArch64::W3, AArch64::W4,
AArch64::W5, AArch64::W6, AArch64::W7 },
{ AArch64::X0, AArch64::X1, AArch64::X2, AArch64::X3, AArch64::X4,
AArch64::X5, AArch64::X6, AArch64::X7 },
{ AArch64::H0, AArch64::H1, AArch64::H2, AArch64::H3, AArch64::H4,
AArch64::H5, AArch64::H6, AArch64::H7 },
{ AArch64::S0, AArch64::S1, AArch64::S2, AArch64::S3, AArch64::S4,
AArch64::S5, AArch64::S6, AArch64::S7 },
{ AArch64::D0, AArch64::D1, AArch64::D2, AArch64::D3, AArch64::D4,
AArch64::D5, AArch64::D6, AArch64::D7 },
{ AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3, AArch64::Q4,
AArch64::Q5, AArch64::Q6, AArch64::Q7 }
};
unsigned GPRIdx = 0;
unsigned FPRIdx = 0;
for (auto const &Arg : F->args()) {
MVT VT = TLI.getSimpleValueType(DL, Arg.getType());
unsigned SrcReg;
const TargetRegisterClass *RC;
if (VT >= MVT::i1 && VT <= MVT::i32) {
SrcReg = Registers[0][GPRIdx++];
RC = &AArch64::GPR32RegClass;
VT = MVT::i32;
} else if (VT == MVT::i64) {
SrcReg = Registers[1][GPRIdx++];
RC = &AArch64::GPR64RegClass;
} else if (VT == MVT::f16) {
SrcReg = Registers[2][FPRIdx++];
RC = &AArch64::FPR16RegClass;
} else if (VT == MVT::f32) {
SrcReg = Registers[3][FPRIdx++];
RC = &AArch64::FPR32RegClass;
} else if ((VT == MVT::f64) || VT.is64BitVector()) {
SrcReg = Registers[4][FPRIdx++];
RC = &AArch64::FPR64RegClass;
} else if (VT.is128BitVector()) {
SrcReg = Registers[5][FPRIdx++];
RC = &AArch64::FPR128RegClass;
} else
llvm_unreachable("Unexpected value type.");
unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
// FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
// Without this, EmitLiveInCopies may eliminate the livein if its only
// use is a bitcast (which isn't turned into an instruction).
unsigned ResultReg = createResultReg(RC);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), ResultReg)
.addReg(DstReg, getKillRegState(true));
updateValueMap(&Arg, ResultReg);
}
return true;
}
bool AArch64FastISel::processCallArgs(CallLoweringInfo &CLI,
SmallVectorImpl<MVT> &OutVTs,
unsigned &NumBytes) {
CallingConv::ID CC = CLI.CallConv;
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CC, false, *FuncInfo.MF, ArgLocs, *Context);
CCInfo.AnalyzeCallOperands(OutVTs, CLI.OutFlags, CCAssignFnForCall(CC));
// Get a count of how many bytes are to be pushed on the stack.
NumBytes = CCInfo.getNextStackOffset();
// Issue CALLSEQ_START
unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
.addImm(NumBytes).addImm(0);
// Process the args.
for (CCValAssign &VA : ArgLocs) {
const Value *ArgVal = CLI.OutVals[VA.getValNo()];
MVT ArgVT = OutVTs[VA.getValNo()];
unsigned ArgReg = getRegForValue(ArgVal);
if (!ArgReg)
return false;
// Handle arg promotion: SExt, ZExt, AExt.
switch (VA.getLocInfo()) {
case CCValAssign::Full:
break;
case CCValAssign::SExt: {
MVT DestVT = VA.getLocVT();
MVT SrcVT = ArgVT;
ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/false);
if (!ArgReg)
return false;
break;
}
case CCValAssign::AExt:
// Intentional fall-through.
case CCValAssign::ZExt: {
MVT DestVT = VA.getLocVT();
MVT SrcVT = ArgVT;
ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/true);
if (!ArgReg)
return false;
break;
}
default:
llvm_unreachable("Unknown arg promotion!");
}
// Now copy/store arg to correct locations.
if (VA.isRegLoc() && !VA.needsCustom()) {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
CLI.OutRegs.push_back(VA.getLocReg());
} else if (VA.needsCustom()) {
// FIXME: Handle custom args.
return false;
} else {
assert(VA.isMemLoc() && "Assuming store on stack.");
// Don't emit stores for undef values.
if (isa<UndefValue>(ArgVal))
continue;
// Need to store on the stack.
unsigned ArgSize = (ArgVT.getSizeInBits() + 7) / 8;
unsigned BEAlign = 0;
if (ArgSize < 8 && !Subtarget->isLittleEndian())
BEAlign = 8 - ArgSize;
Address Addr;
Addr.setKind(Address::RegBase);
Addr.setReg(AArch64::SP);
Addr.setOffset(VA.getLocMemOffset() + BEAlign);
Align Alignment = DL.getABITypeAlign(ArgVal->getType());
MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
MachinePointerInfo::getStack(*FuncInfo.MF, Addr.getOffset()),
MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
if (!emitStore(ArgVT, ArgReg, Addr, MMO))
return false;
}
}
return true;
}
bool AArch64FastISel::finishCall(CallLoweringInfo &CLI, MVT RetVT,
unsigned NumBytes) {
CallingConv::ID CC = CLI.CallConv;
// Issue CALLSEQ_END
unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
.addImm(NumBytes).addImm(0);
// Now the return value.
if (RetVT != MVT::isVoid) {
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC));
// Only handle a single return value.
if (RVLocs.size() != 1)
return false;
// Copy all of the result registers out of their specified physreg.
MVT CopyVT = RVLocs[0].getValVT();
// TODO: Handle big-endian results
if (CopyVT.isVector() && !Subtarget->isLittleEndian())
return false;
unsigned ResultReg = createResultReg(TLI.getRegClassFor(CopyVT));
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), ResultReg)
.addReg(RVLocs[0].getLocReg());
CLI.InRegs.push_back(RVLocs[0].getLocReg());
CLI.ResultReg = ResultReg;
CLI.NumResultRegs = 1;
}
return true;
}
bool AArch64FastISel::fastLowerCall(CallLoweringInfo &CLI) {
CallingConv::ID CC = CLI.CallConv;
bool IsTailCall = CLI.IsTailCall;
bool IsVarArg = CLI.IsVarArg;
const Value *Callee = CLI.Callee;
MCSymbol *Symbol = CLI.Symbol;
if (!Callee && !Symbol)
return false;
// Allow SelectionDAG isel to handle tail calls.
if (IsTailCall)
return false;
// FIXME: we could and should support this, but for now correctness at -O0 is
// more important.
if (Subtarget->isTargetILP32())
return false;
CodeModel::Model CM = TM.getCodeModel();
// Only support the small-addressing and large code models.
if (CM != CodeModel::Large && !Subtarget->useSmallAddressing())
return false;
// FIXME: Add large code model support for ELF.
if (CM == CodeModel::Large && !Subtarget->isTargetMachO())
return false;
// Let SDISel handle vararg functions.
if (IsVarArg)
return false;
// FIXME: Only handle *simple* calls for now.
MVT RetVT;
if (CLI.RetTy->isVoidTy())
RetVT = MVT::isVoid;
else if (!isTypeLegal(CLI.RetTy, RetVT))
return false;
for (auto Flag : CLI.OutFlags)
if (Flag.isInReg() || Flag.isSRet() || Flag.isNest() || Flag.isByVal() ||
Flag.isSwiftSelf() || Flag.isSwiftError())
return false;
// Set up the argument vectors.
SmallVector<MVT, 16> OutVTs;
OutVTs.reserve(CLI.OutVals.size());
for (auto *Val : CLI.OutVals) {
MVT VT;
if (!isTypeLegal(Val->getType(), VT) &&
!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16))
return false;
// We don't handle vector parameters yet.
if (VT.isVector() || VT.getSizeInBits() > 64)
return false;
OutVTs.push_back(VT);
}
Address Addr;
if (Callee && !computeCallAddress(Callee, Addr))
return false;
// The weak function target may be zero; in that case we must use indirect
// addressing via a stub on windows as it may be out of range for a
// PC-relative jump.
if (Subtarget->isTargetWindows() && Addr.getGlobalValue() &&
Addr.getGlobalValue()->hasExternalWeakLinkage())
return false;
// Handle the arguments now that we've gotten them.
unsigned NumBytes;
if (!processCallArgs(CLI, OutVTs, NumBytes))
return false;
const AArch64RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
if (RegInfo->isAnyArgRegReserved(*MF))
RegInfo->emitReservedArgRegCallError(*MF);
// Issue the call.
MachineInstrBuilder MIB;
if (Subtarget->useSmallAddressing()) {
const MCInstrDesc &II =
TII.get(Addr.getReg() ? getBLRCallOpcode(*MF) : (unsigned)AArch64::BL);
MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II);
if (Symbol)
MIB.addSym(Symbol, 0);
else if (Addr.getGlobalValue())
MIB.addGlobalAddress(Addr.getGlobalValue(), 0, 0);
else if (Addr.getReg()) {
unsigned Reg = constrainOperandRegClass(II, Addr.getReg(), 0);
MIB.addReg(Reg);
} else
return false;
} else {
unsigned CallReg = 0;
if (Symbol) {
unsigned ADRPReg = createResultReg(&AArch64::GPR64commonRegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
ADRPReg)
.addSym(Symbol, AArch64II::MO_GOT | AArch64II::MO_PAGE);
CallReg = createResultReg(&AArch64::GPR64RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(AArch64::LDRXui), CallReg)
.addReg(ADRPReg)
.addSym(Symbol,
AArch64II::MO_GOT | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
} else if (Addr.getGlobalValue())
CallReg = materializeGV(Addr.getGlobalValue());
else if (Addr.getReg())
CallReg = Addr.getReg();
if (!CallReg)
return false;
const MCInstrDesc &II = TII.get(getBLRCallOpcode(*MF));
CallReg = constrainOperandRegClass(II, CallReg, 0);
MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addReg(CallReg);
}
// Add implicit physical register uses to the call.
for (auto Reg : CLI.OutRegs)
MIB.addReg(Reg, RegState::Implicit);
// Add a register mask with the call-preserved registers.
// Proper defs for return values will be added by setPhysRegsDeadExcept().
MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
CLI.Call = MIB;
// Finish off the call including any return values.
return finishCall(CLI, RetVT, NumBytes);
}
bool AArch64FastISel::isMemCpySmall(uint64_t Len, unsigned Alignment) {
if (Alignment)
return Len / Alignment <= 4;
else
return Len < 32;
}
bool AArch64FastISel::tryEmitSmallMemCpy(Address Dest, Address Src,
uint64_t Len, unsigned Alignment) {
// Make sure we don't bloat code by inlining very large memcpy's.
if (!isMemCpySmall(Len, Alignment))
return false;
int64_t UnscaledOffset = 0;
Address OrigDest = Dest;
Address OrigSrc = Src;
while (Len) {
MVT VT;
if (!Alignment || Alignment >= 8) {
if (Len >= 8)
VT = MVT::i64;
else if (Len >= 4)
VT = MVT::i32;
else if (Len >= 2)
VT = MVT::i16;
else {
VT = MVT::i8;
}
} else {
// Bound based on alignment.
if (Len >= 4 && Alignment == 4)
VT = MVT::i32;
else if (Len >= 2 && Alignment == 2)
VT = MVT::i16;
else {
VT = MVT::i8;
}
}
unsigned ResultReg = emitLoad(VT, VT, Src);
if (!ResultReg)
return false;
if (!emitStore(VT, ResultReg, Dest))
return false;
int64_t Size = VT.getSizeInBits() / 8;
Len -= Size;
UnscaledOffset += Size;
// We need to recompute the unscaled offset for each iteration.
Dest.setOffset(OrigDest.getOffset() + UnscaledOffset);
Src.setOffset(OrigSrc.getOffset() + UnscaledOffset);
}
return true;
}
/// Check if it is possible to fold the condition from the XALU intrinsic
/// into the user. The condition code will only be updated on success.
bool AArch64FastISel::foldXALUIntrinsic(AArch64CC::CondCode &CC,
const Instruction *I,
const Value *Cond) {
if (!isa<ExtractValueInst>(Cond))
return false;
const auto *EV = cast<ExtractValueInst>(Cond);
if (!isa<IntrinsicInst>(EV->getAggregateOperand()))
return false;
const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand());
MVT RetVT;
const Function *Callee = II->getCalledFunction();
Type *RetTy =
cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U);
if (!isTypeLegal(RetTy, RetVT))
return false;
if (RetVT != MVT::i32 && RetVT != MVT::i64)
return false;
const Value *LHS = II->getArgOperand(0);
const Value *RHS = II->getArgOperand(1);
// Canonicalize immediate to the RHS.
if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) &&
isCommutativeIntrinsic(II))
std::swap(LHS, RHS);
// Simplify multiplies.
Intrinsic::ID IID = II->getIntrinsicID();
switch (IID) {
default:
break;
case Intrinsic::smul_with_overflow:
if (const auto *C = dyn_cast<ConstantInt>(RHS))
if (C->getValue() == 2)
IID = Intrinsic::sadd_with_overflow;
break;
case Intrinsic::umul_with_overflow:
if (const auto *C = dyn_cast<ConstantInt>(RHS))
if (C->getValue() == 2)
IID = Intrinsic::uadd_with_overflow;
break;
}
AArch64CC::CondCode TmpCC;
switch (IID) {
default:
return false;
case Intrinsic::sadd_with_overflow:
case Intrinsic::ssub_with_overflow:
TmpCC = AArch64CC::VS;
break;
case Intrinsic::uadd_with_overflow:
TmpCC = AArch64CC::HS;
break;
case Intrinsic::usub_with_overflow:
TmpCC = AArch64CC::LO;
break;
case Intrinsic::smul_with_overflow:
case Intrinsic::umul_with_overflow:
TmpCC = AArch64CC::NE;
break;
}
// Check if both instructions are in the same basic block.
if (!isValueAvailable(II))
return false;
// Make sure nothing is in the way
BasicBlock::const_iterator Start(I);
BasicBlock::const_iterator End(II);
for (auto Itr = std::prev(Start); Itr != End; --Itr) {
// We only expect extractvalue instructions between the intrinsic and the
// instruction to be selected.
if (!isa<ExtractValueInst>(Itr))
return false;
// Check that the extractvalue operand comes from the intrinsic.
const auto *EVI = cast<ExtractValueInst>(Itr);
if (EVI->getAggregateOperand() != II)
return false;
}
CC = TmpCC;
return true;
}
bool AArch64FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
// FIXME: Handle more intrinsics.
switch (II->getIntrinsicID()) {
default: return false;
case Intrinsic::frameaddress: {
MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
MFI.setFrameAddressIsTaken(true);
const AArch64RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
Register FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF));
Register SrcReg = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), SrcReg).addReg(FramePtr);
// Recursively load frame address
// ldr x0, [fp]
// ldr x0, [x0]
// ldr x0, [x0]
// ...
unsigned DestReg;
unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue();
while (Depth--) {
DestReg = fastEmitInst_ri(AArch64::LDRXui, &AArch64::GPR64RegClass,
SrcReg, /*IsKill=*/true, 0);
assert(DestReg && "Unexpected LDR instruction emission failure.");
SrcReg = DestReg;
}
updateValueMap(II, SrcReg);
return true;
}
case Intrinsic::sponentry: {
MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
// SP = FP + Fixed Object + 16
int FI = MFI.CreateFixedObject(4, 0, false);
unsigned ResultReg = createResultReg(&AArch64::GPR64spRegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(AArch64::ADDXri), ResultReg)
.addFrameIndex(FI)
.addImm(0)
.addImm(0);
updateValueMap(II, ResultReg);
return true;
}
case Intrinsic::memcpy:
case Intrinsic::memmove: {
const auto *MTI = cast<MemTransferInst>(II);
// Don't handle volatile.
if (MTI->isVolatile())
return false;
// Disable inlining for memmove before calls to ComputeAddress. Otherwise,
// we would emit dead code because we don't currently handle memmoves.
bool IsMemCpy = (II->getIntrinsicID() == Intrinsic::memcpy);
if (isa<ConstantInt>(MTI->getLength()) && IsMemCpy) {
// Small memcpy's are common enough that we want to do them without a call
// if possible.
uint64_t Len = cast<ConstantInt>(MTI->getLength())->getZExtValue();
unsigned Alignment = MinAlign(MTI->getDestAlignment(),
MTI->getSourceAlignment());
if (isMemCpySmall(Len, Alignment)) {
Address Dest, Src;
if (!computeAddress(MTI->getRawDest(), Dest) ||
!computeAddress(MTI->getRawSource(), Src))
return false;
if (tryEmitSmallMemCpy(Dest, Src, Len, Alignment))
return true;
}
}
if (!MTI->getLength()->getType()->isIntegerTy(64))
return false;
if (MTI->getSourceAddressSpace() > 255 || MTI->getDestAddressSpace() > 255)
// Fast instruction selection doesn't support the special
// address spaces.
return false;
const char *IntrMemName = isa<MemCpyInst>(II) ? "memcpy" : "memmove";
return lowerCallTo(II, IntrMemName, II->getNumArgOperands() - 1);
}
case Intrinsic::memset: {
const MemSetInst *MSI = cast<MemSetInst>(II);
// Don't handle volatile.
if (MSI->isVolatile())
return false;
if (!MSI->getLength()->getType()->isIntegerTy(64))
return false;
if (MSI->getDestAddressSpace() > 255)
// Fast instruction selection doesn't support the special
// address spaces.
return false;
return lowerCallTo(II, "memset", II->getNumArgOperands() - 1);
}
case Intrinsic::sin:
case Intrinsic::cos:
case Intrinsic::pow: {
MVT RetVT;
if (!isTypeLegal(II->getType(), RetVT))
return false;
if (RetVT != MVT::f32 && RetVT != MVT::f64)
return false;
static const RTLIB::Libcall LibCallTable[3][2] = {
{ RTLIB::SIN_F32, RTLIB::SIN_F64 },
{ RTLIB::COS_F32, RTLIB::COS_F64 },
{ RTLIB::POW_F32, RTLIB::POW_F64 }
};
RTLIB::Libcall LC;
bool Is64Bit = RetVT == MVT::f64;
switch (II->getIntrinsicID()) {
default:
llvm_unreachable("Unexpected intrinsic.");
case Intrinsic::sin:
LC = LibCallTable[0][Is64Bit];
break;
case Intrinsic::cos:
LC = LibCallTable[1][Is64Bit];
break;
case Intrinsic::pow:
LC = LibCallTable[2][Is64Bit];
break;
}
ArgListTy Args;
Args.reserve(II->getNumArgOperands());
// Populate the argument list.
for (auto &Arg : II->arg_operands()) {
ArgListEntry Entry;
Entry.Val = Arg;
Entry.Ty = Arg->getType();
Args.push_back(Entry);
}
CallLoweringInfo CLI;
MCContext &Ctx = MF->getContext();
CLI.setCallee(DL, Ctx, TLI.getLibcallCallingConv(LC), II->getType(),
TLI.getLibcallName(LC), std::move(Args));
if (!lowerCallTo(CLI))
return false;
updateValueMap(II, CLI.ResultReg);
return true;
}
case Intrinsic::fabs: {
MVT VT;
if (!isTypeLegal(II->getType(), VT))
return false;
unsigned Opc;
switch (VT.SimpleTy) {
default:
return false;
case MVT::f32:
Opc = AArch64::FABSSr;
break;
case MVT::f64:
Opc = AArch64::FABSDr;
break;
}
unsigned SrcReg = getRegForValue(II->getOperand(0));
if (!SrcReg)
return false;
bool SrcRegIsKill = hasTrivialKill(II->getOperand(0));
unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
.addReg(SrcReg, getKillRegState(SrcRegIsKill));
updateValueMap(II, ResultReg);
return true;
}
case Intrinsic::trap:
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::BRK))
.addImm(1);
return true;
case Intrinsic::debugtrap:
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::BRK))
.addImm(0xF000);
return true;
case Intrinsic::sqrt: {
Type *RetTy = II->getCalledFunction()->getReturnType();
MVT VT;
if (!isTypeLegal(RetTy, VT))
return false;
unsigned Op0Reg = getRegForValue(II->getOperand(0));
if (!Op0Reg)
return false;
bool Op0IsKill = hasTrivialKill(II->getOperand(0));
unsigned ResultReg = fastEmit_r(VT, VT, ISD::FSQRT, Op0Reg, Op0IsKill);
if (!ResultReg)
return false;
updateValueMap(II, ResultReg);
return true;
}
case Intrinsic::sadd_with_overflow:
case Intrinsic::uadd_with_overflow:
case Intrinsic::ssub_with_overflow:
case Intrinsic::usub_with_overflow:
case Intrinsic::smul_with_overflow:
case Intrinsic::umul_with_overflow: {
// This implements the basic lowering of the xalu with overflow intrinsics.
const Function *Callee = II->getCalledFunction();
auto *Ty = cast<StructType>(Callee->getReturnType());
Type *RetTy = Ty->getTypeAtIndex(0U);
MVT VT;
if (!isTypeLegal(RetTy, VT))
return false;
if (VT != MVT::i32 && VT != MVT::i64)
return false;
const Value *LHS = II->getArgOperand(0);
const Value *RHS = II->getArgOperand(1);
// Canonicalize immediate to the RHS.
if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) &&
isCommutativeIntrinsic(II))
std::swap(LHS, RHS);
// Simplify multiplies.
Intrinsic::ID IID = II->getIntrinsicID();
switch (IID) {
default:
break;
case Intrinsic::smul_with_overflow:
if (const auto *C = dyn_cast<ConstantInt>(RHS))
if (C->getValue() == 2) {
IID = Intrinsic::sadd_with_overflow;
RHS = LHS;
}
break;
case Intrinsic::umul_with_overflow:
if (const auto *C = dyn_cast<ConstantInt>(RHS))
if (C->getValue() == 2) {
IID = Intrinsic::uadd_with_overflow;
RHS = LHS;
}
break;
}
unsigned ResultReg1 = 0, ResultReg2 = 0, MulReg = 0;
AArch64CC::CondCode CC = AArch64CC::Invalid;
switch (IID) {
default: llvm_unreachable("Unexpected intrinsic!");
case Intrinsic::sadd_with_overflow:
ResultReg1 = emitAdd(VT, LHS, RHS, /*SetFlags=*/true);
CC = AArch64CC::VS;
break;
case Intrinsic::uadd_with_overflow:
ResultReg1 = emitAdd(VT, LHS, RHS, /*SetFlags=*/true);
CC = AArch64CC::HS;
break;
case Intrinsic::ssub_with_overflow:
ResultReg1 = emitSub(VT, LHS, RHS, /*SetFlags=*/true);
CC = AArch64CC::VS;
break;
case Intrinsic::usub_with_overflow:
ResultReg1 = emitSub(VT, LHS, RHS, /*SetFlags=*/true);
CC = AArch64CC::LO;
break;
case Intrinsic::smul_with_overflow: {
CC = AArch64CC::NE;
unsigned LHSReg = getRegForValue(LHS);
if (!LHSReg)
return false;
bool LHSIsKill = hasTrivialKill(LHS);
unsigned RHSReg = getRegForValue(RHS);
if (!RHSReg)
return false;
bool RHSIsKill = hasTrivialKill(RHS);
if (VT == MVT::i32) {
MulReg = emitSMULL_rr(MVT::i64, LHSReg, LHSIsKill, RHSReg, RHSIsKill);
unsigned ShiftReg = emitLSR_ri(MVT::i64, MVT::i64, MulReg,
/*IsKill=*/false, 32);
MulReg = fastEmitInst_extractsubreg(VT, MulReg, /*IsKill=*/true,
AArch64::sub_32);
ShiftReg = fastEmitInst_extractsubreg(VT, ShiftReg, /*IsKill=*/true,
AArch64::sub_32);
emitSubs_rs(VT, ShiftReg, /*IsKill=*/true, MulReg, /*IsKill=*/false,
AArch64_AM::ASR, 31, /*WantResult=*/false);
} else {
assert(VT == MVT::i64 && "Unexpected value type.");
// LHSReg and RHSReg cannot be killed by this Mul, since they are
// reused in the next instruction.
MulReg = emitMul_rr(VT, LHSReg, /*IsKill=*/false, RHSReg,
/*IsKill=*/false);
unsigned SMULHReg = fastEmit_rr(VT, VT, ISD::MULHS, LHSReg, LHSIsKill,
RHSReg, RHSIsKill);
emitSubs_rs(VT, SMULHReg, /*IsKill=*/true, MulReg, /*IsKill=*/false,
AArch64_AM::ASR, 63, /*WantResult=*/false);
}
break;
}
case Intrinsic::umul_with_overflow: {
CC = AArch64CC::NE;
unsigned LHSReg = getRegForValue(LHS);
if (!LHSReg)
return false;
bool LHSIsKill = hasTrivialKill(LHS);
unsigned RHSReg = getRegForValue(RHS);
if (!RHSReg)
return false;
bool RHSIsKill = hasTrivialKill(RHS);
if (VT == MVT::i32) {
MulReg = emitUMULL_rr(MVT::i64, LHSReg, LHSIsKill, RHSReg, RHSIsKill);
emitSubs_rs(MVT::i64, AArch64::XZR, /*IsKill=*/true, MulReg,
/*IsKill=*/false, AArch64_AM::LSR, 32,
/*WantResult=*/false);
MulReg = fastEmitInst_extractsubreg(VT, MulReg, /*IsKill=*/true,
AArch64::sub_32);
} else {
assert(VT == MVT::i64 && "Unexpected value type.");
// LHSReg and RHSReg cannot be killed by this Mul, since they are
// reused in the next instruction.
MulReg = emitMul_rr(VT, LHSReg, /*IsKill=*/false, RHSReg,
/*IsKill=*/false);
unsigned UMULHReg = fastEmit_rr(VT, VT, ISD::MULHU, LHSReg, LHSIsKill,
RHSReg, RHSIsKill);
emitSubs_rr(VT, AArch64::XZR, /*IsKill=*/true, UMULHReg,
/*IsKill=*/false, /*WantResult=*/false);
}
break;
}
}
if (MulReg) {
ResultReg1 = createResultReg(TLI.getRegClassFor(VT));
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), ResultReg1).addReg(MulReg);
}
if (!ResultReg1)
return false;
ResultReg2 = fastEmitInst_rri(AArch64::CSINCWr, &AArch64::GPR32RegClass,
AArch64::WZR, /*IsKill=*/true, AArch64::WZR,
/*IsKill=*/true, getInvertedCondCode(CC));
(void)ResultReg2;
assert((ResultReg1 + 1) == ResultReg2 &&
"Nonconsecutive result registers.");
updateValueMap(II, ResultReg1, 2);
return true;
}
}
return false;
}
bool AArch64FastISel::selectRet(const Instruction *I) {
const ReturnInst *Ret = cast<ReturnInst>(I);
const Function &F = *I->getParent()->getParent();
if (!FuncInfo.CanLowerReturn)
return false;
if (F.isVarArg())
return false;
if (TLI.supportSwiftError() &&
F.getAttributes().hasAttrSomewhere(Attribute::SwiftError))
return false;
if (TLI.supportSplitCSR(FuncInfo.MF))
return false;
// Build a list of return value registers.
SmallVector<unsigned, 4> RetRegs;
if (Ret->getNumOperands() > 0) {
CallingConv::ID CC = F.getCallingConv();
SmallVector<ISD::OutputArg, 4> Outs;
GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ValLocs;
CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
CCAssignFn *RetCC = CC == CallingConv::WebKit_JS ? RetCC_AArch64_WebKit_JS
: RetCC_AArch64_AAPCS;
CCInfo.AnalyzeReturn(Outs, RetCC);
// Only handle a single return value for now.
if (ValLocs.size() != 1)
return false;
CCValAssign &VA = ValLocs[0];
const Value *RV = Ret->getOperand(0);
// Don't bother handling odd stuff for now.
if ((VA.getLocInfo() != CCValAssign::Full) &&
(VA.getLocInfo() != CCValAssign::BCvt))
return false;
// Only handle register returns for now.
if (!VA.isRegLoc())
return false;
unsigned Reg = getRegForValue(RV);
if (Reg == 0)
return false;
unsigned SrcReg = Reg + VA.getValNo();
Register DestReg = VA.getLocReg();
// Avoid a cross-class copy. This is very unlikely.
if (!MRI.getRegClass(SrcReg)->contains(DestReg))
return false;
EVT RVEVT = TLI.getValueType(DL, RV->getType());
if (!RVEVT.isSimple())
return false;
// Vectors (of > 1 lane) in big endian need tricky handling.
if (RVEVT.isVector() && RVEVT.getVectorNumElements() > 1 &&
!Subtarget->isLittleEndian())
return false;
MVT RVVT = RVEVT.getSimpleVT();
if (RVVT == MVT::f128)
return false;
MVT DestVT = VA.getValVT();
// Special handling for extended integers.
if (RVVT != DestVT) {
if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
return false;
if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
return false;
bool IsZExt = Outs[0].Flags.isZExt();
SrcReg = emitIntExt(RVVT, SrcReg, DestVT, IsZExt);
if (SrcReg == 0)
return false;
}
// "Callee" (i.e. value producer) zero extends pointers at function
// boundary.
if (Subtarget->isTargetILP32() && RV->getType()->isPointerTy())
SrcReg = emitAnd_ri(MVT::i64, SrcReg, false, 0xffffffff);
// Make the copy.
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), DestReg).addReg(SrcReg);
// Add register to return instruction.
RetRegs.push_back(VA.getLocReg());
}
MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(AArch64::RET_ReallyLR));
for (unsigned RetReg : RetRegs)
MIB.addReg(RetReg, RegState::Implicit);
return true;
}
bool AArch64FastISel::selectTrunc(const Instruction *I) {
Type *DestTy = I->getType();
Value *Op = I->getOperand(0);
Type *SrcTy = Op->getType();
EVT SrcEVT = TLI.getValueType(DL, SrcTy, true);
EVT DestEVT = TLI.getValueType(DL, DestTy, true);
if (!SrcEVT.isSimple())
return false;
if (!DestEVT.isSimple())
return false;
MVT SrcVT = SrcEVT.getSimpleVT();
MVT DestVT = DestEVT.getSimpleVT();
if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16 &&
SrcVT != MVT::i8)
return false;
if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8 &&
DestVT != MVT::i1)
return false;
unsigned SrcReg = getRegForValue(Op);
if (!SrcReg)
return false;
bool SrcIsKill = hasTrivialKill(Op);
// If we're truncating from i64 to a smaller non-legal type then generate an
// AND. Otherwise, we know the high bits are undefined and a truncate only
// generate a COPY. We cannot mark the source register also as result
// register, because this can incorrectly transfer the kill flag onto the
// source register.
unsigned ResultReg;
if (SrcVT == MVT::i64) {
uint64_t Mask = 0;
switch (DestVT.SimpleTy) {
default:
// Trunc i64 to i32 is handled by the target-independent fast-isel.
return false;
case MVT::i1:
Mask = 0x1;
break;
case MVT::i8:
Mask = 0xff;
break;
case MVT::i16:
Mask = 0xffff;
break;
}
// Issue an extract_subreg to get the lower 32-bits.
unsigned Reg32 = fastEmitInst_extractsubreg(MVT::i32, SrcReg, SrcIsKill,
AArch64::sub_32);
// Create the AND instruction which performs the actual truncation.
ResultReg = emitAnd_ri(MVT::i32, Reg32, /*IsKill=*/true, Mask);
assert(ResultReg && "Unexpected AND instruction emission failure.");
} else {
ResultReg = createResultReg(&AArch64::GPR32RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), ResultReg)
.addReg(SrcReg, getKillRegState(SrcIsKill));
}
updateValueMap(I, ResultReg);
return true;
}
unsigned AArch64FastISel::emiti1Ext(unsigned SrcReg, MVT DestVT, bool IsZExt) {
assert((DestVT == MVT::i8 || DestVT == MVT::i16 || DestVT == MVT::i32 ||
DestVT == MVT::i64) &&
"Unexpected value type.");
// Handle i8 and i16 as i32.
if (DestVT == MVT::i8 || DestVT == MVT::i16)
DestVT = MVT::i32;
if (IsZExt) {
unsigned ResultReg = emitAnd_ri(MVT::i32, SrcReg, /*TODO:IsKill=*/false, 1);
assert(ResultReg && "Unexpected AND instruction emission failure.");
if (DestVT == MVT::i64) {
// We're ZExt i1 to i64. The ANDWri Wd, Ws, #1 implicitly clears the
// upper 32 bits. Emit a SUBREG_TO_REG to extend from Wd to Xd.
Register Reg64 = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(AArch64::SUBREG_TO_REG), Reg64)
.addImm(0)
.addReg(ResultReg)
.addImm(AArch64::sub_32);
ResultReg = Reg64;
}
return ResultReg;
} else {
if (DestVT == MVT::i64) {
// FIXME: We're SExt i1 to i64.
return 0;
}
return fastEmitInst_rii(AArch64::SBFMWri, &AArch64::GPR32RegClass, SrcReg,
/*TODO:IsKill=*/false, 0, 0);
}
}
unsigned AArch64FastISel::emitMul_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill) {
unsigned Opc, ZReg;
switch (RetVT.SimpleTy) {
default: return 0;
case MVT::i8:
case MVT::i16:
case MVT::i32:
RetVT = MVT::i32;
Opc = AArch64::MADDWrrr; ZReg = AArch64::WZR; break;
case MVT::i64:
Opc = AArch64::MADDXrrr; ZReg = AArch64::XZR; break;
}
const TargetRegisterClass *RC =
(RetVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
return fastEmitInst_rrr(Opc, RC, Op0, Op0IsKill, Op1, Op1IsKill,
/*IsKill=*/ZReg, true);
}
unsigned AArch64FastISel::emitSMULL_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill) {
if (RetVT != MVT::i64)
return 0;
return fastEmitInst_rrr(AArch64::SMADDLrrr, &AArch64::GPR64RegClass,
Op0, Op0IsKill, Op1, Op1IsKill,
AArch64::XZR, /*IsKill=*/true);
}
unsigned AArch64FastISel::emitUMULL_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill) {
if (RetVT != MVT::i64)
return 0;
return fastEmitInst_rrr(AArch64::UMADDLrrr, &AArch64::GPR64RegClass,
Op0, Op0IsKill, Op1, Op1IsKill,
AArch64::XZR, /*IsKill=*/true);
}
unsigned AArch64FastISel::emitLSL_rr(MVT RetVT, unsigned Op0Reg, bool Op0IsKill,
unsigned Op1Reg, bool Op1IsKill) {
unsigned Opc = 0;
bool NeedTrunc = false;
uint64_t Mask = 0;
switch (RetVT.SimpleTy) {
default: return 0;
case MVT::i8: Opc = AArch64::LSLVWr; NeedTrunc = true; Mask = 0xff; break;
case MVT::i16: Opc = AArch64::LSLVWr; NeedTrunc = true; Mask = 0xffff; break;
case MVT::i32: Opc = AArch64::LSLVWr; break;
case MVT::i64: Opc = AArch64::LSLVXr; break;
}
const TargetRegisterClass *RC =
(RetVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
if (NeedTrunc) {
Op1Reg = emitAnd_ri(MVT::i32, Op1Reg, Op1IsKill, Mask);
Op1IsKill = true;
}
unsigned ResultReg = fastEmitInst_rr(Opc, RC, Op0Reg, Op0IsKill, Op1Reg,
Op1IsKill);
if (NeedTrunc)
ResultReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, Mask);
return ResultReg;
}
unsigned AArch64FastISel::emitLSL_ri(MVT RetVT, MVT SrcVT, unsigned Op0,
bool Op0IsKill, uint64_t Shift,
bool IsZExt) {
assert(RetVT.SimpleTy >= SrcVT.SimpleTy &&
"Unexpected source/return type pair.");
assert((SrcVT == MVT::i1 || SrcVT == MVT::i8 || SrcVT == MVT::i16 ||
SrcVT == MVT::i32 || SrcVT == MVT::i64) &&
"Unexpected source value type.");
assert((RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32 ||
RetVT == MVT::i64) && "Unexpected return value type.");
bool Is64Bit = (RetVT == MVT::i64);
unsigned RegSize = Is64Bit ? 64 : 32;
unsigned DstBits = RetVT.getSizeInBits();
unsigned SrcBits = SrcVT.getSizeInBits();
const TargetRegisterClass *RC =
Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
// Just emit a copy for "zero" shifts.
if (Shift == 0) {
if (RetVT == SrcVT) {
unsigned ResultReg = createResultReg(RC);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), ResultReg)
.addReg(Op0, getKillRegState(Op0IsKill));
return ResultReg;
} else
return emitIntExt(SrcVT, Op0, RetVT, IsZExt);
}
// Don't deal with undefined shifts.
if (Shift >= DstBits)
return 0;
// For immediate shifts we can fold the zero-/sign-extension into the shift.
// {S|U}BFM Wd, Wn, #r, #s
// Wd<32+s-r,32-r> = Wn<s:0> when r > s
// %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
// %2 = shl i16 %1, 4
// Wd<32+7-28,32-28> = Wn<7:0> <- clamp s to 7
// 0b1111_1111_1111_1111__1111_1010_1010_0000 sext
// 0b0000_0000_0000_0000__0000_0101_0101_0000 sext | zext
// 0b0000_0000_0000_0000__0000_1010_1010_0000 zext
// %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
// %2 = shl i16 %1, 8
// Wd<32+7-24,32-24> = Wn<7:0>
// 0b1111_1111_1111_1111__1010_1010_0000_0000 sext
// 0b0000_0000_0000_0000__0101_0101_0000_0000 sext | zext
// 0b0000_0000_0000_0000__1010_1010_0000_0000 zext
// %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
// %2 = shl i16 %1, 12
// Wd<32+3-20,32-20> = Wn<3:0>
// 0b1111_1111_1111_1111__1010_0000_0000_0000 sext
// 0b0000_0000_0000_0000__0101_0000_0000_0000 sext | zext
// 0b0000_0000_0000_0000__1010_0000_0000_0000 zext
unsigned ImmR = RegSize - Shift;
// Limit the width to the length of the source type.
unsigned ImmS = std::min<unsigned>(SrcBits - 1, DstBits - 1 - Shift);
static const unsigned OpcTable[2][2] = {
{AArch64::SBFMWri, AArch64::SBFMXri},
{AArch64::UBFMWri, AArch64::UBFMXri}
};
unsigned Opc = OpcTable[IsZExt][Is64Bit];
if (SrcVT.SimpleTy <= MVT::i32 && RetVT == MVT::i64) {
Register TmpReg = MRI.createVirtualRegister(RC);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(AArch64::SUBREG_TO_REG), TmpReg)
.addImm(0)
.addReg(Op0, getKillRegState(Op0IsKill))
.addImm(AArch64::sub_32);
Op0 = TmpReg;
Op0IsKill = true;
}
return fastEmitInst_rii(Opc, RC, Op0, Op0IsKill, ImmR, ImmS);
}
unsigned AArch64FastISel::emitLSR_rr(MVT RetVT, unsigned Op0Reg, bool Op0IsKill,
unsigned Op1Reg, bool Op1IsKill) {
unsigned Opc = 0;
bool NeedTrunc = false;
uint64_t Mask = 0;
switch (RetVT.SimpleTy) {
default: return 0;
case MVT::i8: Opc = AArch64::LSRVWr; NeedTrunc = true; Mask = 0xff; break;
case MVT::i16: Opc = AArch64::LSRVWr; NeedTrunc = true; Mask = 0xffff; break;
case MVT::i32: Opc = AArch64::LSRVWr; break;
case MVT::i64: Opc = AArch64::LSRVXr; break;
}
const TargetRegisterClass *RC =
(RetVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
if (NeedTrunc) {
Op0Reg = emitAnd_ri(MVT::i32, Op0Reg, Op0IsKill, Mask);
Op1Reg = emitAnd_ri(MVT::i32, Op1Reg, Op1IsKill, Mask);
Op0IsKill = Op1IsKill = true;
}
unsigned ResultReg = fastEmitInst_rr(Opc, RC, Op0Reg, Op0IsKill, Op1Reg,
Op1IsKill);
if (NeedTrunc)
ResultReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, Mask);
return ResultReg;
}
unsigned AArch64FastISel::emitLSR_ri(MVT RetVT, MVT SrcVT, unsigned Op0,
bool Op0IsKill, uint64_t Shift,
bool IsZExt) {
assert(RetVT.SimpleTy >= SrcVT.SimpleTy &&
"Unexpected source/return type pair.");
assert((SrcVT == MVT::i1 || SrcVT == MVT::i8 || SrcVT == MVT::i16 ||
SrcVT == MVT::i32 || SrcVT == MVT::i64) &&
"Unexpected source value type.");
assert((RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32 ||
RetVT == MVT::i64) && "Unexpected return value type.");
bool Is64Bit = (RetVT == MVT::i64);
unsigned RegSize = Is64Bit ? 64 : 32;
unsigned DstBits = RetVT.getSizeInBits();
unsigned SrcBits = SrcVT.getSizeInBits();
const TargetRegisterClass *RC =
Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
// Just emit a copy for "zero" shifts.
if (Shift == 0) {
if (RetVT == SrcVT) {
unsigned ResultReg = createResultReg(RC);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), ResultReg)
.addReg(Op0, getKillRegState(Op0IsKill));
return ResultReg;
} else
return emitIntExt(SrcVT, Op0, RetVT, IsZExt);
}
// Don't deal with undefined shifts.
if (Shift >= DstBits)
return 0;
// For immediate shifts we can fold the zero-/sign-extension into the shift.
// {S|U}BFM Wd, Wn, #r, #s
// Wd<s-r:0> = Wn<s:r> when r <= s
// %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
// %2 = lshr i16 %1, 4
// Wd<7-4:0> = Wn<7:4>
// 0b0000_0000_0000_0000__0000_1111_1111_1010 sext
// 0b0000_0000_0000_0000__0000_0000_0000_0101 sext | zext
// 0b0000_0000_0000_0000__0000_0000_0000_1010 zext
// %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
// %2 = lshr i16 %1, 8
// Wd<7-7,0> = Wn<7:7>
// 0b0000_0000_0000_0000__0000_0000_1111_1111 sext
// 0b0000_0000_0000_0000__0000_0000_0000_0000 sext
// 0b0000_0000_0000_0000__0000_0000_0000_0000 zext
// %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
// %2 = lshr i16 %1, 12
// Wd<7-7,0> = Wn<7:7> <- clamp r to 7
// 0b0000_0000_0000_0000__0000_0000_0000_1111 sext
// 0b0000_0000_0000_0000__0000_0000_0000_0000 sext
// 0b0000_0000_0000_0000__0000_0000_0000_0000 zext
if (Shift >= SrcBits && IsZExt)
return materializeInt(ConstantInt::get(*Context, APInt(RegSize, 0)), RetVT);
// It is not possible to fold a sign-extend into the LShr instruction. In this
// case emit a sign-extend.
if (!IsZExt) {
Op0 = emitIntExt(SrcVT, Op0, RetVT, IsZExt);
if (!Op0)
return 0;
Op0IsKill = true;
SrcVT = RetVT;
SrcBits = SrcVT.getSizeInBits();
IsZExt = true;
}
unsigned ImmR = std::min<unsigned>(SrcBits - 1, Shift);
unsigned ImmS = SrcBits - 1;
static const unsigned OpcTable[2][2] = {
{AArch64::SBFMWri, AArch64::SBFMXri},
{AArch64::UBFMWri, AArch64::UBFMXri}
};
unsigned Opc = OpcTable[IsZExt][Is64Bit];
if (SrcVT.SimpleTy <= MVT::i32 && RetVT == MVT::i64) {
Register TmpReg = MRI.createVirtualRegister(RC);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(AArch64::SUBREG_TO_REG), TmpReg)
.addImm(0)
.addReg(Op0, getKillRegState(Op0IsKill))
.addImm(AArch64::sub_32);
Op0 = TmpReg;
Op0IsKill = true;
}
return fastEmitInst_rii(Opc, RC, Op0, Op0IsKill, ImmR, ImmS);
}
unsigned AArch64FastISel::emitASR_rr(MVT RetVT, unsigned Op0Reg, bool Op0IsKill,
unsigned Op1Reg, bool Op1IsKill) {
unsigned Opc = 0;
bool NeedTrunc = false;
uint64_t Mask = 0;
switch (RetVT.SimpleTy) {
default: return 0;
case MVT::i8: Opc = AArch64::ASRVWr; NeedTrunc = true; Mask = 0xff; break;
case MVT::i16: Opc = AArch64::ASRVWr; NeedTrunc = true; Mask = 0xffff; break;
case MVT::i32: Opc = AArch64::ASRVWr; break;
case MVT::i64: Opc = AArch64::ASRVXr; break;
}
const TargetRegisterClass *RC =
(RetVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
if (NeedTrunc) {
Op0Reg = emitIntExt(RetVT, Op0Reg, MVT::i32, /*isZExt=*/false);
Op1Reg = emitAnd_ri(MVT::i32, Op1Reg, Op1IsKill, Mask);
Op0IsKill = Op1IsKill = true;
}
unsigned ResultReg = fastEmitInst_rr(Opc, RC, Op0Reg, Op0IsKill, Op1Reg,
Op1IsKill);
if (NeedTrunc)
ResultReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, Mask);
return ResultReg;
}
unsigned AArch64FastISel::emitASR_ri(MVT RetVT, MVT SrcVT, unsigned Op0,
bool Op0IsKill, uint64_t Shift,
bool IsZExt) {
assert(RetVT.SimpleTy >= SrcVT.SimpleTy &&
"Unexpected source/return type pair.");
assert((SrcVT == MVT::i1 || SrcVT == MVT::i8 || SrcVT == MVT::i16 ||
SrcVT == MVT::i32 || SrcVT == MVT::i64) &&
"Unexpected source value type.");
assert((RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32 ||
RetVT == MVT::i64) && "Unexpected return value type.");
bool Is64Bit = (RetVT == MVT::i64);
unsigned RegSize = Is64Bit ? 64 : 32;
unsigned DstBits = RetVT.getSizeInBits();
unsigned SrcBits = SrcVT.getSizeInBits();
const TargetRegisterClass *RC =
Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
// Just emit a copy for "zero" shifts.
if (Shift == 0) {
if (RetVT == SrcVT) {
unsigned ResultReg = createResultReg(RC);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), ResultReg)
.addReg(Op0, getKillRegState(Op0IsKill));
return ResultReg;
} else
return emitIntExt(SrcVT, Op0, RetVT, IsZExt);
}
// Don't deal with undefined shifts.
if (Shift >= DstBits)
return 0;
// For immediate shifts we can fold the zero-/sign-extension into the shift.
// {S|U}BFM Wd, Wn, #r, #s
// Wd<s-r:0> = Wn<s:r> when r <= s
// %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
// %2 = ashr i16 %1, 4
// Wd<7-4:0> = Wn<7:4>
// 0b1111_1111_1111_1111__1111_1111_1111_1010 sext
// 0b0000_0000_0000_0000__0000_0000_0000_0101 sext | zext
// 0b0000_0000_0000_0000__0000_0000_0000_1010 zext
// %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
// %2 = ashr i16 %1, 8
// Wd<7-7,0> = Wn<7:7>
// 0b1111_1111_1111_1111__1111_1111_1111_1111 sext
// 0b0000_0000_0000_0000__0000_0000_0000_0000 sext
// 0b0000_0000_0000_0000__0000_0000_0000_0000 zext
// %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
// %2 = ashr i16 %1, 12
// Wd<7-7,0> = Wn<7:7> <- clamp r to 7
// 0b1111_1111_1111_1111__1111_1111_1111_1111 sext
// 0b0000_0000_0000_0000__0000_0000_0000_0000 sext
// 0b0000_0000_0000_0000__0000_0000_0000_0000 zext
if (Shift >= SrcBits && IsZExt)
return materializeInt(ConstantInt::get(*Context, APInt(RegSize, 0)), RetVT);
unsigned ImmR = std::min<unsigned>(SrcBits - 1, Shift);
unsigned ImmS = SrcBits - 1;
static const unsigned OpcTable[2][2] = {
{AArch64::SBFMWri, AArch64::SBFMXri},
{AArch64::UBFMWri, AArch64::UBFMXri}
};
unsigned Opc = OpcTable[IsZExt][Is64Bit];
if (SrcVT.SimpleTy <= MVT::i32 && RetVT == MVT::i64) {
Register TmpReg = MRI.createVirtualRegister(RC);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(AArch64::SUBREG_TO_REG), TmpReg)
.addImm(0)
.addReg(Op0, getKillRegState(Op0IsKill))
.addImm(AArch64::sub_32);
Op0 = TmpReg;
Op0IsKill = true;
}
return fastEmitInst_rii(Opc, RC, Op0, Op0IsKill, ImmR, ImmS);
}
unsigned AArch64FastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
bool IsZExt) {
assert(DestVT != MVT::i1 && "ZeroExt/SignExt an i1?");
// FastISel does not have plumbing to deal with extensions where the SrcVT or
// DestVT are odd things, so test to make sure that they are both types we can
// handle (i1/i8/i16/i32 for SrcVT and i8/i16/i32/i64 for DestVT), otherwise
// bail out to SelectionDAG.
if (((DestVT != MVT::i8) && (DestVT != MVT::i16) &&
(DestVT != MVT::i32) && (DestVT != MVT::i64)) ||
((SrcVT != MVT::i1) && (SrcVT != MVT::i8) &&
(SrcVT != MVT::i16) && (SrcVT != MVT::i32)))
return 0;
unsigned Opc;
unsigned Imm = 0;
switch (SrcVT.SimpleTy) {
default:
return 0;
case MVT::i1:
return emiti1Ext(SrcReg, DestVT, IsZExt);
case MVT::i8:
if (DestVT == MVT::i64)
Opc = IsZExt ? AArch64::UBFMXri : AArch64::SBFMXri;
else
Opc = IsZExt ? AArch64::UBFMWri : AArch64::SBFMWri;
Imm = 7;
break;
case MVT::i16:
if (DestVT == MVT::i64)
Opc = IsZExt ? AArch64::UBFMXri : AArch64::SBFMXri;
else
Opc = IsZExt ? AArch64::UBFMWri : AArch64::SBFMWri;
Imm = 15;
break;
case MVT::i32:
assert(DestVT == MVT::i64 && "IntExt i32 to i32?!?");
Opc = IsZExt ? AArch64::UBFMXri : AArch64::SBFMXri;
Imm = 31;
break;
}
// Handle i8 and i16 as i32.
if (DestVT == MVT::i8 || DestVT == MVT::i16)
DestVT = MVT::i32;
else if (DestVT == MVT::i64) {
Register Src64 = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(AArch64::SUBREG_TO_REG), Src64)
.addImm(0)
.addReg(SrcReg)
.addImm(AArch64::sub_32);
SrcReg = Src64;
}
const TargetRegisterClass *RC =
(DestVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
return fastEmitInst_rii(Opc, RC, SrcReg, /*TODO:IsKill=*/false, 0, Imm);
}
static bool isZExtLoad(const MachineInstr *LI) {
switch (LI->getOpcode()) {
default:
return false;
case AArch64::LDURBBi:
case AArch64::LDURHHi:
case AArch64::LDURWi:
case AArch64::LDRBBui:
case AArch64::LDRHHui:
case AArch64::LDRWui:
case AArch64::LDRBBroX:
case AArch64::LDRHHroX:
case AArch64::LDRWroX:
case AArch64::LDRBBroW:
case AArch64::LDRHHroW:
case AArch64::LDRWroW:
return true;
}
}
static bool isSExtLoad(const MachineInstr *LI) {
switch (LI->getOpcode()) {
default:
return false;
case AArch64::LDURSBWi:
case AArch64::LDURSHWi:
case AArch64::LDURSBXi:
case AArch64::LDURSHXi:
case AArch64::LDURSWi:
case AArch64::LDRSBWui:
case AArch64::LDRSHWui:
case AArch64::LDRSBXui:
case AArch64::LDRSHXui:
case AArch64::LDRSWui:
case AArch64::LDRSBWroX:
case AArch64::LDRSHWroX:
case AArch64::LDRSBXroX:
case AArch64::LDRSHXroX:
case AArch64::LDRSWroX:
case AArch64::LDRSBWroW:
case AArch64::LDRSHWroW:
case AArch64::LDRSBXroW:
case AArch64::LDRSHXroW:
case AArch64::LDRSWroW:
return true;
}
}
bool AArch64FastISel::optimizeIntExtLoad(const Instruction *I, MVT RetVT,
MVT SrcVT) {
const auto *LI = dyn_cast<LoadInst>(I->getOperand(0));
if (!LI || !LI->hasOneUse())
return false;
// Check if the load instruction has already been selected.
unsigned Reg = lookUpRegForValue(LI);
if (!Reg)
return false;
MachineInstr *MI = MRI.getUniqueVRegDef(Reg);
if (!MI)
return false;
// Check if the correct load instruction has been emitted - SelectionDAG might
// have emitted a zero-extending load, but we need a sign-extending load.
bool IsZExt = isa<ZExtInst>(I);
const auto *LoadMI = MI;
if (LoadMI->getOpcode() == TargetOpcode::COPY &&
LoadMI->getOperand(1).getSubReg() == AArch64::sub_32) {
Register LoadReg = MI->getOperand(1).getReg();
LoadMI = MRI.getUniqueVRegDef(LoadReg);
assert(LoadMI && "Expected valid instruction");
}
if (!(IsZExt && isZExtLoad(LoadMI)) && !(!IsZExt && isSExtLoad(LoadMI)))
return false;
// Nothing to be done.
if (RetVT != MVT::i64 || SrcVT > MVT::i32) {
updateValueMap(I, Reg);
return true;
}
if (IsZExt) {
unsigned Reg64 = createResultReg(&AArch64::GPR64RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(AArch64::SUBREG_TO_REG), Reg64)
.addImm(0)
.addReg(Reg, getKillRegState(true))
.addImm(AArch64::sub_32);
Reg = Reg64;
} else {
assert((MI->getOpcode() == TargetOpcode::COPY &&
MI->getOperand(1).getSubReg() == AArch64::sub_32) &&
"Expected copy instruction");
Reg = MI->getOperand(1).getReg();
MachineBasicBlock::iterator I(MI);
removeDeadCode(I, std::next(I));
}
updateValueMap(I, Reg);
return true;
}
bool AArch64FastISel::selectIntExt(const Instruction *I) {
assert((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
"Unexpected integer extend instruction.");
MVT RetVT;
MVT SrcVT;
if (!isTypeSupported(I->getType(), RetVT))
return false;
if (!isTypeSupported(I->getOperand(0)->getType(), SrcVT))
return false;
// Try to optimize already sign-/zero-extended values from load instructions.
if (optimizeIntExtLoad(I, RetVT, SrcVT))
return true;
unsigned SrcReg = getRegForValue(I->getOperand(0));
if (!SrcReg)
return false;
bool SrcIsKill = hasTrivialKill(I->getOperand(0));
// Try to optimize already sign-/zero-extended values from function arguments.
bool IsZExt = isa<ZExtInst>(I);
if (const auto *Arg = dyn_cast<Argument>(I->getOperand(0))) {
if ((IsZExt && Arg->hasZExtAttr()) || (!IsZExt && Arg->hasSExtAttr())) {
if (RetVT == MVT::i64 && SrcVT != MVT::i64) {
unsigned ResultReg = createResultReg(&AArch64::GPR64RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(AArch64::SUBREG_TO_REG), ResultReg)
.addImm(0)
.addReg(SrcReg, getKillRegState(SrcIsKill))
.addImm(AArch64::sub_32);
SrcReg = ResultReg;
}
// Conservatively clear all kill flags from all uses, because we are
// replacing a sign-/zero-extend instruction at IR level with a nop at MI
// level. The result of the instruction at IR level might have been
// trivially dead, which is now not longer true.
unsigned UseReg = lookUpRegForValue(I);
if (UseReg)
MRI.clearKillFlags(UseReg);
updateValueMap(I, SrcReg);
return true;
}
}
unsigned ResultReg = emitIntExt(SrcVT, SrcReg, RetVT, IsZExt);
if (!ResultReg)
return false;
updateValueMap(I, ResultReg);
return true;
}
bool AArch64FastISel::selectRem(const Instruction *I, unsigned ISDOpcode) {
EVT DestEVT = TLI.getValueType(DL, I->getType(), true);
if (!DestEVT.isSimple())
return false;
MVT DestVT = DestEVT.getSimpleVT();
if (DestVT != MVT::i64 && DestVT != MVT::i32)
return false;
unsigned DivOpc;
bool Is64bit = (DestVT == MVT::i64);
switch (ISDOpcode) {
default:
return false;
case ISD::SREM:
DivOpc = Is64bit ? AArch64::SDIVXr : AArch64::SDIVWr;
break;
case ISD::UREM:
DivOpc = Is64bit ? AArch64::UDIVXr : AArch64::UDIVWr;
break;
}
unsigned MSubOpc = Is64bit ? AArch64::MSUBXrrr : AArch64::MSUBWrrr;
unsigned Src0Reg = getRegForValue(I->getOperand(0));
if (!Src0Reg)
return false;
bool Src0IsKill = hasTrivialKill(I->getOperand(0));
unsigned Src1Reg = getRegForValue(I->getOperand(1));
if (!Src1Reg)
return false;
bool Src1IsKill = hasTrivialKill(I->getOperand(1));
const TargetRegisterClass *RC =
(DestVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
unsigned QuotReg = fastEmitInst_rr(DivOpc, RC, Src0Reg, /*IsKill=*/false,
Src1Reg, /*IsKill=*/false);
assert(QuotReg && "Unexpected DIV instruction emission failure.");
// The remainder is computed as numerator - (quotient * denominator) using the
// MSUB instruction.
unsigned ResultReg = fastEmitInst_rrr(MSubOpc, RC, QuotReg, /*IsKill=*/true,
Src1Reg, Src1IsKill, Src0Reg,
Src0IsKill);
updateValueMap(I, ResultReg);
return true;
}
bool AArch64FastISel::selectMul(const Instruction *I) {
MVT VT;
if (!isTypeSupported(I->getType(), VT, /*IsVectorAllowed=*/true))
return false;
if (VT.isVector())
return selectBinaryOp(I, ISD::MUL);
const Value *Src0 = I->getOperand(0);
const Value *Src1 = I->getOperand(1);
if (const auto *C = dyn_cast<ConstantInt>(Src0))
if (C->getValue().isPowerOf2())
std::swap(Src0, Src1);
// Try to simplify to a shift instruction.
if (const auto *C = dyn_cast<ConstantInt>(Src1))
if (C->getValue().isPowerOf2()) {
uint64_t ShiftVal = C->getValue().logBase2();
MVT SrcVT = VT;
bool IsZExt = true;
if (const auto *ZExt = dyn_cast<ZExtInst>(Src0)) {
if (!isIntExtFree(ZExt)) {
MVT VT;
if (isValueAvailable(ZExt) && isTypeSupported(ZExt->getSrcTy(), VT)) {
SrcVT = VT;
IsZExt = true;
Src0 = ZExt->getOperand(0);
}
}
} else if (const auto *SExt = dyn_cast<SExtInst>(Src0)) {
if (!isIntExtFree(SExt)) {
MVT VT;
if (isValueAvailable(SExt) && isTypeSupported(SExt->getSrcTy(), VT)) {
SrcVT = VT;
IsZExt = false;
Src0 = SExt->getOperand(0);
}
}
}
unsigned Src0Reg = getRegForValue(Src0);
if (!Src0Reg)
return false;
bool Src0IsKill = hasTrivialKill(Src0);
unsigned ResultReg =
emitLSL_ri(VT, SrcVT, Src0Reg, Src0IsKill, ShiftVal, IsZExt);
if (ResultReg) {
updateValueMap(I, ResultReg);
return true;
}
}
unsigned Src0Reg = getRegForValue(I->getOperand(0));
if (!Src0Reg)
return false;
bool Src0IsKill = hasTrivialKill(I->getOperand(0));
unsigned Src1Reg = getRegForValue(I->getOperand(1));
if (!Src1Reg)
return false;
bool Src1IsKill = hasTrivialKill(I->getOperand(1));
unsigned ResultReg = emitMul_rr(VT, Src0Reg, Src0IsKill, Src1Reg, Src1IsKill);
if (!ResultReg)
return false;
updateValueMap(I, ResultReg);
return true;
}
bool AArch64FastISel::selectShift(const Instruction *I) {
MVT RetVT;
if (!isTypeSupported(I->getType(), RetVT, /*IsVectorAllowed=*/true))
return false;
if (RetVT.isVector())
return selectOperator(I, I->getOpcode());
if (const auto *C = dyn_cast<ConstantInt>(I->getOperand(1))) {
unsigned ResultReg = 0;
uint64_t ShiftVal = C->getZExtValue();
MVT SrcVT = RetVT;
bool IsZExt = I->getOpcode() != Instruction::AShr;
const Value *Op0 = I->getOperand(0);
if (const auto *ZExt = dyn_cast<ZExtInst>(Op0)) {
if (!isIntExtFree(ZExt)) {
MVT TmpVT;
if (isValueAvailable(ZExt) && isTypeSupported(ZExt->getSrcTy(), TmpVT)) {
SrcVT = TmpVT;
IsZExt = true;
Op0 = ZExt->getOperand(0);
}
}
} else if (const auto *SExt = dyn_cast<SExtInst>(Op0)) {
if (!isIntExtFree(SExt)) {
MVT TmpVT;
if (isValueAvailable(SExt) && isTypeSupported(SExt->getSrcTy(), TmpVT)) {
SrcVT = TmpVT;
IsZExt = false;
Op0 = SExt->getOperand(0);
}
}
}
unsigned Op0Reg = getRegForValue(Op0);
if (!Op0Reg)
return false;
bool Op0IsKill = hasTrivialKill(Op0);
switch (I->getOpcode()) {
default: llvm_unreachable("Unexpected instruction.");
case Instruction::Shl:
ResultReg = emitLSL_ri(RetVT, SrcVT, Op0Reg, Op0IsKill, ShiftVal, IsZExt);
break;
case Instruction::AShr:
ResultReg = emitASR_ri(RetVT, SrcVT, Op0Reg, Op0IsKill, ShiftVal, IsZExt);
break;
case Instruction::LShr:
ResultReg = emitLSR_ri(RetVT, SrcVT, Op0Reg, Op0IsKill, ShiftVal, IsZExt);
break;
}
if (!ResultReg)
return false;
updateValueMap(I, ResultReg);
return true;
}
unsigned Op0Reg = getRegForValue(I->getOperand(0));
if (!Op0Reg)
return false;
bool Op0IsKill = hasTrivialKill(I->getOperand(0));
unsigned Op1Reg = getRegForValue(I->getOperand(1));
if (!Op1Reg)
return false;
bool Op1IsKill = hasTrivialKill(I->getOperand(1));
unsigned ResultReg = 0;
switch (I->getOpcode()) {
default: llvm_unreachable("Unexpected instruction.");
case Instruction::Shl:
ResultReg = emitLSL_rr(RetVT, Op0Reg, Op0IsKill, Op1Reg, Op1IsKill);
break;
case Instruction::AShr:
ResultReg = emitASR_rr(RetVT, Op0Reg, Op0IsKill, Op1Reg, Op1IsKill);
break;
case Instruction::LShr:
ResultReg = emitLSR_rr(RetVT, Op0Reg, Op0IsKill, Op1Reg, Op1IsKill);
break;
}
if (!ResultReg)
return false;
updateValueMap(I, ResultReg);
return true;
}
bool AArch64FastISel::selectBitCast(const Instruction *I) {
MVT RetVT, SrcVT;
if (!isTypeLegal(I->getOperand(0)->getType(), SrcVT))
return false;
if (!isTypeLegal(I->getType(), RetVT))
return false;
unsigned Opc;
if (RetVT == MVT::f32 && SrcVT == MVT::i32)
Opc = AArch64::FMOVWSr;
else if (RetVT == MVT::f64 && SrcVT == MVT::i64)
Opc = AArch64::FMOVXDr;
else if (RetVT == MVT::i32 && SrcVT == MVT::f32)
Opc = AArch64::FMOVSWr;
else if (RetVT == MVT::i64 && SrcVT == MVT::f64)
Opc = AArch64::FMOVDXr;
else
return false;
const TargetRegisterClass *RC = nullptr;
switch (RetVT.SimpleTy) {
default: llvm_unreachable("Unexpected value type.");
case MVT::i32: RC = &AArch64::GPR32RegClass; break;
case MVT::i64: RC = &AArch64::GPR64RegClass; break;
case MVT::f32: RC = &AArch64::FPR32RegClass; break;
case MVT::f64: RC = &AArch64::FPR64RegClass; break;
}
unsigned Op0Reg = getRegForValue(I->getOperand(0));
if (!Op0Reg)
return false;
bool Op0IsKill = hasTrivialKill(I->getOperand(0));
unsigned ResultReg = fastEmitInst_r(Opc, RC, Op0Reg, Op0IsKill);
if (!ResultReg)
return false;
updateValueMap(I, ResultReg);
return true;
}
bool AArch64FastISel::selectFRem(const Instruction *I) {
MVT RetVT;
if (!isTypeLegal(I->getType(), RetVT))
return false;
RTLIB::Libcall LC;
switch (RetVT.SimpleTy) {
default:
return false;
case MVT::f32:
LC = RTLIB::REM_F32;
break;
case MVT::f64:
LC = RTLIB::REM_F64;
break;
}
ArgListTy Args;
Args.reserve(I->getNumOperands());
// Populate the argument list.
for (auto &Arg : I->operands()) {
ArgListEntry Entry;
Entry.Val = Arg;
Entry.Ty = Arg->getType();
Args.push_back(Entry);
}
CallLoweringInfo CLI;
MCContext &Ctx = MF->getContext();
CLI.setCallee(DL, Ctx, TLI.getLibcallCallingConv(LC), I->getType(),
TLI.getLibcallName(LC), std::move(Args));
if (!lowerCallTo(CLI))
return false;
updateValueMap(I, CLI.ResultReg);
return true;
}
bool AArch64FastISel::selectSDiv(const Instruction *I) {
MVT VT;
if (!isTypeLegal(I->getType(), VT))
return false;
if (!isa<ConstantInt>(I->getOperand(1)))
return selectBinaryOp(I, ISD::SDIV);
const APInt &C = cast<ConstantInt>(I->getOperand(1))->getValue();
if ((VT != MVT::i32 && VT != MVT::i64) || !C ||
!(C.isPowerOf2() || (-C).isPowerOf2()))
return selectBinaryOp(I, ISD::SDIV);
unsigned Lg2 = C.countTrailingZeros();
unsigned Src0Reg = getRegForValue(I->getOperand(0));
if (!Src0Reg)
return false;
bool Src0IsKill = hasTrivialKill(I->getOperand(0));
if (cast<BinaryOperator>(I)->isExact()) {
unsigned ResultReg = emitASR_ri(VT, VT, Src0Reg, Src0IsKill, Lg2);
if (!ResultReg)
return false;
updateValueMap(I, ResultReg);
return true;
}
int64_t Pow2MinusOne = (1ULL << Lg2) - 1;
unsigned AddReg = emitAdd_ri_(VT, Src0Reg, /*IsKill=*/false, Pow2MinusOne);
if (!AddReg)
return false;
// (Src0 < 0) ? Pow2 - 1 : 0;
if (!emitICmp_ri(VT, Src0Reg, /*IsKill=*/false, 0))
return false;
unsigned SelectOpc;
const TargetRegisterClass *RC;
if (VT == MVT::i64) {
SelectOpc = AArch64::CSELXr;
RC = &AArch64::GPR64RegClass;
} else {
SelectOpc = AArch64::CSELWr;
RC = &AArch64::GPR32RegClass;
}
unsigned SelectReg =
fastEmitInst_rri(SelectOpc, RC, AddReg, /*IsKill=*/true, Src0Reg,
Src0IsKill, AArch64CC::LT);
if (!SelectReg)
return false;
// Divide by Pow2 --> ashr. If we're dividing by a negative value we must also
// negate the result.
unsigned ZeroReg = (VT == MVT::i64) ? AArch64::XZR : AArch64::WZR;
unsigned ResultReg;
if (C.isNegative())
ResultReg = emitAddSub_rs(/*UseAdd=*/false, VT, ZeroReg, /*IsKill=*/true,
SelectReg, /*IsKill=*/true, AArch64_AM::ASR, Lg2);
else
ResultReg = emitASR_ri(VT, VT, SelectReg, /*IsKill=*/true, Lg2);
if (!ResultReg)
return false;
updateValueMap(I, ResultReg);
return true;
}
/// This is mostly a copy of the existing FastISel getRegForGEPIndex code. We
/// have to duplicate it for AArch64, because otherwise we would fail during the
/// sign-extend emission.
std::pair<unsigned, bool> AArch64FastISel::getRegForGEPIndex(const Value *Idx) {
unsigned IdxN = getRegForValue(Idx);
if (IdxN == 0)
// Unhandled operand. Halt "fast" selection and bail.
return std::pair<unsigned, bool>(0, false);
bool IdxNIsKill = hasTrivialKill(Idx);
// If the index is smaller or larger than intptr_t, truncate or extend it.
MVT PtrVT = TLI.getPointerTy(DL);
EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
if (IdxVT.bitsLT(PtrVT)) {
IdxN = emitIntExt(IdxVT.getSimpleVT(), IdxN, PtrVT, /*isZExt=*/false);
IdxNIsKill = true;
} else if (IdxVT.bitsGT(PtrVT))
llvm_unreachable("AArch64 FastISel doesn't support types larger than i64");
return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
}
/// This is mostly a copy of the existing FastISel GEP code, but we have to
/// duplicate it for AArch64, because otherwise we would bail out even for
/// simple cases. This is because the standard fastEmit functions don't cover
/// MUL at all and ADD is lowered very inefficientily.
bool AArch64FastISel::selectGetElementPtr(const Instruction *I) {
if (Subtarget->isTargetILP32())
return false;
unsigned N = getRegForValue(I->getOperand(0));
if (!N)
return false;
bool NIsKill = hasTrivialKill(I->getOperand(0));
// Keep a running tab of the total offset to coalesce multiple N = N + Offset
// into a single N = N + TotalOffset.
uint64_t TotalOffs = 0;
MVT VT = TLI.getPointerTy(DL);
for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I);
GTI != E; ++GTI) {
const Value *Idx = GTI.getOperand();
if (auto *StTy = GTI.getStructTypeOrNull()) {
unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
// N = N + Offset
if (Field)
TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field);
} else {
Type *Ty = GTI.getIndexedType();
// If this is a constant subscript, handle it quickly.
if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
if (CI->isZero())
continue;
// N = N + Offset
TotalOffs +=
DL.getTypeAllocSize(Ty) * cast<ConstantInt>(CI)->getSExtValue();
continue;
}
if (TotalOffs) {
N = emitAdd_ri_(VT, N, NIsKill, TotalOffs);
if (!N)
return false;
NIsKill = true;
TotalOffs = 0;
}
// N = N + Idx * ElementSize;
uint64_t ElementSize = DL.getTypeAllocSize(Ty);
std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
unsigned IdxN = Pair.first;
bool IdxNIsKill = Pair.second;
if (!IdxN)
return false;
if (ElementSize != 1) {
unsigned C = fastEmit_i(VT, VT, ISD::Constant, ElementSize);
if (!C)
return false;
IdxN = emitMul_rr(VT, IdxN, IdxNIsKill, C, true);
if (!IdxN)
return false;
IdxNIsKill = true;
}
N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
if (!N)
return false;
}
}
if (TotalOffs) {
N = emitAdd_ri_(VT, N, NIsKill, TotalOffs);
if (!N)
return false;
}
updateValueMap(I, N);
return true;
}
bool AArch64FastISel::selectAtomicCmpXchg(const AtomicCmpXchgInst *I) {
assert(TM.getOptLevel() == CodeGenOpt::None &&
"cmpxchg survived AtomicExpand at optlevel > -O0");
auto *RetPairTy = cast<StructType>(I->getType());
Type *RetTy = RetPairTy->getTypeAtIndex(0U);
assert(RetPairTy->getTypeAtIndex(1U)->isIntegerTy(1) &&
"cmpxchg has a non-i1 status result");
MVT VT;
if (!isTypeLegal(RetTy, VT))
return false;
const TargetRegisterClass *ResRC;
unsigned Opc, CmpOpc;
// This only supports i32/i64, because i8/i16 aren't legal, and the generic
// extractvalue selection doesn't support that.
if (VT == MVT::i32) {
Opc = AArch64::CMP_SWAP_32;
CmpOpc = AArch64::SUBSWrs;
ResRC = &AArch64::GPR32RegClass;
} else if (VT == MVT::i64) {
Opc = AArch64::CMP_SWAP_64;
CmpOpc = AArch64::SUBSXrs;
ResRC = &AArch64::GPR64RegClass;
} else {
return false;
}
const MCInstrDesc &II = TII.get(Opc);
const unsigned AddrReg = constrainOperandRegClass(
II, getRegForValue(I->getPointerOperand()), II.getNumDefs());
const unsigned DesiredReg = constrainOperandRegClass(
II, getRegForValue(I->getCompareOperand()), II.getNumDefs() + 1);
const unsigned NewReg = constrainOperandRegClass(
II, getRegForValue(I->getNewValOperand()), II.getNumDefs() + 2);
const unsigned ResultReg1 = createResultReg(ResRC);
const unsigned ResultReg2 = createResultReg(&AArch64::GPR32RegClass);
const unsigned ScratchReg = createResultReg(&AArch64::GPR32RegClass);
// FIXME: MachineMemOperand doesn't support cmpxchg yet.
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
.addDef(ResultReg1)
.addDef(ScratchReg)
.addUse(AddrReg)
.addUse(DesiredReg)
.addUse(NewReg);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc))
.addDef(VT == MVT::i32 ? AArch64::WZR : AArch64::XZR)
.addUse(ResultReg1)
.addUse(DesiredReg)
.addImm(0);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::CSINCWr))
.addDef(ResultReg2)
.addUse(AArch64::WZR)
.addUse(AArch64::WZR)
.addImm(AArch64CC::NE);
assert((ResultReg1 + 1) == ResultReg2 && "Nonconsecutive result registers.");
updateValueMap(I, ResultReg1, 2);
return true;
}
bool AArch64FastISel::fastSelectInstruction(const Instruction *I) {
switch (I->getOpcode()) {
default:
break;
case Instruction::Add:
case Instruction::Sub:
return selectAddSub(I);
case Instruction::Mul:
return selectMul(I);
case Instruction::SDiv:
return selectSDiv(I);
case Instruction::SRem:
if (!selectBinaryOp(I, ISD::SREM))
return selectRem(I, ISD::SREM);
return true;
case Instruction::URem:
if (!selectBinaryOp(I, ISD::UREM))
return selectRem(I, ISD::UREM);
return true;
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
return selectShift(I);
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
return selectLogicalOp(I);
case Instruction::Br:
return selectBranch(I);
case Instruction::IndirectBr:
return selectIndirectBr(I);
case Instruction::BitCast:
if (!FastISel::selectBitCast(I))
return selectBitCast(I);
return true;
case Instruction::FPToSI:
if (!selectCast(I, ISD::FP_TO_SINT))
return selectFPToInt(I, /*Signed=*/true);
return true;
case Instruction::FPToUI:
return selectFPToInt(I, /*Signed=*/false);
case Instruction::ZExt:
case Instruction::SExt:
return selectIntExt(I);
case Instruction::Trunc:
if (!selectCast(I, ISD::TRUNCATE))
return selectTrunc(I);
return true;
case Instruction::FPExt:
return selectFPExt(I);
case Instruction::FPTrunc:
return selectFPTrunc(I);
case Instruction::SIToFP:
if (!selectCast(I, ISD::SINT_TO_FP))
return selectIntToFP(I, /*Signed=*/true);
return true;
case Instruction::UIToFP:
return selectIntToFP(I, /*Signed=*/false);
case Instruction::Load:
return selectLoad(I);
case Instruction::Store:
return selectStore(I);
case Instruction::FCmp:
case Instruction::ICmp:
return selectCmp(I);
case Instruction::Select:
return selectSelect(I);
case Instruction::Ret:
return selectRet(I);
case Instruction::FRem:
return selectFRem(I);
case Instruction::GetElementPtr:
return selectGetElementPtr(I);
case Instruction::AtomicCmpXchg:
return selectAtomicCmpXchg(cast<AtomicCmpXchgInst>(I));
}
// fall-back to target-independent instruction selection.
return selectOperator(I, I->getOpcode());
}
namespace llvm {
FastISel *AArch64::createFastISel(FunctionLoweringInfo &FuncInfo,
const TargetLibraryInfo *LibInfo) {
return new AArch64FastISel(FuncInfo, LibInfo);
}
} // end namespace llvm