llvm-project/llvm/lib/Target/AArch64/AArch64AdvSIMDScalarPass.cpp

413 lines
16 KiB
C++

//===-- AArch64AdvSIMDScalar.cpp - Replace dead defs w/ zero reg --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// When profitable, replace GPR targeting i64 instructions with their
// AdvSIMD scalar equivalents. Generally speaking, "profitable" is defined
// as minimizing the number of cross-class register copies.
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// TODO: Graph based predicate heuristics.
// Walking the instruction list linearly will get many, perhaps most, of
// the cases, but to do a truly thorough job of this, we need a more
// wholistic approach.
//
// This optimization is very similar in spirit to the register allocator's
// spill placement, only here we're determining where to place cross-class
// register copies rather than spills. As such, a similar approach is
// called for.
//
// We want to build up a set of graphs of all instructions which are candidates
// for transformation along with instructions which generate their inputs and
// consume their outputs. For each edge in the graph, we assign a weight
// based on whether there is a copy required there (weight zero if not) and
// the block frequency of the block containing the defining or using
// instruction, whichever is less. Our optimization is then a graph problem
// to minimize the total weight of all the graphs, then transform instructions
// and add or remove copy instructions as called for to implement the
// solution.
//===----------------------------------------------------------------------===//
#include "AArch64.h"
#include "AArch64InstrInfo.h"
#include "AArch64RegisterInfo.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "aarch64-simd-scalar"
// Allow forcing all i64 operations with equivalent SIMD instructions to use
// them. For stress-testing the transformation function.
static cl::opt<bool>
TransformAll("aarch64-simd-scalar-force-all",
cl::desc("Force use of AdvSIMD scalar instructions everywhere"),
cl::init(false), cl::Hidden);
STATISTIC(NumScalarInsnsUsed, "Number of scalar instructions used");
STATISTIC(NumCopiesDeleted, "Number of cross-class copies deleted");
STATISTIC(NumCopiesInserted, "Number of cross-class copies inserted");
#define AARCH64_ADVSIMD_NAME "AdvSIMD Scalar Operation Optimization"
namespace {
class AArch64AdvSIMDScalar : public MachineFunctionPass {
MachineRegisterInfo *MRI;
const TargetInstrInfo *TII;
private:
// isProfitableToTransform - Predicate function to determine whether an
// instruction should be transformed to its equivalent AdvSIMD scalar
// instruction. "add Xd, Xn, Xm" ==> "add Dd, Da, Db", for example.
bool isProfitableToTransform(const MachineInstr &MI) const;
// transformInstruction - Perform the transformation of an instruction
// to its equivalant AdvSIMD scalar instruction. Update inputs and outputs
// to be the correct register class, minimizing cross-class copies.
void transformInstruction(MachineInstr &MI);
// processMachineBasicBlock - Main optimzation loop.
bool processMachineBasicBlock(MachineBasicBlock *MBB);
public:
static char ID; // Pass identification, replacement for typeid.
explicit AArch64AdvSIMDScalar() : MachineFunctionPass(ID) {
initializeAArch64AdvSIMDScalarPass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &F) override;
StringRef getPassName() const override { return AARCH64_ADVSIMD_NAME; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
};
char AArch64AdvSIMDScalar::ID = 0;
} // end anonymous namespace
INITIALIZE_PASS(AArch64AdvSIMDScalar, "aarch64-simd-scalar",
AARCH64_ADVSIMD_NAME, false, false)
static bool isGPR64(unsigned Reg, unsigned SubReg,
const MachineRegisterInfo *MRI) {
if (SubReg)
return false;
if (Register::isVirtualRegister(Reg))
return MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::GPR64RegClass);
return AArch64::GPR64RegClass.contains(Reg);
}
static bool isFPR64(unsigned Reg, unsigned SubReg,
const MachineRegisterInfo *MRI) {
if (Register::isVirtualRegister(Reg))
return (MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::FPR64RegClass) &&
SubReg == 0) ||
(MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::FPR128RegClass) &&
SubReg == AArch64::dsub);
// Physical register references just check the register class directly.
return (AArch64::FPR64RegClass.contains(Reg) && SubReg == 0) ||
(AArch64::FPR128RegClass.contains(Reg) && SubReg == AArch64::dsub);
}
// getSrcFromCopy - Get the original source register for a GPR64 <--> FPR64
// copy instruction. Return nullptr if the instruction is not a copy.
static MachineOperand *getSrcFromCopy(MachineInstr *MI,
const MachineRegisterInfo *MRI,
unsigned &SubReg) {
SubReg = 0;
// The "FMOV Xd, Dn" instruction is the typical form.
if (MI->getOpcode() == AArch64::FMOVDXr ||
MI->getOpcode() == AArch64::FMOVXDr)
return &MI->getOperand(1);
// A lane zero extract "UMOV.d Xd, Vn[0]" is equivalent. We shouldn't see
// these at this stage, but it's easy to check for.
if (MI->getOpcode() == AArch64::UMOVvi64 && MI->getOperand(2).getImm() == 0) {
SubReg = AArch64::dsub;
return &MI->getOperand(1);
}
// Or just a plain COPY instruction. This can be directly to/from FPR64,
// or it can be a dsub subreg reference to an FPR128.
if (MI->getOpcode() == AArch64::COPY) {
if (isFPR64(MI->getOperand(0).getReg(), MI->getOperand(0).getSubReg(),
MRI) &&
isGPR64(MI->getOperand(1).getReg(), MI->getOperand(1).getSubReg(), MRI))
return &MI->getOperand(1);
if (isGPR64(MI->getOperand(0).getReg(), MI->getOperand(0).getSubReg(),
MRI) &&
isFPR64(MI->getOperand(1).getReg(), MI->getOperand(1).getSubReg(),
MRI)) {
SubReg = MI->getOperand(1).getSubReg();
return &MI->getOperand(1);
}
}
// Otherwise, this is some other kind of instruction.
return nullptr;
}
// getTransformOpcode - For any opcode for which there is an AdvSIMD equivalent
// that we're considering transforming to, return that AdvSIMD opcode. For all
// others, return the original opcode.
static unsigned getTransformOpcode(unsigned Opc) {
switch (Opc) {
default:
break;
// FIXME: Lots more possibilities.
case AArch64::ADDXrr:
return AArch64::ADDv1i64;
case AArch64::SUBXrr:
return AArch64::SUBv1i64;
case AArch64::ANDXrr:
return AArch64::ANDv8i8;
case AArch64::EORXrr:
return AArch64::EORv8i8;
case AArch64::ORRXrr:
return AArch64::ORRv8i8;
}
// No AdvSIMD equivalent, so just return the original opcode.
return Opc;
}
static bool isTransformable(const MachineInstr &MI) {
unsigned Opc = MI.getOpcode();
return Opc != getTransformOpcode(Opc);
}
// isProfitableToTransform - Predicate function to determine whether an
// instruction should be transformed to its equivalent AdvSIMD scalar
// instruction. "add Xd, Xn, Xm" ==> "add Dd, Da, Db", for example.
bool AArch64AdvSIMDScalar::isProfitableToTransform(
const MachineInstr &MI) const {
// If this instruction isn't eligible to be transformed (no SIMD equivalent),
// early exit since that's the common case.
if (!isTransformable(MI))
return false;
// Count the number of copies we'll need to add and approximate the number
// of copies that a transform will enable us to remove.
unsigned NumNewCopies = 3;
unsigned NumRemovableCopies = 0;
Register OrigSrc0 = MI.getOperand(1).getReg();
Register OrigSrc1 = MI.getOperand(2).getReg();
unsigned SubReg0;
unsigned SubReg1;
if (!MRI->def_empty(OrigSrc0)) {
MachineRegisterInfo::def_instr_iterator Def =
MRI->def_instr_begin(OrigSrc0);
assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
MachineOperand *MOSrc0 = getSrcFromCopy(&*Def, MRI, SubReg0);
// If the source was from a copy, we don't need to insert a new copy.
if (MOSrc0)
--NumNewCopies;
// If there are no other users of the original source, we can delete
// that instruction.
if (MOSrc0 && MRI->hasOneNonDBGUse(OrigSrc0))
++NumRemovableCopies;
}
if (!MRI->def_empty(OrigSrc1)) {
MachineRegisterInfo::def_instr_iterator Def =
MRI->def_instr_begin(OrigSrc1);
assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
MachineOperand *MOSrc1 = getSrcFromCopy(&*Def, MRI, SubReg1);
if (MOSrc1)
--NumNewCopies;
// If there are no other users of the original source, we can delete
// that instruction.
if (MOSrc1 && MRI->hasOneNonDBGUse(OrigSrc1))
++NumRemovableCopies;
}
// If any of the uses of the original instructions is a cross class copy,
// that's a copy that will be removable if we transform. Likewise, if
// any of the uses is a transformable instruction, it's likely the tranforms
// will chain, enabling us to save a copy there, too. This is an aggressive
// heuristic that approximates the graph based cost analysis described above.
Register Dst = MI.getOperand(0).getReg();
bool AllUsesAreCopies = true;
for (MachineRegisterInfo::use_instr_nodbg_iterator
Use = MRI->use_instr_nodbg_begin(Dst),
E = MRI->use_instr_nodbg_end();
Use != E; ++Use) {
unsigned SubReg;
if (getSrcFromCopy(&*Use, MRI, SubReg) || isTransformable(*Use))
++NumRemovableCopies;
// If the use is an INSERT_SUBREG, that's still something that can
// directly use the FPR64, so we don't invalidate AllUsesAreCopies. It's
// preferable to have it use the FPR64 in most cases, as if the source
// vector is an IMPLICIT_DEF, the INSERT_SUBREG just goes away entirely.
// Ditto for a lane insert.
else if (Use->getOpcode() == AArch64::INSERT_SUBREG ||
Use->getOpcode() == AArch64::INSvi64gpr)
;
else
AllUsesAreCopies = false;
}
// If all of the uses of the original destination register are copies to
// FPR64, then we won't end up having a new copy back to GPR64 either.
if (AllUsesAreCopies)
--NumNewCopies;
// If a transform will not increase the number of cross-class copies required,
// return true.
if (NumNewCopies <= NumRemovableCopies)
return true;
// Finally, even if we otherwise wouldn't transform, check if we're forcing
// transformation of everything.
return TransformAll;
}
static MachineInstr *insertCopy(const TargetInstrInfo *TII, MachineInstr &MI,
unsigned Dst, unsigned Src, bool IsKill) {
MachineInstrBuilder MIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
TII->get(AArch64::COPY), Dst)
.addReg(Src, getKillRegState(IsKill));
LLVM_DEBUG(dbgs() << " adding copy: " << *MIB);
++NumCopiesInserted;
return MIB;
}
// transformInstruction - Perform the transformation of an instruction
// to its equivalant AdvSIMD scalar instruction. Update inputs and outputs
// to be the correct register class, minimizing cross-class copies.
void AArch64AdvSIMDScalar::transformInstruction(MachineInstr &MI) {
LLVM_DEBUG(dbgs() << "Scalar transform: " << MI);
MachineBasicBlock *MBB = MI.getParent();
unsigned OldOpc = MI.getOpcode();
unsigned NewOpc = getTransformOpcode(OldOpc);
assert(OldOpc != NewOpc && "transform an instruction to itself?!");
// Check if we need a copy for the source registers.
Register OrigSrc0 = MI.getOperand(1).getReg();
Register OrigSrc1 = MI.getOperand(2).getReg();
unsigned Src0 = 0, SubReg0;
unsigned Src1 = 0, SubReg1;
bool KillSrc0 = false, KillSrc1 = false;
if (!MRI->def_empty(OrigSrc0)) {
MachineRegisterInfo::def_instr_iterator Def =
MRI->def_instr_begin(OrigSrc0);
assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
MachineOperand *MOSrc0 = getSrcFromCopy(&*Def, MRI, SubReg0);
// If there are no other users of the original source, we can delete
// that instruction.
if (MOSrc0) {
Src0 = MOSrc0->getReg();
KillSrc0 = MOSrc0->isKill();
// Src0 is going to be reused, thus, it cannot be killed anymore.
MOSrc0->setIsKill(false);
if (MRI->hasOneNonDBGUse(OrigSrc0)) {
assert(MOSrc0 && "Can't delete copy w/o a valid original source!");
Def->eraseFromParent();
++NumCopiesDeleted;
}
}
}
if (!MRI->def_empty(OrigSrc1)) {
MachineRegisterInfo::def_instr_iterator Def =
MRI->def_instr_begin(OrigSrc1);
assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
MachineOperand *MOSrc1 = getSrcFromCopy(&*Def, MRI, SubReg1);
// If there are no other users of the original source, we can delete
// that instruction.
if (MOSrc1) {
Src1 = MOSrc1->getReg();
KillSrc1 = MOSrc1->isKill();
// Src0 is going to be reused, thus, it cannot be killed anymore.
MOSrc1->setIsKill(false);
if (MRI->hasOneNonDBGUse(OrigSrc1)) {
assert(MOSrc1 && "Can't delete copy w/o a valid original source!");
Def->eraseFromParent();
++NumCopiesDeleted;
}
}
}
// If we weren't able to reference the original source directly, create a
// copy.
if (!Src0) {
SubReg0 = 0;
Src0 = MRI->createVirtualRegister(&AArch64::FPR64RegClass);
insertCopy(TII, MI, Src0, OrigSrc0, KillSrc0);
KillSrc0 = true;
}
if (!Src1) {
SubReg1 = 0;
Src1 = MRI->createVirtualRegister(&AArch64::FPR64RegClass);
insertCopy(TII, MI, Src1, OrigSrc1, KillSrc1);
KillSrc1 = true;
}
// Create a vreg for the destination.
// FIXME: No need to do this if the ultimate user expects an FPR64.
// Check for that and avoid the copy if possible.
Register Dst = MRI->createVirtualRegister(&AArch64::FPR64RegClass);
// For now, all of the new instructions have the same simple three-register
// form, so no need to special case based on what instruction we're
// building.
BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(NewOpc), Dst)
.addReg(Src0, getKillRegState(KillSrc0), SubReg0)
.addReg(Src1, getKillRegState(KillSrc1), SubReg1);
// Now copy the result back out to a GPR.
// FIXME: Try to avoid this if all uses could actually just use the FPR64
// directly.
insertCopy(TII, MI, MI.getOperand(0).getReg(), Dst, true);
// Erase the old instruction.
MI.eraseFromParent();
++NumScalarInsnsUsed;
}
// processMachineBasicBlock - Main optimzation loop.
bool AArch64AdvSIMDScalar::processMachineBasicBlock(MachineBasicBlock *MBB) {
bool Changed = false;
for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;) {
MachineInstr &MI = *I++;
if (isProfitableToTransform(MI)) {
transformInstruction(MI);
Changed = true;
}
}
return Changed;
}
// runOnMachineFunction - Pass entry point from PassManager.
bool AArch64AdvSIMDScalar::runOnMachineFunction(MachineFunction &mf) {
bool Changed = false;
LLVM_DEBUG(dbgs() << "***** AArch64AdvSIMDScalar *****\n");
if (skipFunction(mf.getFunction()))
return false;
MRI = &mf.getRegInfo();
TII = mf.getSubtarget().getInstrInfo();
// Just check things on a one-block-at-a-time basis.
for (MachineFunction::iterator I = mf.begin(), E = mf.end(); I != E; ++I)
if (processMachineBasicBlock(&*I))
Changed = true;
return Changed;
}
// createAArch64AdvSIMDScalar - Factory function used by AArch64TargetMachine
// to add the pass to the PassManager.
FunctionPass *llvm::createAArch64AdvSIMDScalar() {
return new AArch64AdvSIMDScalar();
}