llvm-project/llvm/lib/Target/ARM/ARMParallelDSP.cpp

620 lines
22 KiB
C++

//===- ParallelDSP.cpp - Parallel DSP Pass --------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Armv6 introduced instructions to perform 32-bit SIMD operations. The
/// purpose of this pass is do some IR pattern matching to create ACLE
/// DSP intrinsics, which map on these 32-bit SIMD operations.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/LoopAccessAnalysis.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/NoFolder.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Pass.h"
#include "llvm/PassRegistry.h"
#include "llvm/PassSupport.h"
#include "llvm/Support/Debug.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "ARM.h"
#include "ARMSubtarget.h"
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "parallel-dsp"
namespace {
struct ParallelMAC;
struct Reduction;
using ParallelMACList = SmallVector<ParallelMAC, 8>;
using ReductionList = SmallVector<Reduction, 8>;
using ValueList = SmallVector<Value*, 8>;
using MemInstList = SmallVector<Instruction*, 8>;
using PMACPair = std::pair<ParallelMAC*,ParallelMAC*>;
using PMACPairList = SmallVector<PMACPair, 8>;
using Instructions = SmallVector<Instruction*,16>;
using MemLocList = SmallVector<MemoryLocation, 4>;
// 'ParallelMAC' and 'Reduction' are just some bookkeeping data structures.
// 'Reduction' contains the phi-node and accumulator statement from where we
// start pattern matching, and 'ParallelMAC' the multiplication
// instructions that are candidates for parallel execution.
struct ParallelMAC {
Instruction *Mul;
ValueList VL; // List of all (narrow) operands of this Mul
MemInstList VecLd; // List of all load instructions of this Mul
MemLocList MemLocs; // All memory locations read by this Mul
ParallelMAC(Instruction *I, ValueList &V) : Mul(I), VL(V) {};
};
struct Reduction {
PHINode *Phi; // The Phi-node from where we start
// pattern matching.
Instruction *AccIntAdd; // The accumulating integer add statement,
// i.e, the reduction statement.
Reduction (PHINode *P, Instruction *Acc) : Phi(P), AccIntAdd(Acc) { };
};
class ARMParallelDSP : public LoopPass {
ScalarEvolution *SE;
AliasAnalysis *AA;
TargetLibraryInfo *TLI;
DominatorTree *DT;
LoopInfo *LI;
Loop *L;
const DataLayout *DL;
Module *M;
bool InsertParallelMACs(Reduction &Reduction, PMACPairList &PMACPairs);
bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem);
PMACPairList CreateParallelMACPairs(ParallelMACList &Candidates);
Instruction *CreateSMLADCall(LoadInst *VecLd0, LoadInst *VecLd1,
Instruction *Acc, Instruction *InsertAfter);
/// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate
/// Dual performs two signed 16x16-bit multiplications. It adds the
/// products to a 32-bit accumulate operand. Optionally, the instruction can
/// exchange the halfwords of the second operand before performing the
/// arithmetic.
bool MatchSMLAD(Function &F);
public:
static char ID;
ARMParallelDSP() : LoopPass(ID) { }
void getAnalysisUsage(AnalysisUsage &AU) const override {
LoopPass::getAnalysisUsage(AU);
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<ScalarEvolutionWrapperPass>();
AU.addRequired<AAResultsWrapperPass>();
AU.addRequired<TargetLibraryInfoWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<TargetPassConfig>();
AU.addPreserved<LoopInfoWrapperPass>();
AU.setPreservesCFG();
}
bool runOnLoop(Loop *TheLoop, LPPassManager &) override {
L = TheLoop;
SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
auto &TPC = getAnalysis<TargetPassConfig>();
BasicBlock *Header = TheLoop->getHeader();
if (!Header)
return false;
// TODO: We assume the loop header and latch to be the same block.
// This is not a fundamental restriction, but lifting this would just
// require more work to do the transformation and then patch up the CFG.
if (Header != TheLoop->getLoopLatch()) {
LLVM_DEBUG(dbgs() << "The loop header is not the loop latch: not "
"running pass ARMParallelDSP\n");
return false;
}
Function &F = *Header->getParent();
M = F.getParent();
DL = &M->getDataLayout();
auto &TM = TPC.getTM<TargetMachine>();
auto *ST = &TM.getSubtarget<ARMSubtarget>(F);
if (!ST->allowsUnalignedMem()) {
LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not "
"running pass ARMParallelDSP\n");
return false;
}
if (!ST->hasDSP()) {
LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass "
"ARMParallelDSP\n");
return false;
}
LoopAccessInfo LAI(L, SE, TLI, AA, DT, LI);
bool Changes = false;
LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n\n");
Changes = MatchSMLAD(F);
return Changes;
}
};
}
// MaxBitwidth: the maximum supported bitwidth of the elements in the DSP
// instructions, which is set to 16. So here we should collect all i8 and i16
// narrow operations.
// TODO: we currently only collect i16, and will support i8 later, so that's
// why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth.
template<unsigned MaxBitWidth>
static bool IsNarrowSequence(Value *V, ValueList &VL) {
LLVM_DEBUG(dbgs() << "Is narrow sequence? "; V->dump());
ConstantInt *CInt;
if (match(V, m_ConstantInt(CInt))) {
// TODO: if a constant is used, it needs to fit within the bit width.
return false;
}
auto *I = dyn_cast<Instruction>(V);
if (!I)
return false;
Value *Val, *LHS, *RHS;
if (match(V, m_Trunc(m_Value(Val)))) {
if (cast<TruncInst>(I)->getDestTy()->getIntegerBitWidth() == MaxBitWidth)
return IsNarrowSequence<MaxBitWidth>(Val, VL);
} else if (match(V, m_Add(m_Value(LHS), m_Value(RHS)))) {
// TODO: we need to implement sadd16/sadd8 for this, which enables to
// also do the rewrite for smlad8.ll, but it is unsupported for now.
LLVM_DEBUG(dbgs() << "No, unsupported Op:\t"; I->dump());
return false;
} else if (match(V, m_ZExtOrSExt(m_Value(Val)))) {
if (cast<CastInst>(I)->getSrcTy()->getIntegerBitWidth() != MaxBitWidth) {
LLVM_DEBUG(dbgs() << "No, wrong SrcTy size: " <<
cast<CastInst>(I)->getSrcTy()->getIntegerBitWidth() << "\n");
return false;
}
if (match(Val, m_Load(m_Value()))) {
LLVM_DEBUG(dbgs() << "Yes, found narrow Load:\t"; Val->dump());
VL.push_back(Val);
VL.push_back(I);
return true;
}
}
LLVM_DEBUG(dbgs() << "No, unsupported Op:\t"; I->dump());
return false;
}
// Element-by-element comparison of Value lists returning true if they are
// instructions with the same opcode or constants with the same value.
static bool AreSymmetrical(const ValueList &VL0,
const ValueList &VL1) {
if (VL0.size() != VL1.size()) {
LLVM_DEBUG(dbgs() << "Muls are mismatching operand list lengths: "
<< VL0.size() << " != " << VL1.size() << "\n");
return false;
}
const unsigned Pairs = VL0.size();
LLVM_DEBUG(dbgs() << "Number of operand pairs: " << Pairs << "\n");
for (unsigned i = 0; i < Pairs; ++i) {
const Value *V0 = VL0[i];
const Value *V1 = VL1[i];
const auto *Inst0 = dyn_cast<Instruction>(V0);
const auto *Inst1 = dyn_cast<Instruction>(V1);
LLVM_DEBUG(dbgs() << "Pair " << i << ":\n";
dbgs() << "mul1: "; V0->dump();
dbgs() << "mul2: "; V1->dump());
if (!Inst0 || !Inst1)
return false;
if (Inst0->isSameOperationAs(Inst1)) {
LLVM_DEBUG(dbgs() << "OK: same operation found!\n");
continue;
}
const APInt *C0, *C1;
if (!(match(V0, m_APInt(C0)) && match(V1, m_APInt(C1)) && C0 == C1))
return false;
}
LLVM_DEBUG(dbgs() << "OK: found symmetrical operand lists.\n");
return true;
}
template<typename MemInst>
static bool AreSequentialAccesses(MemInst *MemOp0, MemInst *MemOp1,
MemInstList &VecMem, const DataLayout &DL,
ScalarEvolution &SE) {
if (!MemOp0->isSimple() || !MemOp1->isSimple()) {
LLVM_DEBUG(dbgs() << "No, not touching volatile access\n");
return false;
}
if (isConsecutiveAccess(MemOp0, MemOp1, DL, SE)) {
VecMem.push_back(MemOp0);
VecMem.push_back(MemOp1);
LLVM_DEBUG(dbgs() << "OK: accesses are consecutive.\n");
return true;
}
LLVM_DEBUG(dbgs() << "No, accesses aren't consecutive.\n");
return false;
}
bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1,
MemInstList &VecMem) {
if (!Ld0 || !Ld1)
return false;
LLVM_DEBUG(dbgs() << "Are consecutive loads:\n";
dbgs() << "Ld0:"; Ld0->dump();
dbgs() << "Ld1:"; Ld1->dump();
);
if (!Ld0->hasOneUse() || !Ld1->hasOneUse()) {
LLVM_DEBUG(dbgs() << "No, load has more than one use.\n");
return false;
}
return AreSequentialAccesses<LoadInst>(Ld0, Ld1, VecMem, *DL, *SE);
}
PMACPairList
ARMParallelDSP::CreateParallelMACPairs(ParallelMACList &Candidates) {
const unsigned Elems = Candidates.size();
PMACPairList PMACPairs;
if (Elems < 2)
return PMACPairs;
// TODO: for now we simply try to match consecutive pairs i and i+1.
// We can compare all elements, but then we need to compare and evaluate
// different solutions.
for(unsigned i=0; i<Elems-1; i+=2) {
ParallelMAC &PMul0 = Candidates[i];
ParallelMAC &PMul1 = Candidates[i+1];
const Instruction *Mul0 = PMul0.Mul;
const Instruction *Mul1 = PMul1.Mul;
if (Mul0 == Mul1)
continue;
LLVM_DEBUG(dbgs() << "\nCheck parallel muls:\n";
dbgs() << "- "; Mul0->dump();
dbgs() << "- "; Mul1->dump());
const ValueList &VL0 = PMul0.VL;
const ValueList &VL1 = PMul1.VL;
if (!AreSymmetrical(VL0, VL1))
continue;
LLVM_DEBUG(dbgs() << "OK: mul operands list match:\n");
// The first elements of each vector should be loads with sexts. If we find
// that its two pairs of consecutive loads, then these can be transformed
// into two wider loads and the users can be replaced with DSP
// intrinsics.
for (unsigned x = 0; x < VL0.size(); x += 4) {
auto *Ld0 = dyn_cast<LoadInst>(VL0[x]);
auto *Ld1 = dyn_cast<LoadInst>(VL1[x]);
auto *Ld2 = dyn_cast<LoadInst>(VL0[x+2]);
auto *Ld3 = dyn_cast<LoadInst>(VL1[x+2]);
LLVM_DEBUG(dbgs() << "Looking at operands " << x << ":\n";
dbgs() << "\t mul1: "; VL0[x]->dump();
dbgs() << "\t mul2: "; VL1[x]->dump();
dbgs() << "and operands " << x + 2 << ":\n";
dbgs() << "\t mul1: "; VL0[x+2]->dump();
dbgs() << "\t mul2: "; VL1[x+2]->dump());
if (AreSequentialLoads(Ld0, Ld1, Candidates[i].VecLd) &&
AreSequentialLoads(Ld2, Ld3, Candidates[i+1].VecLd)) {
LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
PMACPairs.push_back(std::make_pair(&PMul0, &PMul1));
}
}
}
return PMACPairs;
}
bool ARMParallelDSP::InsertParallelMACs(Reduction &Reduction,
PMACPairList &PMACPairs) {
Instruction *Acc = Reduction.Phi;
Instruction *InsertAfter = Reduction.AccIntAdd;
for (auto &Pair : PMACPairs) {
LLVM_DEBUG(dbgs() << "Found parallel MACs!!\n";
dbgs() << "- "; Pair.first->Mul->dump();
dbgs() << "- "; Pair.second->Mul->dump());
auto *VecLd0 = cast<LoadInst>(Pair.first->VecLd[0]);
auto *VecLd1 = cast<LoadInst>(Pair.second->VecLd[0]);
Acc = CreateSMLADCall(VecLd0, VecLd1, Acc, InsertAfter);
InsertAfter = Acc;
}
if (Acc != Reduction.Phi) {
LLVM_DEBUG(dbgs() << "Replace Accumulate: "; Acc->dump());
Reduction.AccIntAdd->replaceAllUsesWith(Acc);
return true;
}
return false;
}
static ReductionList MatchReductions(Function &F, Loop *TheLoop,
BasicBlock *Header) {
ReductionList Reductions;
RecurrenceDescriptor RecDesc;
const bool HasFnNoNaNAttr =
F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
const BasicBlock *Latch = TheLoop->getLoopLatch();
// We need a preheader as getIncomingValueForBlock assumes there is one.
if (!TheLoop->getLoopPreheader())
return Reductions;
for (PHINode &Phi : Header->phis()) {
const auto *Ty = Phi.getType();
if (!Ty->isIntegerTy(32))
continue;
const bool IsReduction =
RecurrenceDescriptor::AddReductionVar(&Phi,
RecurrenceDescriptor::RK_IntegerAdd,
TheLoop, HasFnNoNaNAttr, RecDesc);
if (!IsReduction)
continue;
Instruction *Acc = dyn_cast<Instruction>(Phi.getIncomingValueForBlock(Latch));
if (!Acc)
continue;
Reductions.push_back(Reduction(&Phi, Acc));
}
LLVM_DEBUG(
dbgs() << "\nAccumulating integer additions (reductions) found:\n";
for (auto R : Reductions) {
dbgs() << "- "; R.Phi->dump();
dbgs() << "-> "; R.AccIntAdd->dump();
}
);
return Reductions;
}
static void AddCandidateMAC(ParallelMACList &Candidates, const Instruction *Acc,
Value *MulOp0, Value *MulOp1, int MulOpNum) {
Instruction *Mul = dyn_cast<Instruction>(Acc->getOperand(MulOpNum));
LLVM_DEBUG(dbgs() << "OK, found acc mul:\t"; Mul->dump());
ValueList VL;
if (IsNarrowSequence<16>(MulOp0, VL) &&
IsNarrowSequence<16>(MulOp1, VL)) {
LLVM_DEBUG(dbgs() << "OK, found narrow mul: "; Mul->dump());
Candidates.push_back(ParallelMAC(Mul, VL));
}
}
static ParallelMACList MatchParallelMACs(Reduction &R) {
ParallelMACList Candidates;
const Instruction *Acc = R.AccIntAdd;
Value *A, *MulOp0, *MulOp1;
LLVM_DEBUG(dbgs() << "\n- Analysing:\t"; Acc->dump());
// Pattern 1: the accumulator is the RHS of the mul.
while(match(Acc, m_Add(m_Mul(m_Value(MulOp0), m_Value(MulOp1)),
m_Value(A)))){
AddCandidateMAC(Candidates, Acc, MulOp0, MulOp1, 0);
Acc = dyn_cast<Instruction>(A);
}
// Pattern 2: the accumulator is the LHS of the mul.
while(match(Acc, m_Add(m_Value(A),
m_Mul(m_Value(MulOp0), m_Value(MulOp1))))) {
AddCandidateMAC(Candidates, Acc, MulOp0, MulOp1, 1);
Acc = dyn_cast<Instruction>(A);
}
// The last mul in the chain has a slightly different pattern:
// the mul is the first operand
if (match(Acc, m_Add(m_Mul(m_Value(MulOp0), m_Value(MulOp1)), m_Value(A))))
AddCandidateMAC(Candidates, Acc, MulOp0, MulOp1, 0);
// Because we start at the bottom of the chain, and we work our way up,
// the muls are added in reverse program order to the list.
std::reverse(Candidates.begin(), Candidates.end());
return Candidates;
}
// Collects all instructions that are not part of the MAC chains, which is the
// set of instructions that can potentially alias with the MAC operands.
static Instructions AliasCandidates(BasicBlock *Header,
ParallelMACList &MACCandidates) {
Instructions Aliases;
auto IsMACCandidate = [] (Instruction *I, ParallelMACList &MACCandidates) {
for (auto &MAC : MACCandidates)
for (auto *Val : MAC.VL)
if (I == MAC.Mul || Val == I)
return true;
return false;
};
std::for_each(Header->begin(), Header->end(),
[&Aliases, &MACCandidates, &IsMACCandidate] (Instruction &I) {
if (I.mayReadOrWriteMemory() &&
!IsMACCandidate(&I, MACCandidates))
Aliases.push_back(&I); });
return Aliases;
}
// This compares all instructions from the "alias candidates" set, i.e., all
// instructions that are not part of the MAC-chain, with all instructions in
// the MAC candidate set, to see if instructions are aliased.
static bool AreAliased(AliasAnalysis *AA, Instructions AliasCandidates,
ParallelMACList &MACCandidates) {
LLVM_DEBUG(dbgs() << "Alias checks:\n");
for (auto *I : AliasCandidates) {
LLVM_DEBUG(dbgs() << "- "; I->dump());
for (auto &MAC : MACCandidates) {
LLVM_DEBUG(dbgs() << "mul: "; MAC.Mul->dump());
assert(MAC.MemLocs.size() >= 2 && "expecting at least 2 memlocs");
for (auto &MemLoc : MAC.MemLocs) {
if (isModOrRefSet(intersectModRef(AA->getModRefInfo(I, MemLoc),
ModRefInfo::ModRef))) {
LLVM_DEBUG(dbgs() << "Yes, aliases found\n");
return true;
}
}
}
}
LLVM_DEBUG(dbgs() << "OK: no aliases found!\n");
return false;
}
static bool SetMemoryLocations(ParallelMACList &Candidates) {
const auto Size = MemoryLocation::UnknownSize;
for (auto &C : Candidates) {
// A mul has 2 operands, and a narrow op consist of sext and a load; thus
// we expect at least 4 items in this operand value list.
if (C.VL.size() < 4) {
LLVM_DEBUG(dbgs() << "Operand list too short.\n");
return false;
}
for (unsigned i = 0; i < C.VL.size(); i += 4) {
auto *LdOp0 = dyn_cast<LoadInst>(C.VL[i]);
auto *LdOp1 = dyn_cast<LoadInst>(C.VL[i+2]);
if (!LdOp0 || !LdOp1)
return false;
C.MemLocs.push_back(MemoryLocation(LdOp0->getPointerOperand(), Size));
C.MemLocs.push_back(MemoryLocation(LdOp1->getPointerOperand(), Size));
}
}
return true;
}
// Loop Pass that needs to identify integer add/sub reductions of 16-bit vector
// multiplications.
// To use SMLAD:
// 1) we first need to find integer add reduction PHIs,
// 2) then from the PHI, look for this pattern:
//
// acc0 = phi i32 [0, %entry], [%acc1, %loop.body]
// ld0 = load i16
// sext0 = sext i16 %ld0 to i32
// ld1 = load i16
// sext1 = sext i16 %ld1 to i32
// mul0 = mul %sext0, %sext1
// ld2 = load i16
// sext2 = sext i16 %ld2 to i32
// ld3 = load i16
// sext3 = sext i16 %ld3 to i32
// mul1 = mul i32 %sext2, %sext3
// add0 = add i32 %mul0, %acc0
// acc1 = add i32 %add0, %mul1
//
// Which can be selected to:
//
// ldr.h r0
// ldr.h r1
// smlad r2, r0, r1, r2
//
// If constants are used instead of loads, these will need to be hoisted
// out and into a register.
//
// If loop invariants are used instead of loads, these need to be packed
// before the loop begins.
//
// Can only be enabled for cores which support unaligned accesses.
//
bool ARMParallelDSP::MatchSMLAD(Function &F) {
BasicBlock *Header = L->getHeader();
LLVM_DEBUG(dbgs() << "= Matching SMLAD =\n";
dbgs() << "Header block:\n"; Header->dump();
dbgs() << "Loop info:\n\n"; L->dump());
bool Changed = false;
ReductionList Reductions = MatchReductions(F, L, Header);
for (auto &R : Reductions) {
ParallelMACList MACCandidates = MatchParallelMACs(R);
if (!SetMemoryLocations(MACCandidates))
continue;
Instructions Aliases = AliasCandidates(Header, MACCandidates);
if (AreAliased(AA, Aliases, MACCandidates))
continue;
PMACPairList PMACPairs = CreateParallelMACPairs(MACCandidates);
Changed = InsertParallelMACs(R, PMACPairs) || Changed;
}
LLVM_DEBUG(if (Changed) dbgs() << "Header block:\n"; Header->dump(););
return Changed;
}
static void CreateLoadIns(IRBuilder<NoFolder> &IRB, Instruction *Acc,
LoadInst **VecLd) {
const Type *AccTy = Acc->getType();
const unsigned AddrSpace = (*VecLd)->getPointerAddressSpace();
Value *VecPtr = IRB.CreateBitCast((*VecLd)->getPointerOperand(),
AccTy->getPointerTo(AddrSpace));
*VecLd = IRB.CreateAlignedLoad(VecPtr, (*VecLd)->getAlignment());
}
Instruction *ARMParallelDSP::CreateSMLADCall(LoadInst *VecLd0, LoadInst *VecLd1,
Instruction *Acc,
Instruction *InsertAfter) {
LLVM_DEBUG(dbgs() << "Create SMLAD intrinsic using:\n";
dbgs() << "- "; VecLd0->dump();
dbgs() << "- "; VecLd1->dump();
dbgs() << "- "; Acc->dump());
IRBuilder<NoFolder> Builder(InsertAfter->getParent(),
++BasicBlock::iterator(InsertAfter));
// Replace the reduction chain with an intrinsic call
CreateLoadIns(Builder, Acc, &VecLd0);
CreateLoadIns(Builder, Acc, &VecLd1);
Value* Args[] = { VecLd0, VecLd1, Acc };
Function *SMLAD = Intrinsic::getDeclaration(M, Intrinsic::arm_smlad);
CallInst *Call = Builder.CreateCall(SMLAD, Args);
return Call;
}
Pass *llvm::createARMParallelDSPPass() {
return new ARMParallelDSP();
}
char ARMParallelDSP::ID = 0;
INITIALIZE_PASS_BEGIN(ARMParallelDSP, "parallel-dsp",
"Transform loops to use DSP intrinsics", false, false)
INITIALIZE_PASS_END(ARMParallelDSP, "parallel-dsp",
"Transform loops to use DSP intrinsics", false, false)