forked from OSchip/llvm-project
14919 lines
575 KiB
C++
14919 lines
575 KiB
C++
//===- ARMISelLowering.cpp - ARM DAG Lowering Implementation --------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the interfaces that ARM uses to lower LLVM code into a
|
|
// selection DAG.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ARMISelLowering.h"
|
|
#include "ARMBaseInstrInfo.h"
|
|
#include "ARMBaseRegisterInfo.h"
|
|
#include "ARMCallingConv.h"
|
|
#include "ARMConstantPoolValue.h"
|
|
#include "ARMMachineFunctionInfo.h"
|
|
#include "ARMPerfectShuffle.h"
|
|
#include "ARMRegisterInfo.h"
|
|
#include "ARMSelectionDAGInfo.h"
|
|
#include "ARMSubtarget.h"
|
|
#include "MCTargetDesc/ARMAddressingModes.h"
|
|
#include "MCTargetDesc/ARMBaseInfo.h"
|
|
#include "Utils/ARMBaseInfo.h"
|
|
#include "llvm/ADT/APFloat.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/Analysis/VectorUtils.h"
|
|
#include "llvm/CodeGen/CallingConvLower.h"
|
|
#include "llvm/CodeGen/ISDOpcodes.h"
|
|
#include "llvm/CodeGen/IntrinsicLowering.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineJumpTableInfo.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/RuntimeLibcalls.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/CodeGen/SelectionDAGNodes.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/CodeGen/TargetLowering.h"
|
|
#include "llvm/CodeGen/TargetOpcodes.h"
|
|
#include "llvm/CodeGen/TargetRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/CallingConv.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalAlias.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InlineAsm.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/MC/MCInstrDesc.h"
|
|
#include "llvm/MC/MCInstrItineraries.h"
|
|
#include "llvm/MC/MCRegisterInfo.h"
|
|
#include "llvm/MC/MCSchedule.h"
|
|
#include "llvm/Support/AtomicOrdering.h"
|
|
#include "llvm/Support/BranchProbability.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CodeGen.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/KnownBits.h"
|
|
#include "llvm/Support/MachineValueType.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <cstdlib>
|
|
#include <iterator>
|
|
#include <limits>
|
|
#include <string>
|
|
#include <tuple>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "arm-isel"
|
|
|
|
STATISTIC(NumTailCalls, "Number of tail calls");
|
|
STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
|
|
STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
|
|
STATISTIC(NumConstpoolPromoted,
|
|
"Number of constants with their storage promoted into constant pools");
|
|
|
|
static cl::opt<bool>
|
|
ARMInterworking("arm-interworking", cl::Hidden,
|
|
cl::desc("Enable / disable ARM interworking (for debugging only)"),
|
|
cl::init(true));
|
|
|
|
static cl::opt<bool> EnableConstpoolPromotion(
|
|
"arm-promote-constant", cl::Hidden,
|
|
cl::desc("Enable / disable promotion of unnamed_addr constants into "
|
|
"constant pools"),
|
|
cl::init(false)); // FIXME: set to true by default once PR32780 is fixed
|
|
static cl::opt<unsigned> ConstpoolPromotionMaxSize(
|
|
"arm-promote-constant-max-size", cl::Hidden,
|
|
cl::desc("Maximum size of constant to promote into a constant pool"),
|
|
cl::init(64));
|
|
static cl::opt<unsigned> ConstpoolPromotionMaxTotal(
|
|
"arm-promote-constant-max-total", cl::Hidden,
|
|
cl::desc("Maximum size of ALL constants to promote into a constant pool"),
|
|
cl::init(128));
|
|
|
|
// The APCS parameter registers.
|
|
static const MCPhysReg GPRArgRegs[] = {
|
|
ARM::R0, ARM::R1, ARM::R2, ARM::R3
|
|
};
|
|
|
|
void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
|
|
MVT PromotedBitwiseVT) {
|
|
if (VT != PromotedLdStVT) {
|
|
setOperationAction(ISD::LOAD, VT, Promote);
|
|
AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
|
|
|
|
setOperationAction(ISD::STORE, VT, Promote);
|
|
AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
|
|
}
|
|
|
|
MVT ElemTy = VT.getVectorElementType();
|
|
if (ElemTy != MVT::f64)
|
|
setOperationAction(ISD::SETCC, VT, Custom);
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
|
|
if (ElemTy == MVT::i32) {
|
|
setOperationAction(ISD::SINT_TO_FP, VT, Custom);
|
|
setOperationAction(ISD::UINT_TO_FP, VT, Custom);
|
|
setOperationAction(ISD::FP_TO_SINT, VT, Custom);
|
|
setOperationAction(ISD::FP_TO_UINT, VT, Custom);
|
|
} else {
|
|
setOperationAction(ISD::SINT_TO_FP, VT, Expand);
|
|
setOperationAction(ISD::UINT_TO_FP, VT, Expand);
|
|
setOperationAction(ISD::FP_TO_SINT, VT, Expand);
|
|
setOperationAction(ISD::FP_TO_UINT, VT, Expand);
|
|
}
|
|
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
|
|
setOperationAction(ISD::CONCAT_VECTORS, VT, Legal);
|
|
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
|
|
setOperationAction(ISD::SELECT, VT, Expand);
|
|
setOperationAction(ISD::SELECT_CC, VT, Expand);
|
|
setOperationAction(ISD::VSELECT, VT, Expand);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
|
|
if (VT.isInteger()) {
|
|
setOperationAction(ISD::SHL, VT, Custom);
|
|
setOperationAction(ISD::SRA, VT, Custom);
|
|
setOperationAction(ISD::SRL, VT, Custom);
|
|
}
|
|
|
|
// Promote all bit-wise operations.
|
|
if (VT.isInteger() && VT != PromotedBitwiseVT) {
|
|
setOperationAction(ISD::AND, VT, Promote);
|
|
AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
|
|
setOperationAction(ISD::OR, VT, Promote);
|
|
AddPromotedToType (ISD::OR, VT, PromotedBitwiseVT);
|
|
setOperationAction(ISD::XOR, VT, Promote);
|
|
AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
|
|
}
|
|
|
|
// Neon does not support vector divide/remainder operations.
|
|
setOperationAction(ISD::SDIV, VT, Expand);
|
|
setOperationAction(ISD::UDIV, VT, Expand);
|
|
setOperationAction(ISD::FDIV, VT, Expand);
|
|
setOperationAction(ISD::SREM, VT, Expand);
|
|
setOperationAction(ISD::UREM, VT, Expand);
|
|
setOperationAction(ISD::FREM, VT, Expand);
|
|
|
|
if (!VT.isFloatingPoint() &&
|
|
VT != MVT::v2i64 && VT != MVT::v1i64)
|
|
for (auto Opcode : {ISD::ABS, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
|
|
setOperationAction(Opcode, VT, Legal);
|
|
}
|
|
|
|
void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
|
|
addRegisterClass(VT, &ARM::DPRRegClass);
|
|
addTypeForNEON(VT, MVT::f64, MVT::v2i32);
|
|
}
|
|
|
|
void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
|
|
addRegisterClass(VT, &ARM::DPairRegClass);
|
|
addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
|
|
}
|
|
|
|
ARMTargetLowering::ARMTargetLowering(const TargetMachine &TM,
|
|
const ARMSubtarget &STI)
|
|
: TargetLowering(TM), Subtarget(&STI) {
|
|
RegInfo = Subtarget->getRegisterInfo();
|
|
Itins = Subtarget->getInstrItineraryData();
|
|
|
|
setBooleanContents(ZeroOrOneBooleanContent);
|
|
setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
|
|
|
|
if (!Subtarget->isTargetDarwin() && !Subtarget->isTargetIOS() &&
|
|
!Subtarget->isTargetWatchOS()) {
|
|
bool IsHFTarget = TM.Options.FloatABIType == FloatABI::Hard;
|
|
for (int LCID = 0; LCID < RTLIB::UNKNOWN_LIBCALL; ++LCID)
|
|
setLibcallCallingConv(static_cast<RTLIB::Libcall>(LCID),
|
|
IsHFTarget ? CallingConv::ARM_AAPCS_VFP
|
|
: CallingConv::ARM_AAPCS);
|
|
}
|
|
|
|
if (Subtarget->isTargetMachO()) {
|
|
// Uses VFP for Thumb libfuncs if available.
|
|
if (Subtarget->isThumb() && Subtarget->hasVFP2() &&
|
|
Subtarget->hasARMOps() && !Subtarget->useSoftFloat()) {
|
|
static const struct {
|
|
const RTLIB::Libcall Op;
|
|
const char * const Name;
|
|
const ISD::CondCode Cond;
|
|
} LibraryCalls[] = {
|
|
// Single-precision floating-point arithmetic.
|
|
{ RTLIB::ADD_F32, "__addsf3vfp", ISD::SETCC_INVALID },
|
|
{ RTLIB::SUB_F32, "__subsf3vfp", ISD::SETCC_INVALID },
|
|
{ RTLIB::MUL_F32, "__mulsf3vfp", ISD::SETCC_INVALID },
|
|
{ RTLIB::DIV_F32, "__divsf3vfp", ISD::SETCC_INVALID },
|
|
|
|
// Double-precision floating-point arithmetic.
|
|
{ RTLIB::ADD_F64, "__adddf3vfp", ISD::SETCC_INVALID },
|
|
{ RTLIB::SUB_F64, "__subdf3vfp", ISD::SETCC_INVALID },
|
|
{ RTLIB::MUL_F64, "__muldf3vfp", ISD::SETCC_INVALID },
|
|
{ RTLIB::DIV_F64, "__divdf3vfp", ISD::SETCC_INVALID },
|
|
|
|
// Single-precision comparisons.
|
|
{ RTLIB::OEQ_F32, "__eqsf2vfp", ISD::SETNE },
|
|
{ RTLIB::UNE_F32, "__nesf2vfp", ISD::SETNE },
|
|
{ RTLIB::OLT_F32, "__ltsf2vfp", ISD::SETNE },
|
|
{ RTLIB::OLE_F32, "__lesf2vfp", ISD::SETNE },
|
|
{ RTLIB::OGE_F32, "__gesf2vfp", ISD::SETNE },
|
|
{ RTLIB::OGT_F32, "__gtsf2vfp", ISD::SETNE },
|
|
{ RTLIB::UO_F32, "__unordsf2vfp", ISD::SETNE },
|
|
{ RTLIB::O_F32, "__unordsf2vfp", ISD::SETEQ },
|
|
|
|
// Double-precision comparisons.
|
|
{ RTLIB::OEQ_F64, "__eqdf2vfp", ISD::SETNE },
|
|
{ RTLIB::UNE_F64, "__nedf2vfp", ISD::SETNE },
|
|
{ RTLIB::OLT_F64, "__ltdf2vfp", ISD::SETNE },
|
|
{ RTLIB::OLE_F64, "__ledf2vfp", ISD::SETNE },
|
|
{ RTLIB::OGE_F64, "__gedf2vfp", ISD::SETNE },
|
|
{ RTLIB::OGT_F64, "__gtdf2vfp", ISD::SETNE },
|
|
{ RTLIB::UO_F64, "__unorddf2vfp", ISD::SETNE },
|
|
{ RTLIB::O_F64, "__unorddf2vfp", ISD::SETEQ },
|
|
|
|
// Floating-point to integer conversions.
|
|
// i64 conversions are done via library routines even when generating VFP
|
|
// instructions, so use the same ones.
|
|
{ RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp", ISD::SETCC_INVALID },
|
|
{ RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp", ISD::SETCC_INVALID },
|
|
{ RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp", ISD::SETCC_INVALID },
|
|
{ RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp", ISD::SETCC_INVALID },
|
|
|
|
// Conversions between floating types.
|
|
{ RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp", ISD::SETCC_INVALID },
|
|
{ RTLIB::FPEXT_F32_F64, "__extendsfdf2vfp", ISD::SETCC_INVALID },
|
|
|
|
// Integer to floating-point conversions.
|
|
// i64 conversions are done via library routines even when generating VFP
|
|
// instructions, so use the same ones.
|
|
// FIXME: There appears to be some naming inconsistency in ARM libgcc:
|
|
// e.g., __floatunsidf vs. __floatunssidfvfp.
|
|
{ RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp", ISD::SETCC_INVALID },
|
|
{ RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp", ISD::SETCC_INVALID },
|
|
{ RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp", ISD::SETCC_INVALID },
|
|
{ RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp", ISD::SETCC_INVALID },
|
|
};
|
|
|
|
for (const auto &LC : LibraryCalls) {
|
|
setLibcallName(LC.Op, LC.Name);
|
|
if (LC.Cond != ISD::SETCC_INVALID)
|
|
setCmpLibcallCC(LC.Op, LC.Cond);
|
|
}
|
|
}
|
|
|
|
// Set the correct calling convention for ARMv7k WatchOS. It's just
|
|
// AAPCS_VFP for functions as simple as libcalls.
|
|
if (Subtarget->isTargetWatchABI()) {
|
|
for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i)
|
|
setLibcallCallingConv((RTLIB::Libcall)i, CallingConv::ARM_AAPCS_VFP);
|
|
}
|
|
}
|
|
|
|
// These libcalls are not available in 32-bit.
|
|
setLibcallName(RTLIB::SHL_I128, nullptr);
|
|
setLibcallName(RTLIB::SRL_I128, nullptr);
|
|
setLibcallName(RTLIB::SRA_I128, nullptr);
|
|
|
|
// RTLIB
|
|
if (Subtarget->isAAPCS_ABI() &&
|
|
(Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
|
|
Subtarget->isTargetMuslAEABI() || Subtarget->isTargetAndroid())) {
|
|
static const struct {
|
|
const RTLIB::Libcall Op;
|
|
const char * const Name;
|
|
const CallingConv::ID CC;
|
|
const ISD::CondCode Cond;
|
|
} LibraryCalls[] = {
|
|
// Double-precision floating-point arithmetic helper functions
|
|
// RTABI chapter 4.1.2, Table 2
|
|
{ RTLIB::ADD_F64, "__aeabi_dadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
|
|
{ RTLIB::DIV_F64, "__aeabi_ddiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
|
|
{ RTLIB::MUL_F64, "__aeabi_dmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
|
|
{ RTLIB::SUB_F64, "__aeabi_dsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
|
|
|
|
// Double-precision floating-point comparison helper functions
|
|
// RTABI chapter 4.1.2, Table 3
|
|
{ RTLIB::OEQ_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
|
|
{ RTLIB::UNE_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
|
|
{ RTLIB::OLT_F64, "__aeabi_dcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
|
|
{ RTLIB::OLE_F64, "__aeabi_dcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
|
|
{ RTLIB::OGE_F64, "__aeabi_dcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
|
|
{ RTLIB::OGT_F64, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
|
|
{ RTLIB::UO_F64, "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
|
|
{ RTLIB::O_F64, "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
|
|
|
|
// Single-precision floating-point arithmetic helper functions
|
|
// RTABI chapter 4.1.2, Table 4
|
|
{ RTLIB::ADD_F32, "__aeabi_fadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
|
|
{ RTLIB::DIV_F32, "__aeabi_fdiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
|
|
{ RTLIB::MUL_F32, "__aeabi_fmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
|
|
{ RTLIB::SUB_F32, "__aeabi_fsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
|
|
|
|
// Single-precision floating-point comparison helper functions
|
|
// RTABI chapter 4.1.2, Table 5
|
|
{ RTLIB::OEQ_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
|
|
{ RTLIB::UNE_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
|
|
{ RTLIB::OLT_F32, "__aeabi_fcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
|
|
{ RTLIB::OLE_F32, "__aeabi_fcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
|
|
{ RTLIB::OGE_F32, "__aeabi_fcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
|
|
{ RTLIB::OGT_F32, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
|
|
{ RTLIB::UO_F32, "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
|
|
{ RTLIB::O_F32, "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
|
|
|
|
// Floating-point to integer conversions.
|
|
// RTABI chapter 4.1.2, Table 6
|
|
{ RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
|
|
{ RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
|
|
{ RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
|
|
{ RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
|
|
{ RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
|
|
{ RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
|
|
{ RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
|
|
{ RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
|
|
|
|
// Conversions between floating types.
|
|
// RTABI chapter 4.1.2, Table 7
|
|
{ RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
|
|
{ RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
|
|
{ RTLIB::FPEXT_F32_F64, "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
|
|
|
|
// Integer to floating-point conversions.
|
|
// RTABI chapter 4.1.2, Table 8
|
|
{ RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
|
|
{ RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
|
|
{ RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
|
|
{ RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
|
|
{ RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
|
|
{ RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
|
|
{ RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
|
|
{ RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
|
|
|
|
// Long long helper functions
|
|
// RTABI chapter 4.2, Table 9
|
|
{ RTLIB::MUL_I64, "__aeabi_lmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
|
|
{ RTLIB::SHL_I64, "__aeabi_llsl", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
|
|
{ RTLIB::SRL_I64, "__aeabi_llsr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
|
|
{ RTLIB::SRA_I64, "__aeabi_lasr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
|
|
|
|
// Integer division functions
|
|
// RTABI chapter 4.3.1
|
|
{ RTLIB::SDIV_I8, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
|
|
{ RTLIB::SDIV_I16, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
|
|
{ RTLIB::SDIV_I32, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
|
|
{ RTLIB::SDIV_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
|
|
{ RTLIB::UDIV_I8, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
|
|
{ RTLIB::UDIV_I16, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
|
|
{ RTLIB::UDIV_I32, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
|
|
{ RTLIB::UDIV_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
|
|
};
|
|
|
|
for (const auto &LC : LibraryCalls) {
|
|
setLibcallName(LC.Op, LC.Name);
|
|
setLibcallCallingConv(LC.Op, LC.CC);
|
|
if (LC.Cond != ISD::SETCC_INVALID)
|
|
setCmpLibcallCC(LC.Op, LC.Cond);
|
|
}
|
|
|
|
// EABI dependent RTLIB
|
|
if (TM.Options.EABIVersion == EABI::EABI4 ||
|
|
TM.Options.EABIVersion == EABI::EABI5) {
|
|
static const struct {
|
|
const RTLIB::Libcall Op;
|
|
const char *const Name;
|
|
const CallingConv::ID CC;
|
|
const ISD::CondCode Cond;
|
|
} MemOpsLibraryCalls[] = {
|
|
// Memory operations
|
|
// RTABI chapter 4.3.4
|
|
{ RTLIB::MEMCPY, "__aeabi_memcpy", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
|
|
{ RTLIB::MEMMOVE, "__aeabi_memmove", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
|
|
{ RTLIB::MEMSET, "__aeabi_memset", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
|
|
};
|
|
|
|
for (const auto &LC : MemOpsLibraryCalls) {
|
|
setLibcallName(LC.Op, LC.Name);
|
|
setLibcallCallingConv(LC.Op, LC.CC);
|
|
if (LC.Cond != ISD::SETCC_INVALID)
|
|
setCmpLibcallCC(LC.Op, LC.Cond);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Subtarget->isTargetWindows()) {
|
|
static const struct {
|
|
const RTLIB::Libcall Op;
|
|
const char * const Name;
|
|
const CallingConv::ID CC;
|
|
} LibraryCalls[] = {
|
|
{ RTLIB::FPTOSINT_F32_I64, "__stoi64", CallingConv::ARM_AAPCS_VFP },
|
|
{ RTLIB::FPTOSINT_F64_I64, "__dtoi64", CallingConv::ARM_AAPCS_VFP },
|
|
{ RTLIB::FPTOUINT_F32_I64, "__stou64", CallingConv::ARM_AAPCS_VFP },
|
|
{ RTLIB::FPTOUINT_F64_I64, "__dtou64", CallingConv::ARM_AAPCS_VFP },
|
|
{ RTLIB::SINTTOFP_I64_F32, "__i64tos", CallingConv::ARM_AAPCS_VFP },
|
|
{ RTLIB::SINTTOFP_I64_F64, "__i64tod", CallingConv::ARM_AAPCS_VFP },
|
|
{ RTLIB::UINTTOFP_I64_F32, "__u64tos", CallingConv::ARM_AAPCS_VFP },
|
|
{ RTLIB::UINTTOFP_I64_F64, "__u64tod", CallingConv::ARM_AAPCS_VFP },
|
|
};
|
|
|
|
for (const auto &LC : LibraryCalls) {
|
|
setLibcallName(LC.Op, LC.Name);
|
|
setLibcallCallingConv(LC.Op, LC.CC);
|
|
}
|
|
}
|
|
|
|
// Use divmod compiler-rt calls for iOS 5.0 and later.
|
|
if (Subtarget->isTargetMachO() &&
|
|
!(Subtarget->isTargetIOS() &&
|
|
Subtarget->getTargetTriple().isOSVersionLT(5, 0))) {
|
|
setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
|
|
setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
|
|
}
|
|
|
|
// The half <-> float conversion functions are always soft-float on
|
|
// non-watchos platforms, but are needed for some targets which use a
|
|
// hard-float calling convention by default.
|
|
if (!Subtarget->isTargetWatchABI()) {
|
|
if (Subtarget->isAAPCS_ABI()) {
|
|
setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_AAPCS);
|
|
} else {
|
|
setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_APCS);
|
|
setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_APCS);
|
|
setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_APCS);
|
|
}
|
|
}
|
|
|
|
// In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
|
|
// a __gnu_ prefix (which is the default).
|
|
if (Subtarget->isTargetAEABI()) {
|
|
static const struct {
|
|
const RTLIB::Libcall Op;
|
|
const char * const Name;
|
|
const CallingConv::ID CC;
|
|
} LibraryCalls[] = {
|
|
{ RTLIB::FPROUND_F32_F16, "__aeabi_f2h", CallingConv::ARM_AAPCS },
|
|
{ RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS },
|
|
{ RTLIB::FPEXT_F16_F32, "__aeabi_h2f", CallingConv::ARM_AAPCS },
|
|
};
|
|
|
|
for (const auto &LC : LibraryCalls) {
|
|
setLibcallName(LC.Op, LC.Name);
|
|
setLibcallCallingConv(LC.Op, LC.CC);
|
|
}
|
|
}
|
|
|
|
if (Subtarget->isThumb1Only())
|
|
addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
|
|
else
|
|
addRegisterClass(MVT::i32, &ARM::GPRRegClass);
|
|
|
|
if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
|
|
!Subtarget->isThumb1Only()) {
|
|
addRegisterClass(MVT::f32, &ARM::SPRRegClass);
|
|
addRegisterClass(MVT::f64, &ARM::DPRRegClass);
|
|
}
|
|
|
|
if (Subtarget->hasFullFP16()) {
|
|
addRegisterClass(MVT::f16, &ARM::HPRRegClass);
|
|
setOperationAction(ISD::BITCAST, MVT::i16, Custom);
|
|
setOperationAction(ISD::BITCAST, MVT::i32, Custom);
|
|
setOperationAction(ISD::BITCAST, MVT::f16, Custom);
|
|
|
|
setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
|
|
setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
|
|
}
|
|
|
|
for (MVT VT : MVT::vector_valuetypes()) {
|
|
for (MVT InnerVT : MVT::vector_valuetypes()) {
|
|
setTruncStoreAction(VT, InnerVT, Expand);
|
|
setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
|
|
setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
|
|
}
|
|
|
|
setOperationAction(ISD::MULHS, VT, Expand);
|
|
setOperationAction(ISD::SMUL_LOHI, VT, Expand);
|
|
setOperationAction(ISD::MULHU, VT, Expand);
|
|
setOperationAction(ISD::UMUL_LOHI, VT, Expand);
|
|
|
|
setOperationAction(ISD::BSWAP, VT, Expand);
|
|
}
|
|
|
|
setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
|
|
setOperationAction(ISD::ConstantFP, MVT::f64, Custom);
|
|
|
|
setOperationAction(ISD::READ_REGISTER, MVT::i64, Custom);
|
|
setOperationAction(ISD::WRITE_REGISTER, MVT::i64, Custom);
|
|
|
|
if (Subtarget->hasNEON()) {
|
|
addDRTypeForNEON(MVT::v2f32);
|
|
addDRTypeForNEON(MVT::v8i8);
|
|
addDRTypeForNEON(MVT::v4i16);
|
|
addDRTypeForNEON(MVT::v2i32);
|
|
addDRTypeForNEON(MVT::v1i64);
|
|
|
|
addQRTypeForNEON(MVT::v4f32);
|
|
addQRTypeForNEON(MVT::v2f64);
|
|
addQRTypeForNEON(MVT::v16i8);
|
|
addQRTypeForNEON(MVT::v8i16);
|
|
addQRTypeForNEON(MVT::v4i32);
|
|
addQRTypeForNEON(MVT::v2i64);
|
|
|
|
if (Subtarget->hasFullFP16()) {
|
|
addQRTypeForNEON(MVT::v8f16);
|
|
addDRTypeForNEON(MVT::v4f16);
|
|
}
|
|
|
|
// v2f64 is legal so that QR subregs can be extracted as f64 elements, but
|
|
// neither Neon nor VFP support any arithmetic operations on it.
|
|
// The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
|
|
// supported for v4f32.
|
|
setOperationAction(ISD::FADD, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
|
|
// FIXME: Code duplication: FDIV and FREM are expanded always, see
|
|
// ARMTargetLowering::addTypeForNEON method for details.
|
|
setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FREM, MVT::v2f64, Expand);
|
|
// FIXME: Create unittest.
|
|
// In another words, find a way when "copysign" appears in DAG with vector
|
|
// operands.
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
|
|
// FIXME: Code duplication: SETCC has custom operation action, see
|
|
// ARMTargetLowering::addTypeForNEON method for details.
|
|
setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
|
|
// FIXME: Create unittest for FNEG and for FABS.
|
|
setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FABS, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
|
|
// FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
|
|
setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FMA, MVT::v2f64, Expand);
|
|
|
|
setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
|
|
setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
|
|
setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
|
|
setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
|
|
setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
|
|
setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
|
|
setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
|
|
setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
|
|
setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
|
|
setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
|
|
setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
|
|
setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
|
|
setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
|
|
setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
|
|
|
|
// Mark v2f32 intrinsics.
|
|
setOperationAction(ISD::FSQRT, MVT::v2f32, Expand);
|
|
setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
|
|
setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
|
|
setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
|
|
setOperationAction(ISD::FLOG, MVT::v2f32, Expand);
|
|
setOperationAction(ISD::FLOG2, MVT::v2f32, Expand);
|
|
setOperationAction(ISD::FLOG10, MVT::v2f32, Expand);
|
|
setOperationAction(ISD::FEXP, MVT::v2f32, Expand);
|
|
setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
|
|
setOperationAction(ISD::FCEIL, MVT::v2f32, Expand);
|
|
setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand);
|
|
setOperationAction(ISD::FRINT, MVT::v2f32, Expand);
|
|
setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand);
|
|
setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand);
|
|
|
|
// Neon does not support some operations on v1i64 and v2i64 types.
|
|
setOperationAction(ISD::MUL, MVT::v1i64, Expand);
|
|
// Custom handling for some quad-vector types to detect VMULL.
|
|
setOperationAction(ISD::MUL, MVT::v8i16, Custom);
|
|
setOperationAction(ISD::MUL, MVT::v4i32, Custom);
|
|
setOperationAction(ISD::MUL, MVT::v2i64, Custom);
|
|
// Custom handling for some vector types to avoid expensive expansions
|
|
setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
|
|
setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
|
|
setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
|
|
setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
|
|
// Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
|
|
// a destination type that is wider than the source, and nor does
|
|
// it have a FP_TO_[SU]INT instruction with a narrower destination than
|
|
// source.
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
|
|
|
|
setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
|
|
setOperationAction(ISD::FP_EXTEND, MVT::v2f64, Expand);
|
|
|
|
// NEON does not have single instruction CTPOP for vectors with element
|
|
// types wider than 8-bits. However, custom lowering can leverage the
|
|
// v8i8/v16i8 vcnt instruction.
|
|
setOperationAction(ISD::CTPOP, MVT::v2i32, Custom);
|
|
setOperationAction(ISD::CTPOP, MVT::v4i32, Custom);
|
|
setOperationAction(ISD::CTPOP, MVT::v4i16, Custom);
|
|
setOperationAction(ISD::CTPOP, MVT::v8i16, Custom);
|
|
setOperationAction(ISD::CTPOP, MVT::v1i64, Expand);
|
|
setOperationAction(ISD::CTPOP, MVT::v2i64, Expand);
|
|
|
|
setOperationAction(ISD::CTLZ, MVT::v1i64, Expand);
|
|
setOperationAction(ISD::CTLZ, MVT::v2i64, Expand);
|
|
|
|
// NEON does not have single instruction CTTZ for vectors.
|
|
setOperationAction(ISD::CTTZ, MVT::v8i8, Custom);
|
|
setOperationAction(ISD::CTTZ, MVT::v4i16, Custom);
|
|
setOperationAction(ISD::CTTZ, MVT::v2i32, Custom);
|
|
setOperationAction(ISD::CTTZ, MVT::v1i64, Custom);
|
|
|
|
setOperationAction(ISD::CTTZ, MVT::v16i8, Custom);
|
|
setOperationAction(ISD::CTTZ, MVT::v8i16, Custom);
|
|
setOperationAction(ISD::CTTZ, MVT::v4i32, Custom);
|
|
setOperationAction(ISD::CTTZ, MVT::v2i64, Custom);
|
|
|
|
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i8, Custom);
|
|
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i16, Custom);
|
|
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i32, Custom);
|
|
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v1i64, Custom);
|
|
|
|
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i8, Custom);
|
|
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i16, Custom);
|
|
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i32, Custom);
|
|
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i64, Custom);
|
|
|
|
// NEON only has FMA instructions as of VFP4.
|
|
if (!Subtarget->hasVFP4()) {
|
|
setOperationAction(ISD::FMA, MVT::v2f32, Expand);
|
|
setOperationAction(ISD::FMA, MVT::v4f32, Expand);
|
|
}
|
|
|
|
setTargetDAGCombine(ISD::INTRINSIC_VOID);
|
|
setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
|
|
setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
|
|
setTargetDAGCombine(ISD::SHL);
|
|
setTargetDAGCombine(ISD::SRL);
|
|
setTargetDAGCombine(ISD::SRA);
|
|
setTargetDAGCombine(ISD::SIGN_EXTEND);
|
|
setTargetDAGCombine(ISD::ZERO_EXTEND);
|
|
setTargetDAGCombine(ISD::ANY_EXTEND);
|
|
setTargetDAGCombine(ISD::BUILD_VECTOR);
|
|
setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
|
|
setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
|
|
setTargetDAGCombine(ISD::STORE);
|
|
setTargetDAGCombine(ISD::FP_TO_SINT);
|
|
setTargetDAGCombine(ISD::FP_TO_UINT);
|
|
setTargetDAGCombine(ISD::FDIV);
|
|
setTargetDAGCombine(ISD::LOAD);
|
|
|
|
// It is legal to extload from v4i8 to v4i16 or v4i32.
|
|
for (MVT Ty : {MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v4i16, MVT::v2i16,
|
|
MVT::v2i32}) {
|
|
for (MVT VT : MVT::integer_vector_valuetypes()) {
|
|
setLoadExtAction(ISD::EXTLOAD, VT, Ty, Legal);
|
|
setLoadExtAction(ISD::ZEXTLOAD, VT, Ty, Legal);
|
|
setLoadExtAction(ISD::SEXTLOAD, VT, Ty, Legal);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Subtarget->isFPOnlySP()) {
|
|
// When targeting a floating-point unit with only single-precision
|
|
// operations, f64 is legal for the few double-precision instructions which
|
|
// are present However, no double-precision operations other than moves,
|
|
// loads and stores are provided by the hardware.
|
|
setOperationAction(ISD::FADD, MVT::f64, Expand);
|
|
setOperationAction(ISD::FSUB, MVT::f64, Expand);
|
|
setOperationAction(ISD::FMUL, MVT::f64, Expand);
|
|
setOperationAction(ISD::FMA, MVT::f64, Expand);
|
|
setOperationAction(ISD::FDIV, MVT::f64, Expand);
|
|
setOperationAction(ISD::FREM, MVT::f64, Expand);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
|
|
setOperationAction(ISD::FGETSIGN, MVT::f64, Expand);
|
|
setOperationAction(ISD::FNEG, MVT::f64, Expand);
|
|
setOperationAction(ISD::FABS, MVT::f64, Expand);
|
|
setOperationAction(ISD::FSQRT, MVT::f64, Expand);
|
|
setOperationAction(ISD::FSIN, MVT::f64, Expand);
|
|
setOperationAction(ISD::FCOS, MVT::f64, Expand);
|
|
setOperationAction(ISD::FPOW, MVT::f64, Expand);
|
|
setOperationAction(ISD::FLOG, MVT::f64, Expand);
|
|
setOperationAction(ISD::FLOG2, MVT::f64, Expand);
|
|
setOperationAction(ISD::FLOG10, MVT::f64, Expand);
|
|
setOperationAction(ISD::FEXP, MVT::f64, Expand);
|
|
setOperationAction(ISD::FEXP2, MVT::f64, Expand);
|
|
setOperationAction(ISD::FCEIL, MVT::f64, Expand);
|
|
setOperationAction(ISD::FTRUNC, MVT::f64, Expand);
|
|
setOperationAction(ISD::FRINT, MVT::f64, Expand);
|
|
setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
|
|
setOperationAction(ISD::FFLOOR, MVT::f64, Expand);
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::f64, Custom);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::f64, Custom);
|
|
setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
|
|
setOperationAction(ISD::FP_EXTEND, MVT::f64, Custom);
|
|
}
|
|
|
|
computeRegisterProperties(Subtarget->getRegisterInfo());
|
|
|
|
// ARM does not have floating-point extending loads.
|
|
for (MVT VT : MVT::fp_valuetypes()) {
|
|
setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
|
|
}
|
|
|
|
// ... or truncating stores
|
|
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
|
|
setTruncStoreAction(MVT::f32, MVT::f16, Expand);
|
|
setTruncStoreAction(MVT::f64, MVT::f16, Expand);
|
|
|
|
// ARM does not have i1 sign extending load.
|
|
for (MVT VT : MVT::integer_valuetypes())
|
|
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
|
|
|
|
// ARM supports all 4 flavors of integer indexed load / store.
|
|
if (!Subtarget->isThumb1Only()) {
|
|
for (unsigned im = (unsigned)ISD::PRE_INC;
|
|
im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
|
|
setIndexedLoadAction(im, MVT::i1, Legal);
|
|
setIndexedLoadAction(im, MVT::i8, Legal);
|
|
setIndexedLoadAction(im, MVT::i16, Legal);
|
|
setIndexedLoadAction(im, MVT::i32, Legal);
|
|
setIndexedStoreAction(im, MVT::i1, Legal);
|
|
setIndexedStoreAction(im, MVT::i8, Legal);
|
|
setIndexedStoreAction(im, MVT::i16, Legal);
|
|
setIndexedStoreAction(im, MVT::i32, Legal);
|
|
}
|
|
} else {
|
|
// Thumb-1 has limited post-inc load/store support - LDM r0!, {r1}.
|
|
setIndexedLoadAction(ISD::POST_INC, MVT::i32, Legal);
|
|
setIndexedStoreAction(ISD::POST_INC, MVT::i32, Legal);
|
|
}
|
|
|
|
setOperationAction(ISD::SADDO, MVT::i32, Custom);
|
|
setOperationAction(ISD::UADDO, MVT::i32, Custom);
|
|
setOperationAction(ISD::SSUBO, MVT::i32, Custom);
|
|
setOperationAction(ISD::USUBO, MVT::i32, Custom);
|
|
|
|
setOperationAction(ISD::ADDCARRY, MVT::i32, Custom);
|
|
setOperationAction(ISD::SUBCARRY, MVT::i32, Custom);
|
|
|
|
// i64 operation support.
|
|
setOperationAction(ISD::MUL, MVT::i64, Expand);
|
|
setOperationAction(ISD::MULHU, MVT::i32, Expand);
|
|
if (Subtarget->isThumb1Only()) {
|
|
setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
|
|
setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
|
|
}
|
|
if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
|
|
|| (Subtarget->isThumb2() && !Subtarget->hasDSP()))
|
|
setOperationAction(ISD::MULHS, MVT::i32, Expand);
|
|
|
|
setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
|
|
setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
|
|
setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
|
|
setOperationAction(ISD::SRL, MVT::i64, Custom);
|
|
setOperationAction(ISD::SRA, MVT::i64, Custom);
|
|
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
|
|
|
|
// Expand to __aeabi_l{lsl,lsr,asr} calls for Thumb1.
|
|
if (Subtarget->isThumb1Only()) {
|
|
setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
|
|
setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
|
|
setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
|
|
}
|
|
|
|
if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops())
|
|
setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
|
|
|
|
// ARM does not have ROTL.
|
|
setOperationAction(ISD::ROTL, MVT::i32, Expand);
|
|
for (MVT VT : MVT::vector_valuetypes()) {
|
|
setOperationAction(ISD::ROTL, VT, Expand);
|
|
setOperationAction(ISD::ROTR, VT, Expand);
|
|
}
|
|
setOperationAction(ISD::CTTZ, MVT::i32, Custom);
|
|
setOperationAction(ISD::CTPOP, MVT::i32, Expand);
|
|
if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
|
|
setOperationAction(ISD::CTLZ, MVT::i32, Expand);
|
|
|
|
// @llvm.readcyclecounter requires the Performance Monitors extension.
|
|
// Default to the 0 expansion on unsupported platforms.
|
|
// FIXME: Technically there are older ARM CPUs that have
|
|
// implementation-specific ways of obtaining this information.
|
|
if (Subtarget->hasPerfMon())
|
|
setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
|
|
|
|
// Only ARMv6 has BSWAP.
|
|
if (!Subtarget->hasV6Ops())
|
|
setOperationAction(ISD::BSWAP, MVT::i32, Expand);
|
|
|
|
bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
|
|
: Subtarget->hasDivideInARMMode();
|
|
if (!hasDivide) {
|
|
// These are expanded into libcalls if the cpu doesn't have HW divider.
|
|
setOperationAction(ISD::SDIV, MVT::i32, LibCall);
|
|
setOperationAction(ISD::UDIV, MVT::i32, LibCall);
|
|
}
|
|
|
|
if (Subtarget->isTargetWindows() && !Subtarget->hasDivideInThumbMode()) {
|
|
setOperationAction(ISD::SDIV, MVT::i32, Custom);
|
|
setOperationAction(ISD::UDIV, MVT::i32, Custom);
|
|
|
|
setOperationAction(ISD::SDIV, MVT::i64, Custom);
|
|
setOperationAction(ISD::UDIV, MVT::i64, Custom);
|
|
}
|
|
|
|
setOperationAction(ISD::SREM, MVT::i32, Expand);
|
|
setOperationAction(ISD::UREM, MVT::i32, Expand);
|
|
|
|
// Register based DivRem for AEABI (RTABI 4.2)
|
|
if (Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
|
|
Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
|
|
Subtarget->isTargetWindows()) {
|
|
setOperationAction(ISD::SREM, MVT::i64, Custom);
|
|
setOperationAction(ISD::UREM, MVT::i64, Custom);
|
|
HasStandaloneRem = false;
|
|
|
|
if (Subtarget->isTargetWindows()) {
|
|
const struct {
|
|
const RTLIB::Libcall Op;
|
|
const char * const Name;
|
|
const CallingConv::ID CC;
|
|
} LibraryCalls[] = {
|
|
{ RTLIB::SDIVREM_I8, "__rt_sdiv", CallingConv::ARM_AAPCS },
|
|
{ RTLIB::SDIVREM_I16, "__rt_sdiv", CallingConv::ARM_AAPCS },
|
|
{ RTLIB::SDIVREM_I32, "__rt_sdiv", CallingConv::ARM_AAPCS },
|
|
{ RTLIB::SDIVREM_I64, "__rt_sdiv64", CallingConv::ARM_AAPCS },
|
|
|
|
{ RTLIB::UDIVREM_I8, "__rt_udiv", CallingConv::ARM_AAPCS },
|
|
{ RTLIB::UDIVREM_I16, "__rt_udiv", CallingConv::ARM_AAPCS },
|
|
{ RTLIB::UDIVREM_I32, "__rt_udiv", CallingConv::ARM_AAPCS },
|
|
{ RTLIB::UDIVREM_I64, "__rt_udiv64", CallingConv::ARM_AAPCS },
|
|
};
|
|
|
|
for (const auto &LC : LibraryCalls) {
|
|
setLibcallName(LC.Op, LC.Name);
|
|
setLibcallCallingConv(LC.Op, LC.CC);
|
|
}
|
|
} else {
|
|
const struct {
|
|
const RTLIB::Libcall Op;
|
|
const char * const Name;
|
|
const CallingConv::ID CC;
|
|
} LibraryCalls[] = {
|
|
{ RTLIB::SDIVREM_I8, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
|
|
{ RTLIB::SDIVREM_I16, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
|
|
{ RTLIB::SDIVREM_I32, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
|
|
{ RTLIB::SDIVREM_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS },
|
|
|
|
{ RTLIB::UDIVREM_I8, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
|
|
{ RTLIB::UDIVREM_I16, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
|
|
{ RTLIB::UDIVREM_I32, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
|
|
{ RTLIB::UDIVREM_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS },
|
|
};
|
|
|
|
for (const auto &LC : LibraryCalls) {
|
|
setLibcallName(LC.Op, LC.Name);
|
|
setLibcallCallingConv(LC.Op, LC.CC);
|
|
}
|
|
}
|
|
|
|
setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
|
|
setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
|
|
setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
|
|
setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
|
|
} else {
|
|
setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
|
|
setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
|
|
}
|
|
|
|
if (Subtarget->isTargetWindows() && Subtarget->getTargetTriple().isOSMSVCRT())
|
|
for (auto &VT : {MVT::f32, MVT::f64})
|
|
setOperationAction(ISD::FPOWI, VT, Custom);
|
|
|
|
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
|
|
setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
|
|
setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
|
|
setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
|
|
|
|
setOperationAction(ISD::TRAP, MVT::Other, Legal);
|
|
|
|
// Use the default implementation.
|
|
setOperationAction(ISD::VASTART, MVT::Other, Custom);
|
|
setOperationAction(ISD::VAARG, MVT::Other, Expand);
|
|
setOperationAction(ISD::VACOPY, MVT::Other, Expand);
|
|
setOperationAction(ISD::VAEND, MVT::Other, Expand);
|
|
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
|
|
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
|
|
|
|
if (Subtarget->isTargetWindows())
|
|
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
|
|
else
|
|
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
|
|
|
|
// ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
|
|
// the default expansion.
|
|
InsertFencesForAtomic = false;
|
|
if (Subtarget->hasAnyDataBarrier() &&
|
|
(!Subtarget->isThumb() || Subtarget->hasV8MBaselineOps())) {
|
|
// ATOMIC_FENCE needs custom lowering; the others should have been expanded
|
|
// to ldrex/strex loops already.
|
|
setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
|
|
if (!Subtarget->isThumb() || !Subtarget->isMClass())
|
|
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
|
|
|
|
// On v8, we have particularly efficient implementations of atomic fences
|
|
// if they can be combined with nearby atomic loads and stores.
|
|
if (!Subtarget->hasV8Ops() || getTargetMachine().getOptLevel() == 0) {
|
|
// Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
|
|
InsertFencesForAtomic = true;
|
|
}
|
|
} else {
|
|
// If there's anything we can use as a barrier, go through custom lowering
|
|
// for ATOMIC_FENCE.
|
|
// If target has DMB in thumb, Fences can be inserted.
|
|
if (Subtarget->hasDataBarrier())
|
|
InsertFencesForAtomic = true;
|
|
|
|
setOperationAction(ISD::ATOMIC_FENCE, MVT::Other,
|
|
Subtarget->hasAnyDataBarrier() ? Custom : Expand);
|
|
|
|
// Set them all for expansion, which will force libcalls.
|
|
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Expand);
|
|
setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
|
|
// Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
|
|
// Unordered/Monotonic case.
|
|
if (!InsertFencesForAtomic) {
|
|
setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
|
|
setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
|
|
}
|
|
}
|
|
|
|
setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
|
|
|
|
// Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
|
|
if (!Subtarget->hasV6Ops()) {
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
|
|
}
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
|
|
|
|
if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
|
|
!Subtarget->isThumb1Only()) {
|
|
// Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
|
|
// iff target supports vfp2.
|
|
setOperationAction(ISD::BITCAST, MVT::i64, Custom);
|
|
setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
|
|
}
|
|
|
|
// We want to custom lower some of our intrinsics.
|
|
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
|
|
setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
|
|
setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
|
|
setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom);
|
|
if (Subtarget->useSjLjEH())
|
|
setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
|
|
|
|
setOperationAction(ISD::SETCC, MVT::i32, Expand);
|
|
setOperationAction(ISD::SETCC, MVT::f32, Expand);
|
|
setOperationAction(ISD::SETCC, MVT::f64, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::i32, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::f32, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::f64, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
|
|
if (Subtarget->hasFullFP16()) {
|
|
setOperationAction(ISD::SETCC, MVT::f16, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::f16, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::f16, Custom);
|
|
}
|
|
|
|
setOperationAction(ISD::SETCCCARRY, MVT::i32, Custom);
|
|
|
|
setOperationAction(ISD::BRCOND, MVT::Other, Custom);
|
|
setOperationAction(ISD::BR_CC, MVT::i32, Custom);
|
|
if (Subtarget->hasFullFP16())
|
|
setOperationAction(ISD::BR_CC, MVT::f16, Custom);
|
|
setOperationAction(ISD::BR_CC, MVT::f32, Custom);
|
|
setOperationAction(ISD::BR_CC, MVT::f64, Custom);
|
|
setOperationAction(ISD::BR_JT, MVT::Other, Custom);
|
|
|
|
// We don't support sin/cos/fmod/copysign/pow
|
|
setOperationAction(ISD::FSIN, MVT::f64, Expand);
|
|
setOperationAction(ISD::FSIN, MVT::f32, Expand);
|
|
setOperationAction(ISD::FCOS, MVT::f32, Expand);
|
|
setOperationAction(ISD::FCOS, MVT::f64, Expand);
|
|
setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
|
|
setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
|
|
setOperationAction(ISD::FREM, MVT::f64, Expand);
|
|
setOperationAction(ISD::FREM, MVT::f32, Expand);
|
|
if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
|
|
!Subtarget->isThumb1Only()) {
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
|
|
}
|
|
setOperationAction(ISD::FPOW, MVT::f64, Expand);
|
|
setOperationAction(ISD::FPOW, MVT::f32, Expand);
|
|
|
|
if (!Subtarget->hasVFP4()) {
|
|
setOperationAction(ISD::FMA, MVT::f64, Expand);
|
|
setOperationAction(ISD::FMA, MVT::f32, Expand);
|
|
}
|
|
|
|
// Various VFP goodness
|
|
if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only()) {
|
|
// FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
|
|
if (!Subtarget->hasFPARMv8() || Subtarget->isFPOnlySP()) {
|
|
setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
|
|
setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
|
|
}
|
|
|
|
// fp16 is a special v7 extension that adds f16 <-> f32 conversions.
|
|
if (!Subtarget->hasFP16()) {
|
|
setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
|
|
setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
|
|
}
|
|
}
|
|
|
|
// Use __sincos_stret if available.
|
|
if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr &&
|
|
getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) {
|
|
setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
|
|
setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
|
|
}
|
|
|
|
// FP-ARMv8 implements a lot of rounding-like FP operations.
|
|
if (Subtarget->hasFPARMv8()) {
|
|
setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
|
|
setOperationAction(ISD::FCEIL, MVT::f32, Legal);
|
|
setOperationAction(ISD::FROUND, MVT::f32, Legal);
|
|
setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
|
|
setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
|
|
setOperationAction(ISD::FRINT, MVT::f32, Legal);
|
|
setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
|
|
setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
|
|
setOperationAction(ISD::FMINNUM, MVT::v2f32, Legal);
|
|
setOperationAction(ISD::FMAXNUM, MVT::v2f32, Legal);
|
|
setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
|
|
setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
|
|
|
|
if (!Subtarget->isFPOnlySP()) {
|
|
setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
|
|
setOperationAction(ISD::FCEIL, MVT::f64, Legal);
|
|
setOperationAction(ISD::FROUND, MVT::f64, Legal);
|
|
setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
|
|
setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
|
|
setOperationAction(ISD::FRINT, MVT::f64, Legal);
|
|
setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
|
|
setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
|
|
}
|
|
}
|
|
|
|
if (Subtarget->hasNEON()) {
|
|
// vmin and vmax aren't available in a scalar form, so we use
|
|
// a NEON instruction with an undef lane instead.
|
|
setOperationAction(ISD::FMINNAN, MVT::f16, Legal);
|
|
setOperationAction(ISD::FMAXNAN, MVT::f16, Legal);
|
|
setOperationAction(ISD::FMINNAN, MVT::f32, Legal);
|
|
setOperationAction(ISD::FMAXNAN, MVT::f32, Legal);
|
|
setOperationAction(ISD::FMINNAN, MVT::v2f32, Legal);
|
|
setOperationAction(ISD::FMAXNAN, MVT::v2f32, Legal);
|
|
setOperationAction(ISD::FMINNAN, MVT::v4f32, Legal);
|
|
setOperationAction(ISD::FMAXNAN, MVT::v4f32, Legal);
|
|
}
|
|
|
|
// We have target-specific dag combine patterns for the following nodes:
|
|
// ARMISD::VMOVRRD - No need to call setTargetDAGCombine
|
|
setTargetDAGCombine(ISD::ADD);
|
|
setTargetDAGCombine(ISD::SUB);
|
|
setTargetDAGCombine(ISD::MUL);
|
|
setTargetDAGCombine(ISD::AND);
|
|
setTargetDAGCombine(ISD::OR);
|
|
setTargetDAGCombine(ISD::XOR);
|
|
|
|
if (Subtarget->hasV6Ops())
|
|
setTargetDAGCombine(ISD::SRL);
|
|
|
|
setStackPointerRegisterToSaveRestore(ARM::SP);
|
|
|
|
if (Subtarget->useSoftFloat() || Subtarget->isThumb1Only() ||
|
|
!Subtarget->hasVFP2())
|
|
setSchedulingPreference(Sched::RegPressure);
|
|
else
|
|
setSchedulingPreference(Sched::Hybrid);
|
|
|
|
//// temporary - rewrite interface to use type
|
|
MaxStoresPerMemset = 8;
|
|
MaxStoresPerMemsetOptSize = 4;
|
|
MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
|
|
MaxStoresPerMemcpyOptSize = 2;
|
|
MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
|
|
MaxStoresPerMemmoveOptSize = 2;
|
|
|
|
// On ARM arguments smaller than 4 bytes are extended, so all arguments
|
|
// are at least 4 bytes aligned.
|
|
setMinStackArgumentAlignment(4);
|
|
|
|
// Prefer likely predicted branches to selects on out-of-order cores.
|
|
PredictableSelectIsExpensive = Subtarget->getSchedModel().isOutOfOrder();
|
|
|
|
setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
|
|
}
|
|
|
|
bool ARMTargetLowering::useSoftFloat() const {
|
|
return Subtarget->useSoftFloat();
|
|
}
|
|
|
|
// FIXME: It might make sense to define the representative register class as the
|
|
// nearest super-register that has a non-null superset. For example, DPR_VFP2 is
|
|
// a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
|
|
// SPR's representative would be DPR_VFP2. This should work well if register
|
|
// pressure tracking were modified such that a register use would increment the
|
|
// pressure of the register class's representative and all of it's super
|
|
// classes' representatives transitively. We have not implemented this because
|
|
// of the difficulty prior to coalescing of modeling operand register classes
|
|
// due to the common occurrence of cross class copies and subregister insertions
|
|
// and extractions.
|
|
std::pair<const TargetRegisterClass *, uint8_t>
|
|
ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
|
|
MVT VT) const {
|
|
const TargetRegisterClass *RRC = nullptr;
|
|
uint8_t Cost = 1;
|
|
switch (VT.SimpleTy) {
|
|
default:
|
|
return TargetLowering::findRepresentativeClass(TRI, VT);
|
|
// Use DPR as representative register class for all floating point
|
|
// and vector types. Since there are 32 SPR registers and 32 DPR registers so
|
|
// the cost is 1 for both f32 and f64.
|
|
case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
|
|
case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
|
|
RRC = &ARM::DPRRegClass;
|
|
// When NEON is used for SP, only half of the register file is available
|
|
// because operations that define both SP and DP results will be constrained
|
|
// to the VFP2 class (D0-D15). We currently model this constraint prior to
|
|
// coalescing by double-counting the SP regs. See the FIXME above.
|
|
if (Subtarget->useNEONForSinglePrecisionFP())
|
|
Cost = 2;
|
|
break;
|
|
case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
|
|
case MVT::v4f32: case MVT::v2f64:
|
|
RRC = &ARM::DPRRegClass;
|
|
Cost = 2;
|
|
break;
|
|
case MVT::v4i64:
|
|
RRC = &ARM::DPRRegClass;
|
|
Cost = 4;
|
|
break;
|
|
case MVT::v8i64:
|
|
RRC = &ARM::DPRRegClass;
|
|
Cost = 8;
|
|
break;
|
|
}
|
|
return std::make_pair(RRC, Cost);
|
|
}
|
|
|
|
const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
|
|
switch ((ARMISD::NodeType)Opcode) {
|
|
case ARMISD::FIRST_NUMBER: break;
|
|
case ARMISD::Wrapper: return "ARMISD::Wrapper";
|
|
case ARMISD::WrapperPIC: return "ARMISD::WrapperPIC";
|
|
case ARMISD::WrapperJT: return "ARMISD::WrapperJT";
|
|
case ARMISD::COPY_STRUCT_BYVAL: return "ARMISD::COPY_STRUCT_BYVAL";
|
|
case ARMISD::CALL: return "ARMISD::CALL";
|
|
case ARMISD::CALL_PRED: return "ARMISD::CALL_PRED";
|
|
case ARMISD::CALL_NOLINK: return "ARMISD::CALL_NOLINK";
|
|
case ARMISD::BRCOND: return "ARMISD::BRCOND";
|
|
case ARMISD::BR_JT: return "ARMISD::BR_JT";
|
|
case ARMISD::BR2_JT: return "ARMISD::BR2_JT";
|
|
case ARMISD::RET_FLAG: return "ARMISD::RET_FLAG";
|
|
case ARMISD::INTRET_FLAG: return "ARMISD::INTRET_FLAG";
|
|
case ARMISD::PIC_ADD: return "ARMISD::PIC_ADD";
|
|
case ARMISD::CMP: return "ARMISD::CMP";
|
|
case ARMISD::CMN: return "ARMISD::CMN";
|
|
case ARMISD::CMPZ: return "ARMISD::CMPZ";
|
|
case ARMISD::CMPFP: return "ARMISD::CMPFP";
|
|
case ARMISD::CMPFPw0: return "ARMISD::CMPFPw0";
|
|
case ARMISD::BCC_i64: return "ARMISD::BCC_i64";
|
|
case ARMISD::FMSTAT: return "ARMISD::FMSTAT";
|
|
|
|
case ARMISD::CMOV: return "ARMISD::CMOV";
|
|
|
|
case ARMISD::SSAT: return "ARMISD::SSAT";
|
|
case ARMISD::USAT: return "ARMISD::USAT";
|
|
|
|
case ARMISD::SRL_FLAG: return "ARMISD::SRL_FLAG";
|
|
case ARMISD::SRA_FLAG: return "ARMISD::SRA_FLAG";
|
|
case ARMISD::RRX: return "ARMISD::RRX";
|
|
|
|
case ARMISD::ADDC: return "ARMISD::ADDC";
|
|
case ARMISD::ADDE: return "ARMISD::ADDE";
|
|
case ARMISD::SUBC: return "ARMISD::SUBC";
|
|
case ARMISD::SUBE: return "ARMISD::SUBE";
|
|
|
|
case ARMISD::VMOVRRD: return "ARMISD::VMOVRRD";
|
|
case ARMISD::VMOVDRR: return "ARMISD::VMOVDRR";
|
|
case ARMISD::VMOVhr: return "ARMISD::VMOVhr";
|
|
case ARMISD::VMOVrh: return "ARMISD::VMOVrh";
|
|
case ARMISD::VMOVSR: return "ARMISD::VMOVSR";
|
|
|
|
case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
|
|
case ARMISD::EH_SJLJ_LONGJMP: return "ARMISD::EH_SJLJ_LONGJMP";
|
|
case ARMISD::EH_SJLJ_SETUP_DISPATCH: return "ARMISD::EH_SJLJ_SETUP_DISPATCH";
|
|
|
|
case ARMISD::TC_RETURN: return "ARMISD::TC_RETURN";
|
|
|
|
case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
|
|
|
|
case ARMISD::DYN_ALLOC: return "ARMISD::DYN_ALLOC";
|
|
|
|
case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
|
|
|
|
case ARMISD::PRELOAD: return "ARMISD::PRELOAD";
|
|
|
|
case ARMISD::WIN__CHKSTK: return "ARMISD::WIN__CHKSTK";
|
|
case ARMISD::WIN__DBZCHK: return "ARMISD::WIN__DBZCHK";
|
|
|
|
case ARMISD::VCEQ: return "ARMISD::VCEQ";
|
|
case ARMISD::VCEQZ: return "ARMISD::VCEQZ";
|
|
case ARMISD::VCGE: return "ARMISD::VCGE";
|
|
case ARMISD::VCGEZ: return "ARMISD::VCGEZ";
|
|
case ARMISD::VCLEZ: return "ARMISD::VCLEZ";
|
|
case ARMISD::VCGEU: return "ARMISD::VCGEU";
|
|
case ARMISD::VCGT: return "ARMISD::VCGT";
|
|
case ARMISD::VCGTZ: return "ARMISD::VCGTZ";
|
|
case ARMISD::VCLTZ: return "ARMISD::VCLTZ";
|
|
case ARMISD::VCGTU: return "ARMISD::VCGTU";
|
|
case ARMISD::VTST: return "ARMISD::VTST";
|
|
|
|
case ARMISD::VSHL: return "ARMISD::VSHL";
|
|
case ARMISD::VSHRs: return "ARMISD::VSHRs";
|
|
case ARMISD::VSHRu: return "ARMISD::VSHRu";
|
|
case ARMISD::VRSHRs: return "ARMISD::VRSHRs";
|
|
case ARMISD::VRSHRu: return "ARMISD::VRSHRu";
|
|
case ARMISD::VRSHRN: return "ARMISD::VRSHRN";
|
|
case ARMISD::VQSHLs: return "ARMISD::VQSHLs";
|
|
case ARMISD::VQSHLu: return "ARMISD::VQSHLu";
|
|
case ARMISD::VQSHLsu: return "ARMISD::VQSHLsu";
|
|
case ARMISD::VQSHRNs: return "ARMISD::VQSHRNs";
|
|
case ARMISD::VQSHRNu: return "ARMISD::VQSHRNu";
|
|
case ARMISD::VQSHRNsu: return "ARMISD::VQSHRNsu";
|
|
case ARMISD::VQRSHRNs: return "ARMISD::VQRSHRNs";
|
|
case ARMISD::VQRSHRNu: return "ARMISD::VQRSHRNu";
|
|
case ARMISD::VQRSHRNsu: return "ARMISD::VQRSHRNsu";
|
|
case ARMISD::VSLI: return "ARMISD::VSLI";
|
|
case ARMISD::VSRI: return "ARMISD::VSRI";
|
|
case ARMISD::VGETLANEu: return "ARMISD::VGETLANEu";
|
|
case ARMISD::VGETLANEs: return "ARMISD::VGETLANEs";
|
|
case ARMISD::VMOVIMM: return "ARMISD::VMOVIMM";
|
|
case ARMISD::VMVNIMM: return "ARMISD::VMVNIMM";
|
|
case ARMISD::VMOVFPIMM: return "ARMISD::VMOVFPIMM";
|
|
case ARMISD::VDUP: return "ARMISD::VDUP";
|
|
case ARMISD::VDUPLANE: return "ARMISD::VDUPLANE";
|
|
case ARMISD::VEXT: return "ARMISD::VEXT";
|
|
case ARMISD::VREV64: return "ARMISD::VREV64";
|
|
case ARMISD::VREV32: return "ARMISD::VREV32";
|
|
case ARMISD::VREV16: return "ARMISD::VREV16";
|
|
case ARMISD::VZIP: return "ARMISD::VZIP";
|
|
case ARMISD::VUZP: return "ARMISD::VUZP";
|
|
case ARMISD::VTRN: return "ARMISD::VTRN";
|
|
case ARMISD::VTBL1: return "ARMISD::VTBL1";
|
|
case ARMISD::VTBL2: return "ARMISD::VTBL2";
|
|
case ARMISD::VMULLs: return "ARMISD::VMULLs";
|
|
case ARMISD::VMULLu: return "ARMISD::VMULLu";
|
|
case ARMISD::UMAAL: return "ARMISD::UMAAL";
|
|
case ARMISD::UMLAL: return "ARMISD::UMLAL";
|
|
case ARMISD::SMLAL: return "ARMISD::SMLAL";
|
|
case ARMISD::SMLALBB: return "ARMISD::SMLALBB";
|
|
case ARMISD::SMLALBT: return "ARMISD::SMLALBT";
|
|
case ARMISD::SMLALTB: return "ARMISD::SMLALTB";
|
|
case ARMISD::SMLALTT: return "ARMISD::SMLALTT";
|
|
case ARMISD::SMULWB: return "ARMISD::SMULWB";
|
|
case ARMISD::SMULWT: return "ARMISD::SMULWT";
|
|
case ARMISD::SMLALD: return "ARMISD::SMLALD";
|
|
case ARMISD::SMLALDX: return "ARMISD::SMLALDX";
|
|
case ARMISD::SMLSLD: return "ARMISD::SMLSLD";
|
|
case ARMISD::SMLSLDX: return "ARMISD::SMLSLDX";
|
|
case ARMISD::SMMLAR: return "ARMISD::SMMLAR";
|
|
case ARMISD::SMMLSR: return "ARMISD::SMMLSR";
|
|
case ARMISD::BUILD_VECTOR: return "ARMISD::BUILD_VECTOR";
|
|
case ARMISD::BFI: return "ARMISD::BFI";
|
|
case ARMISD::VORRIMM: return "ARMISD::VORRIMM";
|
|
case ARMISD::VBICIMM: return "ARMISD::VBICIMM";
|
|
case ARMISD::VBSL: return "ARMISD::VBSL";
|
|
case ARMISD::MEMCPY: return "ARMISD::MEMCPY";
|
|
case ARMISD::VLD1DUP: return "ARMISD::VLD1DUP";
|
|
case ARMISD::VLD2DUP: return "ARMISD::VLD2DUP";
|
|
case ARMISD::VLD3DUP: return "ARMISD::VLD3DUP";
|
|
case ARMISD::VLD4DUP: return "ARMISD::VLD4DUP";
|
|
case ARMISD::VLD1_UPD: return "ARMISD::VLD1_UPD";
|
|
case ARMISD::VLD2_UPD: return "ARMISD::VLD2_UPD";
|
|
case ARMISD::VLD3_UPD: return "ARMISD::VLD3_UPD";
|
|
case ARMISD::VLD4_UPD: return "ARMISD::VLD4_UPD";
|
|
case ARMISD::VLD2LN_UPD: return "ARMISD::VLD2LN_UPD";
|
|
case ARMISD::VLD3LN_UPD: return "ARMISD::VLD3LN_UPD";
|
|
case ARMISD::VLD4LN_UPD: return "ARMISD::VLD4LN_UPD";
|
|
case ARMISD::VLD1DUP_UPD: return "ARMISD::VLD1DUP_UPD";
|
|
case ARMISD::VLD2DUP_UPD: return "ARMISD::VLD2DUP_UPD";
|
|
case ARMISD::VLD3DUP_UPD: return "ARMISD::VLD3DUP_UPD";
|
|
case ARMISD::VLD4DUP_UPD: return "ARMISD::VLD4DUP_UPD";
|
|
case ARMISD::VST1_UPD: return "ARMISD::VST1_UPD";
|
|
case ARMISD::VST2_UPD: return "ARMISD::VST2_UPD";
|
|
case ARMISD::VST3_UPD: return "ARMISD::VST3_UPD";
|
|
case ARMISD::VST4_UPD: return "ARMISD::VST4_UPD";
|
|
case ARMISD::VST2LN_UPD: return "ARMISD::VST2LN_UPD";
|
|
case ARMISD::VST3LN_UPD: return "ARMISD::VST3LN_UPD";
|
|
case ARMISD::VST4LN_UPD: return "ARMISD::VST4LN_UPD";
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
EVT ARMTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
|
|
EVT VT) const {
|
|
if (!VT.isVector())
|
|
return getPointerTy(DL);
|
|
return VT.changeVectorElementTypeToInteger();
|
|
}
|
|
|
|
/// getRegClassFor - Return the register class that should be used for the
|
|
/// specified value type.
|
|
const TargetRegisterClass *ARMTargetLowering::getRegClassFor(MVT VT) const {
|
|
// Map v4i64 to QQ registers but do not make the type legal. Similarly map
|
|
// v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
|
|
// load / store 4 to 8 consecutive D registers.
|
|
if (Subtarget->hasNEON()) {
|
|
if (VT == MVT::v4i64)
|
|
return &ARM::QQPRRegClass;
|
|
if (VT == MVT::v8i64)
|
|
return &ARM::QQQQPRRegClass;
|
|
}
|
|
return TargetLowering::getRegClassFor(VT);
|
|
}
|
|
|
|
// memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
|
|
// source/dest is aligned and the copy size is large enough. We therefore want
|
|
// to align such objects passed to memory intrinsics.
|
|
bool ARMTargetLowering::shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize,
|
|
unsigned &PrefAlign) const {
|
|
if (!isa<MemIntrinsic>(CI))
|
|
return false;
|
|
MinSize = 8;
|
|
// On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
|
|
// cycle faster than 4-byte aligned LDM.
|
|
PrefAlign = (Subtarget->hasV6Ops() && !Subtarget->isMClass() ? 8 : 4);
|
|
return true;
|
|
}
|
|
|
|
// Create a fast isel object.
|
|
FastISel *
|
|
ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
|
|
const TargetLibraryInfo *libInfo) const {
|
|
return ARM::createFastISel(funcInfo, libInfo);
|
|
}
|
|
|
|
Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
|
|
unsigned NumVals = N->getNumValues();
|
|
if (!NumVals)
|
|
return Sched::RegPressure;
|
|
|
|
for (unsigned i = 0; i != NumVals; ++i) {
|
|
EVT VT = N->getValueType(i);
|
|
if (VT == MVT::Glue || VT == MVT::Other)
|
|
continue;
|
|
if (VT.isFloatingPoint() || VT.isVector())
|
|
return Sched::ILP;
|
|
}
|
|
|
|
if (!N->isMachineOpcode())
|
|
return Sched::RegPressure;
|
|
|
|
// Load are scheduled for latency even if there instruction itinerary
|
|
// is not available.
|
|
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
|
|
const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
|
|
|
|
if (MCID.getNumDefs() == 0)
|
|
return Sched::RegPressure;
|
|
if (!Itins->isEmpty() &&
|
|
Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
|
|
return Sched::ILP;
|
|
|
|
return Sched::RegPressure;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Lowering Code
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static bool isSRL16(const SDValue &Op) {
|
|
if (Op.getOpcode() != ISD::SRL)
|
|
return false;
|
|
if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
|
|
return Const->getZExtValue() == 16;
|
|
return false;
|
|
}
|
|
|
|
static bool isSRA16(const SDValue &Op) {
|
|
if (Op.getOpcode() != ISD::SRA)
|
|
return false;
|
|
if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
|
|
return Const->getZExtValue() == 16;
|
|
return false;
|
|
}
|
|
|
|
static bool isSHL16(const SDValue &Op) {
|
|
if (Op.getOpcode() != ISD::SHL)
|
|
return false;
|
|
if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
|
|
return Const->getZExtValue() == 16;
|
|
return false;
|
|
}
|
|
|
|
// Check for a signed 16-bit value. We special case SRA because it makes it
|
|
// more simple when also looking for SRAs that aren't sign extending a
|
|
// smaller value. Without the check, we'd need to take extra care with
|
|
// checking order for some operations.
|
|
static bool isS16(const SDValue &Op, SelectionDAG &DAG) {
|
|
if (isSRA16(Op))
|
|
return isSHL16(Op.getOperand(0));
|
|
return DAG.ComputeNumSignBits(Op) == 17;
|
|
}
|
|
|
|
/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
|
|
static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
|
|
switch (CC) {
|
|
default: llvm_unreachable("Unknown condition code!");
|
|
case ISD::SETNE: return ARMCC::NE;
|
|
case ISD::SETEQ: return ARMCC::EQ;
|
|
case ISD::SETGT: return ARMCC::GT;
|
|
case ISD::SETGE: return ARMCC::GE;
|
|
case ISD::SETLT: return ARMCC::LT;
|
|
case ISD::SETLE: return ARMCC::LE;
|
|
case ISD::SETUGT: return ARMCC::HI;
|
|
case ISD::SETUGE: return ARMCC::HS;
|
|
case ISD::SETULT: return ARMCC::LO;
|
|
case ISD::SETULE: return ARMCC::LS;
|
|
}
|
|
}
|
|
|
|
/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
|
|
static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
|
|
ARMCC::CondCodes &CondCode2, bool &InvalidOnQNaN) {
|
|
CondCode2 = ARMCC::AL;
|
|
InvalidOnQNaN = true;
|
|
switch (CC) {
|
|
default: llvm_unreachable("Unknown FP condition!");
|
|
case ISD::SETEQ:
|
|
case ISD::SETOEQ:
|
|
CondCode = ARMCC::EQ;
|
|
InvalidOnQNaN = false;
|
|
break;
|
|
case ISD::SETGT:
|
|
case ISD::SETOGT: CondCode = ARMCC::GT; break;
|
|
case ISD::SETGE:
|
|
case ISD::SETOGE: CondCode = ARMCC::GE; break;
|
|
case ISD::SETOLT: CondCode = ARMCC::MI; break;
|
|
case ISD::SETOLE: CondCode = ARMCC::LS; break;
|
|
case ISD::SETONE:
|
|
CondCode = ARMCC::MI;
|
|
CondCode2 = ARMCC::GT;
|
|
InvalidOnQNaN = false;
|
|
break;
|
|
case ISD::SETO: CondCode = ARMCC::VC; break;
|
|
case ISD::SETUO: CondCode = ARMCC::VS; break;
|
|
case ISD::SETUEQ:
|
|
CondCode = ARMCC::EQ;
|
|
CondCode2 = ARMCC::VS;
|
|
InvalidOnQNaN = false;
|
|
break;
|
|
case ISD::SETUGT: CondCode = ARMCC::HI; break;
|
|
case ISD::SETUGE: CondCode = ARMCC::PL; break;
|
|
case ISD::SETLT:
|
|
case ISD::SETULT: CondCode = ARMCC::LT; break;
|
|
case ISD::SETLE:
|
|
case ISD::SETULE: CondCode = ARMCC::LE; break;
|
|
case ISD::SETNE:
|
|
case ISD::SETUNE:
|
|
CondCode = ARMCC::NE;
|
|
InvalidOnQNaN = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Calling Convention Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ARMGenCallingConv.inc"
|
|
|
|
/// getEffectiveCallingConv - Get the effective calling convention, taking into
|
|
/// account presence of floating point hardware and calling convention
|
|
/// limitations, such as support for variadic functions.
|
|
CallingConv::ID
|
|
ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC,
|
|
bool isVarArg) const {
|
|
switch (CC) {
|
|
default:
|
|
report_fatal_error("Unsupported calling convention");
|
|
case CallingConv::ARM_AAPCS:
|
|
case CallingConv::ARM_APCS:
|
|
case CallingConv::GHC:
|
|
return CC;
|
|
case CallingConv::PreserveMost:
|
|
return CallingConv::PreserveMost;
|
|
case CallingConv::ARM_AAPCS_VFP:
|
|
case CallingConv::Swift:
|
|
return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP;
|
|
case CallingConv::C:
|
|
if (!Subtarget->isAAPCS_ABI())
|
|
return CallingConv::ARM_APCS;
|
|
else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() &&
|
|
getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
|
|
!isVarArg)
|
|
return CallingConv::ARM_AAPCS_VFP;
|
|
else
|
|
return CallingConv::ARM_AAPCS;
|
|
case CallingConv::Fast:
|
|
case CallingConv::CXX_FAST_TLS:
|
|
if (!Subtarget->isAAPCS_ABI()) {
|
|
if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg)
|
|
return CallingConv::Fast;
|
|
return CallingConv::ARM_APCS;
|
|
} else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg)
|
|
return CallingConv::ARM_AAPCS_VFP;
|
|
else
|
|
return CallingConv::ARM_AAPCS;
|
|
}
|
|
}
|
|
|
|
CCAssignFn *ARMTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
|
|
bool isVarArg) const {
|
|
return CCAssignFnForNode(CC, false, isVarArg);
|
|
}
|
|
|
|
CCAssignFn *ARMTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
|
|
bool isVarArg) const {
|
|
return CCAssignFnForNode(CC, true, isVarArg);
|
|
}
|
|
|
|
/// CCAssignFnForNode - Selects the correct CCAssignFn for the given
|
|
/// CallingConvention.
|
|
CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
|
|
bool Return,
|
|
bool isVarArg) const {
|
|
switch (getEffectiveCallingConv(CC, isVarArg)) {
|
|
default:
|
|
report_fatal_error("Unsupported calling convention");
|
|
case CallingConv::ARM_APCS:
|
|
return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
|
|
case CallingConv::ARM_AAPCS:
|
|
return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
|
|
case CallingConv::ARM_AAPCS_VFP:
|
|
return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
|
|
case CallingConv::Fast:
|
|
return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
|
|
case CallingConv::GHC:
|
|
return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
|
|
case CallingConv::PreserveMost:
|
|
return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
|
|
}
|
|
}
|
|
|
|
/// LowerCallResult - Lower the result values of a call into the
|
|
/// appropriate copies out of appropriate physical registers.
|
|
SDValue ARMTargetLowering::LowerCallResult(
|
|
SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
|
|
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
|
|
SDValue ThisVal) const {
|
|
// Assign locations to each value returned by this call.
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
|
|
*DAG.getContext());
|
|
CCInfo.AnalyzeCallResult(Ins, CCAssignFnForReturn(CallConv, isVarArg));
|
|
|
|
// Copy all of the result registers out of their specified physreg.
|
|
for (unsigned i = 0; i != RVLocs.size(); ++i) {
|
|
CCValAssign VA = RVLocs[i];
|
|
|
|
// Pass 'this' value directly from the argument to return value, to avoid
|
|
// reg unit interference
|
|
if (i == 0 && isThisReturn) {
|
|
assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 &&
|
|
"unexpected return calling convention register assignment");
|
|
InVals.push_back(ThisVal);
|
|
continue;
|
|
}
|
|
|
|
SDValue Val;
|
|
if (VA.needsCustom()) {
|
|
// Handle f64 or half of a v2f64.
|
|
SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
|
|
InFlag);
|
|
Chain = Lo.getValue(1);
|
|
InFlag = Lo.getValue(2);
|
|
VA = RVLocs[++i]; // skip ahead to next loc
|
|
SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
|
|
InFlag);
|
|
Chain = Hi.getValue(1);
|
|
InFlag = Hi.getValue(2);
|
|
if (!Subtarget->isLittle())
|
|
std::swap (Lo, Hi);
|
|
Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
|
|
|
|
if (VA.getLocVT() == MVT::v2f64) {
|
|
SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
|
|
Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
|
|
DAG.getConstant(0, dl, MVT::i32));
|
|
|
|
VA = RVLocs[++i]; // skip ahead to next loc
|
|
Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
|
|
Chain = Lo.getValue(1);
|
|
InFlag = Lo.getValue(2);
|
|
VA = RVLocs[++i]; // skip ahead to next loc
|
|
Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
|
|
Chain = Hi.getValue(1);
|
|
InFlag = Hi.getValue(2);
|
|
if (!Subtarget->isLittle())
|
|
std::swap (Lo, Hi);
|
|
Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
|
|
Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
|
|
DAG.getConstant(1, dl, MVT::i32));
|
|
}
|
|
} else {
|
|
Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
|
|
InFlag);
|
|
Chain = Val.getValue(1);
|
|
InFlag = Val.getValue(2);
|
|
}
|
|
|
|
switch (VA.getLocInfo()) {
|
|
default: llvm_unreachable("Unknown loc info!");
|
|
case CCValAssign::Full: break;
|
|
case CCValAssign::BCvt:
|
|
Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
|
|
break;
|
|
}
|
|
|
|
InVals.push_back(Val);
|
|
}
|
|
|
|
return Chain;
|
|
}
|
|
|
|
/// LowerMemOpCallTo - Store the argument to the stack.
|
|
SDValue ARMTargetLowering::LowerMemOpCallTo(SDValue Chain, SDValue StackPtr,
|
|
SDValue Arg, const SDLoc &dl,
|
|
SelectionDAG &DAG,
|
|
const CCValAssign &VA,
|
|
ISD::ArgFlagsTy Flags) const {
|
|
unsigned LocMemOffset = VA.getLocMemOffset();
|
|
SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
|
|
PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
|
|
StackPtr, PtrOff);
|
|
return DAG.getStore(
|
|
Chain, dl, Arg, PtrOff,
|
|
MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset));
|
|
}
|
|
|
|
void ARMTargetLowering::PassF64ArgInRegs(const SDLoc &dl, SelectionDAG &DAG,
|
|
SDValue Chain, SDValue &Arg,
|
|
RegsToPassVector &RegsToPass,
|
|
CCValAssign &VA, CCValAssign &NextVA,
|
|
SDValue &StackPtr,
|
|
SmallVectorImpl<SDValue> &MemOpChains,
|
|
ISD::ArgFlagsTy Flags) const {
|
|
SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
|
|
DAG.getVTList(MVT::i32, MVT::i32), Arg);
|
|
unsigned id = Subtarget->isLittle() ? 0 : 1;
|
|
RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(id)));
|
|
|
|
if (NextVA.isRegLoc())
|
|
RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1-id)));
|
|
else {
|
|
assert(NextVA.isMemLoc());
|
|
if (!StackPtr.getNode())
|
|
StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP,
|
|
getPointerTy(DAG.getDataLayout()));
|
|
|
|
MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1-id),
|
|
dl, DAG, NextVA,
|
|
Flags));
|
|
}
|
|
}
|
|
|
|
/// LowerCall - Lowering a call into a callseq_start <-
|
|
/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
|
|
/// nodes.
|
|
SDValue
|
|
ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
|
|
SmallVectorImpl<SDValue> &InVals) const {
|
|
SelectionDAG &DAG = CLI.DAG;
|
|
SDLoc &dl = CLI.DL;
|
|
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
|
|
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
|
|
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
|
|
SDValue Chain = CLI.Chain;
|
|
SDValue Callee = CLI.Callee;
|
|
bool &isTailCall = CLI.IsTailCall;
|
|
CallingConv::ID CallConv = CLI.CallConv;
|
|
bool doesNotRet = CLI.DoesNotReturn;
|
|
bool isVarArg = CLI.IsVarArg;
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
bool isStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
|
|
bool isThisReturn = false;
|
|
bool isSibCall = false;
|
|
auto Attr = MF.getFunction().getFnAttribute("disable-tail-calls");
|
|
|
|
// Disable tail calls if they're not supported.
|
|
if (!Subtarget->supportsTailCall() || Attr.getValueAsString() == "true")
|
|
isTailCall = false;
|
|
|
|
if (isTailCall) {
|
|
// Check if it's really possible to do a tail call.
|
|
isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
|
|
isVarArg, isStructRet, MF.getFunction().hasStructRetAttr(),
|
|
Outs, OutVals, Ins, DAG);
|
|
if (!isTailCall && CLI.CS && CLI.CS.isMustTailCall())
|
|
report_fatal_error("failed to perform tail call elimination on a call "
|
|
"site marked musttail");
|
|
// We don't support GuaranteedTailCallOpt for ARM, only automatically
|
|
// detected sibcalls.
|
|
if (isTailCall) {
|
|
++NumTailCalls;
|
|
isSibCall = true;
|
|
}
|
|
}
|
|
|
|
// Analyze operands of the call, assigning locations to each operand.
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
|
|
*DAG.getContext());
|
|
CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CallConv, isVarArg));
|
|
|
|
// Get a count of how many bytes are to be pushed on the stack.
|
|
unsigned NumBytes = CCInfo.getNextStackOffset();
|
|
|
|
// For tail calls, memory operands are available in our caller's stack.
|
|
if (isSibCall)
|
|
NumBytes = 0;
|
|
|
|
// Adjust the stack pointer for the new arguments...
|
|
// These operations are automatically eliminated by the prolog/epilog pass
|
|
if (!isSibCall)
|
|
Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
|
|
|
|
SDValue StackPtr =
|
|
DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy(DAG.getDataLayout()));
|
|
|
|
RegsToPassVector RegsToPass;
|
|
SmallVector<SDValue, 8> MemOpChains;
|
|
|
|
// Walk the register/memloc assignments, inserting copies/loads. In the case
|
|
// of tail call optimization, arguments are handled later.
|
|
for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
|
|
i != e;
|
|
++i, ++realArgIdx) {
|
|
CCValAssign &VA = ArgLocs[i];
|
|
SDValue Arg = OutVals[realArgIdx];
|
|
ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
|
|
bool isByVal = Flags.isByVal();
|
|
|
|
// Promote the value if needed.
|
|
switch (VA.getLocInfo()) {
|
|
default: llvm_unreachable("Unknown loc info!");
|
|
case CCValAssign::Full: break;
|
|
case CCValAssign::SExt:
|
|
Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
|
|
break;
|
|
case CCValAssign::ZExt:
|
|
Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
|
|
break;
|
|
case CCValAssign::AExt:
|
|
Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
|
|
break;
|
|
case CCValAssign::BCvt:
|
|
Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
|
|
break;
|
|
}
|
|
|
|
// f64 and v2f64 might be passed in i32 pairs and must be split into pieces
|
|
if (VA.needsCustom()) {
|
|
if (VA.getLocVT() == MVT::v2f64) {
|
|
SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
|
|
DAG.getConstant(0, dl, MVT::i32));
|
|
SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
|
|
DAG.getConstant(1, dl, MVT::i32));
|
|
|
|
PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
|
|
VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
|
|
|
|
VA = ArgLocs[++i]; // skip ahead to next loc
|
|
if (VA.isRegLoc()) {
|
|
PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
|
|
VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
|
|
} else {
|
|
assert(VA.isMemLoc());
|
|
|
|
MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
|
|
dl, DAG, VA, Flags));
|
|
}
|
|
} else {
|
|
PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
|
|
StackPtr, MemOpChains, Flags);
|
|
}
|
|
} else if (VA.isRegLoc()) {
|
|
if (realArgIdx == 0 && Flags.isReturned() && !Flags.isSwiftSelf() &&
|
|
Outs[0].VT == MVT::i32) {
|
|
assert(VA.getLocVT() == MVT::i32 &&
|
|
"unexpected calling convention register assignment");
|
|
assert(!Ins.empty() && Ins[0].VT == MVT::i32 &&
|
|
"unexpected use of 'returned'");
|
|
isThisReturn = true;
|
|
}
|
|
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
|
|
} else if (isByVal) {
|
|
assert(VA.isMemLoc());
|
|
unsigned offset = 0;
|
|
|
|
// True if this byval aggregate will be split between registers
|
|
// and memory.
|
|
unsigned ByValArgsCount = CCInfo.getInRegsParamsCount();
|
|
unsigned CurByValIdx = CCInfo.getInRegsParamsProcessed();
|
|
|
|
if (CurByValIdx < ByValArgsCount) {
|
|
|
|
unsigned RegBegin, RegEnd;
|
|
CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd);
|
|
|
|
EVT PtrVT =
|
|
DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
|
|
unsigned int i, j;
|
|
for (i = 0, j = RegBegin; j < RegEnd; i++, j++) {
|
|
SDValue Const = DAG.getConstant(4*i, dl, MVT::i32);
|
|
SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
|
|
SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
|
|
MachinePointerInfo(),
|
|
DAG.InferPtrAlignment(AddArg));
|
|
MemOpChains.push_back(Load.getValue(1));
|
|
RegsToPass.push_back(std::make_pair(j, Load));
|
|
}
|
|
|
|
// If parameter size outsides register area, "offset" value
|
|
// helps us to calculate stack slot for remained part properly.
|
|
offset = RegEnd - RegBegin;
|
|
|
|
CCInfo.nextInRegsParam();
|
|
}
|
|
|
|
if (Flags.getByValSize() > 4*offset) {
|
|
auto PtrVT = getPointerTy(DAG.getDataLayout());
|
|
unsigned LocMemOffset = VA.getLocMemOffset();
|
|
SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
|
|
SDValue Dst = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, StkPtrOff);
|
|
SDValue SrcOffset = DAG.getIntPtrConstant(4*offset, dl);
|
|
SDValue Src = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, SrcOffset);
|
|
SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset, dl,
|
|
MVT::i32);
|
|
SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), dl,
|
|
MVT::i32);
|
|
|
|
SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
|
|
MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
|
|
Ops));
|
|
}
|
|
} else if (!isSibCall) {
|
|
assert(VA.isMemLoc());
|
|
|
|
MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
|
|
dl, DAG, VA, Flags));
|
|
}
|
|
}
|
|
|
|
if (!MemOpChains.empty())
|
|
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
|
|
|
|
// Build a sequence of copy-to-reg nodes chained together with token chain
|
|
// and flag operands which copy the outgoing args into the appropriate regs.
|
|
SDValue InFlag;
|
|
// Tail call byval lowering might overwrite argument registers so in case of
|
|
// tail call optimization the copies to registers are lowered later.
|
|
if (!isTailCall)
|
|
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
|
|
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
|
|
RegsToPass[i].second, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
// For tail calls lower the arguments to the 'real' stack slot.
|
|
if (isTailCall) {
|
|
// Force all the incoming stack arguments to be loaded from the stack
|
|
// before any new outgoing arguments are stored to the stack, because the
|
|
// outgoing stack slots may alias the incoming argument stack slots, and
|
|
// the alias isn't otherwise explicit. This is slightly more conservative
|
|
// than necessary, because it means that each store effectively depends
|
|
// on every argument instead of just those arguments it would clobber.
|
|
|
|
// Do not flag preceding copytoreg stuff together with the following stuff.
|
|
InFlag = SDValue();
|
|
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
|
|
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
|
|
RegsToPass[i].second, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
InFlag = SDValue();
|
|
}
|
|
|
|
// If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
|
|
// direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
|
|
// node so that legalize doesn't hack it.
|
|
bool isDirect = false;
|
|
|
|
const TargetMachine &TM = getTargetMachine();
|
|
const Module *Mod = MF.getFunction().getParent();
|
|
const GlobalValue *GV = nullptr;
|
|
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
|
|
GV = G->getGlobal();
|
|
bool isStub =
|
|
!TM.shouldAssumeDSOLocal(*Mod, GV) && Subtarget->isTargetMachO();
|
|
|
|
bool isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass());
|
|
bool isLocalARMFunc = false;
|
|
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
|
|
auto PtrVt = getPointerTy(DAG.getDataLayout());
|
|
|
|
if (Subtarget->genLongCalls()) {
|
|
assert((!isPositionIndependent() || Subtarget->isTargetWindows()) &&
|
|
"long-calls codegen is not position independent!");
|
|
// Handle a global address or an external symbol. If it's not one of
|
|
// those, the target's already in a register, so we don't need to do
|
|
// anything extra.
|
|
if (isa<GlobalAddressSDNode>(Callee)) {
|
|
// Create a constant pool entry for the callee address
|
|
unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
|
|
ARMConstantPoolValue *CPV =
|
|
ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
|
|
|
|
// Get the address of the callee into a register
|
|
SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
|
|
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
|
|
Callee = DAG.getLoad(
|
|
PtrVt, dl, DAG.getEntryNode(), CPAddr,
|
|
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
|
|
} else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
|
|
const char *Sym = S->getSymbol();
|
|
|
|
// Create a constant pool entry for the callee address
|
|
unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
|
|
ARMConstantPoolValue *CPV =
|
|
ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
|
|
ARMPCLabelIndex, 0);
|
|
// Get the address of the callee into a register
|
|
SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
|
|
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
|
|
Callee = DAG.getLoad(
|
|
PtrVt, dl, DAG.getEntryNode(), CPAddr,
|
|
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
|
|
}
|
|
} else if (isa<GlobalAddressSDNode>(Callee)) {
|
|
// If we're optimizing for minimum size and the function is called three or
|
|
// more times in this block, we can improve codesize by calling indirectly
|
|
// as BLXr has a 16-bit encoding.
|
|
auto *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
|
|
auto *BB = CLI.CS.getParent();
|
|
bool PreferIndirect =
|
|
Subtarget->isThumb() && MF.getFunction().optForMinSize() &&
|
|
count_if(GV->users(), [&BB](const User *U) {
|
|
return isa<Instruction>(U) && cast<Instruction>(U)->getParent() == BB;
|
|
}) > 2;
|
|
|
|
if (!PreferIndirect) {
|
|
isDirect = true;
|
|
bool isDef = GV->isStrongDefinitionForLinker();
|
|
|
|
// ARM call to a local ARM function is predicable.
|
|
isLocalARMFunc = !Subtarget->isThumb() && (isDef || !ARMInterworking);
|
|
// tBX takes a register source operand.
|
|
if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
|
|
assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?");
|
|
Callee = DAG.getNode(
|
|
ARMISD::WrapperPIC, dl, PtrVt,
|
|
DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, ARMII::MO_NONLAZY));
|
|
Callee = DAG.getLoad(
|
|
PtrVt, dl, DAG.getEntryNode(), Callee,
|
|
MachinePointerInfo::getGOT(DAG.getMachineFunction()),
|
|
/* Alignment = */ 0, MachineMemOperand::MODereferenceable |
|
|
MachineMemOperand::MOInvariant);
|
|
} else if (Subtarget->isTargetCOFF()) {
|
|
assert(Subtarget->isTargetWindows() &&
|
|
"Windows is the only supported COFF target");
|
|
unsigned TargetFlags = GV->hasDLLImportStorageClass()
|
|
? ARMII::MO_DLLIMPORT
|
|
: ARMII::MO_NO_FLAG;
|
|
Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, /*Offset=*/0,
|
|
TargetFlags);
|
|
if (GV->hasDLLImportStorageClass())
|
|
Callee =
|
|
DAG.getLoad(PtrVt, dl, DAG.getEntryNode(),
|
|
DAG.getNode(ARMISD::Wrapper, dl, PtrVt, Callee),
|
|
MachinePointerInfo::getGOT(DAG.getMachineFunction()));
|
|
} else {
|
|
Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, 0);
|
|
}
|
|
}
|
|
} else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
|
|
isDirect = true;
|
|
// tBX takes a register source operand.
|
|
const char *Sym = S->getSymbol();
|
|
if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
|
|
unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
|
|
ARMConstantPoolValue *CPV =
|
|
ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
|
|
ARMPCLabelIndex, 4);
|
|
SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
|
|
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
|
|
Callee = DAG.getLoad(
|
|
PtrVt, dl, DAG.getEntryNode(), CPAddr,
|
|
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
|
|
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
|
|
Callee = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVt, Callee, PICLabel);
|
|
} else {
|
|
Callee = DAG.getTargetExternalSymbol(Sym, PtrVt, 0);
|
|
}
|
|
}
|
|
|
|
// FIXME: handle tail calls differently.
|
|
unsigned CallOpc;
|
|
if (Subtarget->isThumb()) {
|
|
if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
|
|
CallOpc = ARMISD::CALL_NOLINK;
|
|
else
|
|
CallOpc = ARMISD::CALL;
|
|
} else {
|
|
if (!isDirect && !Subtarget->hasV5TOps())
|
|
CallOpc = ARMISD::CALL_NOLINK;
|
|
else if (doesNotRet && isDirect && Subtarget->hasRetAddrStack() &&
|
|
// Emit regular call when code size is the priority
|
|
!MF.getFunction().optForMinSize())
|
|
// "mov lr, pc; b _foo" to avoid confusing the RSP
|
|
CallOpc = ARMISD::CALL_NOLINK;
|
|
else
|
|
CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
|
|
}
|
|
|
|
std::vector<SDValue> Ops;
|
|
Ops.push_back(Chain);
|
|
Ops.push_back(Callee);
|
|
|
|
// Add argument registers to the end of the list so that they are known live
|
|
// into the call.
|
|
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
|
|
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
|
|
RegsToPass[i].second.getValueType()));
|
|
|
|
// Add a register mask operand representing the call-preserved registers.
|
|
if (!isTailCall) {
|
|
const uint32_t *Mask;
|
|
const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
|
|
if (isThisReturn) {
|
|
// For 'this' returns, use the R0-preserving mask if applicable
|
|
Mask = ARI->getThisReturnPreservedMask(MF, CallConv);
|
|
if (!Mask) {
|
|
// Set isThisReturn to false if the calling convention is not one that
|
|
// allows 'returned' to be modeled in this way, so LowerCallResult does
|
|
// not try to pass 'this' straight through
|
|
isThisReturn = false;
|
|
Mask = ARI->getCallPreservedMask(MF, CallConv);
|
|
}
|
|
} else
|
|
Mask = ARI->getCallPreservedMask(MF, CallConv);
|
|
|
|
assert(Mask && "Missing call preserved mask for calling convention");
|
|
Ops.push_back(DAG.getRegisterMask(Mask));
|
|
}
|
|
|
|
if (InFlag.getNode())
|
|
Ops.push_back(InFlag);
|
|
|
|
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
if (isTailCall) {
|
|
MF.getFrameInfo().setHasTailCall();
|
|
return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, Ops);
|
|
}
|
|
|
|
// Returns a chain and a flag for retval copy to use.
|
|
Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
|
|
InFlag = Chain.getValue(1);
|
|
|
|
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
|
|
DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
|
|
if (!Ins.empty())
|
|
InFlag = Chain.getValue(1);
|
|
|
|
// Handle result values, copying them out of physregs into vregs that we
|
|
// return.
|
|
return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
|
|
InVals, isThisReturn,
|
|
isThisReturn ? OutVals[0] : SDValue());
|
|
}
|
|
|
|
/// HandleByVal - Every parameter *after* a byval parameter is passed
|
|
/// on the stack. Remember the next parameter register to allocate,
|
|
/// and then confiscate the rest of the parameter registers to insure
|
|
/// this.
|
|
void ARMTargetLowering::HandleByVal(CCState *State, unsigned &Size,
|
|
unsigned Align) const {
|
|
// Byval (as with any stack) slots are always at least 4 byte aligned.
|
|
Align = std::max(Align, 4U);
|
|
|
|
unsigned Reg = State->AllocateReg(GPRArgRegs);
|
|
if (!Reg)
|
|
return;
|
|
|
|
unsigned AlignInRegs = Align / 4;
|
|
unsigned Waste = (ARM::R4 - Reg) % AlignInRegs;
|
|
for (unsigned i = 0; i < Waste; ++i)
|
|
Reg = State->AllocateReg(GPRArgRegs);
|
|
|
|
if (!Reg)
|
|
return;
|
|
|
|
unsigned Excess = 4 * (ARM::R4 - Reg);
|
|
|
|
// Special case when NSAA != SP and parameter size greater than size of
|
|
// all remained GPR regs. In that case we can't split parameter, we must
|
|
// send it to stack. We also must set NCRN to R4, so waste all
|
|
// remained registers.
|
|
const unsigned NSAAOffset = State->getNextStackOffset();
|
|
if (NSAAOffset != 0 && Size > Excess) {
|
|
while (State->AllocateReg(GPRArgRegs))
|
|
;
|
|
return;
|
|
}
|
|
|
|
// First register for byval parameter is the first register that wasn't
|
|
// allocated before this method call, so it would be "reg".
|
|
// If parameter is small enough to be saved in range [reg, r4), then
|
|
// the end (first after last) register would be reg + param-size-in-regs,
|
|
// else parameter would be splitted between registers and stack,
|
|
// end register would be r4 in this case.
|
|
unsigned ByValRegBegin = Reg;
|
|
unsigned ByValRegEnd = std::min<unsigned>(Reg + Size / 4, ARM::R4);
|
|
State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd);
|
|
// Note, first register is allocated in the beginning of function already,
|
|
// allocate remained amount of registers we need.
|
|
for (unsigned i = Reg + 1; i != ByValRegEnd; ++i)
|
|
State->AllocateReg(GPRArgRegs);
|
|
// A byval parameter that is split between registers and memory needs its
|
|
// size truncated here.
|
|
// In the case where the entire structure fits in registers, we set the
|
|
// size in memory to zero.
|
|
Size = std::max<int>(Size - Excess, 0);
|
|
}
|
|
|
|
/// MatchingStackOffset - Return true if the given stack call argument is
|
|
/// already available in the same position (relatively) of the caller's
|
|
/// incoming argument stack.
|
|
static
|
|
bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
|
|
MachineFrameInfo &MFI, const MachineRegisterInfo *MRI,
|
|
const TargetInstrInfo *TII) {
|
|
unsigned Bytes = Arg.getValueSizeInBits() / 8;
|
|
int FI = std::numeric_limits<int>::max();
|
|
if (Arg.getOpcode() == ISD::CopyFromReg) {
|
|
unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
|
|
if (!TargetRegisterInfo::isVirtualRegister(VR))
|
|
return false;
|
|
MachineInstr *Def = MRI->getVRegDef(VR);
|
|
if (!Def)
|
|
return false;
|
|
if (!Flags.isByVal()) {
|
|
if (!TII->isLoadFromStackSlot(*Def, FI))
|
|
return false;
|
|
} else {
|
|
return false;
|
|
}
|
|
} else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
|
|
if (Flags.isByVal())
|
|
// ByVal argument is passed in as a pointer but it's now being
|
|
// dereferenced. e.g.
|
|
// define @foo(%struct.X* %A) {
|
|
// tail call @bar(%struct.X* byval %A)
|
|
// }
|
|
return false;
|
|
SDValue Ptr = Ld->getBasePtr();
|
|
FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
|
|
if (!FINode)
|
|
return false;
|
|
FI = FINode->getIndex();
|
|
} else
|
|
return false;
|
|
|
|
assert(FI != std::numeric_limits<int>::max());
|
|
if (!MFI.isFixedObjectIndex(FI))
|
|
return false;
|
|
return Offset == MFI.getObjectOffset(FI) && Bytes == MFI.getObjectSize(FI);
|
|
}
|
|
|
|
/// IsEligibleForTailCallOptimization - Check whether the call is eligible
|
|
/// for tail call optimization. Targets which want to do tail call
|
|
/// optimization should implement this function.
|
|
bool
|
|
ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
|
|
CallingConv::ID CalleeCC,
|
|
bool isVarArg,
|
|
bool isCalleeStructRet,
|
|
bool isCallerStructRet,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
SelectionDAG& DAG) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
const Function &CallerF = MF.getFunction();
|
|
CallingConv::ID CallerCC = CallerF.getCallingConv();
|
|
|
|
assert(Subtarget->supportsTailCall());
|
|
|
|
// Tail calls to function pointers cannot be optimized for Thumb1 if the args
|
|
// to the call take up r0-r3. The reason is that there are no legal registers
|
|
// left to hold the pointer to the function to be called.
|
|
if (Subtarget->isThumb1Only() && Outs.size() >= 4 &&
|
|
!isa<GlobalAddressSDNode>(Callee.getNode()))
|
|
return false;
|
|
|
|
// Look for obvious safe cases to perform tail call optimization that do not
|
|
// require ABI changes. This is what gcc calls sibcall.
|
|
|
|
// Exception-handling functions need a special set of instructions to indicate
|
|
// a return to the hardware. Tail-calling another function would probably
|
|
// break this.
|
|
if (CallerF.hasFnAttribute("interrupt"))
|
|
return false;
|
|
|
|
// Also avoid sibcall optimization if either caller or callee uses struct
|
|
// return semantics.
|
|
if (isCalleeStructRet || isCallerStructRet)
|
|
return false;
|
|
|
|
// Externally-defined functions with weak linkage should not be
|
|
// tail-called on ARM when the OS does not support dynamic
|
|
// pre-emption of symbols, as the AAELF spec requires normal calls
|
|
// to undefined weak functions to be replaced with a NOP or jump to the
|
|
// next instruction. The behaviour of branch instructions in this
|
|
// situation (as used for tail calls) is implementation-defined, so we
|
|
// cannot rely on the linker replacing the tail call with a return.
|
|
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
|
|
const GlobalValue *GV = G->getGlobal();
|
|
const Triple &TT = getTargetMachine().getTargetTriple();
|
|
if (GV->hasExternalWeakLinkage() &&
|
|
(!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
|
|
return false;
|
|
}
|
|
|
|
// Check that the call results are passed in the same way.
|
|
LLVMContext &C = *DAG.getContext();
|
|
if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
|
|
CCAssignFnForReturn(CalleeCC, isVarArg),
|
|
CCAssignFnForReturn(CallerCC, isVarArg)))
|
|
return false;
|
|
// The callee has to preserve all registers the caller needs to preserve.
|
|
const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
|
|
const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
|
|
if (CalleeCC != CallerCC) {
|
|
const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
|
|
if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
|
|
return false;
|
|
}
|
|
|
|
// If Caller's vararg or byval argument has been split between registers and
|
|
// stack, do not perform tail call, since part of the argument is in caller's
|
|
// local frame.
|
|
const ARMFunctionInfo *AFI_Caller = MF.getInfo<ARMFunctionInfo>();
|
|
if (AFI_Caller->getArgRegsSaveSize())
|
|
return false;
|
|
|
|
// If the callee takes no arguments then go on to check the results of the
|
|
// call.
|
|
if (!Outs.empty()) {
|
|
// Check if stack adjustment is needed. For now, do not do this if any
|
|
// argument is passed on the stack.
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
|
|
CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
|
|
if (CCInfo.getNextStackOffset()) {
|
|
// Check if the arguments are already laid out in the right way as
|
|
// the caller's fixed stack objects.
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
const MachineRegisterInfo *MRI = &MF.getRegInfo();
|
|
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
|
|
for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
|
|
i != e;
|
|
++i, ++realArgIdx) {
|
|
CCValAssign &VA = ArgLocs[i];
|
|
EVT RegVT = VA.getLocVT();
|
|
SDValue Arg = OutVals[realArgIdx];
|
|
ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
|
|
if (VA.getLocInfo() == CCValAssign::Indirect)
|
|
return false;
|
|
if (VA.needsCustom()) {
|
|
// f64 and vector types are split into multiple registers or
|
|
// register/stack-slot combinations. The types will not match
|
|
// the registers; give up on memory f64 refs until we figure
|
|
// out what to do about this.
|
|
if (!VA.isRegLoc())
|
|
return false;
|
|
if (!ArgLocs[++i].isRegLoc())
|
|
return false;
|
|
if (RegVT == MVT::v2f64) {
|
|
if (!ArgLocs[++i].isRegLoc())
|
|
return false;
|
|
if (!ArgLocs[++i].isRegLoc())
|
|
return false;
|
|
}
|
|
} else if (!VA.isRegLoc()) {
|
|
if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
|
|
MFI, MRI, TII))
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
const MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
|
|
MachineFunction &MF, bool isVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
LLVMContext &Context) const {
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
|
|
return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
|
|
}
|
|
|
|
static SDValue LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
|
|
const SDLoc &DL, SelectionDAG &DAG) {
|
|
const MachineFunction &MF = DAG.getMachineFunction();
|
|
const Function &F = MF.getFunction();
|
|
|
|
StringRef IntKind = F.getFnAttribute("interrupt").getValueAsString();
|
|
|
|
// See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
|
|
// version of the "preferred return address". These offsets affect the return
|
|
// instruction if this is a return from PL1 without hypervisor extensions.
|
|
// IRQ/FIQ: +4 "subs pc, lr, #4"
|
|
// SWI: 0 "subs pc, lr, #0"
|
|
// ABORT: +4 "subs pc, lr, #4"
|
|
// UNDEF: +4/+2 "subs pc, lr, #0"
|
|
// UNDEF varies depending on where the exception came from ARM or Thumb
|
|
// mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
|
|
|
|
int64_t LROffset;
|
|
if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" ||
|
|
IntKind == "ABORT")
|
|
LROffset = 4;
|
|
else if (IntKind == "SWI" || IntKind == "UNDEF")
|
|
LROffset = 0;
|
|
else
|
|
report_fatal_error("Unsupported interrupt attribute. If present, value "
|
|
"must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
|
|
|
|
RetOps.insert(RetOps.begin() + 1,
|
|
DAG.getConstant(LROffset, DL, MVT::i32, false));
|
|
|
|
return DAG.getNode(ARMISD::INTRET_FLAG, DL, MVT::Other, RetOps);
|
|
}
|
|
|
|
SDValue
|
|
ARMTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
|
|
bool isVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
const SDLoc &dl, SelectionDAG &DAG) const {
|
|
// CCValAssign - represent the assignment of the return value to a location.
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
|
|
// CCState - Info about the registers and stack slots.
|
|
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
|
|
*DAG.getContext());
|
|
|
|
// Analyze outgoing return values.
|
|
CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
|
|
|
|
SDValue Flag;
|
|
SmallVector<SDValue, 4> RetOps;
|
|
RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
|
|
bool isLittleEndian = Subtarget->isLittle();
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
|
|
AFI->setReturnRegsCount(RVLocs.size());
|
|
|
|
// Copy the result values into the output registers.
|
|
for (unsigned i = 0, realRVLocIdx = 0;
|
|
i != RVLocs.size();
|
|
++i, ++realRVLocIdx) {
|
|
CCValAssign &VA = RVLocs[i];
|
|
assert(VA.isRegLoc() && "Can only return in registers!");
|
|
|
|
SDValue Arg = OutVals[realRVLocIdx];
|
|
bool ReturnF16 = false;
|
|
|
|
if (Subtarget->hasFullFP16() && Subtarget->isTargetHardFloat()) {
|
|
// Half-precision return values can be returned like this:
|
|
//
|
|
// t11 f16 = fadd ...
|
|
// t12: i16 = bitcast t11
|
|
// t13: i32 = zero_extend t12
|
|
// t14: f32 = bitcast t13 <~~~~~~~ Arg
|
|
//
|
|
// to avoid code generation for bitcasts, we simply set Arg to the node
|
|
// that produces the f16 value, t11 in this case.
|
|
//
|
|
if (Arg.getValueType() == MVT::f32 && Arg.getOpcode() == ISD::BITCAST) {
|
|
SDValue ZE = Arg.getOperand(0);
|
|
if (ZE.getOpcode() == ISD::ZERO_EXTEND && ZE.getValueType() == MVT::i32) {
|
|
SDValue BC = ZE.getOperand(0);
|
|
if (BC.getOpcode() == ISD::BITCAST && BC.getValueType() == MVT::i16) {
|
|
Arg = BC.getOperand(0);
|
|
ReturnF16 = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
switch (VA.getLocInfo()) {
|
|
default: llvm_unreachable("Unknown loc info!");
|
|
case CCValAssign::Full: break;
|
|
case CCValAssign::BCvt:
|
|
if (!ReturnF16)
|
|
Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
|
|
break;
|
|
}
|
|
|
|
if (VA.needsCustom()) {
|
|
if (VA.getLocVT() == MVT::v2f64) {
|
|
// Extract the first half and return it in two registers.
|
|
SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
|
|
DAG.getConstant(0, dl, MVT::i32));
|
|
SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
|
|
DAG.getVTList(MVT::i32, MVT::i32), Half);
|
|
|
|
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
|
|
HalfGPRs.getValue(isLittleEndian ? 0 : 1),
|
|
Flag);
|
|
Flag = Chain.getValue(1);
|
|
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
|
|
VA = RVLocs[++i]; // skip ahead to next loc
|
|
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
|
|
HalfGPRs.getValue(isLittleEndian ? 1 : 0),
|
|
Flag);
|
|
Flag = Chain.getValue(1);
|
|
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
|
|
VA = RVLocs[++i]; // skip ahead to next loc
|
|
|
|
// Extract the 2nd half and fall through to handle it as an f64 value.
|
|
Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
|
|
DAG.getConstant(1, dl, MVT::i32));
|
|
}
|
|
// Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is
|
|
// available.
|
|
SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
|
|
DAG.getVTList(MVT::i32, MVT::i32), Arg);
|
|
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
|
|
fmrrd.getValue(isLittleEndian ? 0 : 1),
|
|
Flag);
|
|
Flag = Chain.getValue(1);
|
|
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
|
|
VA = RVLocs[++i]; // skip ahead to next loc
|
|
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
|
|
fmrrd.getValue(isLittleEndian ? 1 : 0),
|
|
Flag);
|
|
} else
|
|
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
|
|
|
|
// Guarantee that all emitted copies are
|
|
// stuck together, avoiding something bad.
|
|
Flag = Chain.getValue(1);
|
|
RetOps.push_back(DAG.getRegister(VA.getLocReg(),
|
|
ReturnF16 ? MVT::f16 : VA.getLocVT()));
|
|
}
|
|
const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
|
|
const MCPhysReg *I =
|
|
TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
|
|
if (I) {
|
|
for (; *I; ++I) {
|
|
if (ARM::GPRRegClass.contains(*I))
|
|
RetOps.push_back(DAG.getRegister(*I, MVT::i32));
|
|
else if (ARM::DPRRegClass.contains(*I))
|
|
RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
|
|
else
|
|
llvm_unreachable("Unexpected register class in CSRsViaCopy!");
|
|
}
|
|
}
|
|
|
|
// Update chain and glue.
|
|
RetOps[0] = Chain;
|
|
if (Flag.getNode())
|
|
RetOps.push_back(Flag);
|
|
|
|
// CPUs which aren't M-class use a special sequence to return from
|
|
// exceptions (roughly, any instruction setting pc and cpsr simultaneously,
|
|
// though we use "subs pc, lr, #N").
|
|
//
|
|
// M-class CPUs actually use a normal return sequence with a special
|
|
// (hardware-provided) value in LR, so the normal code path works.
|
|
if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt") &&
|
|
!Subtarget->isMClass()) {
|
|
if (Subtarget->isThumb1Only())
|
|
report_fatal_error("interrupt attribute is not supported in Thumb1");
|
|
return LowerInterruptReturn(RetOps, dl, DAG);
|
|
}
|
|
|
|
return DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, RetOps);
|
|
}
|
|
|
|
bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
|
|
if (N->getNumValues() != 1)
|
|
return false;
|
|
if (!N->hasNUsesOfValue(1, 0))
|
|
return false;
|
|
|
|
SDValue TCChain = Chain;
|
|
SDNode *Copy = *N->use_begin();
|
|
if (Copy->getOpcode() == ISD::CopyToReg) {
|
|
// If the copy has a glue operand, we conservatively assume it isn't safe to
|
|
// perform a tail call.
|
|
if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
|
|
return false;
|
|
TCChain = Copy->getOperand(0);
|
|
} else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
|
|
SDNode *VMov = Copy;
|
|
// f64 returned in a pair of GPRs.
|
|
SmallPtrSet<SDNode*, 2> Copies;
|
|
for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
|
|
UI != UE; ++UI) {
|
|
if (UI->getOpcode() != ISD::CopyToReg)
|
|
return false;
|
|
Copies.insert(*UI);
|
|
}
|
|
if (Copies.size() > 2)
|
|
return false;
|
|
|
|
for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
|
|
UI != UE; ++UI) {
|
|
SDValue UseChain = UI->getOperand(0);
|
|
if (Copies.count(UseChain.getNode()))
|
|
// Second CopyToReg
|
|
Copy = *UI;
|
|
else {
|
|
// We are at the top of this chain.
|
|
// If the copy has a glue operand, we conservatively assume it
|
|
// isn't safe to perform a tail call.
|
|
if (UI->getOperand(UI->getNumOperands()-1).getValueType() == MVT::Glue)
|
|
return false;
|
|
// First CopyToReg
|
|
TCChain = UseChain;
|
|
}
|
|
}
|
|
} else if (Copy->getOpcode() == ISD::BITCAST) {
|
|
// f32 returned in a single GPR.
|
|
if (!Copy->hasOneUse())
|
|
return false;
|
|
Copy = *Copy->use_begin();
|
|
if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
|
|
return false;
|
|
// If the copy has a glue operand, we conservatively assume it isn't safe to
|
|
// perform a tail call.
|
|
if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
|
|
return false;
|
|
TCChain = Copy->getOperand(0);
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
bool HasRet = false;
|
|
for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
|
|
UI != UE; ++UI) {
|
|
if (UI->getOpcode() != ARMISD::RET_FLAG &&
|
|
UI->getOpcode() != ARMISD::INTRET_FLAG)
|
|
return false;
|
|
HasRet = true;
|
|
}
|
|
|
|
if (!HasRet)
|
|
return false;
|
|
|
|
Chain = TCChain;
|
|
return true;
|
|
}
|
|
|
|
bool ARMTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
|
|
if (!Subtarget->supportsTailCall())
|
|
return false;
|
|
|
|
auto Attr =
|
|
CI->getParent()->getParent()->getFnAttribute("disable-tail-calls");
|
|
if (!CI->isTailCall() || Attr.getValueAsString() == "true")
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// Trying to write a 64 bit value so need to split into two 32 bit values first,
|
|
// and pass the lower and high parts through.
|
|
static SDValue LowerWRITE_REGISTER(SDValue Op, SelectionDAG &DAG) {
|
|
SDLoc DL(Op);
|
|
SDValue WriteValue = Op->getOperand(2);
|
|
|
|
// This function is only supposed to be called for i64 type argument.
|
|
assert(WriteValue.getValueType() == MVT::i64
|
|
&& "LowerWRITE_REGISTER called for non-i64 type argument.");
|
|
|
|
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
|
|
DAG.getConstant(0, DL, MVT::i32));
|
|
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
|
|
DAG.getConstant(1, DL, MVT::i32));
|
|
SDValue Ops[] = { Op->getOperand(0), Op->getOperand(1), Lo, Hi };
|
|
return DAG.getNode(ISD::WRITE_REGISTER, DL, MVT::Other, Ops);
|
|
}
|
|
|
|
// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
|
|
// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
|
|
// one of the above mentioned nodes. It has to be wrapped because otherwise
|
|
// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
|
|
// be used to form addressing mode. These wrapped nodes will be selected
|
|
// into MOVi.
|
|
SDValue ARMTargetLowering::LowerConstantPool(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
EVT PtrVT = Op.getValueType();
|
|
// FIXME there is no actual debug info here
|
|
SDLoc dl(Op);
|
|
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
|
|
SDValue Res;
|
|
|
|
// When generating execute-only code Constant Pools must be promoted to the
|
|
// global data section. It's a bit ugly that we can't share them across basic
|
|
// blocks, but this way we guarantee that execute-only behaves correct with
|
|
// position-independent addressing modes.
|
|
if (Subtarget->genExecuteOnly()) {
|
|
auto AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
|
|
auto T = const_cast<Type*>(CP->getType());
|
|
auto C = const_cast<Constant*>(CP->getConstVal());
|
|
auto M = const_cast<Module*>(DAG.getMachineFunction().
|
|
getFunction().getParent());
|
|
auto GV = new GlobalVariable(
|
|
*M, T, /*isConst=*/true, GlobalVariable::InternalLinkage, C,
|
|
Twine(DAG.getDataLayout().getPrivateGlobalPrefix()) + "CP" +
|
|
Twine(DAG.getMachineFunction().getFunctionNumber()) + "_" +
|
|
Twine(AFI->createPICLabelUId())
|
|
);
|
|
SDValue GA = DAG.getTargetGlobalAddress(dyn_cast<GlobalValue>(GV),
|
|
dl, PtrVT);
|
|
return LowerGlobalAddress(GA, DAG);
|
|
}
|
|
|
|
if (CP->isMachineConstantPoolEntry())
|
|
Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
|
|
CP->getAlignment());
|
|
else
|
|
Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
|
|
CP->getAlignment());
|
|
return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
|
|
}
|
|
|
|
unsigned ARMTargetLowering::getJumpTableEncoding() const {
|
|
return MachineJumpTableInfo::EK_Inline;
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
|
|
unsigned ARMPCLabelIndex = 0;
|
|
SDLoc DL(Op);
|
|
EVT PtrVT = getPointerTy(DAG.getDataLayout());
|
|
const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
|
|
SDValue CPAddr;
|
|
bool IsPositionIndependent = isPositionIndependent() || Subtarget->isROPI();
|
|
if (!IsPositionIndependent) {
|
|
CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
|
|
} else {
|
|
unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
|
|
ARMPCLabelIndex = AFI->createPICLabelUId();
|
|
ARMConstantPoolValue *CPV =
|
|
ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
|
|
ARMCP::CPBlockAddress, PCAdj);
|
|
CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
|
|
}
|
|
CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
|
|
SDValue Result = DAG.getLoad(
|
|
PtrVT, DL, DAG.getEntryNode(), CPAddr,
|
|
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
|
|
if (!IsPositionIndependent)
|
|
return Result;
|
|
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, DL, MVT::i32);
|
|
return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
|
|
}
|
|
|
|
/// Convert a TLS address reference into the correct sequence of loads
|
|
/// and calls to compute the variable's address for Darwin, and return an
|
|
/// SDValue containing the final node.
|
|
|
|
/// Darwin only has one TLS scheme which must be capable of dealing with the
|
|
/// fully general situation, in the worst case. This means:
|
|
/// + "extern __thread" declaration.
|
|
/// + Defined in a possibly unknown dynamic library.
|
|
///
|
|
/// The general system is that each __thread variable has a [3 x i32] descriptor
|
|
/// which contains information used by the runtime to calculate the address. The
|
|
/// only part of this the compiler needs to know about is the first word, which
|
|
/// contains a function pointer that must be called with the address of the
|
|
/// entire descriptor in "r0".
|
|
///
|
|
/// Since this descriptor may be in a different unit, in general access must
|
|
/// proceed along the usual ARM rules. A common sequence to produce is:
|
|
///
|
|
/// movw rT1, :lower16:_var$non_lazy_ptr
|
|
/// movt rT1, :upper16:_var$non_lazy_ptr
|
|
/// ldr r0, [rT1]
|
|
/// ldr rT2, [r0]
|
|
/// blx rT2
|
|
/// [...address now in r0...]
|
|
SDValue
|
|
ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
assert(Subtarget->isTargetDarwin() &&
|
|
"This function expects a Darwin target");
|
|
SDLoc DL(Op);
|
|
|
|
// First step is to get the address of the actua global symbol. This is where
|
|
// the TLS descriptor lives.
|
|
SDValue DescAddr = LowerGlobalAddressDarwin(Op, DAG);
|
|
|
|
// The first entry in the descriptor is a function pointer that we must call
|
|
// to obtain the address of the variable.
|
|
SDValue Chain = DAG.getEntryNode();
|
|
SDValue FuncTLVGet = DAG.getLoad(
|
|
MVT::i32, DL, Chain, DescAddr,
|
|
MachinePointerInfo::getGOT(DAG.getMachineFunction()),
|
|
/* Alignment = */ 4,
|
|
MachineMemOperand::MONonTemporal | MachineMemOperand::MODereferenceable |
|
|
MachineMemOperand::MOInvariant);
|
|
Chain = FuncTLVGet.getValue(1);
|
|
|
|
MachineFunction &F = DAG.getMachineFunction();
|
|
MachineFrameInfo &MFI = F.getFrameInfo();
|
|
MFI.setAdjustsStack(true);
|
|
|
|
// TLS calls preserve all registers except those that absolutely must be
|
|
// trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be
|
|
// silly).
|
|
auto TRI =
|
|
getTargetMachine().getSubtargetImpl(F.getFunction())->getRegisterInfo();
|
|
auto ARI = static_cast<const ARMRegisterInfo *>(TRI);
|
|
const uint32_t *Mask = ARI->getTLSCallPreservedMask(DAG.getMachineFunction());
|
|
|
|
// Finally, we can make the call. This is just a degenerate version of a
|
|
// normal AArch64 call node: r0 takes the address of the descriptor, and
|
|
// returns the address of the variable in this thread.
|
|
Chain = DAG.getCopyToReg(Chain, DL, ARM::R0, DescAddr, SDValue());
|
|
Chain =
|
|
DAG.getNode(ARMISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
|
|
Chain, FuncTLVGet, DAG.getRegister(ARM::R0, MVT::i32),
|
|
DAG.getRegisterMask(Mask), Chain.getValue(1));
|
|
return DAG.getCopyFromReg(Chain, DL, ARM::R0, MVT::i32, Chain.getValue(1));
|
|
}
|
|
|
|
SDValue
|
|
ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering");
|
|
|
|
SDValue Chain = DAG.getEntryNode();
|
|
EVT PtrVT = getPointerTy(DAG.getDataLayout());
|
|
SDLoc DL(Op);
|
|
|
|
// Load the current TEB (thread environment block)
|
|
SDValue Ops[] = {Chain,
|
|
DAG.getConstant(Intrinsic::arm_mrc, DL, MVT::i32),
|
|
DAG.getConstant(15, DL, MVT::i32),
|
|
DAG.getConstant(0, DL, MVT::i32),
|
|
DAG.getConstant(13, DL, MVT::i32),
|
|
DAG.getConstant(0, DL, MVT::i32),
|
|
DAG.getConstant(2, DL, MVT::i32)};
|
|
SDValue CurrentTEB = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
|
|
DAG.getVTList(MVT::i32, MVT::Other), Ops);
|
|
|
|
SDValue TEB = CurrentTEB.getValue(0);
|
|
Chain = CurrentTEB.getValue(1);
|
|
|
|
// Load the ThreadLocalStoragePointer from the TEB
|
|
// A pointer to the TLS array is located at offset 0x2c from the TEB.
|
|
SDValue TLSArray =
|
|
DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x2c, DL));
|
|
TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo());
|
|
|
|
// The pointer to the thread's TLS data area is at the TLS Index scaled by 4
|
|
// offset into the TLSArray.
|
|
|
|
// Load the TLS index from the C runtime
|
|
SDValue TLSIndex =
|
|
DAG.getTargetExternalSymbol("_tls_index", PtrVT, ARMII::MO_NO_FLAG);
|
|
TLSIndex = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, TLSIndex);
|
|
TLSIndex = DAG.getLoad(PtrVT, DL, Chain, TLSIndex, MachinePointerInfo());
|
|
|
|
SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
|
|
DAG.getConstant(2, DL, MVT::i32));
|
|
SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
|
|
DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
|
|
MachinePointerInfo());
|
|
|
|
// Get the offset of the start of the .tls section (section base)
|
|
const auto *GA = cast<GlobalAddressSDNode>(Op);
|
|
auto *CPV = ARMConstantPoolConstant::Create(GA->getGlobal(), ARMCP::SECREL);
|
|
SDValue Offset = DAG.getLoad(
|
|
PtrVT, DL, Chain, DAG.getNode(ARMISD::Wrapper, DL, MVT::i32,
|
|
DAG.getTargetConstantPool(CPV, PtrVT, 4)),
|
|
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
|
|
|
|
return DAG.getNode(ISD::ADD, DL, PtrVT, TLS, Offset);
|
|
}
|
|
|
|
// Lower ISD::GlobalTLSAddress using the "general dynamic" model
|
|
SDValue
|
|
ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc dl(GA);
|
|
EVT PtrVT = getPointerTy(DAG.getDataLayout());
|
|
unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
|
|
unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
|
|
ARMConstantPoolValue *CPV =
|
|
ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
|
|
ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
|
|
SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
|
|
Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
|
|
Argument = DAG.getLoad(
|
|
PtrVT, dl, DAG.getEntryNode(), Argument,
|
|
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
|
|
SDValue Chain = Argument.getValue(1);
|
|
|
|
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
|
|
Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
|
|
|
|
// call __tls_get_addr.
|
|
ArgListTy Args;
|
|
ArgListEntry Entry;
|
|
Entry.Node = Argument;
|
|
Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
|
|
Args.push_back(Entry);
|
|
|
|
// FIXME: is there useful debug info available here?
|
|
TargetLowering::CallLoweringInfo CLI(DAG);
|
|
CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
|
|
CallingConv::C, Type::getInt32Ty(*DAG.getContext()),
|
|
DAG.getExternalSymbol("__tls_get_addr", PtrVT), std::move(Args));
|
|
|
|
std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
|
|
return CallResult.first;
|
|
}
|
|
|
|
// Lower ISD::GlobalTLSAddress using the "initial exec" or
|
|
// "local exec" model.
|
|
SDValue
|
|
ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
|
|
SelectionDAG &DAG,
|
|
TLSModel::Model model) const {
|
|
const GlobalValue *GV = GA->getGlobal();
|
|
SDLoc dl(GA);
|
|
SDValue Offset;
|
|
SDValue Chain = DAG.getEntryNode();
|
|
EVT PtrVT = getPointerTy(DAG.getDataLayout());
|
|
// Get the Thread Pointer
|
|
SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
|
|
|
|
if (model == TLSModel::InitialExec) {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
|
|
unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
|
|
// Initial exec model.
|
|
unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
|
|
ARMConstantPoolValue *CPV =
|
|
ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
|
|
ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
|
|
true);
|
|
Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
|
|
Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
|
|
Offset = DAG.getLoad(
|
|
PtrVT, dl, Chain, Offset,
|
|
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
|
|
Chain = Offset.getValue(1);
|
|
|
|
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
|
|
Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
|
|
|
|
Offset = DAG.getLoad(
|
|
PtrVT, dl, Chain, Offset,
|
|
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
|
|
} else {
|
|
// local exec model
|
|
assert(model == TLSModel::LocalExec);
|
|
ARMConstantPoolValue *CPV =
|
|
ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
|
|
Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
|
|
Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
|
|
Offset = DAG.getLoad(
|
|
PtrVT, dl, Chain, Offset,
|
|
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
|
|
}
|
|
|
|
// The address of the thread local variable is the add of the thread
|
|
// pointer with the offset of the variable.
|
|
return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
|
|
}
|
|
|
|
SDValue
|
|
ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
|
|
GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
|
|
if (DAG.getTarget().useEmulatedTLS())
|
|
return LowerToTLSEmulatedModel(GA, DAG);
|
|
|
|
if (Subtarget->isTargetDarwin())
|
|
return LowerGlobalTLSAddressDarwin(Op, DAG);
|
|
|
|
if (Subtarget->isTargetWindows())
|
|
return LowerGlobalTLSAddressWindows(Op, DAG);
|
|
|
|
// TODO: implement the "local dynamic" model
|
|
assert(Subtarget->isTargetELF() && "Only ELF implemented here");
|
|
TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
|
|
|
|
switch (model) {
|
|
case TLSModel::GeneralDynamic:
|
|
case TLSModel::LocalDynamic:
|
|
return LowerToTLSGeneralDynamicModel(GA, DAG);
|
|
case TLSModel::InitialExec:
|
|
case TLSModel::LocalExec:
|
|
return LowerToTLSExecModels(GA, DAG, model);
|
|
}
|
|
llvm_unreachable("bogus TLS model");
|
|
}
|
|
|
|
/// Return true if all users of V are within function F, looking through
|
|
/// ConstantExprs.
|
|
static bool allUsersAreInFunction(const Value *V, const Function *F) {
|
|
SmallVector<const User*,4> Worklist;
|
|
for (auto *U : V->users())
|
|
Worklist.push_back(U);
|
|
while (!Worklist.empty()) {
|
|
auto *U = Worklist.pop_back_val();
|
|
if (isa<ConstantExpr>(U)) {
|
|
for (auto *UU : U->users())
|
|
Worklist.push_back(UU);
|
|
continue;
|
|
}
|
|
|
|
auto *I = dyn_cast<Instruction>(U);
|
|
if (!I || I->getParent()->getParent() != F)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Return true if all users of V are within some (any) function, looking through
|
|
/// ConstantExprs. In other words, are there any global constant users?
|
|
static bool allUsersAreInFunctions(const Value *V) {
|
|
SmallVector<const User*,4> Worklist;
|
|
for (auto *U : V->users())
|
|
Worklist.push_back(U);
|
|
while (!Worklist.empty()) {
|
|
auto *U = Worklist.pop_back_val();
|
|
if (isa<ConstantExpr>(U)) {
|
|
for (auto *UU : U->users())
|
|
Worklist.push_back(UU);
|
|
continue;
|
|
}
|
|
|
|
if (!isa<Instruction>(U))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Return true if T is an integer, float or an array/vector of either.
|
|
static bool isSimpleType(Type *T) {
|
|
if (T->isIntegerTy() || T->isFloatingPointTy())
|
|
return true;
|
|
Type *SubT = nullptr;
|
|
if (T->isArrayTy())
|
|
SubT = T->getArrayElementType();
|
|
else if (T->isVectorTy())
|
|
SubT = T->getVectorElementType();
|
|
else
|
|
return false;
|
|
return SubT->isIntegerTy() || SubT->isFloatingPointTy();
|
|
}
|
|
|
|
static SDValue promoteToConstantPool(const GlobalValue *GV, SelectionDAG &DAG,
|
|
EVT PtrVT, const SDLoc &dl) {
|
|
// If we're creating a pool entry for a constant global with unnamed address,
|
|
// and the global is small enough, we can emit it inline into the constant pool
|
|
// to save ourselves an indirection.
|
|
//
|
|
// This is a win if the constant is only used in one function (so it doesn't
|
|
// need to be duplicated) or duplicating the constant wouldn't increase code
|
|
// size (implying the constant is no larger than 4 bytes).
|
|
const Function &F = DAG.getMachineFunction().getFunction();
|
|
|
|
// We rely on this decision to inline being idemopotent and unrelated to the
|
|
// use-site. We know that if we inline a variable at one use site, we'll
|
|
// inline it elsewhere too (and reuse the constant pool entry). Fast-isel
|
|
// doesn't know about this optimization, so bail out if it's enabled else
|
|
// we could decide to inline here (and thus never emit the GV) but require
|
|
// the GV from fast-isel generated code.
|
|
if (!EnableConstpoolPromotion ||
|
|
DAG.getMachineFunction().getTarget().Options.EnableFastISel)
|
|
return SDValue();
|
|
|
|
auto *GVar = dyn_cast<GlobalVariable>(GV);
|
|
if (!GVar || !GVar->hasInitializer() ||
|
|
!GVar->isConstant() || !GVar->hasGlobalUnnamedAddr() ||
|
|
!GVar->hasLocalLinkage())
|
|
return SDValue();
|
|
|
|
// Ensure that we don't try and inline any type that contains pointers. If
|
|
// we inline a value that contains relocations, we move the relocations from
|
|
// .data to .text which is not ideal.
|
|
auto *Init = GVar->getInitializer();
|
|
if (!isSimpleType(Init->getType()))
|
|
return SDValue();
|
|
|
|
// The constant islands pass can only really deal with alignment requests
|
|
// <= 4 bytes and cannot pad constants itself. Therefore we cannot promote
|
|
// any type wanting greater alignment requirements than 4 bytes. We also
|
|
// can only promote constants that are multiples of 4 bytes in size or
|
|
// are paddable to a multiple of 4. Currently we only try and pad constants
|
|
// that are strings for simplicity.
|
|
auto *CDAInit = dyn_cast<ConstantDataArray>(Init);
|
|
unsigned Size = DAG.getDataLayout().getTypeAllocSize(Init->getType());
|
|
unsigned Align = GVar->getAlignment();
|
|
unsigned RequiredPadding = 4 - (Size % 4);
|
|
bool PaddingPossible =
|
|
RequiredPadding == 4 || (CDAInit && CDAInit->isString());
|
|
if (!PaddingPossible || Align > 4 || Size > ConstpoolPromotionMaxSize ||
|
|
Size == 0)
|
|
return SDValue();
|
|
|
|
unsigned PaddedSize = Size + ((RequiredPadding == 4) ? 0 : RequiredPadding);
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
|
|
|
|
// We can't bloat the constant pool too much, else the ConstantIslands pass
|
|
// may fail to converge. If we haven't promoted this global yet (it may have
|
|
// multiple uses), and promoting it would increase the constant pool size (Sz
|
|
// > 4), ensure we have space to do so up to MaxTotal.
|
|
if (!AFI->getGlobalsPromotedToConstantPool().count(GVar) && Size > 4)
|
|
if (AFI->getPromotedConstpoolIncrease() + PaddedSize - 4 >=
|
|
ConstpoolPromotionMaxTotal)
|
|
return SDValue();
|
|
|
|
// This is only valid if all users are in a single function OR it has users
|
|
// in multiple functions but it no larger than a pointer. We also check if
|
|
// GVar has constant (non-ConstantExpr) users. If so, it essentially has its
|
|
// address taken.
|
|
if (!allUsersAreInFunction(GVar, &F) &&
|
|
!(Size <= 4 && allUsersAreInFunctions(GVar)))
|
|
return SDValue();
|
|
|
|
// We're going to inline this global. Pad it out if needed.
|
|
if (RequiredPadding != 4) {
|
|
StringRef S = CDAInit->getAsString();
|
|
|
|
SmallVector<uint8_t,16> V(S.size());
|
|
std::copy(S.bytes_begin(), S.bytes_end(), V.begin());
|
|
while (RequiredPadding--)
|
|
V.push_back(0);
|
|
Init = ConstantDataArray::get(*DAG.getContext(), V);
|
|
}
|
|
|
|
auto CPVal = ARMConstantPoolConstant::Create(GVar, Init);
|
|
SDValue CPAddr =
|
|
DAG.getTargetConstantPool(CPVal, PtrVT, /*Align=*/4);
|
|
if (!AFI->getGlobalsPromotedToConstantPool().count(GVar)) {
|
|
AFI->markGlobalAsPromotedToConstantPool(GVar);
|
|
AFI->setPromotedConstpoolIncrease(AFI->getPromotedConstpoolIncrease() +
|
|
PaddedSize - 4);
|
|
}
|
|
++NumConstpoolPromoted;
|
|
return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
|
|
}
|
|
|
|
bool ARMTargetLowering::isReadOnly(const GlobalValue *GV) const {
|
|
if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
|
|
GV = GA->getBaseObject();
|
|
return (isa<GlobalVariable>(GV) && cast<GlobalVariable>(GV)->isConstant()) ||
|
|
isa<Function>(GV);
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerGlobalAddress(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
switch (Subtarget->getTargetTriple().getObjectFormat()) {
|
|
default: llvm_unreachable("unknown object format");
|
|
case Triple::COFF:
|
|
return LowerGlobalAddressWindows(Op, DAG);
|
|
case Triple::ELF:
|
|
return LowerGlobalAddressELF(Op, DAG);
|
|
case Triple::MachO:
|
|
return LowerGlobalAddressDarwin(Op, DAG);
|
|
}
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
EVT PtrVT = getPointerTy(DAG.getDataLayout());
|
|
SDLoc dl(Op);
|
|
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
|
|
const TargetMachine &TM = getTargetMachine();
|
|
bool IsRO = isReadOnly(GV);
|
|
|
|
// promoteToConstantPool only if not generating XO text section
|
|
if (TM.shouldAssumeDSOLocal(*GV->getParent(), GV) && !Subtarget->genExecuteOnly())
|
|
if (SDValue V = promoteToConstantPool(GV, DAG, PtrVT, dl))
|
|
return V;
|
|
|
|
if (isPositionIndependent()) {
|
|
bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
|
|
SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
|
|
UseGOT_PREL ? ARMII::MO_GOT : 0);
|
|
SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
|
|
if (UseGOT_PREL)
|
|
Result =
|
|
DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
|
|
MachinePointerInfo::getGOT(DAG.getMachineFunction()));
|
|
return Result;
|
|
} else if (Subtarget->isROPI() && IsRO) {
|
|
// PC-relative.
|
|
SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT);
|
|
SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
|
|
return Result;
|
|
} else if (Subtarget->isRWPI() && !IsRO) {
|
|
// SB-relative.
|
|
SDValue RelAddr;
|
|
if (Subtarget->useMovt(DAG.getMachineFunction())) {
|
|
++NumMovwMovt;
|
|
SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_SBREL);
|
|
RelAddr = DAG.getNode(ARMISD::Wrapper, dl, PtrVT, G);
|
|
} else { // use literal pool for address constant
|
|
ARMConstantPoolValue *CPV =
|
|
ARMConstantPoolConstant::Create(GV, ARMCP::SBREL);
|
|
SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
|
|
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
|
|
RelAddr = DAG.getLoad(
|
|
PtrVT, dl, DAG.getEntryNode(), CPAddr,
|
|
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
|
|
}
|
|
SDValue SB = DAG.getCopyFromReg(DAG.getEntryNode(), dl, ARM::R9, PtrVT);
|
|
SDValue Result = DAG.getNode(ISD::ADD, dl, PtrVT, SB, RelAddr);
|
|
return Result;
|
|
}
|
|
|
|
// If we have T2 ops, we can materialize the address directly via movt/movw
|
|
// pair. This is always cheaper.
|
|
if (Subtarget->useMovt(DAG.getMachineFunction())) {
|
|
++NumMovwMovt;
|
|
// FIXME: Once remat is capable of dealing with instructions with register
|
|
// operands, expand this into two nodes.
|
|
return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
|
|
DAG.getTargetGlobalAddress(GV, dl, PtrVT));
|
|
} else {
|
|
SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
|
|
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
|
|
return DAG.getLoad(
|
|
PtrVT, dl, DAG.getEntryNode(), CPAddr,
|
|
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
|
|
}
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
|
|
"ROPI/RWPI not currently supported for Darwin");
|
|
EVT PtrVT = getPointerTy(DAG.getDataLayout());
|
|
SDLoc dl(Op);
|
|
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
|
|
|
|
if (Subtarget->useMovt(DAG.getMachineFunction()))
|
|
++NumMovwMovt;
|
|
|
|
// FIXME: Once remat is capable of dealing with instructions with register
|
|
// operands, expand this into multiple nodes
|
|
unsigned Wrapper =
|
|
isPositionIndependent() ? ARMISD::WrapperPIC : ARMISD::Wrapper;
|
|
|
|
SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_NONLAZY);
|
|
SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, G);
|
|
|
|
if (Subtarget->isGVIndirectSymbol(GV))
|
|
Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
|
|
MachinePointerInfo::getGOT(DAG.getMachineFunction()));
|
|
return Result;
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
assert(Subtarget->isTargetWindows() && "non-Windows COFF is not supported");
|
|
assert(Subtarget->useMovt(DAG.getMachineFunction()) &&
|
|
"Windows on ARM expects to use movw/movt");
|
|
assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
|
|
"ROPI/RWPI not currently supported for Windows");
|
|
|
|
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
|
|
const ARMII::TOF TargetFlags =
|
|
(GV->hasDLLImportStorageClass() ? ARMII::MO_DLLIMPORT : ARMII::MO_NO_FLAG);
|
|
EVT PtrVT = getPointerTy(DAG.getDataLayout());
|
|
SDValue Result;
|
|
SDLoc DL(Op);
|
|
|
|
++NumMovwMovt;
|
|
|
|
// FIXME: Once remat is capable of dealing with instructions with register
|
|
// operands, expand this into two nodes.
|
|
Result = DAG.getNode(ARMISD::Wrapper, DL, PtrVT,
|
|
DAG.getTargetGlobalAddress(GV, DL, PtrVT, /*Offset=*/0,
|
|
TargetFlags));
|
|
if (GV->hasDLLImportStorageClass())
|
|
Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
|
|
MachinePointerInfo::getGOT(DAG.getMachineFunction()));
|
|
return Result;
|
|
}
|
|
|
|
SDValue
|
|
ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
|
|
SDLoc dl(Op);
|
|
SDValue Val = DAG.getConstant(0, dl, MVT::i32);
|
|
return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
|
|
DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
|
|
Op.getOperand(1), Val);
|
|
}
|
|
|
|
SDValue
|
|
ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
|
|
SDLoc dl(Op);
|
|
return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
|
|
Op.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc dl(Op);
|
|
return DAG.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH, dl, MVT::Other,
|
|
Op.getOperand(0));
|
|
}
|
|
|
|
SDValue
|
|
ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
|
|
const ARMSubtarget *Subtarget) const {
|
|
unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
|
|
SDLoc dl(Op);
|
|
switch (IntNo) {
|
|
default: return SDValue(); // Don't custom lower most intrinsics.
|
|
case Intrinsic::thread_pointer: {
|
|
EVT PtrVT = getPointerTy(DAG.getDataLayout());
|
|
return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
|
|
}
|
|
case Intrinsic::eh_sjlj_lsda: {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
|
|
unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
|
|
EVT PtrVT = getPointerTy(DAG.getDataLayout());
|
|
SDValue CPAddr;
|
|
bool IsPositionIndependent = isPositionIndependent();
|
|
unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
|
|
ARMConstantPoolValue *CPV =
|
|
ARMConstantPoolConstant::Create(&MF.getFunction(), ARMPCLabelIndex,
|
|
ARMCP::CPLSDA, PCAdj);
|
|
CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
|
|
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
|
|
SDValue Result = DAG.getLoad(
|
|
PtrVT, dl, DAG.getEntryNode(), CPAddr,
|
|
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
|
|
|
|
if (IsPositionIndependent) {
|
|
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
|
|
Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
|
|
}
|
|
return Result;
|
|
}
|
|
case Intrinsic::arm_neon_vabs:
|
|
return DAG.getNode(ISD::ABS, SDLoc(Op), Op.getValueType(),
|
|
Op.getOperand(1));
|
|
case Intrinsic::arm_neon_vmulls:
|
|
case Intrinsic::arm_neon_vmullu: {
|
|
unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
|
|
? ARMISD::VMULLs : ARMISD::VMULLu;
|
|
return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
|
|
Op.getOperand(1), Op.getOperand(2));
|
|
}
|
|
case Intrinsic::arm_neon_vminnm:
|
|
case Intrinsic::arm_neon_vmaxnm: {
|
|
unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminnm)
|
|
? ISD::FMINNUM : ISD::FMAXNUM;
|
|
return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
|
|
Op.getOperand(1), Op.getOperand(2));
|
|
}
|
|
case Intrinsic::arm_neon_vminu:
|
|
case Intrinsic::arm_neon_vmaxu: {
|
|
if (Op.getValueType().isFloatingPoint())
|
|
return SDValue();
|
|
unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminu)
|
|
? ISD::UMIN : ISD::UMAX;
|
|
return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
|
|
Op.getOperand(1), Op.getOperand(2));
|
|
}
|
|
case Intrinsic::arm_neon_vmins:
|
|
case Intrinsic::arm_neon_vmaxs: {
|
|
// v{min,max}s is overloaded between signed integers and floats.
|
|
if (!Op.getValueType().isFloatingPoint()) {
|
|
unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
|
|
? ISD::SMIN : ISD::SMAX;
|
|
return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
|
|
Op.getOperand(1), Op.getOperand(2));
|
|
}
|
|
unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
|
|
? ISD::FMINNAN : ISD::FMAXNAN;
|
|
return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
|
|
Op.getOperand(1), Op.getOperand(2));
|
|
}
|
|
case Intrinsic::arm_neon_vtbl1:
|
|
return DAG.getNode(ARMISD::VTBL1, SDLoc(Op), Op.getValueType(),
|
|
Op.getOperand(1), Op.getOperand(2));
|
|
case Intrinsic::arm_neon_vtbl2:
|
|
return DAG.getNode(ARMISD::VTBL2, SDLoc(Op), Op.getValueType(),
|
|
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
|
|
}
|
|
}
|
|
|
|
static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
|
|
const ARMSubtarget *Subtarget) {
|
|
SDLoc dl(Op);
|
|
ConstantSDNode *SSIDNode = cast<ConstantSDNode>(Op.getOperand(2));
|
|
auto SSID = static_cast<SyncScope::ID>(SSIDNode->getZExtValue());
|
|
if (SSID == SyncScope::SingleThread)
|
|
return Op;
|
|
|
|
if (!Subtarget->hasDataBarrier()) {
|
|
// Some ARMv6 cpus can support data barriers with an mcr instruction.
|
|
// Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
|
|
// here.
|
|
assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
|
|
"Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
|
|
return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
|
|
DAG.getConstant(0, dl, MVT::i32));
|
|
}
|
|
|
|
ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1));
|
|
AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue());
|
|
ARM_MB::MemBOpt Domain = ARM_MB::ISH;
|
|
if (Subtarget->isMClass()) {
|
|
// Only a full system barrier exists in the M-class architectures.
|
|
Domain = ARM_MB::SY;
|
|
} else if (Subtarget->preferISHSTBarriers() &&
|
|
Ord == AtomicOrdering::Release) {
|
|
// Swift happens to implement ISHST barriers in a way that's compatible with
|
|
// Release semantics but weaker than ISH so we'd be fools not to use
|
|
// it. Beware: other processors probably don't!
|
|
Domain = ARM_MB::ISHST;
|
|
}
|
|
|
|
return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0),
|
|
DAG.getConstant(Intrinsic::arm_dmb, dl, MVT::i32),
|
|
DAG.getConstant(Domain, dl, MVT::i32));
|
|
}
|
|
|
|
static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
|
|
const ARMSubtarget *Subtarget) {
|
|
// ARM pre v5TE and Thumb1 does not have preload instructions.
|
|
if (!(Subtarget->isThumb2() ||
|
|
(!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
|
|
// Just preserve the chain.
|
|
return Op.getOperand(0);
|
|
|
|
SDLoc dl(Op);
|
|
unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
|
|
if (!isRead &&
|
|
(!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
|
|
// ARMv7 with MP extension has PLDW.
|
|
return Op.getOperand(0);
|
|
|
|
unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
|
|
if (Subtarget->isThumb()) {
|
|
// Invert the bits.
|
|
isRead = ~isRead & 1;
|
|
isData = ~isData & 1;
|
|
}
|
|
|
|
return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
|
|
Op.getOperand(1), DAG.getConstant(isRead, dl, MVT::i32),
|
|
DAG.getConstant(isData, dl, MVT::i32));
|
|
}
|
|
|
|
static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
|
|
|
|
// vastart just stores the address of the VarArgsFrameIndex slot into the
|
|
// memory location argument.
|
|
SDLoc dl(Op);
|
|
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
|
|
SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
|
|
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
|
|
return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
|
|
MachinePointerInfo(SV));
|
|
}
|
|
|
|
SDValue ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA,
|
|
CCValAssign &NextVA,
|
|
SDValue &Root,
|
|
SelectionDAG &DAG,
|
|
const SDLoc &dl) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
|
|
|
|
const TargetRegisterClass *RC;
|
|
if (AFI->isThumb1OnlyFunction())
|
|
RC = &ARM::tGPRRegClass;
|
|
else
|
|
RC = &ARM::GPRRegClass;
|
|
|
|
// Transform the arguments stored in physical registers into virtual ones.
|
|
unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
|
|
SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
|
|
|
|
SDValue ArgValue2;
|
|
if (NextVA.isMemLoc()) {
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
int FI = MFI.CreateFixedObject(4, NextVA.getLocMemOffset(), true);
|
|
|
|
// Create load node to retrieve arguments from the stack.
|
|
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
|
|
ArgValue2 = DAG.getLoad(
|
|
MVT::i32, dl, Root, FIN,
|
|
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
|
|
} else {
|
|
Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
|
|
ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
|
|
}
|
|
if (!Subtarget->isLittle())
|
|
std::swap (ArgValue, ArgValue2);
|
|
return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
|
|
}
|
|
|
|
// The remaining GPRs hold either the beginning of variable-argument
|
|
// data, or the beginning of an aggregate passed by value (usually
|
|
// byval). Either way, we allocate stack slots adjacent to the data
|
|
// provided by our caller, and store the unallocated registers there.
|
|
// If this is a variadic function, the va_list pointer will begin with
|
|
// these values; otherwise, this reassembles a (byval) structure that
|
|
// was split between registers and memory.
|
|
// Return: The frame index registers were stored into.
|
|
int ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG,
|
|
const SDLoc &dl, SDValue &Chain,
|
|
const Value *OrigArg,
|
|
unsigned InRegsParamRecordIdx,
|
|
int ArgOffset, unsigned ArgSize) const {
|
|
// Currently, two use-cases possible:
|
|
// Case #1. Non-var-args function, and we meet first byval parameter.
|
|
// Setup first unallocated register as first byval register;
|
|
// eat all remained registers
|
|
// (these two actions are performed by HandleByVal method).
|
|
// Then, here, we initialize stack frame with
|
|
// "store-reg" instructions.
|
|
// Case #2. Var-args function, that doesn't contain byval parameters.
|
|
// The same: eat all remained unallocated registers,
|
|
// initialize stack frame.
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
|
|
unsigned RBegin, REnd;
|
|
if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
|
|
CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
|
|
} else {
|
|
unsigned RBeginIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
|
|
RBegin = RBeginIdx == 4 ? (unsigned)ARM::R4 : GPRArgRegs[RBeginIdx];
|
|
REnd = ARM::R4;
|
|
}
|
|
|
|
if (REnd != RBegin)
|
|
ArgOffset = -4 * (ARM::R4 - RBegin);
|
|
|
|
auto PtrVT = getPointerTy(DAG.getDataLayout());
|
|
int FrameIndex = MFI.CreateFixedObject(ArgSize, ArgOffset, false);
|
|
SDValue FIN = DAG.getFrameIndex(FrameIndex, PtrVT);
|
|
|
|
SmallVector<SDValue, 4> MemOps;
|
|
const TargetRegisterClass *RC =
|
|
AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
|
|
|
|
for (unsigned Reg = RBegin, i = 0; Reg < REnd; ++Reg, ++i) {
|
|
unsigned VReg = MF.addLiveIn(Reg, RC);
|
|
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
|
|
SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
|
|
MachinePointerInfo(OrigArg, 4 * i));
|
|
MemOps.push_back(Store);
|
|
FIN = DAG.getNode(ISD::ADD, dl, PtrVT, FIN, DAG.getConstant(4, dl, PtrVT));
|
|
}
|
|
|
|
if (!MemOps.empty())
|
|
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
|
|
return FrameIndex;
|
|
}
|
|
|
|
// Setup stack frame, the va_list pointer will start from.
|
|
void ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
|
|
const SDLoc &dl, SDValue &Chain,
|
|
unsigned ArgOffset,
|
|
unsigned TotalArgRegsSaveSize,
|
|
bool ForceMutable) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
|
|
|
|
// Try to store any remaining integer argument regs
|
|
// to their spots on the stack so that they may be loaded by dereferencing
|
|
// the result of va_next.
|
|
// If there is no regs to be stored, just point address after last
|
|
// argument passed via stack.
|
|
int FrameIndex = StoreByValRegs(CCInfo, DAG, dl, Chain, nullptr,
|
|
CCInfo.getInRegsParamsCount(),
|
|
CCInfo.getNextStackOffset(), 4);
|
|
AFI->setVarArgsFrameIndex(FrameIndex);
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerFormalArguments(
|
|
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
|
|
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
|
|
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
|
|
|
|
// Assign locations to all of the incoming arguments.
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
|
|
*DAG.getContext());
|
|
CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg));
|
|
|
|
SmallVector<SDValue, 16> ArgValues;
|
|
SDValue ArgValue;
|
|
Function::const_arg_iterator CurOrigArg = MF.getFunction().arg_begin();
|
|
unsigned CurArgIdx = 0;
|
|
|
|
// Initially ArgRegsSaveSize is zero.
|
|
// Then we increase this value each time we meet byval parameter.
|
|
// We also increase this value in case of varargs function.
|
|
AFI->setArgRegsSaveSize(0);
|
|
|
|
// Calculate the amount of stack space that we need to allocate to store
|
|
// byval and variadic arguments that are passed in registers.
|
|
// We need to know this before we allocate the first byval or variadic
|
|
// argument, as they will be allocated a stack slot below the CFA (Canonical
|
|
// Frame Address, the stack pointer at entry to the function).
|
|
unsigned ArgRegBegin = ARM::R4;
|
|
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
|
|
if (CCInfo.getInRegsParamsProcessed() >= CCInfo.getInRegsParamsCount())
|
|
break;
|
|
|
|
CCValAssign &VA = ArgLocs[i];
|
|
unsigned Index = VA.getValNo();
|
|
ISD::ArgFlagsTy Flags = Ins[Index].Flags;
|
|
if (!Flags.isByVal())
|
|
continue;
|
|
|
|
assert(VA.isMemLoc() && "unexpected byval pointer in reg");
|
|
unsigned RBegin, REnd;
|
|
CCInfo.getInRegsParamInfo(CCInfo.getInRegsParamsProcessed(), RBegin, REnd);
|
|
ArgRegBegin = std::min(ArgRegBegin, RBegin);
|
|
|
|
CCInfo.nextInRegsParam();
|
|
}
|
|
CCInfo.rewindByValRegsInfo();
|
|
|
|
int lastInsIndex = -1;
|
|
if (isVarArg && MFI.hasVAStart()) {
|
|
unsigned RegIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
|
|
if (RegIdx != array_lengthof(GPRArgRegs))
|
|
ArgRegBegin = std::min(ArgRegBegin, (unsigned)GPRArgRegs[RegIdx]);
|
|
}
|
|
|
|
unsigned TotalArgRegsSaveSize = 4 * (ARM::R4 - ArgRegBegin);
|
|
AFI->setArgRegsSaveSize(TotalArgRegsSaveSize);
|
|
auto PtrVT = getPointerTy(DAG.getDataLayout());
|
|
|
|
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
|
|
CCValAssign &VA = ArgLocs[i];
|
|
if (Ins[VA.getValNo()].isOrigArg()) {
|
|
std::advance(CurOrigArg,
|
|
Ins[VA.getValNo()].getOrigArgIndex() - CurArgIdx);
|
|
CurArgIdx = Ins[VA.getValNo()].getOrigArgIndex();
|
|
}
|
|
// Arguments stored in registers.
|
|
if (VA.isRegLoc()) {
|
|
EVT RegVT = VA.getLocVT();
|
|
|
|
if (VA.needsCustom()) {
|
|
// f64 and vector types are split up into multiple registers or
|
|
// combinations of registers and stack slots.
|
|
if (VA.getLocVT() == MVT::v2f64) {
|
|
SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
|
|
Chain, DAG, dl);
|
|
VA = ArgLocs[++i]; // skip ahead to next loc
|
|
SDValue ArgValue2;
|
|
if (VA.isMemLoc()) {
|
|
int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), true);
|
|
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
|
|
ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
|
|
MachinePointerInfo::getFixedStack(
|
|
DAG.getMachineFunction(), FI));
|
|
} else {
|
|
ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
|
|
Chain, DAG, dl);
|
|
}
|
|
ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
|
|
ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
|
|
ArgValue, ArgValue1,
|
|
DAG.getIntPtrConstant(0, dl));
|
|
ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
|
|
ArgValue, ArgValue2,
|
|
DAG.getIntPtrConstant(1, dl));
|
|
} else
|
|
ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
|
|
} else {
|
|
const TargetRegisterClass *RC;
|
|
|
|
|
|
if (RegVT == MVT::f16)
|
|
RC = &ARM::HPRRegClass;
|
|
else if (RegVT == MVT::f32)
|
|
RC = &ARM::SPRRegClass;
|
|
else if (RegVT == MVT::f64 || RegVT == MVT::v4f16)
|
|
RC = &ARM::DPRRegClass;
|
|
else if (RegVT == MVT::v2f64 || RegVT == MVT::v8f16)
|
|
RC = &ARM::QPRRegClass;
|
|
else if (RegVT == MVT::i32)
|
|
RC = AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
|
|
: &ARM::GPRRegClass;
|
|
else
|
|
llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
|
|
|
|
// Transform the arguments in physical registers into virtual ones.
|
|
unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
|
|
ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
|
|
}
|
|
|
|
// If this is an 8 or 16-bit value, it is really passed promoted
|
|
// to 32 bits. Insert an assert[sz]ext to capture this, then
|
|
// truncate to the right size.
|
|
switch (VA.getLocInfo()) {
|
|
default: llvm_unreachable("Unknown loc info!");
|
|
case CCValAssign::Full: break;
|
|
case CCValAssign::BCvt:
|
|
ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
|
|
break;
|
|
case CCValAssign::SExt:
|
|
ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
|
|
DAG.getValueType(VA.getValVT()));
|
|
ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
|
|
break;
|
|
case CCValAssign::ZExt:
|
|
ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
|
|
DAG.getValueType(VA.getValVT()));
|
|
ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
|
|
break;
|
|
}
|
|
|
|
InVals.push_back(ArgValue);
|
|
} else { // VA.isRegLoc()
|
|
// sanity check
|
|
assert(VA.isMemLoc());
|
|
assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
|
|
|
|
int index = VA.getValNo();
|
|
|
|
// Some Ins[] entries become multiple ArgLoc[] entries.
|
|
// Process them only once.
|
|
if (index != lastInsIndex)
|
|
{
|
|
ISD::ArgFlagsTy Flags = Ins[index].Flags;
|
|
// FIXME: For now, all byval parameter objects are marked mutable.
|
|
// This can be changed with more analysis.
|
|
// In case of tail call optimization mark all arguments mutable.
|
|
// Since they could be overwritten by lowering of arguments in case of
|
|
// a tail call.
|
|
if (Flags.isByVal()) {
|
|
assert(Ins[index].isOrigArg() &&
|
|
"Byval arguments cannot be implicit");
|
|
unsigned CurByValIndex = CCInfo.getInRegsParamsProcessed();
|
|
|
|
int FrameIndex = StoreByValRegs(
|
|
CCInfo, DAG, dl, Chain, &*CurOrigArg, CurByValIndex,
|
|
VA.getLocMemOffset(), Flags.getByValSize());
|
|
InVals.push_back(DAG.getFrameIndex(FrameIndex, PtrVT));
|
|
CCInfo.nextInRegsParam();
|
|
} else {
|
|
unsigned FIOffset = VA.getLocMemOffset();
|
|
int FI = MFI.CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
|
|
FIOffset, true);
|
|
|
|
// Create load nodes to retrieve arguments from the stack.
|
|
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
|
|
InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
|
|
MachinePointerInfo::getFixedStack(
|
|
DAG.getMachineFunction(), FI)));
|
|
}
|
|
lastInsIndex = index;
|
|
}
|
|
}
|
|
}
|
|
|
|
// varargs
|
|
if (isVarArg && MFI.hasVAStart())
|
|
VarArgStyleRegisters(CCInfo, DAG, dl, Chain,
|
|
CCInfo.getNextStackOffset(),
|
|
TotalArgRegsSaveSize);
|
|
|
|
AFI->setArgumentStackSize(CCInfo.getNextStackOffset());
|
|
|
|
return Chain;
|
|
}
|
|
|
|
/// isFloatingPointZero - Return true if this is +0.0.
|
|
static bool isFloatingPointZero(SDValue Op) {
|
|
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
|
|
return CFP->getValueAPF().isPosZero();
|
|
else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
|
|
// Maybe this has already been legalized into the constant pool?
|
|
if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
|
|
SDValue WrapperOp = Op.getOperand(1).getOperand(0);
|
|
if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
|
|
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
|
|
return CFP->getValueAPF().isPosZero();
|
|
}
|
|
} else if (Op->getOpcode() == ISD::BITCAST &&
|
|
Op->getValueType(0) == MVT::f64) {
|
|
// Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
|
|
// created by LowerConstantFP().
|
|
SDValue BitcastOp = Op->getOperand(0);
|
|
if (BitcastOp->getOpcode() == ARMISD::VMOVIMM &&
|
|
isNullConstant(BitcastOp->getOperand(0)))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
|
|
/// the given operands.
|
|
SDValue ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
|
|
SDValue &ARMcc, SelectionDAG &DAG,
|
|
const SDLoc &dl) const {
|
|
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
|
|
unsigned C = RHSC->getZExtValue();
|
|
if (!isLegalICmpImmediate(C)) {
|
|
// Constant does not fit, try adjusting it by one?
|
|
switch (CC) {
|
|
default: break;
|
|
case ISD::SETLT:
|
|
case ISD::SETGE:
|
|
if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
|
|
CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
|
|
RHS = DAG.getConstant(C - 1, dl, MVT::i32);
|
|
}
|
|
break;
|
|
case ISD::SETULT:
|
|
case ISD::SETUGE:
|
|
if (C != 0 && isLegalICmpImmediate(C-1)) {
|
|
CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
|
|
RHS = DAG.getConstant(C - 1, dl, MVT::i32);
|
|
}
|
|
break;
|
|
case ISD::SETLE:
|
|
case ISD::SETGT:
|
|
if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
|
|
CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
|
|
RHS = DAG.getConstant(C + 1, dl, MVT::i32);
|
|
}
|
|
break;
|
|
case ISD::SETULE:
|
|
case ISD::SETUGT:
|
|
if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
|
|
CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
|
|
RHS = DAG.getConstant(C + 1, dl, MVT::i32);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
} else if ((ARM_AM::getShiftOpcForNode(LHS.getOpcode()) != ARM_AM::no_shift) &&
|
|
(ARM_AM::getShiftOpcForNode(RHS.getOpcode()) == ARM_AM::no_shift)) {
|
|
// In ARM and Thumb-2, the compare instructions can shift their second
|
|
// operand.
|
|
CC = ISD::getSetCCSwappedOperands(CC);
|
|
std::swap(LHS, RHS);
|
|
}
|
|
|
|
ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
|
|
ARMISD::NodeType CompareType;
|
|
switch (CondCode) {
|
|
default:
|
|
CompareType = ARMISD::CMP;
|
|
break;
|
|
case ARMCC::EQ:
|
|
case ARMCC::NE:
|
|
// Uses only Z Flag
|
|
CompareType = ARMISD::CMPZ;
|
|
break;
|
|
}
|
|
ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
|
|
return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
|
|
}
|
|
|
|
/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
|
|
SDValue ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS,
|
|
SelectionDAG &DAG, const SDLoc &dl,
|
|
bool InvalidOnQNaN) const {
|
|
assert(!Subtarget->isFPOnlySP() || RHS.getValueType() != MVT::f64);
|
|
SDValue Cmp;
|
|
SDValue C = DAG.getConstant(InvalidOnQNaN, dl, MVT::i32);
|
|
if (!isFloatingPointZero(RHS))
|
|
Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS, C);
|
|
else
|
|
Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS, C);
|
|
return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
|
|
}
|
|
|
|
/// duplicateCmp - Glue values can have only one use, so this function
|
|
/// duplicates a comparison node.
|
|
SDValue
|
|
ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
|
|
unsigned Opc = Cmp.getOpcode();
|
|
SDLoc DL(Cmp);
|
|
if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
|
|
return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
|
|
|
|
assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
|
|
Cmp = Cmp.getOperand(0);
|
|
Opc = Cmp.getOpcode();
|
|
if (Opc == ARMISD::CMPFP)
|
|
Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),
|
|
Cmp.getOperand(1), Cmp.getOperand(2));
|
|
else {
|
|
assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
|
|
Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),
|
|
Cmp.getOperand(1));
|
|
}
|
|
return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
|
|
}
|
|
|
|
// This function returns three things: the arithmetic computation itself
|
|
// (Value), a comparison (OverflowCmp), and a condition code (ARMcc). The
|
|
// comparison and the condition code define the case in which the arithmetic
|
|
// computation *does not* overflow.
|
|
std::pair<SDValue, SDValue>
|
|
ARMTargetLowering::getARMXALUOOp(SDValue Op, SelectionDAG &DAG,
|
|
SDValue &ARMcc) const {
|
|
assert(Op.getValueType() == MVT::i32 && "Unsupported value type");
|
|
|
|
SDValue Value, OverflowCmp;
|
|
SDValue LHS = Op.getOperand(0);
|
|
SDValue RHS = Op.getOperand(1);
|
|
SDLoc dl(Op);
|
|
|
|
// FIXME: We are currently always generating CMPs because we don't support
|
|
// generating CMN through the backend. This is not as good as the natural
|
|
// CMP case because it causes a register dependency and cannot be folded
|
|
// later.
|
|
|
|
switch (Op.getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Unknown overflow instruction!");
|
|
case ISD::SADDO:
|
|
ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
|
|
Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS);
|
|
OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
|
|
break;
|
|
case ISD::UADDO:
|
|
ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
|
|
// We use ADDC here to correspond to its use in LowerUnsignedALUO.
|
|
// We do not use it in the USUBO case as Value may not be used.
|
|
Value = DAG.getNode(ARMISD::ADDC, dl,
|
|
DAG.getVTList(Op.getValueType(), MVT::i32), LHS, RHS)
|
|
.getValue(0);
|
|
OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
|
|
break;
|
|
case ISD::SSUBO:
|
|
ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
|
|
Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
|
|
OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
|
|
break;
|
|
case ISD::USUBO:
|
|
ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
|
|
Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
|
|
OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
|
|
break;
|
|
case ISD::UMULO:
|
|
// We generate a UMUL_LOHI and then check if the high word is 0.
|
|
ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
|
|
Value = DAG.getNode(ISD::UMUL_LOHI, dl,
|
|
DAG.getVTList(Op.getValueType(), Op.getValueType()),
|
|
LHS, RHS);
|
|
OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
|
|
DAG.getConstant(0, dl, MVT::i32));
|
|
Value = Value.getValue(0); // We only want the low 32 bits for the result.
|
|
break;
|
|
case ISD::SMULO:
|
|
// We generate a SMUL_LOHI and then check if all the bits of the high word
|
|
// are the same as the sign bit of the low word.
|
|
ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
|
|
Value = DAG.getNode(ISD::SMUL_LOHI, dl,
|
|
DAG.getVTList(Op.getValueType(), Op.getValueType()),
|
|
LHS, RHS);
|
|
OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
|
|
DAG.getNode(ISD::SRA, dl, Op.getValueType(),
|
|
Value.getValue(0),
|
|
DAG.getConstant(31, dl, MVT::i32)));
|
|
Value = Value.getValue(0); // We only want the low 32 bits for the result.
|
|
break;
|
|
} // switch (...)
|
|
|
|
return std::make_pair(Value, OverflowCmp);
|
|
}
|
|
|
|
SDValue
|
|
ARMTargetLowering::LowerSignedALUO(SDValue Op, SelectionDAG &DAG) const {
|
|
// Let legalize expand this if it isn't a legal type yet.
|
|
if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
|
|
return SDValue();
|
|
|
|
SDValue Value, OverflowCmp;
|
|
SDValue ARMcc;
|
|
std::tie(Value, OverflowCmp) = getARMXALUOOp(Op, DAG, ARMcc);
|
|
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
|
|
SDLoc dl(Op);
|
|
// We use 0 and 1 as false and true values.
|
|
SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
|
|
SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
|
|
EVT VT = Op.getValueType();
|
|
|
|
SDValue Overflow = DAG.getNode(ARMISD::CMOV, dl, VT, TVal, FVal,
|
|
ARMcc, CCR, OverflowCmp);
|
|
|
|
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
|
|
return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
|
|
}
|
|
|
|
static SDValue ConvertBooleanCarryToCarryFlag(SDValue BoolCarry,
|
|
SelectionDAG &DAG) {
|
|
SDLoc DL(BoolCarry);
|
|
EVT CarryVT = BoolCarry.getValueType();
|
|
|
|
// This converts the boolean value carry into the carry flag by doing
|
|
// ARMISD::SUBC Carry, 1
|
|
SDValue Carry = DAG.getNode(ARMISD::SUBC, DL,
|
|
DAG.getVTList(CarryVT, MVT::i32),
|
|
BoolCarry, DAG.getConstant(1, DL, CarryVT));
|
|
return Carry.getValue(1);
|
|
}
|
|
|
|
static SDValue ConvertCarryFlagToBooleanCarry(SDValue Flags, EVT VT,
|
|
SelectionDAG &DAG) {
|
|
SDLoc DL(Flags);
|
|
|
|
// Now convert the carry flag into a boolean carry. We do this
|
|
// using ARMISD:ADDE 0, 0, Carry
|
|
return DAG.getNode(ARMISD::ADDE, DL, DAG.getVTList(VT, MVT::i32),
|
|
DAG.getConstant(0, DL, MVT::i32),
|
|
DAG.getConstant(0, DL, MVT::i32), Flags);
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerUnsignedALUO(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
// Let legalize expand this if it isn't a legal type yet.
|
|
if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
|
|
return SDValue();
|
|
|
|
SDValue LHS = Op.getOperand(0);
|
|
SDValue RHS = Op.getOperand(1);
|
|
SDLoc dl(Op);
|
|
|
|
EVT VT = Op.getValueType();
|
|
SDVTList VTs = DAG.getVTList(VT, MVT::i32);
|
|
SDValue Value;
|
|
SDValue Overflow;
|
|
switch (Op.getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Unknown overflow instruction!");
|
|
case ISD::UADDO:
|
|
Value = DAG.getNode(ARMISD::ADDC, dl, VTs, LHS, RHS);
|
|
// Convert the carry flag into a boolean value.
|
|
Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
|
|
break;
|
|
case ISD::USUBO: {
|
|
Value = DAG.getNode(ARMISD::SUBC, dl, VTs, LHS, RHS);
|
|
// Convert the carry flag into a boolean value.
|
|
Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
|
|
// ARMISD::SUBC returns 0 when we have to borrow, so make it an overflow
|
|
// value. So compute 1 - C.
|
|
Overflow = DAG.getNode(ISD::SUB, dl, MVT::i32,
|
|
DAG.getConstant(1, dl, MVT::i32), Overflow);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
|
|
SDValue Cond = Op.getOperand(0);
|
|
SDValue SelectTrue = Op.getOperand(1);
|
|
SDValue SelectFalse = Op.getOperand(2);
|
|
SDLoc dl(Op);
|
|
unsigned Opc = Cond.getOpcode();
|
|
|
|
if (Cond.getResNo() == 1 &&
|
|
(Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
|
|
Opc == ISD::USUBO)) {
|
|
if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
|
|
return SDValue();
|
|
|
|
SDValue Value, OverflowCmp;
|
|
SDValue ARMcc;
|
|
std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
|
|
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
|
|
EVT VT = Op.getValueType();
|
|
|
|
return getCMOV(dl, VT, SelectTrue, SelectFalse, ARMcc, CCR,
|
|
OverflowCmp, DAG);
|
|
}
|
|
|
|
// Convert:
|
|
//
|
|
// (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
|
|
// (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
|
|
//
|
|
if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
|
|
const ConstantSDNode *CMOVTrue =
|
|
dyn_cast<ConstantSDNode>(Cond.getOperand(0));
|
|
const ConstantSDNode *CMOVFalse =
|
|
dyn_cast<ConstantSDNode>(Cond.getOperand(1));
|
|
|
|
if (CMOVTrue && CMOVFalse) {
|
|
unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
|
|
unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
|
|
|
|
SDValue True;
|
|
SDValue False;
|
|
if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
|
|
True = SelectTrue;
|
|
False = SelectFalse;
|
|
} else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
|
|
True = SelectFalse;
|
|
False = SelectTrue;
|
|
}
|
|
|
|
if (True.getNode() && False.getNode()) {
|
|
EVT VT = Op.getValueType();
|
|
SDValue ARMcc = Cond.getOperand(2);
|
|
SDValue CCR = Cond.getOperand(3);
|
|
SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
|
|
assert(True.getValueType() == VT);
|
|
return getCMOV(dl, VT, True, False, ARMcc, CCR, Cmp, DAG);
|
|
}
|
|
}
|
|
}
|
|
|
|
// ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
|
|
// undefined bits before doing a full-word comparison with zero.
|
|
Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
|
|
DAG.getConstant(1, dl, Cond.getValueType()));
|
|
|
|
return DAG.getSelectCC(dl, Cond,
|
|
DAG.getConstant(0, dl, Cond.getValueType()),
|
|
SelectTrue, SelectFalse, ISD::SETNE);
|
|
}
|
|
|
|
static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
|
|
bool &swpCmpOps, bool &swpVselOps) {
|
|
// Start by selecting the GE condition code for opcodes that return true for
|
|
// 'equality'
|
|
if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE ||
|
|
CC == ISD::SETULE)
|
|
CondCode = ARMCC::GE;
|
|
|
|
// and GT for opcodes that return false for 'equality'.
|
|
else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT ||
|
|
CC == ISD::SETULT)
|
|
CondCode = ARMCC::GT;
|
|
|
|
// Since we are constrained to GE/GT, if the opcode contains 'less', we need
|
|
// to swap the compare operands.
|
|
if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT ||
|
|
CC == ISD::SETULT)
|
|
swpCmpOps = true;
|
|
|
|
// Both GT and GE are ordered comparisons, and return false for 'unordered'.
|
|
// If we have an unordered opcode, we need to swap the operands to the VSEL
|
|
// instruction (effectively negating the condition).
|
|
//
|
|
// This also has the effect of swapping which one of 'less' or 'greater'
|
|
// returns true, so we also swap the compare operands. It also switches
|
|
// whether we return true for 'equality', so we compensate by picking the
|
|
// opposite condition code to our original choice.
|
|
if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE ||
|
|
CC == ISD::SETUGT) {
|
|
swpCmpOps = !swpCmpOps;
|
|
swpVselOps = !swpVselOps;
|
|
CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT;
|
|
}
|
|
|
|
// 'ordered' is 'anything but unordered', so use the VS condition code and
|
|
// swap the VSEL operands.
|
|
if (CC == ISD::SETO) {
|
|
CondCode = ARMCC::VS;
|
|
swpVselOps = true;
|
|
}
|
|
|
|
// 'unordered or not equal' is 'anything but equal', so use the EQ condition
|
|
// code and swap the VSEL operands.
|
|
if (CC == ISD::SETUNE) {
|
|
CondCode = ARMCC::EQ;
|
|
swpVselOps = true;
|
|
}
|
|
}
|
|
|
|
SDValue ARMTargetLowering::getCMOV(const SDLoc &dl, EVT VT, SDValue FalseVal,
|
|
SDValue TrueVal, SDValue ARMcc, SDValue CCR,
|
|
SDValue Cmp, SelectionDAG &DAG) const {
|
|
if (Subtarget->isFPOnlySP() && VT == MVT::f64) {
|
|
FalseVal = DAG.getNode(ARMISD::VMOVRRD, dl,
|
|
DAG.getVTList(MVT::i32, MVT::i32), FalseVal);
|
|
TrueVal = DAG.getNode(ARMISD::VMOVRRD, dl,
|
|
DAG.getVTList(MVT::i32, MVT::i32), TrueVal);
|
|
|
|
SDValue TrueLow = TrueVal.getValue(0);
|
|
SDValue TrueHigh = TrueVal.getValue(1);
|
|
SDValue FalseLow = FalseVal.getValue(0);
|
|
SDValue FalseHigh = FalseVal.getValue(1);
|
|
|
|
SDValue Low = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseLow, TrueLow,
|
|
ARMcc, CCR, Cmp);
|
|
SDValue High = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseHigh, TrueHigh,
|
|
ARMcc, CCR, duplicateCmp(Cmp, DAG));
|
|
|
|
return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Low, High);
|
|
} else {
|
|
return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,
|
|
Cmp);
|
|
}
|
|
}
|
|
|
|
static bool isGTorGE(ISD::CondCode CC) {
|
|
return CC == ISD::SETGT || CC == ISD::SETGE;
|
|
}
|
|
|
|
static bool isLTorLE(ISD::CondCode CC) {
|
|
return CC == ISD::SETLT || CC == ISD::SETLE;
|
|
}
|
|
|
|
// See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating.
|
|
// All of these conditions (and their <= and >= counterparts) will do:
|
|
// x < k ? k : x
|
|
// x > k ? x : k
|
|
// k < x ? x : k
|
|
// k > x ? k : x
|
|
static bool isLowerSaturate(const SDValue LHS, const SDValue RHS,
|
|
const SDValue TrueVal, const SDValue FalseVal,
|
|
const ISD::CondCode CC, const SDValue K) {
|
|
return (isGTorGE(CC) &&
|
|
((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal))) ||
|
|
(isLTorLE(CC) &&
|
|
((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal)));
|
|
}
|
|
|
|
// Similar to isLowerSaturate(), but checks for upper-saturating conditions.
|
|
static bool isUpperSaturate(const SDValue LHS, const SDValue RHS,
|
|
const SDValue TrueVal, const SDValue FalseVal,
|
|
const ISD::CondCode CC, const SDValue K) {
|
|
return (isGTorGE(CC) &&
|
|
((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal))) ||
|
|
(isLTorLE(CC) &&
|
|
((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal)));
|
|
}
|
|
|
|
// Check if two chained conditionals could be converted into SSAT or USAT.
|
|
//
|
|
// SSAT can replace a set of two conditional selectors that bound a number to an
|
|
// interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples:
|
|
//
|
|
// x < -k ? -k : (x > k ? k : x)
|
|
// x < -k ? -k : (x < k ? x : k)
|
|
// x > -k ? (x > k ? k : x) : -k
|
|
// x < k ? (x < -k ? -k : x) : k
|
|
// etc.
|
|
//
|
|
// USAT works similarily to SSAT but bounds on the interval [0, k] where k + 1 is
|
|
// a power of 2.
|
|
//
|
|
// It returns true if the conversion can be done, false otherwise.
|
|
// Additionally, the variable is returned in parameter V, the constant in K and
|
|
// usat is set to true if the conditional represents an unsigned saturation
|
|
static bool isSaturatingConditional(const SDValue &Op, SDValue &V,
|
|
uint64_t &K, bool &usat) {
|
|
SDValue LHS1 = Op.getOperand(0);
|
|
SDValue RHS1 = Op.getOperand(1);
|
|
SDValue TrueVal1 = Op.getOperand(2);
|
|
SDValue FalseVal1 = Op.getOperand(3);
|
|
ISD::CondCode CC1 = cast<CondCodeSDNode>(Op.getOperand(4))->get();
|
|
|
|
const SDValue Op2 = isa<ConstantSDNode>(TrueVal1) ? FalseVal1 : TrueVal1;
|
|
if (Op2.getOpcode() != ISD::SELECT_CC)
|
|
return false;
|
|
|
|
SDValue LHS2 = Op2.getOperand(0);
|
|
SDValue RHS2 = Op2.getOperand(1);
|
|
SDValue TrueVal2 = Op2.getOperand(2);
|
|
SDValue FalseVal2 = Op2.getOperand(3);
|
|
ISD::CondCode CC2 = cast<CondCodeSDNode>(Op2.getOperand(4))->get();
|
|
|
|
// Find out which are the constants and which are the variables
|
|
// in each conditional
|
|
SDValue *K1 = isa<ConstantSDNode>(LHS1) ? &LHS1 : isa<ConstantSDNode>(RHS1)
|
|
? &RHS1
|
|
: nullptr;
|
|
SDValue *K2 = isa<ConstantSDNode>(LHS2) ? &LHS2 : isa<ConstantSDNode>(RHS2)
|
|
? &RHS2
|
|
: nullptr;
|
|
SDValue K2Tmp = isa<ConstantSDNode>(TrueVal2) ? TrueVal2 : FalseVal2;
|
|
SDValue V1Tmp = (K1 && *K1 == LHS1) ? RHS1 : LHS1;
|
|
SDValue V2Tmp = (K2 && *K2 == LHS2) ? RHS2 : LHS2;
|
|
SDValue V2 = (K2Tmp == TrueVal2) ? FalseVal2 : TrueVal2;
|
|
|
|
// We must detect cases where the original operations worked with 16- or
|
|
// 8-bit values. In such case, V2Tmp != V2 because the comparison operations
|
|
// must work with sign-extended values but the select operations return
|
|
// the original non-extended value.
|
|
SDValue V2TmpReg = V2Tmp;
|
|
if (V2Tmp->getOpcode() == ISD::SIGN_EXTEND_INREG)
|
|
V2TmpReg = V2Tmp->getOperand(0);
|
|
|
|
// Check that the registers and the constants have the correct values
|
|
// in both conditionals
|
|
if (!K1 || !K2 || *K1 == Op2 || *K2 != K2Tmp || V1Tmp != V2Tmp ||
|
|
V2TmpReg != V2)
|
|
return false;
|
|
|
|
// Figure out which conditional is saturating the lower/upper bound.
|
|
const SDValue *LowerCheckOp =
|
|
isLowerSaturate(LHS1, RHS1, TrueVal1, FalseVal1, CC1, *K1)
|
|
? &Op
|
|
: isLowerSaturate(LHS2, RHS2, TrueVal2, FalseVal2, CC2, *K2)
|
|
? &Op2
|
|
: nullptr;
|
|
const SDValue *UpperCheckOp =
|
|
isUpperSaturate(LHS1, RHS1, TrueVal1, FalseVal1, CC1, *K1)
|
|
? &Op
|
|
: isUpperSaturate(LHS2, RHS2, TrueVal2, FalseVal2, CC2, *K2)
|
|
? &Op2
|
|
: nullptr;
|
|
|
|
if (!UpperCheckOp || !LowerCheckOp || LowerCheckOp == UpperCheckOp)
|
|
return false;
|
|
|
|
// Check that the constant in the lower-bound check is
|
|
// the opposite of the constant in the upper-bound check
|
|
// in 1's complement.
|
|
int64_t Val1 = cast<ConstantSDNode>(*K1)->getSExtValue();
|
|
int64_t Val2 = cast<ConstantSDNode>(*K2)->getSExtValue();
|
|
int64_t PosVal = std::max(Val1, Val2);
|
|
int64_t NegVal = std::min(Val1, Val2);
|
|
|
|
if (((Val1 > Val2 && UpperCheckOp == &Op) ||
|
|
(Val1 < Val2 && UpperCheckOp == &Op2)) &&
|
|
isPowerOf2_64(PosVal + 1)) {
|
|
|
|
// Handle the difference between USAT (unsigned) and SSAT (signed) saturation
|
|
if (Val1 == ~Val2)
|
|
usat = false;
|
|
else if (NegVal == 0)
|
|
usat = true;
|
|
else
|
|
return false;
|
|
|
|
V = V2;
|
|
K = (uint64_t)PosVal; // At this point, PosVal is guaranteed to be positive
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Check if a condition of the type x < k ? k : x can be converted into a
|
|
// bit operation instead of conditional moves.
|
|
// Currently this is allowed given:
|
|
// - The conditions and values match up
|
|
// - k is 0 or -1 (all ones)
|
|
// This function will not check the last condition, thats up to the caller
|
|
// It returns true if the transformation can be made, and in such case
|
|
// returns x in V, and k in SatK.
|
|
static bool isLowerSaturatingConditional(const SDValue &Op, SDValue &V,
|
|
SDValue &SatK)
|
|
{
|
|
SDValue LHS = Op.getOperand(0);
|
|
SDValue RHS = Op.getOperand(1);
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
|
|
SDValue TrueVal = Op.getOperand(2);
|
|
SDValue FalseVal = Op.getOperand(3);
|
|
|
|
SDValue *K = isa<ConstantSDNode>(LHS) ? &LHS : isa<ConstantSDNode>(RHS)
|
|
? &RHS
|
|
: nullptr;
|
|
|
|
// No constant operation in comparison, early out
|
|
if (!K)
|
|
return false;
|
|
|
|
SDValue KTmp = isa<ConstantSDNode>(TrueVal) ? TrueVal : FalseVal;
|
|
V = (KTmp == TrueVal) ? FalseVal : TrueVal;
|
|
SDValue VTmp = (K && *K == LHS) ? RHS : LHS;
|
|
|
|
// If the constant on left and right side, or variable on left and right,
|
|
// does not match, early out
|
|
if (*K != KTmp || V != VTmp)
|
|
return false;
|
|
|
|
if (isLowerSaturate(LHS, RHS, TrueVal, FalseVal, CC, *K)) {
|
|
SatK = *K;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
|
|
EVT VT = Op.getValueType();
|
|
SDLoc dl(Op);
|
|
|
|
// Try to convert two saturating conditional selects into a single SSAT
|
|
SDValue SatValue;
|
|
uint64_t SatConstant;
|
|
bool SatUSat;
|
|
if (((!Subtarget->isThumb() && Subtarget->hasV6Ops()) || Subtarget->isThumb2()) &&
|
|
isSaturatingConditional(Op, SatValue, SatConstant, SatUSat)) {
|
|
if (SatUSat)
|
|
return DAG.getNode(ARMISD::USAT, dl, VT, SatValue,
|
|
DAG.getConstant(countTrailingOnes(SatConstant), dl, VT));
|
|
else
|
|
return DAG.getNode(ARMISD::SSAT, dl, VT, SatValue,
|
|
DAG.getConstant(countTrailingOnes(SatConstant), dl, VT));
|
|
}
|
|
|
|
// Try to convert expressions of the form x < k ? k : x (and similar forms)
|
|
// into more efficient bit operations, which is possible when k is 0 or -1
|
|
// On ARM and Thumb-2 which have flexible operand 2 this will result in
|
|
// single instructions. On Thumb the shift and the bit operation will be two
|
|
// instructions.
|
|
// Only allow this transformation on full-width (32-bit) operations
|
|
SDValue LowerSatConstant;
|
|
if (VT == MVT::i32 &&
|
|
isLowerSaturatingConditional(Op, SatValue, LowerSatConstant)) {
|
|
SDValue ShiftV = DAG.getNode(ISD::SRA, dl, VT, SatValue,
|
|
DAG.getConstant(31, dl, VT));
|
|
if (isNullConstant(LowerSatConstant)) {
|
|
SDValue NotShiftV = DAG.getNode(ISD::XOR, dl, VT, ShiftV,
|
|
DAG.getAllOnesConstant(dl, VT));
|
|
return DAG.getNode(ISD::AND, dl, VT, SatValue, NotShiftV);
|
|
} else if (isAllOnesConstant(LowerSatConstant))
|
|
return DAG.getNode(ISD::OR, dl, VT, SatValue, ShiftV);
|
|
}
|
|
|
|
SDValue LHS = Op.getOperand(0);
|
|
SDValue RHS = Op.getOperand(1);
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
|
|
SDValue TrueVal = Op.getOperand(2);
|
|
SDValue FalseVal = Op.getOperand(3);
|
|
|
|
if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) {
|
|
DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC,
|
|
dl);
|
|
|
|
// If softenSetCCOperands only returned one value, we should compare it to
|
|
// zero.
|
|
if (!RHS.getNode()) {
|
|
RHS = DAG.getConstant(0, dl, LHS.getValueType());
|
|
CC = ISD::SETNE;
|
|
}
|
|
}
|
|
|
|
if (LHS.getValueType() == MVT::i32) {
|
|
// Try to generate VSEL on ARMv8.
|
|
// The VSEL instruction can't use all the usual ARM condition
|
|
// codes: it only has two bits to select the condition code, so it's
|
|
// constrained to use only GE, GT, VS and EQ.
|
|
//
|
|
// To implement all the various ISD::SETXXX opcodes, we sometimes need to
|
|
// swap the operands of the previous compare instruction (effectively
|
|
// inverting the compare condition, swapping 'less' and 'greater') and
|
|
// sometimes need to swap the operands to the VSEL (which inverts the
|
|
// condition in the sense of firing whenever the previous condition didn't)
|
|
if (Subtarget->hasFPARMv8() && (TrueVal.getValueType() == MVT::f32 ||
|
|
TrueVal.getValueType() == MVT::f64)) {
|
|
ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
|
|
if (CondCode == ARMCC::LT || CondCode == ARMCC::LE ||
|
|
CondCode == ARMCC::VC || CondCode == ARMCC::NE) {
|
|
CC = ISD::getSetCCInverse(CC, true);
|
|
std::swap(TrueVal, FalseVal);
|
|
}
|
|
}
|
|
|
|
SDValue ARMcc;
|
|
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
|
|
SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
|
|
return getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
|
|
}
|
|
|
|
ARMCC::CondCodes CondCode, CondCode2;
|
|
bool InvalidOnQNaN;
|
|
FPCCToARMCC(CC, CondCode, CondCode2, InvalidOnQNaN);
|
|
|
|
// Normalize the fp compare. If RHS is zero we keep it there so we match
|
|
// CMPFPw0 instead of CMPFP.
|
|
if (Subtarget->hasFPARMv8() && !isFloatingPointZero(RHS) &&
|
|
(TrueVal.getValueType() == MVT::f16 ||
|
|
TrueVal.getValueType() == MVT::f32 ||
|
|
TrueVal.getValueType() == MVT::f64)) {
|
|
bool swpCmpOps = false;
|
|
bool swpVselOps = false;
|
|
checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps);
|
|
|
|
if (CondCode == ARMCC::GT || CondCode == ARMCC::GE ||
|
|
CondCode == ARMCC::VS || CondCode == ARMCC::EQ) {
|
|
if (swpCmpOps)
|
|
std::swap(LHS, RHS);
|
|
if (swpVselOps)
|
|
std::swap(TrueVal, FalseVal);
|
|
}
|
|
}
|
|
|
|
SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
|
|
SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl, InvalidOnQNaN);
|
|
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
|
|
SDValue Result = getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
|
|
if (CondCode2 != ARMCC::AL) {
|
|
SDValue ARMcc2 = DAG.getConstant(CondCode2, dl, MVT::i32);
|
|
// FIXME: Needs another CMP because flag can have but one use.
|
|
SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl, InvalidOnQNaN);
|
|
Result = getCMOV(dl, VT, Result, TrueVal, ARMcc2, CCR, Cmp2, DAG);
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
/// canChangeToInt - Given the fp compare operand, return true if it is suitable
|
|
/// to morph to an integer compare sequence.
|
|
static bool canChangeToInt(SDValue Op, bool &SeenZero,
|
|
const ARMSubtarget *Subtarget) {
|
|
SDNode *N = Op.getNode();
|
|
if (!N->hasOneUse())
|
|
// Otherwise it requires moving the value from fp to integer registers.
|
|
return false;
|
|
if (!N->getNumValues())
|
|
return false;
|
|
EVT VT = Op.getValueType();
|
|
if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
|
|
// f32 case is generally profitable. f64 case only makes sense when vcmpe +
|
|
// vmrs are very slow, e.g. cortex-a8.
|
|
return false;
|
|
|
|
if (isFloatingPointZero(Op)) {
|
|
SeenZero = true;
|
|
return true;
|
|
}
|
|
return ISD::isNormalLoad(N);
|
|
}
|
|
|
|
static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
|
|
if (isFloatingPointZero(Op))
|
|
return DAG.getConstant(0, SDLoc(Op), MVT::i32);
|
|
|
|
if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
|
|
return DAG.getLoad(MVT::i32, SDLoc(Op), Ld->getChain(), Ld->getBasePtr(),
|
|
Ld->getPointerInfo(), Ld->getAlignment(),
|
|
Ld->getMemOperand()->getFlags());
|
|
|
|
llvm_unreachable("Unknown VFP cmp argument!");
|
|
}
|
|
|
|
static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
|
|
SDValue &RetVal1, SDValue &RetVal2) {
|
|
SDLoc dl(Op);
|
|
|
|
if (isFloatingPointZero(Op)) {
|
|
RetVal1 = DAG.getConstant(0, dl, MVT::i32);
|
|
RetVal2 = DAG.getConstant(0, dl, MVT::i32);
|
|
return;
|
|
}
|
|
|
|
if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
|
|
SDValue Ptr = Ld->getBasePtr();
|
|
RetVal1 =
|
|
DAG.getLoad(MVT::i32, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(),
|
|
Ld->getAlignment(), Ld->getMemOperand()->getFlags());
|
|
|
|
EVT PtrType = Ptr.getValueType();
|
|
unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
|
|
SDValue NewPtr = DAG.getNode(ISD::ADD, dl,
|
|
PtrType, Ptr, DAG.getConstant(4, dl, PtrType));
|
|
RetVal2 = DAG.getLoad(MVT::i32, dl, Ld->getChain(), NewPtr,
|
|
Ld->getPointerInfo().getWithOffset(4), NewAlign,
|
|
Ld->getMemOperand()->getFlags());
|
|
return;
|
|
}
|
|
|
|
llvm_unreachable("Unknown VFP cmp argument!");
|
|
}
|
|
|
|
/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
|
|
/// f32 and even f64 comparisons to integer ones.
|
|
SDValue
|
|
ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
|
|
SDValue Chain = Op.getOperand(0);
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
|
|
SDValue LHS = Op.getOperand(2);
|
|
SDValue RHS = Op.getOperand(3);
|
|
SDValue Dest = Op.getOperand(4);
|
|
SDLoc dl(Op);
|
|
|
|
bool LHSSeenZero = false;
|
|
bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
|
|
bool RHSSeenZero = false;
|
|
bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
|
|
if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
|
|
// If unsafe fp math optimization is enabled and there are no other uses of
|
|
// the CMP operands, and the condition code is EQ or NE, we can optimize it
|
|
// to an integer comparison.
|
|
if (CC == ISD::SETOEQ)
|
|
CC = ISD::SETEQ;
|
|
else if (CC == ISD::SETUNE)
|
|
CC = ISD::SETNE;
|
|
|
|
SDValue Mask = DAG.getConstant(0x7fffffff, dl, MVT::i32);
|
|
SDValue ARMcc;
|
|
if (LHS.getValueType() == MVT::f32) {
|
|
LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
|
|
bitcastf32Toi32(LHS, DAG), Mask);
|
|
RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
|
|
bitcastf32Toi32(RHS, DAG), Mask);
|
|
SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
|
|
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
|
|
return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
|
|
Chain, Dest, ARMcc, CCR, Cmp);
|
|
}
|
|
|
|
SDValue LHS1, LHS2;
|
|
SDValue RHS1, RHS2;
|
|
expandf64Toi32(LHS, DAG, LHS1, LHS2);
|
|
expandf64Toi32(RHS, DAG, RHS1, RHS2);
|
|
LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
|
|
RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
|
|
ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
|
|
ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
|
|
SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
|
|
return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue Cond = Op.getOperand(1);
|
|
SDValue Dest = Op.getOperand(2);
|
|
SDLoc dl(Op);
|
|
|
|
// Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
|
|
// instruction.
|
|
unsigned Opc = Cond.getOpcode();
|
|
bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
|
|
!Subtarget->isThumb1Only();
|
|
if (Cond.getResNo() == 1 &&
|
|
(Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
|
|
Opc == ISD::USUBO || OptimizeMul)) {
|
|
// Only lower legal XALUO ops.
|
|
if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
|
|
return SDValue();
|
|
|
|
// The actual operation with overflow check.
|
|
SDValue Value, OverflowCmp;
|
|
SDValue ARMcc;
|
|
std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
|
|
|
|
// Reverse the condition code.
|
|
ARMCC::CondCodes CondCode =
|
|
(ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
|
|
CondCode = ARMCC::getOppositeCondition(CondCode);
|
|
ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
|
|
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
|
|
|
|
return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
|
|
OverflowCmp);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
|
|
SDValue Chain = Op.getOperand(0);
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
|
|
SDValue LHS = Op.getOperand(2);
|
|
SDValue RHS = Op.getOperand(3);
|
|
SDValue Dest = Op.getOperand(4);
|
|
SDLoc dl(Op);
|
|
|
|
if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) {
|
|
DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC,
|
|
dl);
|
|
|
|
// If softenSetCCOperands only returned one value, we should compare it to
|
|
// zero.
|
|
if (!RHS.getNode()) {
|
|
RHS = DAG.getConstant(0, dl, LHS.getValueType());
|
|
CC = ISD::SETNE;
|
|
}
|
|
}
|
|
|
|
// Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
|
|
// instruction.
|
|
unsigned Opc = LHS.getOpcode();
|
|
bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
|
|
!Subtarget->isThumb1Only();
|
|
if (LHS.getResNo() == 1 && (isOneConstant(RHS) || isNullConstant(RHS)) &&
|
|
(Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
|
|
Opc == ISD::USUBO || OptimizeMul) &&
|
|
(CC == ISD::SETEQ || CC == ISD::SETNE)) {
|
|
// Only lower legal XALUO ops.
|
|
if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
|
|
return SDValue();
|
|
|
|
// The actual operation with overflow check.
|
|
SDValue Value, OverflowCmp;
|
|
SDValue ARMcc;
|
|
std::tie(Value, OverflowCmp) = getARMXALUOOp(LHS.getValue(0), DAG, ARMcc);
|
|
|
|
if ((CC == ISD::SETNE) != isOneConstant(RHS)) {
|
|
// Reverse the condition code.
|
|
ARMCC::CondCodes CondCode =
|
|
(ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
|
|
CondCode = ARMCC::getOppositeCondition(CondCode);
|
|
ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
|
|
}
|
|
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
|
|
|
|
return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
|
|
OverflowCmp);
|
|
}
|
|
|
|
if (LHS.getValueType() == MVT::i32) {
|
|
SDValue ARMcc;
|
|
SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
|
|
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
|
|
return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
|
|
Chain, Dest, ARMcc, CCR, Cmp);
|
|
}
|
|
|
|
if (getTargetMachine().Options.UnsafeFPMath &&
|
|
(CC == ISD::SETEQ || CC == ISD::SETOEQ ||
|
|
CC == ISD::SETNE || CC == ISD::SETUNE)) {
|
|
if (SDValue Result = OptimizeVFPBrcond(Op, DAG))
|
|
return Result;
|
|
}
|
|
|
|
ARMCC::CondCodes CondCode, CondCode2;
|
|
bool InvalidOnQNaN;
|
|
FPCCToARMCC(CC, CondCode, CondCode2, InvalidOnQNaN);
|
|
|
|
SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
|
|
SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl, InvalidOnQNaN);
|
|
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
|
|
SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
|
|
SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
|
|
if (CondCode2 != ARMCC::AL) {
|
|
ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32);
|
|
SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
|
|
Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
|
|
}
|
|
return Res;
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue Table = Op.getOperand(1);
|
|
SDValue Index = Op.getOperand(2);
|
|
SDLoc dl(Op);
|
|
|
|
EVT PTy = getPointerTy(DAG.getDataLayout());
|
|
JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
|
|
SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
|
|
Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI);
|
|
Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, dl, PTy));
|
|
SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Index);
|
|
if (Subtarget->isThumb2() || (Subtarget->hasV8MBaselineOps() && Subtarget->isThumb())) {
|
|
// Thumb2 and ARMv8-M use a two-level jump. That is, it jumps into the jump table
|
|
// which does another jump to the destination. This also makes it easier
|
|
// to translate it to TBB / TBH later (Thumb2 only).
|
|
// FIXME: This might not work if the function is extremely large.
|
|
return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
|
|
Addr, Op.getOperand(2), JTI);
|
|
}
|
|
if (isPositionIndependent() || Subtarget->isROPI()) {
|
|
Addr =
|
|
DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
|
|
MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
|
|
Chain = Addr.getValue(1);
|
|
Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Addr);
|
|
return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
|
|
} else {
|
|
Addr =
|
|
DAG.getLoad(PTy, dl, Chain, Addr,
|
|
MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
|
|
Chain = Addr.getValue(1);
|
|
return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
|
|
}
|
|
}
|
|
|
|
static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
|
|
EVT VT = Op.getValueType();
|
|
SDLoc dl(Op);
|
|
|
|
if (Op.getValueType().getVectorElementType() == MVT::i32) {
|
|
if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
|
|
return Op;
|
|
return DAG.UnrollVectorOp(Op.getNode());
|
|
}
|
|
|
|
assert(Op.getOperand(0).getValueType() == MVT::v4f32 &&
|
|
"Invalid type for custom lowering!");
|
|
if (VT != MVT::v4i16)
|
|
return DAG.UnrollVectorOp(Op.getNode());
|
|
|
|
Op = DAG.getNode(Op.getOpcode(), dl, MVT::v4i32, Op.getOperand(0));
|
|
return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const {
|
|
EVT VT = Op.getValueType();
|
|
if (VT.isVector())
|
|
return LowerVectorFP_TO_INT(Op, DAG);
|
|
if (Subtarget->isFPOnlySP() && Op.getOperand(0).getValueType() == MVT::f64) {
|
|
RTLIB::Libcall LC;
|
|
if (Op.getOpcode() == ISD::FP_TO_SINT)
|
|
LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(),
|
|
Op.getValueType());
|
|
else
|
|
LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(),
|
|
Op.getValueType());
|
|
return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
|
|
/*isSigned*/ false, SDLoc(Op)).first;
|
|
}
|
|
|
|
return Op;
|
|
}
|
|
|
|
static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
|
|
EVT VT = Op.getValueType();
|
|
SDLoc dl(Op);
|
|
|
|
if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
|
|
if (VT.getVectorElementType() == MVT::f32)
|
|
return Op;
|
|
return DAG.UnrollVectorOp(Op.getNode());
|
|
}
|
|
|
|
assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
|
|
"Invalid type for custom lowering!");
|
|
if (VT != MVT::v4f32)
|
|
return DAG.UnrollVectorOp(Op.getNode());
|
|
|
|
unsigned CastOpc;
|
|
unsigned Opc;
|
|
switch (Op.getOpcode()) {
|
|
default: llvm_unreachable("Invalid opcode!");
|
|
case ISD::SINT_TO_FP:
|
|
CastOpc = ISD::SIGN_EXTEND;
|
|
Opc = ISD::SINT_TO_FP;
|
|
break;
|
|
case ISD::UINT_TO_FP:
|
|
CastOpc = ISD::ZERO_EXTEND;
|
|
Opc = ISD::UINT_TO_FP;
|
|
break;
|
|
}
|
|
|
|
Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
|
|
return DAG.getNode(Opc, dl, VT, Op);
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const {
|
|
EVT VT = Op.getValueType();
|
|
if (VT.isVector())
|
|
return LowerVectorINT_TO_FP(Op, DAG);
|
|
if (Subtarget->isFPOnlySP() && Op.getValueType() == MVT::f64) {
|
|
RTLIB::Libcall LC;
|
|
if (Op.getOpcode() == ISD::SINT_TO_FP)
|
|
LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(),
|
|
Op.getValueType());
|
|
else
|
|
LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(),
|
|
Op.getValueType());
|
|
return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
|
|
/*isSigned*/ false, SDLoc(Op)).first;
|
|
}
|
|
|
|
return Op;
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
|
|
// Implement fcopysign with a fabs and a conditional fneg.
|
|
SDValue Tmp0 = Op.getOperand(0);
|
|
SDValue Tmp1 = Op.getOperand(1);
|
|
SDLoc dl(Op);
|
|
EVT VT = Op.getValueType();
|
|
EVT SrcVT = Tmp1.getValueType();
|
|
bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
|
|
Tmp0.getOpcode() == ARMISD::VMOVDRR;
|
|
bool UseNEON = !InGPR && Subtarget->hasNEON();
|
|
|
|
if (UseNEON) {
|
|
// Use VBSL to copy the sign bit.
|
|
unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
|
|
SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
|
|
DAG.getTargetConstant(EncodedVal, dl, MVT::i32));
|
|
EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
|
|
if (VT == MVT::f64)
|
|
Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
|
|
DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
|
|
DAG.getConstant(32, dl, MVT::i32));
|
|
else /*if (VT == MVT::f32)*/
|
|
Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
|
|
if (SrcVT == MVT::f32) {
|
|
Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
|
|
if (VT == MVT::f64)
|
|
Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
|
|
DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
|
|
DAG.getConstant(32, dl, MVT::i32));
|
|
} else if (VT == MVT::f32)
|
|
Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
|
|
DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
|
|
DAG.getConstant(32, dl, MVT::i32));
|
|
Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
|
|
Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
|
|
|
|
SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
|
|
dl, MVT::i32);
|
|
AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
|
|
SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
|
|
DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
|
|
|
|
SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
|
|
DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
|
|
DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
|
|
if (VT == MVT::f32) {
|
|
Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
|
|
Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
|
|
DAG.getConstant(0, dl, MVT::i32));
|
|
} else {
|
|
Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
|
|
}
|
|
|
|
return Res;
|
|
}
|
|
|
|
// Bitcast operand 1 to i32.
|
|
if (SrcVT == MVT::f64)
|
|
Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
|
|
Tmp1).getValue(1);
|
|
Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
|
|
|
|
// Or in the signbit with integer operations.
|
|
SDValue Mask1 = DAG.getConstant(0x80000000, dl, MVT::i32);
|
|
SDValue Mask2 = DAG.getConstant(0x7fffffff, dl, MVT::i32);
|
|
Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
|
|
if (VT == MVT::f32) {
|
|
Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
|
|
DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
|
|
return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
|
|
DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
|
|
}
|
|
|
|
// f64: Or the high part with signbit and then combine two parts.
|
|
Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
|
|
Tmp0);
|
|
SDValue Lo = Tmp0.getValue(0);
|
|
SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
|
|
Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
|
|
return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
MFI.setReturnAddressIsTaken(true);
|
|
|
|
if (verifyReturnAddressArgumentIsConstant(Op, DAG))
|
|
return SDValue();
|
|
|
|
EVT VT = Op.getValueType();
|
|
SDLoc dl(Op);
|
|
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
|
|
if (Depth) {
|
|
SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
|
|
SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
|
|
return DAG.getLoad(VT, dl, DAG.getEntryNode(),
|
|
DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
|
|
MachinePointerInfo());
|
|
}
|
|
|
|
// Return LR, which contains the return address. Mark it an implicit live-in.
|
|
unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
|
|
return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
|
|
const ARMBaseRegisterInfo &ARI =
|
|
*static_cast<const ARMBaseRegisterInfo*>(RegInfo);
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
MFI.setFrameAddressIsTaken(true);
|
|
|
|
EVT VT = Op.getValueType();
|
|
SDLoc dl(Op); // FIXME probably not meaningful
|
|
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
|
|
unsigned FrameReg = ARI.getFrameRegister(MF);
|
|
SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
|
|
while (Depth--)
|
|
FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
|
|
MachinePointerInfo());
|
|
return FrameAddr;
|
|
}
|
|
|
|
// FIXME? Maybe this could be a TableGen attribute on some registers and
|
|
// this table could be generated automatically from RegInfo.
|
|
unsigned ARMTargetLowering::getRegisterByName(const char* RegName, EVT VT,
|
|
SelectionDAG &DAG) const {
|
|
unsigned Reg = StringSwitch<unsigned>(RegName)
|
|
.Case("sp", ARM::SP)
|
|
.Default(0);
|
|
if (Reg)
|
|
return Reg;
|
|
report_fatal_error(Twine("Invalid register name \""
|
|
+ StringRef(RegName) + "\"."));
|
|
}
|
|
|
|
// Result is 64 bit value so split into two 32 bit values and return as a
|
|
// pair of values.
|
|
static void ExpandREAD_REGISTER(SDNode *N, SmallVectorImpl<SDValue> &Results,
|
|
SelectionDAG &DAG) {
|
|
SDLoc DL(N);
|
|
|
|
// This function is only supposed to be called for i64 type destination.
|
|
assert(N->getValueType(0) == MVT::i64
|
|
&& "ExpandREAD_REGISTER called for non-i64 type result.");
|
|
|
|
SDValue Read = DAG.getNode(ISD::READ_REGISTER, DL,
|
|
DAG.getVTList(MVT::i32, MVT::i32, MVT::Other),
|
|
N->getOperand(0),
|
|
N->getOperand(1));
|
|
|
|
Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Read.getValue(0),
|
|
Read.getValue(1)));
|
|
Results.push_back(Read.getOperand(0));
|
|
}
|
|
|
|
/// \p BC is a bitcast that is about to be turned into a VMOVDRR.
|
|
/// When \p DstVT, the destination type of \p BC, is on the vector
|
|
/// register bank and the source of bitcast, \p Op, operates on the same bank,
|
|
/// it might be possible to combine them, such that everything stays on the
|
|
/// vector register bank.
|
|
/// \p return The node that would replace \p BT, if the combine
|
|
/// is possible.
|
|
static SDValue CombineVMOVDRRCandidateWithVecOp(const SDNode *BC,
|
|
SelectionDAG &DAG) {
|
|
SDValue Op = BC->getOperand(0);
|
|
EVT DstVT = BC->getValueType(0);
|
|
|
|
// The only vector instruction that can produce a scalar (remember,
|
|
// since the bitcast was about to be turned into VMOVDRR, the source
|
|
// type is i64) from a vector is EXTRACT_VECTOR_ELT.
|
|
// Moreover, we can do this combine only if there is one use.
|
|
// Finally, if the destination type is not a vector, there is not
|
|
// much point on forcing everything on the vector bank.
|
|
if (!DstVT.isVector() || Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
|
|
!Op.hasOneUse())
|
|
return SDValue();
|
|
|
|
// If the index is not constant, we will introduce an additional
|
|
// multiply that will stick.
|
|
// Give up in that case.
|
|
ConstantSDNode *Index = dyn_cast<ConstantSDNode>(Op.getOperand(1));
|
|
if (!Index)
|
|
return SDValue();
|
|
unsigned DstNumElt = DstVT.getVectorNumElements();
|
|
|
|
// Compute the new index.
|
|
const APInt &APIntIndex = Index->getAPIntValue();
|
|
APInt NewIndex(APIntIndex.getBitWidth(), DstNumElt);
|
|
NewIndex *= APIntIndex;
|
|
// Check if the new constant index fits into i32.
|
|
if (NewIndex.getBitWidth() > 32)
|
|
return SDValue();
|
|
|
|
// vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
|
|
// vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
|
|
SDLoc dl(Op);
|
|
SDValue ExtractSrc = Op.getOperand(0);
|
|
EVT VecVT = EVT::getVectorVT(
|
|
*DAG.getContext(), DstVT.getScalarType(),
|
|
ExtractSrc.getValueType().getVectorNumElements() * DstNumElt);
|
|
SDValue BitCast = DAG.getNode(ISD::BITCAST, dl, VecVT, ExtractSrc);
|
|
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DstVT, BitCast,
|
|
DAG.getConstant(NewIndex.getZExtValue(), dl, MVT::i32));
|
|
}
|
|
|
|
/// ExpandBITCAST - If the target supports VFP, this function is called to
|
|
/// expand a bit convert where either the source or destination type is i64 to
|
|
/// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64
|
|
/// operand type is illegal (e.g., v2f32 for a target that doesn't support
|
|
/// vectors), since the legalizer won't know what to do with that.
|
|
static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG,
|
|
const ARMSubtarget *Subtarget) {
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
SDLoc dl(N);
|
|
SDValue Op = N->getOperand(0);
|
|
|
|
// This function is only supposed to be called for i64 types, either as the
|
|
// source or destination of the bit convert.
|
|
EVT SrcVT = Op.getValueType();
|
|
EVT DstVT = N->getValueType(0);
|
|
const bool HasFullFP16 = Subtarget->hasFullFP16();
|
|
|
|
if (SrcVT == MVT::f32 && DstVT == MVT::i32) {
|
|
// FullFP16: half values are passed in S-registers, and we don't
|
|
// need any of the bitcast and moves:
|
|
//
|
|
// t2: f32,ch = CopyFromReg t0, Register:f32 %0
|
|
// t5: i32 = bitcast t2
|
|
// t18: f16 = ARMISD::VMOVhr t5
|
|
if (Op.getOpcode() != ISD::CopyFromReg ||
|
|
Op.getValueType() != MVT::f32)
|
|
return SDValue();
|
|
|
|
auto Move = N->use_begin();
|
|
if (Move->getOpcode() != ARMISD::VMOVhr)
|
|
return SDValue();
|
|
|
|
SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
|
|
SDValue Copy = DAG.getNode(ISD::CopyFromReg, SDLoc(Op), MVT::f16, Ops);
|
|
DAG.ReplaceAllUsesWith(*Move, &Copy);
|
|
return Copy;
|
|
}
|
|
|
|
if (SrcVT == MVT::i16 && DstVT == MVT::f16) {
|
|
if (!HasFullFP16)
|
|
return SDValue();
|
|
// SoftFP: read half-precision arguments:
|
|
//
|
|
// t2: i32,ch = ...
|
|
// t7: i16 = truncate t2 <~~~~ Op
|
|
// t8: f16 = bitcast t7 <~~~~ N
|
|
//
|
|
if (Op.getOperand(0).getValueType() == MVT::i32)
|
|
return DAG.getNode(ARMISD::VMOVhr, SDLoc(Op),
|
|
MVT::f16, Op.getOperand(0));
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// Half-precision return values
|
|
if (SrcVT == MVT::f16 && DstVT == MVT::i16) {
|
|
if (!HasFullFP16)
|
|
return SDValue();
|
|
//
|
|
// t11: f16 = fadd t8, t10
|
|
// t12: i16 = bitcast t11 <~~~ SDNode N
|
|
// t13: i32 = zero_extend t12
|
|
// t16: ch,glue = CopyToReg t0, Register:i32 %r0, t13
|
|
// t17: ch = ARMISD::RET_FLAG t16, Register:i32 %r0, t16:1
|
|
//
|
|
// transform this into:
|
|
//
|
|
// t20: i32 = ARMISD::VMOVrh t11
|
|
// t16: ch,glue = CopyToReg t0, Register:i32 %r0, t20
|
|
//
|
|
auto ZeroExtend = N->use_begin();
|
|
if (N->use_size() != 1 || ZeroExtend->getOpcode() != ISD::ZERO_EXTEND ||
|
|
ZeroExtend->getValueType(0) != MVT::i32)
|
|
return SDValue();
|
|
|
|
auto Copy = ZeroExtend->use_begin();
|
|
if (Copy->getOpcode() == ISD::CopyToReg &&
|
|
Copy->use_begin()->getOpcode() == ARMISD::RET_FLAG) {
|
|
SDValue Cvt = DAG.getNode(ARMISD::VMOVrh, SDLoc(Op), MVT::i32, Op);
|
|
DAG.ReplaceAllUsesWith(*ZeroExtend, &Cvt);
|
|
return Cvt;
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
if (!(SrcVT == MVT::i64 || DstVT == MVT::i64))
|
|
return SDValue();
|
|
|
|
// Turn i64->f64 into VMOVDRR.
|
|
if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
|
|
// Do not force values to GPRs (this is what VMOVDRR does for the inputs)
|
|
// if we can combine the bitcast with its source.
|
|
if (SDValue Val = CombineVMOVDRRCandidateWithVecOp(N, DAG))
|
|
return Val;
|
|
|
|
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
|
|
DAG.getConstant(0, dl, MVT::i32));
|
|
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
|
|
DAG.getConstant(1, dl, MVT::i32));
|
|
return DAG.getNode(ISD::BITCAST, dl, DstVT,
|
|
DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
|
|
}
|
|
|
|
// Turn f64->i64 into VMOVRRD.
|
|
if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
|
|
SDValue Cvt;
|
|
if (DAG.getDataLayout().isBigEndian() && SrcVT.isVector() &&
|
|
SrcVT.getVectorNumElements() > 1)
|
|
Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
|
|
DAG.getVTList(MVT::i32, MVT::i32),
|
|
DAG.getNode(ARMISD::VREV64, dl, SrcVT, Op));
|
|
else
|
|
Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
|
|
DAG.getVTList(MVT::i32, MVT::i32), Op);
|
|
// Merge the pieces into a single i64 value.
|
|
return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// getZeroVector - Returns a vector of specified type with all zero elements.
|
|
/// Zero vectors are used to represent vector negation and in those cases
|
|
/// will be implemented with the NEON VNEG instruction. However, VNEG does
|
|
/// not support i64 elements, so sometimes the zero vectors will need to be
|
|
/// explicitly constructed. Regardless, use a canonical VMOV to create the
|
|
/// zero vector.
|
|
static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, const SDLoc &dl) {
|
|
assert(VT.isVector() && "Expected a vector type");
|
|
// The canonical modified immediate encoding of a zero vector is....0!
|
|
SDValue EncodedVal = DAG.getTargetConstant(0, dl, MVT::i32);
|
|
EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
|
|
SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
|
|
}
|
|
|
|
/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
|
|
/// i32 values and take a 2 x i32 value to shift plus a shift amount.
|
|
SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
assert(Op.getNumOperands() == 3 && "Not a double-shift!");
|
|
EVT VT = Op.getValueType();
|
|
unsigned VTBits = VT.getSizeInBits();
|
|
SDLoc dl(Op);
|
|
SDValue ShOpLo = Op.getOperand(0);
|
|
SDValue ShOpHi = Op.getOperand(1);
|
|
SDValue ShAmt = Op.getOperand(2);
|
|
SDValue ARMcc;
|
|
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
|
|
unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
|
|
|
|
assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
|
|
|
|
SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
|
|
DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
|
|
SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
|
|
SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
|
|
DAG.getConstant(VTBits, dl, MVT::i32));
|
|
SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
|
|
SDValue LoSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
|
|
SDValue LoBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
|
|
SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
|
|
ISD::SETGE, ARMcc, DAG, dl);
|
|
SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift, LoBigShift,
|
|
ARMcc, CCR, CmpLo);
|
|
|
|
SDValue HiSmallShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
|
|
SDValue HiBigShift = Opc == ISD::SRA
|
|
? DAG.getNode(Opc, dl, VT, ShOpHi,
|
|
DAG.getConstant(VTBits - 1, dl, VT))
|
|
: DAG.getConstant(0, dl, VT);
|
|
SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
|
|
ISD::SETGE, ARMcc, DAG, dl);
|
|
SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
|
|
ARMcc, CCR, CmpHi);
|
|
|
|
SDValue Ops[2] = { Lo, Hi };
|
|
return DAG.getMergeValues(Ops, dl);
|
|
}
|
|
|
|
/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
|
|
/// i32 values and take a 2 x i32 value to shift plus a shift amount.
|
|
SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
assert(Op.getNumOperands() == 3 && "Not a double-shift!");
|
|
EVT VT = Op.getValueType();
|
|
unsigned VTBits = VT.getSizeInBits();
|
|
SDLoc dl(Op);
|
|
SDValue ShOpLo = Op.getOperand(0);
|
|
SDValue ShOpHi = Op.getOperand(1);
|
|
SDValue ShAmt = Op.getOperand(2);
|
|
SDValue ARMcc;
|
|
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
|
|
|
|
assert(Op.getOpcode() == ISD::SHL_PARTS);
|
|
SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
|
|
DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
|
|
SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
|
|
SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
|
|
SDValue HiSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
|
|
|
|
SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
|
|
DAG.getConstant(VTBits, dl, MVT::i32));
|
|
SDValue HiBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
|
|
SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
|
|
ISD::SETGE, ARMcc, DAG, dl);
|
|
SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
|
|
ARMcc, CCR, CmpHi);
|
|
|
|
SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
|
|
ISD::SETGE, ARMcc, DAG, dl);
|
|
SDValue LoSmallShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
|
|
SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift,
|
|
DAG.getConstant(0, dl, VT), ARMcc, CCR, CmpLo);
|
|
|
|
SDValue Ops[2] = { Lo, Hi };
|
|
return DAG.getMergeValues(Ops, dl);
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
// The rounding mode is in bits 23:22 of the FPSCR.
|
|
// The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
|
|
// The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
|
|
// so that the shift + and get folded into a bitfield extract.
|
|
SDLoc dl(Op);
|
|
SDValue Ops[] = { DAG.getEntryNode(),
|
|
DAG.getConstant(Intrinsic::arm_get_fpscr, dl, MVT::i32) };
|
|
|
|
SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_W_CHAIN, dl, MVT::i32, Ops);
|
|
SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
|
|
DAG.getConstant(1U << 22, dl, MVT::i32));
|
|
SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
|
|
DAG.getConstant(22, dl, MVT::i32));
|
|
return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
|
|
DAG.getConstant(3, dl, MVT::i32));
|
|
}
|
|
|
|
static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
|
|
const ARMSubtarget *ST) {
|
|
SDLoc dl(N);
|
|
EVT VT = N->getValueType(0);
|
|
if (VT.isVector()) {
|
|
assert(ST->hasNEON());
|
|
|
|
// Compute the least significant set bit: LSB = X & -X
|
|
SDValue X = N->getOperand(0);
|
|
SDValue NX = DAG.getNode(ISD::SUB, dl, VT, getZeroVector(VT, DAG, dl), X);
|
|
SDValue LSB = DAG.getNode(ISD::AND, dl, VT, X, NX);
|
|
|
|
EVT ElemTy = VT.getVectorElementType();
|
|
|
|
if (ElemTy == MVT::i8) {
|
|
// Compute with: cttz(x) = ctpop(lsb - 1)
|
|
SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
|
|
DAG.getTargetConstant(1, dl, ElemTy));
|
|
SDValue Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
|
|
return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
|
|
}
|
|
|
|
if ((ElemTy == MVT::i16 || ElemTy == MVT::i32) &&
|
|
(N->getOpcode() == ISD::CTTZ_ZERO_UNDEF)) {
|
|
// Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
|
|
unsigned NumBits = ElemTy.getSizeInBits();
|
|
SDValue WidthMinus1 =
|
|
DAG.getNode(ARMISD::VMOVIMM, dl, VT,
|
|
DAG.getTargetConstant(NumBits - 1, dl, ElemTy));
|
|
SDValue CTLZ = DAG.getNode(ISD::CTLZ, dl, VT, LSB);
|
|
return DAG.getNode(ISD::SUB, dl, VT, WidthMinus1, CTLZ);
|
|
}
|
|
|
|
// Compute with: cttz(x) = ctpop(lsb - 1)
|
|
|
|
// Since we can only compute the number of bits in a byte with vcnt.8, we
|
|
// have to gather the result with pairwise addition (vpaddl) for i16, i32,
|
|
// and i64.
|
|
|
|
// Compute LSB - 1.
|
|
SDValue Bits;
|
|
if (ElemTy == MVT::i64) {
|
|
// Load constant 0xffff'ffff'ffff'ffff to register.
|
|
SDValue FF = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
|
|
DAG.getTargetConstant(0x1eff, dl, MVT::i32));
|
|
Bits = DAG.getNode(ISD::ADD, dl, VT, LSB, FF);
|
|
} else {
|
|
SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
|
|
DAG.getTargetConstant(1, dl, ElemTy));
|
|
Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
|
|
}
|
|
|
|
// Count #bits with vcnt.8.
|
|
EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
|
|
SDValue BitsVT8 = DAG.getNode(ISD::BITCAST, dl, VT8Bit, Bits);
|
|
SDValue Cnt8 = DAG.getNode(ISD::CTPOP, dl, VT8Bit, BitsVT8);
|
|
|
|
// Gather the #bits with vpaddl (pairwise add.)
|
|
EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16;
|
|
SDValue Cnt16 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT16Bit,
|
|
DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
|
|
Cnt8);
|
|
if (ElemTy == MVT::i16)
|
|
return Cnt16;
|
|
|
|
EVT VT32Bit = VT.is64BitVector() ? MVT::v2i32 : MVT::v4i32;
|
|
SDValue Cnt32 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT32Bit,
|
|
DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
|
|
Cnt16);
|
|
if (ElemTy == MVT::i32)
|
|
return Cnt32;
|
|
|
|
assert(ElemTy == MVT::i64);
|
|
SDValue Cnt64 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
|
|
DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
|
|
Cnt32);
|
|
return Cnt64;
|
|
}
|
|
|
|
if (!ST->hasV6T2Ops())
|
|
return SDValue();
|
|
|
|
SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, VT, N->getOperand(0));
|
|
return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
|
|
}
|
|
|
|
/// getCTPOP16BitCounts - Returns a v8i8/v16i8 vector containing the bit-count
|
|
/// for each 16-bit element from operand, repeated. The basic idea is to
|
|
/// leverage vcnt to get the 8-bit counts, gather and add the results.
|
|
///
|
|
/// Trace for v4i16:
|
|
/// input = [v0 v1 v2 v3 ] (vi 16-bit element)
|
|
/// cast: N0 = [w0 w1 w2 w3 w4 w5 w6 w7] (v0 = [w0 w1], wi 8-bit element)
|
|
/// vcnt: N1 = [b0 b1 b2 b3 b4 b5 b6 b7] (bi = bit-count of 8-bit element wi)
|
|
/// vrev: N2 = [b1 b0 b3 b2 b5 b4 b7 b6]
|
|
/// [b0 b1 b2 b3 b4 b5 b6 b7]
|
|
/// +[b1 b0 b3 b2 b5 b4 b7 b6]
|
|
/// N3=N1+N2 = [k0 k0 k1 k1 k2 k2 k3 k3] (k0 = b0+b1 = bit-count of 16-bit v0,
|
|
/// vuzp: = [k0 k1 k2 k3 k0 k1 k2 k3] each ki is 8-bits)
|
|
static SDValue getCTPOP16BitCounts(SDNode *N, SelectionDAG &DAG) {
|
|
EVT VT = N->getValueType(0);
|
|
SDLoc DL(N);
|
|
|
|
EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
|
|
SDValue N0 = DAG.getNode(ISD::BITCAST, DL, VT8Bit, N->getOperand(0));
|
|
SDValue N1 = DAG.getNode(ISD::CTPOP, DL, VT8Bit, N0);
|
|
SDValue N2 = DAG.getNode(ARMISD::VREV16, DL, VT8Bit, N1);
|
|
SDValue N3 = DAG.getNode(ISD::ADD, DL, VT8Bit, N1, N2);
|
|
return DAG.getNode(ARMISD::VUZP, DL, VT8Bit, N3, N3);
|
|
}
|
|
|
|
/// lowerCTPOP16BitElements - Returns a v4i16/v8i16 vector containing the
|
|
/// bit-count for each 16-bit element from the operand. We need slightly
|
|
/// different sequencing for v4i16 and v8i16 to stay within NEON's available
|
|
/// 64/128-bit registers.
|
|
///
|
|
/// Trace for v4i16:
|
|
/// input = [v0 v1 v2 v3 ] (vi 16-bit element)
|
|
/// v8i8: BitCounts = [k0 k1 k2 k3 k0 k1 k2 k3 ] (ki is the bit-count of vi)
|
|
/// v8i16:Extended = [k0 k1 k2 k3 k0 k1 k2 k3 ]
|
|
/// v4i16:Extracted = [k0 k1 k2 k3 ]
|
|
static SDValue lowerCTPOP16BitElements(SDNode *N, SelectionDAG &DAG) {
|
|
EVT VT = N->getValueType(0);
|
|
SDLoc DL(N);
|
|
|
|
SDValue BitCounts = getCTPOP16BitCounts(N, DAG);
|
|
if (VT.is64BitVector()) {
|
|
SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, BitCounts);
|
|
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, Extended,
|
|
DAG.getIntPtrConstant(0, DL));
|
|
} else {
|
|
SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8,
|
|
BitCounts, DAG.getIntPtrConstant(0, DL));
|
|
return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, Extracted);
|
|
}
|
|
}
|
|
|
|
/// lowerCTPOP32BitElements - Returns a v2i32/v4i32 vector containing the
|
|
/// bit-count for each 32-bit element from the operand. The idea here is
|
|
/// to split the vector into 16-bit elements, leverage the 16-bit count
|
|
/// routine, and then combine the results.
|
|
///
|
|
/// Trace for v2i32 (v4i32 similar with Extracted/Extended exchanged):
|
|
/// input = [v0 v1 ] (vi: 32-bit elements)
|
|
/// Bitcast = [w0 w1 w2 w3 ] (wi: 16-bit elements, v0 = [w0 w1])
|
|
/// Counts16 = [k0 k1 k2 k3 ] (ki: 16-bit elements, bit-count of wi)
|
|
/// vrev: N0 = [k1 k0 k3 k2 ]
|
|
/// [k0 k1 k2 k3 ]
|
|
/// N1 =+[k1 k0 k3 k2 ]
|
|
/// [k0 k2 k1 k3 ]
|
|
/// N2 =+[k1 k3 k0 k2 ]
|
|
/// [k0 k2 k1 k3 ]
|
|
/// Extended =+[k1 k3 k0 k2 ]
|
|
/// [k0 k2 ]
|
|
/// Extracted=+[k1 k3 ]
|
|
///
|
|
static SDValue lowerCTPOP32BitElements(SDNode *N, SelectionDAG &DAG) {
|
|
EVT VT = N->getValueType(0);
|
|
SDLoc DL(N);
|
|
|
|
EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16;
|
|
|
|
SDValue Bitcast = DAG.getNode(ISD::BITCAST, DL, VT16Bit, N->getOperand(0));
|
|
SDValue Counts16 = lowerCTPOP16BitElements(Bitcast.getNode(), DAG);
|
|
SDValue N0 = DAG.getNode(ARMISD::VREV32, DL, VT16Bit, Counts16);
|
|
SDValue N1 = DAG.getNode(ISD::ADD, DL, VT16Bit, Counts16, N0);
|
|
SDValue N2 = DAG.getNode(ARMISD::VUZP, DL, VT16Bit, N1, N1);
|
|
|
|
if (VT.is64BitVector()) {
|
|
SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, N2);
|
|
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i32, Extended,
|
|
DAG.getIntPtrConstant(0, DL));
|
|
} else {
|
|
SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, N2,
|
|
DAG.getIntPtrConstant(0, DL));
|
|
return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, Extracted);
|
|
}
|
|
}
|
|
|
|
static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG,
|
|
const ARMSubtarget *ST) {
|
|
EVT VT = N->getValueType(0);
|
|
|
|
assert(ST->hasNEON() && "Custom ctpop lowering requires NEON.");
|
|
assert((VT == MVT::v2i32 || VT == MVT::v4i32 ||
|
|
VT == MVT::v4i16 || VT == MVT::v8i16) &&
|
|
"Unexpected type for custom ctpop lowering");
|
|
|
|
if (VT.getVectorElementType() == MVT::i32)
|
|
return lowerCTPOP32BitElements(N, DAG);
|
|
else
|
|
return lowerCTPOP16BitElements(N, DAG);
|
|
}
|
|
|
|
static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
|
|
const ARMSubtarget *ST) {
|
|
EVT VT = N->getValueType(0);
|
|
SDLoc dl(N);
|
|
|
|
if (!VT.isVector())
|
|
return SDValue();
|
|
|
|
// Lower vector shifts on NEON to use VSHL.
|
|
assert(ST->hasNEON() && "unexpected vector shift");
|
|
|
|
// Left shifts translate directly to the vshiftu intrinsic.
|
|
if (N->getOpcode() == ISD::SHL)
|
|
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
|
|
DAG.getConstant(Intrinsic::arm_neon_vshiftu, dl,
|
|
MVT::i32),
|
|
N->getOperand(0), N->getOperand(1));
|
|
|
|
assert((N->getOpcode() == ISD::SRA ||
|
|
N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
|
|
|
|
// NEON uses the same intrinsics for both left and right shifts. For
|
|
// right shifts, the shift amounts are negative, so negate the vector of
|
|
// shift amounts.
|
|
EVT ShiftVT = N->getOperand(1).getValueType();
|
|
SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
|
|
getZeroVector(ShiftVT, DAG, dl),
|
|
N->getOperand(1));
|
|
Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
|
|
Intrinsic::arm_neon_vshifts :
|
|
Intrinsic::arm_neon_vshiftu);
|
|
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
|
|
DAG.getConstant(vshiftInt, dl, MVT::i32),
|
|
N->getOperand(0), NegatedCount);
|
|
}
|
|
|
|
static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
|
|
const ARMSubtarget *ST) {
|
|
EVT VT = N->getValueType(0);
|
|
SDLoc dl(N);
|
|
|
|
// We can get here for a node like i32 = ISD::SHL i32, i64
|
|
if (VT != MVT::i64)
|
|
return SDValue();
|
|
|
|
assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
|
|
"Unknown shift to lower!");
|
|
|
|
// We only lower SRA, SRL of 1 here, all others use generic lowering.
|
|
if (!isOneConstant(N->getOperand(1)))
|
|
return SDValue();
|
|
|
|
// If we are in thumb mode, we don't have RRX.
|
|
if (ST->isThumb1Only()) return SDValue();
|
|
|
|
// Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr.
|
|
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
|
|
DAG.getConstant(0, dl, MVT::i32));
|
|
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
|
|
DAG.getConstant(1, dl, MVT::i32));
|
|
|
|
// First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
|
|
// captures the result into a carry flag.
|
|
unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
|
|
Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), Hi);
|
|
|
|
// The low part is an ARMISD::RRX operand, which shifts the carry in.
|
|
Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
|
|
|
|
// Merge the pieces into a single i64 value.
|
|
return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
|
|
}
|
|
|
|
static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
|
|
SDValue TmpOp0, TmpOp1;
|
|
bool Invert = false;
|
|
bool Swap = false;
|
|
unsigned Opc = 0;
|
|
|
|
SDValue Op0 = Op.getOperand(0);
|
|
SDValue Op1 = Op.getOperand(1);
|
|
SDValue CC = Op.getOperand(2);
|
|
EVT CmpVT = Op0.getValueType().changeVectorElementTypeToInteger();
|
|
EVT VT = Op.getValueType();
|
|
ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
|
|
SDLoc dl(Op);
|
|
|
|
if (Op0.getValueType().getVectorElementType() == MVT::i64 &&
|
|
(SetCCOpcode == ISD::SETEQ || SetCCOpcode == ISD::SETNE)) {
|
|
// Special-case integer 64-bit equality comparisons. They aren't legal,
|
|
// but they can be lowered with a few vector instructions.
|
|
unsigned CmpElements = CmpVT.getVectorNumElements() * 2;
|
|
EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, CmpElements);
|
|
SDValue CastOp0 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op0);
|
|
SDValue CastOp1 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op1);
|
|
SDValue Cmp = DAG.getNode(ISD::SETCC, dl, SplitVT, CastOp0, CastOp1,
|
|
DAG.getCondCode(ISD::SETEQ));
|
|
SDValue Reversed = DAG.getNode(ARMISD::VREV64, dl, SplitVT, Cmp);
|
|
SDValue Merged = DAG.getNode(ISD::AND, dl, SplitVT, Cmp, Reversed);
|
|
Merged = DAG.getNode(ISD::BITCAST, dl, CmpVT, Merged);
|
|
if (SetCCOpcode == ISD::SETNE)
|
|
Merged = DAG.getNOT(dl, Merged, CmpVT);
|
|
Merged = DAG.getSExtOrTrunc(Merged, dl, VT);
|
|
return Merged;
|
|
}
|
|
|
|
if (CmpVT.getVectorElementType() == MVT::i64)
|
|
// 64-bit comparisons are not legal in general.
|
|
return SDValue();
|
|
|
|
if (Op1.getValueType().isFloatingPoint()) {
|
|
switch (SetCCOpcode) {
|
|
default: llvm_unreachable("Illegal FP comparison");
|
|
case ISD::SETUNE:
|
|
case ISD::SETNE: Invert = true; LLVM_FALLTHROUGH;
|
|
case ISD::SETOEQ:
|
|
case ISD::SETEQ: Opc = ARMISD::VCEQ; break;
|
|
case ISD::SETOLT:
|
|
case ISD::SETLT: Swap = true; LLVM_FALLTHROUGH;
|
|
case ISD::SETOGT:
|
|
case ISD::SETGT: Opc = ARMISD::VCGT; break;
|
|
case ISD::SETOLE:
|
|
case ISD::SETLE: Swap = true; LLVM_FALLTHROUGH;
|
|
case ISD::SETOGE:
|
|
case ISD::SETGE: Opc = ARMISD::VCGE; break;
|
|
case ISD::SETUGE: Swap = true; LLVM_FALLTHROUGH;
|
|
case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
|
|
case ISD::SETUGT: Swap = true; LLVM_FALLTHROUGH;
|
|
case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
|
|
case ISD::SETUEQ: Invert = true; LLVM_FALLTHROUGH;
|
|
case ISD::SETONE:
|
|
// Expand this to (OLT | OGT).
|
|
TmpOp0 = Op0;
|
|
TmpOp1 = Op1;
|
|
Opc = ISD::OR;
|
|
Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0);
|
|
Op1 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp0, TmpOp1);
|
|
break;
|
|
case ISD::SETUO:
|
|
Invert = true;
|
|
LLVM_FALLTHROUGH;
|
|
case ISD::SETO:
|
|
// Expand this to (OLT | OGE).
|
|
TmpOp0 = Op0;
|
|
TmpOp1 = Op1;
|
|
Opc = ISD::OR;
|
|
Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0);
|
|
Op1 = DAG.getNode(ARMISD::VCGE, dl, CmpVT, TmpOp0, TmpOp1);
|
|
break;
|
|
}
|
|
} else {
|
|
// Integer comparisons.
|
|
switch (SetCCOpcode) {
|
|
default: llvm_unreachable("Illegal integer comparison");
|
|
case ISD::SETNE: Invert = true; LLVM_FALLTHROUGH;
|
|
case ISD::SETEQ: Opc = ARMISD::VCEQ; break;
|
|
case ISD::SETLT: Swap = true; LLVM_FALLTHROUGH;
|
|
case ISD::SETGT: Opc = ARMISD::VCGT; break;
|
|
case ISD::SETLE: Swap = true; LLVM_FALLTHROUGH;
|
|
case ISD::SETGE: Opc = ARMISD::VCGE; break;
|
|
case ISD::SETULT: Swap = true; LLVM_FALLTHROUGH;
|
|
case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
|
|
case ISD::SETULE: Swap = true; LLVM_FALLTHROUGH;
|
|
case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
|
|
}
|
|
|
|
// Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
|
|
if (Opc == ARMISD::VCEQ) {
|
|
SDValue AndOp;
|
|
if (ISD::isBuildVectorAllZeros(Op1.getNode()))
|
|
AndOp = Op0;
|
|
else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
|
|
AndOp = Op1;
|
|
|
|
// Ignore bitconvert.
|
|
if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
|
|
AndOp = AndOp.getOperand(0);
|
|
|
|
if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
|
|
Opc = ARMISD::VTST;
|
|
Op0 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(0));
|
|
Op1 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(1));
|
|
Invert = !Invert;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Swap)
|
|
std::swap(Op0, Op1);
|
|
|
|
// If one of the operands is a constant vector zero, attempt to fold the
|
|
// comparison to a specialized compare-against-zero form.
|
|
SDValue SingleOp;
|
|
if (ISD::isBuildVectorAllZeros(Op1.getNode()))
|
|
SingleOp = Op0;
|
|
else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
|
|
if (Opc == ARMISD::VCGE)
|
|
Opc = ARMISD::VCLEZ;
|
|
else if (Opc == ARMISD::VCGT)
|
|
Opc = ARMISD::VCLTZ;
|
|
SingleOp = Op1;
|
|
}
|
|
|
|
SDValue Result;
|
|
if (SingleOp.getNode()) {
|
|
switch (Opc) {
|
|
case ARMISD::VCEQ:
|
|
Result = DAG.getNode(ARMISD::VCEQZ, dl, CmpVT, SingleOp); break;
|
|
case ARMISD::VCGE:
|
|
Result = DAG.getNode(ARMISD::VCGEZ, dl, CmpVT, SingleOp); break;
|
|
case ARMISD::VCLEZ:
|
|
Result = DAG.getNode(ARMISD::VCLEZ, dl, CmpVT, SingleOp); break;
|
|
case ARMISD::VCGT:
|
|
Result = DAG.getNode(ARMISD::VCGTZ, dl, CmpVT, SingleOp); break;
|
|
case ARMISD::VCLTZ:
|
|
Result = DAG.getNode(ARMISD::VCLTZ, dl, CmpVT, SingleOp); break;
|
|
default:
|
|
Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1);
|
|
}
|
|
} else {
|
|
Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1);
|
|
}
|
|
|
|
Result = DAG.getSExtOrTrunc(Result, dl, VT);
|
|
|
|
if (Invert)
|
|
Result = DAG.getNOT(dl, Result, VT);
|
|
|
|
return Result;
|
|
}
|
|
|
|
static SDValue LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) {
|
|
SDValue LHS = Op.getOperand(0);
|
|
SDValue RHS = Op.getOperand(1);
|
|
SDValue Carry = Op.getOperand(2);
|
|
SDValue Cond = Op.getOperand(3);
|
|
SDLoc DL(Op);
|
|
|
|
assert(LHS.getSimpleValueType().isInteger() && "SETCCCARRY is integer only.");
|
|
|
|
// ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
|
|
// have to invert the carry first.
|
|
Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
|
|
DAG.getConstant(1, DL, MVT::i32), Carry);
|
|
// This converts the boolean value carry into the carry flag.
|
|
Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
|
|
|
|
SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
|
|
SDValue Cmp = DAG.getNode(ARMISD::SUBE, DL, VTs, LHS, RHS, Carry);
|
|
|
|
SDValue FVal = DAG.getConstant(0, DL, MVT::i32);
|
|
SDValue TVal = DAG.getConstant(1, DL, MVT::i32);
|
|
SDValue ARMcc = DAG.getConstant(
|
|
IntCCToARMCC(cast<CondCodeSDNode>(Cond)->get()), DL, MVT::i32);
|
|
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
|
|
SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, ARM::CPSR,
|
|
Cmp.getValue(1), SDValue());
|
|
return DAG.getNode(ARMISD::CMOV, DL, Op.getValueType(), FVal, TVal, ARMcc,
|
|
CCR, Chain.getValue(1));
|
|
}
|
|
|
|
/// isNEONModifiedImm - Check if the specified splat value corresponds to a
|
|
/// valid vector constant for a NEON instruction with a "modified immediate"
|
|
/// operand (e.g., VMOV). If so, return the encoded value.
|
|
static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
|
|
unsigned SplatBitSize, SelectionDAG &DAG,
|
|
const SDLoc &dl, EVT &VT, bool is128Bits,
|
|
NEONModImmType type) {
|
|
unsigned OpCmode, Imm;
|
|
|
|
// SplatBitSize is set to the smallest size that splats the vector, so a
|
|
// zero vector will always have SplatBitSize == 8. However, NEON modified
|
|
// immediate instructions others than VMOV do not support the 8-bit encoding
|
|
// of a zero vector, and the default encoding of zero is supposed to be the
|
|
// 32-bit version.
|
|
if (SplatBits == 0)
|
|
SplatBitSize = 32;
|
|
|
|
switch (SplatBitSize) {
|
|
case 8:
|
|
if (type != VMOVModImm)
|
|
return SDValue();
|
|
// Any 1-byte value is OK. Op=0, Cmode=1110.
|
|
assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
|
|
OpCmode = 0xe;
|
|
Imm = SplatBits;
|
|
VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
|
|
break;
|
|
|
|
case 16:
|
|
// NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
|
|
VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
|
|
if ((SplatBits & ~0xff) == 0) {
|
|
// Value = 0x00nn: Op=x, Cmode=100x.
|
|
OpCmode = 0x8;
|
|
Imm = SplatBits;
|
|
break;
|
|
}
|
|
if ((SplatBits & ~0xff00) == 0) {
|
|
// Value = 0xnn00: Op=x, Cmode=101x.
|
|
OpCmode = 0xa;
|
|
Imm = SplatBits >> 8;
|
|
break;
|
|
}
|
|
return SDValue();
|
|
|
|
case 32:
|
|
// NEON's 32-bit VMOV supports splat values where:
|
|
// * only one byte is nonzero, or
|
|
// * the least significant byte is 0xff and the second byte is nonzero, or
|
|
// * the least significant 2 bytes are 0xff and the third is nonzero.
|
|
VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
|
|
if ((SplatBits & ~0xff) == 0) {
|
|
// Value = 0x000000nn: Op=x, Cmode=000x.
|
|
OpCmode = 0;
|
|
Imm = SplatBits;
|
|
break;
|
|
}
|
|
if ((SplatBits & ~0xff00) == 0) {
|
|
// Value = 0x0000nn00: Op=x, Cmode=001x.
|
|
OpCmode = 0x2;
|
|
Imm = SplatBits >> 8;
|
|
break;
|
|
}
|
|
if ((SplatBits & ~0xff0000) == 0) {
|
|
// Value = 0x00nn0000: Op=x, Cmode=010x.
|
|
OpCmode = 0x4;
|
|
Imm = SplatBits >> 16;
|
|
break;
|
|
}
|
|
if ((SplatBits & ~0xff000000) == 0) {
|
|
// Value = 0xnn000000: Op=x, Cmode=011x.
|
|
OpCmode = 0x6;
|
|
Imm = SplatBits >> 24;
|
|
break;
|
|
}
|
|
|
|
// cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
|
|
if (type == OtherModImm) return SDValue();
|
|
|
|
if ((SplatBits & ~0xffff) == 0 &&
|
|
((SplatBits | SplatUndef) & 0xff) == 0xff) {
|
|
// Value = 0x0000nnff: Op=x, Cmode=1100.
|
|
OpCmode = 0xc;
|
|
Imm = SplatBits >> 8;
|
|
break;
|
|
}
|
|
|
|
if ((SplatBits & ~0xffffff) == 0 &&
|
|
((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
|
|
// Value = 0x00nnffff: Op=x, Cmode=1101.
|
|
OpCmode = 0xd;
|
|
Imm = SplatBits >> 16;
|
|
break;
|
|
}
|
|
|
|
// Note: there are a few 32-bit splat values (specifically: 00ffff00,
|
|
// ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
|
|
// VMOV.I32. A (very) minor optimization would be to replicate the value
|
|
// and fall through here to test for a valid 64-bit splat. But, then the
|
|
// caller would also need to check and handle the change in size.
|
|
return SDValue();
|
|
|
|
case 64: {
|
|
if (type != VMOVModImm)
|
|
return SDValue();
|
|
// NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
|
|
uint64_t BitMask = 0xff;
|
|
uint64_t Val = 0;
|
|
unsigned ImmMask = 1;
|
|
Imm = 0;
|
|
for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
|
|
if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
|
|
Val |= BitMask;
|
|
Imm |= ImmMask;
|
|
} else if ((SplatBits & BitMask) != 0) {
|
|
return SDValue();
|
|
}
|
|
BitMask <<= 8;
|
|
ImmMask <<= 1;
|
|
}
|
|
|
|
if (DAG.getDataLayout().isBigEndian())
|
|
// swap higher and lower 32 bit word
|
|
Imm = ((Imm & 0xf) << 4) | ((Imm & 0xf0) >> 4);
|
|
|
|
// Op=1, Cmode=1110.
|
|
OpCmode = 0x1e;
|
|
VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
llvm_unreachable("unexpected size for isNEONModifiedImm");
|
|
}
|
|
|
|
unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
|
|
return DAG.getTargetConstant(EncodedVal, dl, MVT::i32);
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
|
|
const ARMSubtarget *ST) const {
|
|
EVT VT = Op.getValueType();
|
|
bool IsDouble = (VT == MVT::f64);
|
|
ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
|
|
const APFloat &FPVal = CFP->getValueAPF();
|
|
|
|
// Prevent floating-point constants from using literal loads
|
|
// when execute-only is enabled.
|
|
if (ST->genExecuteOnly()) {
|
|
// If we can represent the constant as an immediate, don't lower it
|
|
if (isFPImmLegal(FPVal, VT))
|
|
return Op;
|
|
// Otherwise, construct as integer, and move to float register
|
|
APInt INTVal = FPVal.bitcastToAPInt();
|
|
SDLoc DL(CFP);
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default:
|
|
llvm_unreachable("Unknown floating point type!");
|
|
break;
|
|
case MVT::f64: {
|
|
SDValue Lo = DAG.getConstant(INTVal.trunc(32), DL, MVT::i32);
|
|
SDValue Hi = DAG.getConstant(INTVal.lshr(32).trunc(32), DL, MVT::i32);
|
|
if (!ST->isLittle())
|
|
std::swap(Lo, Hi);
|
|
return DAG.getNode(ARMISD::VMOVDRR, DL, MVT::f64, Lo, Hi);
|
|
}
|
|
case MVT::f32:
|
|
return DAG.getNode(ARMISD::VMOVSR, DL, VT,
|
|
DAG.getConstant(INTVal, DL, MVT::i32));
|
|
}
|
|
}
|
|
|
|
if (!ST->hasVFP3())
|
|
return SDValue();
|
|
|
|
// Use the default (constant pool) lowering for double constants when we have
|
|
// an SP-only FPU
|
|
if (IsDouble && Subtarget->isFPOnlySP())
|
|
return SDValue();
|
|
|
|
// Try splatting with a VMOV.f32...
|
|
int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal);
|
|
|
|
if (ImmVal != -1) {
|
|
if (IsDouble || !ST->useNEONForSinglePrecisionFP()) {
|
|
// We have code in place to select a valid ConstantFP already, no need to
|
|
// do any mangling.
|
|
return Op;
|
|
}
|
|
|
|
// It's a float and we are trying to use NEON operations where
|
|
// possible. Lower it to a splat followed by an extract.
|
|
SDLoc DL(Op);
|
|
SDValue NewVal = DAG.getTargetConstant(ImmVal, DL, MVT::i32);
|
|
SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
|
|
NewVal);
|
|
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
|
|
DAG.getConstant(0, DL, MVT::i32));
|
|
}
|
|
|
|
// The rest of our options are NEON only, make sure that's allowed before
|
|
// proceeding..
|
|
if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP()))
|
|
return SDValue();
|
|
|
|
EVT VMovVT;
|
|
uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue();
|
|
|
|
// It wouldn't really be worth bothering for doubles except for one very
|
|
// important value, which does happen to match: 0.0. So make sure we don't do
|
|
// anything stupid.
|
|
if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32))
|
|
return SDValue();
|
|
|
|
// Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
|
|
SDValue NewVal = isNEONModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op),
|
|
VMovVT, false, VMOVModImm);
|
|
if (NewVal != SDValue()) {
|
|
SDLoc DL(Op);
|
|
SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
|
|
NewVal);
|
|
if (IsDouble)
|
|
return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
|
|
|
|
// It's a float: cast and extract a vector element.
|
|
SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
|
|
VecConstant);
|
|
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
|
|
DAG.getConstant(0, DL, MVT::i32));
|
|
}
|
|
|
|
// Finally, try a VMVN.i32
|
|
NewVal = isNEONModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op), VMovVT,
|
|
false, VMVNModImm);
|
|
if (NewVal != SDValue()) {
|
|
SDLoc DL(Op);
|
|
SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
|
|
|
|
if (IsDouble)
|
|
return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
|
|
|
|
// It's a float: cast and extract a vector element.
|
|
SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
|
|
VecConstant);
|
|
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
|
|
DAG.getConstant(0, DL, MVT::i32));
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// check if an VEXT instruction can handle the shuffle mask when the
|
|
// vector sources of the shuffle are the same.
|
|
static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
|
|
// Assume that the first shuffle index is not UNDEF. Fail if it is.
|
|
if (M[0] < 0)
|
|
return false;
|
|
|
|
Imm = M[0];
|
|
|
|
// If this is a VEXT shuffle, the immediate value is the index of the first
|
|
// element. The other shuffle indices must be the successive elements after
|
|
// the first one.
|
|
unsigned ExpectedElt = Imm;
|
|
for (unsigned i = 1; i < NumElts; ++i) {
|
|
// Increment the expected index. If it wraps around, just follow it
|
|
// back to index zero and keep going.
|
|
++ExpectedElt;
|
|
if (ExpectedElt == NumElts)
|
|
ExpectedElt = 0;
|
|
|
|
if (M[i] < 0) continue; // ignore UNDEF indices
|
|
if (ExpectedElt != static_cast<unsigned>(M[i]))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool isVEXTMask(ArrayRef<int> M, EVT VT,
|
|
bool &ReverseVEXT, unsigned &Imm) {
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
ReverseVEXT = false;
|
|
|
|
// Assume that the first shuffle index is not UNDEF. Fail if it is.
|
|
if (M[0] < 0)
|
|
return false;
|
|
|
|
Imm = M[0];
|
|
|
|
// If this is a VEXT shuffle, the immediate value is the index of the first
|
|
// element. The other shuffle indices must be the successive elements after
|
|
// the first one.
|
|
unsigned ExpectedElt = Imm;
|
|
for (unsigned i = 1; i < NumElts; ++i) {
|
|
// Increment the expected index. If it wraps around, it may still be
|
|
// a VEXT but the source vectors must be swapped.
|
|
ExpectedElt += 1;
|
|
if (ExpectedElt == NumElts * 2) {
|
|
ExpectedElt = 0;
|
|
ReverseVEXT = true;
|
|
}
|
|
|
|
if (M[i] < 0) continue; // ignore UNDEF indices
|
|
if (ExpectedElt != static_cast<unsigned>(M[i]))
|
|
return false;
|
|
}
|
|
|
|
// Adjust the index value if the source operands will be swapped.
|
|
if (ReverseVEXT)
|
|
Imm -= NumElts;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isVREVMask - Check if a vector shuffle corresponds to a VREV
|
|
/// instruction with the specified blocksize. (The order of the elements
|
|
/// within each block of the vector is reversed.)
|
|
static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
|
|
assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
|
|
"Only possible block sizes for VREV are: 16, 32, 64");
|
|
|
|
unsigned EltSz = VT.getScalarSizeInBits();
|
|
if (EltSz == 64)
|
|
return false;
|
|
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
unsigned BlockElts = M[0] + 1;
|
|
// If the first shuffle index is UNDEF, be optimistic.
|
|
if (M[0] < 0)
|
|
BlockElts = BlockSize / EltSz;
|
|
|
|
if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
|
|
return false;
|
|
|
|
for (unsigned i = 0; i < NumElts; ++i) {
|
|
if (M[i] < 0) continue; // ignore UNDEF indices
|
|
if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
|
|
// We can handle <8 x i8> vector shuffles. If the index in the mask is out of
|
|
// range, then 0 is placed into the resulting vector. So pretty much any mask
|
|
// of 8 elements can work here.
|
|
return VT == MVT::v8i8 && M.size() == 8;
|
|
}
|
|
|
|
static unsigned SelectPairHalf(unsigned Elements, ArrayRef<int> Mask,
|
|
unsigned Index) {
|
|
if (Mask.size() == Elements * 2)
|
|
return Index / Elements;
|
|
return Mask[Index] == 0 ? 0 : 1;
|
|
}
|
|
|
|
// Checks whether the shuffle mask represents a vector transpose (VTRN) by
|
|
// checking that pairs of elements in the shuffle mask represent the same index
|
|
// in each vector, incrementing the expected index by 2 at each step.
|
|
// e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
|
|
// v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
|
|
// v2={e,f,g,h}
|
|
// WhichResult gives the offset for each element in the mask based on which
|
|
// of the two results it belongs to.
|
|
//
|
|
// The transpose can be represented either as:
|
|
// result1 = shufflevector v1, v2, result1_shuffle_mask
|
|
// result2 = shufflevector v1, v2, result2_shuffle_mask
|
|
// where v1/v2 and the shuffle masks have the same number of elements
|
|
// (here WhichResult (see below) indicates which result is being checked)
|
|
//
|
|
// or as:
|
|
// results = shufflevector v1, v2, shuffle_mask
|
|
// where both results are returned in one vector and the shuffle mask has twice
|
|
// as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
|
|
// want to check the low half and high half of the shuffle mask as if it were
|
|
// the other case
|
|
static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
|
|
unsigned EltSz = VT.getScalarSizeInBits();
|
|
if (EltSz == 64)
|
|
return false;
|
|
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
if (M.size() != NumElts && M.size() != NumElts*2)
|
|
return false;
|
|
|
|
// If the mask is twice as long as the input vector then we need to check the
|
|
// upper and lower parts of the mask with a matching value for WhichResult
|
|
// FIXME: A mask with only even values will be rejected in case the first
|
|
// element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
|
|
// M[0] is used to determine WhichResult
|
|
for (unsigned i = 0; i < M.size(); i += NumElts) {
|
|
WhichResult = SelectPairHalf(NumElts, M, i);
|
|
for (unsigned j = 0; j < NumElts; j += 2) {
|
|
if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
|
|
(M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + NumElts + WhichResult))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (M.size() == NumElts*2)
|
|
WhichResult = 0;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
|
|
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
|
|
/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
|
|
static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
|
|
unsigned EltSz = VT.getScalarSizeInBits();
|
|
if (EltSz == 64)
|
|
return false;
|
|
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
if (M.size() != NumElts && M.size() != NumElts*2)
|
|
return false;
|
|
|
|
for (unsigned i = 0; i < M.size(); i += NumElts) {
|
|
WhichResult = SelectPairHalf(NumElts, M, i);
|
|
for (unsigned j = 0; j < NumElts; j += 2) {
|
|
if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
|
|
(M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + WhichResult))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (M.size() == NumElts*2)
|
|
WhichResult = 0;
|
|
|
|
return true;
|
|
}
|
|
|
|
// Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
|
|
// that the mask elements are either all even and in steps of size 2 or all odd
|
|
// and in steps of size 2.
|
|
// e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
|
|
// v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
|
|
// v2={e,f,g,h}
|
|
// Requires similar checks to that of isVTRNMask with
|
|
// respect the how results are returned.
|
|
static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
|
|
unsigned EltSz = VT.getScalarSizeInBits();
|
|
if (EltSz == 64)
|
|
return false;
|
|
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
if (M.size() != NumElts && M.size() != NumElts*2)
|
|
return false;
|
|
|
|
for (unsigned i = 0; i < M.size(); i += NumElts) {
|
|
WhichResult = SelectPairHalf(NumElts, M, i);
|
|
for (unsigned j = 0; j < NumElts; ++j) {
|
|
if (M[i+j] >= 0 && (unsigned) M[i+j] != 2 * j + WhichResult)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (M.size() == NumElts*2)
|
|
WhichResult = 0;
|
|
|
|
// VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
|
|
if (VT.is64BitVector() && EltSz == 32)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
|
|
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
|
|
/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
|
|
static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
|
|
unsigned EltSz = VT.getScalarSizeInBits();
|
|
if (EltSz == 64)
|
|
return false;
|
|
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
if (M.size() != NumElts && M.size() != NumElts*2)
|
|
return false;
|
|
|
|
unsigned Half = NumElts / 2;
|
|
for (unsigned i = 0; i < M.size(); i += NumElts) {
|
|
WhichResult = SelectPairHalf(NumElts, M, i);
|
|
for (unsigned j = 0; j < NumElts; j += Half) {
|
|
unsigned Idx = WhichResult;
|
|
for (unsigned k = 0; k < Half; ++k) {
|
|
int MIdx = M[i + j + k];
|
|
if (MIdx >= 0 && (unsigned) MIdx != Idx)
|
|
return false;
|
|
Idx += 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (M.size() == NumElts*2)
|
|
WhichResult = 0;
|
|
|
|
// VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
|
|
if (VT.is64BitVector() && EltSz == 32)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// Checks whether the shuffle mask represents a vector zip (VZIP) by checking
|
|
// that pairs of elements of the shufflemask represent the same index in each
|
|
// vector incrementing sequentially through the vectors.
|
|
// e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
|
|
// v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
|
|
// v2={e,f,g,h}
|
|
// Requires similar checks to that of isVTRNMask with respect the how results
|
|
// are returned.
|
|
static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
|
|
unsigned EltSz = VT.getScalarSizeInBits();
|
|
if (EltSz == 64)
|
|
return false;
|
|
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
if (M.size() != NumElts && M.size() != NumElts*2)
|
|
return false;
|
|
|
|
for (unsigned i = 0; i < M.size(); i += NumElts) {
|
|
WhichResult = SelectPairHalf(NumElts, M, i);
|
|
unsigned Idx = WhichResult * NumElts / 2;
|
|
for (unsigned j = 0; j < NumElts; j += 2) {
|
|
if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
|
|
(M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx + NumElts))
|
|
return false;
|
|
Idx += 1;
|
|
}
|
|
}
|
|
|
|
if (M.size() == NumElts*2)
|
|
WhichResult = 0;
|
|
|
|
// VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
|
|
if (VT.is64BitVector() && EltSz == 32)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
|
|
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
|
|
/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
|
|
static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
|
|
unsigned EltSz = VT.getScalarSizeInBits();
|
|
if (EltSz == 64)
|
|
return false;
|
|
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
if (M.size() != NumElts && M.size() != NumElts*2)
|
|
return false;
|
|
|
|
for (unsigned i = 0; i < M.size(); i += NumElts) {
|
|
WhichResult = SelectPairHalf(NumElts, M, i);
|
|
unsigned Idx = WhichResult * NumElts / 2;
|
|
for (unsigned j = 0; j < NumElts; j += 2) {
|
|
if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
|
|
(M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx))
|
|
return false;
|
|
Idx += 1;
|
|
}
|
|
}
|
|
|
|
if (M.size() == NumElts*2)
|
|
WhichResult = 0;
|
|
|
|
// VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
|
|
if (VT.is64BitVector() && EltSz == 32)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
|
|
/// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
|
|
static unsigned isNEONTwoResultShuffleMask(ArrayRef<int> ShuffleMask, EVT VT,
|
|
unsigned &WhichResult,
|
|
bool &isV_UNDEF) {
|
|
isV_UNDEF = false;
|
|
if (isVTRNMask(ShuffleMask, VT, WhichResult))
|
|
return ARMISD::VTRN;
|
|
if (isVUZPMask(ShuffleMask, VT, WhichResult))
|
|
return ARMISD::VUZP;
|
|
if (isVZIPMask(ShuffleMask, VT, WhichResult))
|
|
return ARMISD::VZIP;
|
|
|
|
isV_UNDEF = true;
|
|
if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
|
|
return ARMISD::VTRN;
|
|
if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
|
|
return ARMISD::VUZP;
|
|
if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
|
|
return ARMISD::VZIP;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/// \return true if this is a reverse operation on an vector.
|
|
static bool isReverseMask(ArrayRef<int> M, EVT VT) {
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
// Make sure the mask has the right size.
|
|
if (NumElts != M.size())
|
|
return false;
|
|
|
|
// Look for <15, ..., 3, -1, 1, 0>.
|
|
for (unsigned i = 0; i != NumElts; ++i)
|
|
if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// If N is an integer constant that can be moved into a register in one
|
|
// instruction, return an SDValue of such a constant (will become a MOV
|
|
// instruction). Otherwise return null.
|
|
static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
|
|
const ARMSubtarget *ST, const SDLoc &dl) {
|
|
uint64_t Val;
|
|
if (!isa<ConstantSDNode>(N))
|
|
return SDValue();
|
|
Val = cast<ConstantSDNode>(N)->getZExtValue();
|
|
|
|
if (ST->isThumb1Only()) {
|
|
if (Val <= 255 || ~Val <= 255)
|
|
return DAG.getConstant(Val, dl, MVT::i32);
|
|
} else {
|
|
if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
|
|
return DAG.getConstant(Val, dl, MVT::i32);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
// If this is a case we can't handle, return null and let the default
|
|
// expansion code take care of it.
|
|
SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
|
|
const ARMSubtarget *ST) const {
|
|
BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
|
|
SDLoc dl(Op);
|
|
EVT VT = Op.getValueType();
|
|
|
|
APInt SplatBits, SplatUndef;
|
|
unsigned SplatBitSize;
|
|
bool HasAnyUndefs;
|
|
if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
|
|
if (SplatUndef.isAllOnesValue())
|
|
return DAG.getUNDEF(VT);
|
|
|
|
if (SplatBitSize <= 64) {
|
|
// Check if an immediate VMOV works.
|
|
EVT VmovVT;
|
|
SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
|
|
SplatUndef.getZExtValue(), SplatBitSize,
|
|
DAG, dl, VmovVT, VT.is128BitVector(),
|
|
VMOVModImm);
|
|
if (Val.getNode()) {
|
|
SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
|
|
}
|
|
|
|
// Try an immediate VMVN.
|
|
uint64_t NegatedImm = (~SplatBits).getZExtValue();
|
|
Val = isNEONModifiedImm(NegatedImm,
|
|
SplatUndef.getZExtValue(), SplatBitSize,
|
|
DAG, dl, VmovVT, VT.is128BitVector(),
|
|
VMVNModImm);
|
|
if (Val.getNode()) {
|
|
SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
|
|
}
|
|
|
|
// Use vmov.f32 to materialize other v2f32 and v4f32 splats.
|
|
if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
|
|
int ImmVal = ARM_AM::getFP32Imm(SplatBits);
|
|
if (ImmVal != -1) {
|
|
SDValue Val = DAG.getTargetConstant(ImmVal, dl, MVT::i32);
|
|
return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Scan through the operands to see if only one value is used.
|
|
//
|
|
// As an optimisation, even if more than one value is used it may be more
|
|
// profitable to splat with one value then change some lanes.
|
|
//
|
|
// Heuristically we decide to do this if the vector has a "dominant" value,
|
|
// defined as splatted to more than half of the lanes.
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
bool isOnlyLowElement = true;
|
|
bool usesOnlyOneValue = true;
|
|
bool hasDominantValue = false;
|
|
bool isConstant = true;
|
|
|
|
// Map of the number of times a particular SDValue appears in the
|
|
// element list.
|
|
DenseMap<SDValue, unsigned> ValueCounts;
|
|
SDValue Value;
|
|
for (unsigned i = 0; i < NumElts; ++i) {
|
|
SDValue V = Op.getOperand(i);
|
|
if (V.isUndef())
|
|
continue;
|
|
if (i > 0)
|
|
isOnlyLowElement = false;
|
|
if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
|
|
isConstant = false;
|
|
|
|
ValueCounts.insert(std::make_pair(V, 0));
|
|
unsigned &Count = ValueCounts[V];
|
|
|
|
// Is this value dominant? (takes up more than half of the lanes)
|
|
if (++Count > (NumElts / 2)) {
|
|
hasDominantValue = true;
|
|
Value = V;
|
|
}
|
|
}
|
|
if (ValueCounts.size() != 1)
|
|
usesOnlyOneValue = false;
|
|
if (!Value.getNode() && !ValueCounts.empty())
|
|
Value = ValueCounts.begin()->first;
|
|
|
|
if (ValueCounts.empty())
|
|
return DAG.getUNDEF(VT);
|
|
|
|
// Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
|
|
// Keep going if we are hitting this case.
|
|
if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
|
|
return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
|
|
|
|
unsigned EltSize = VT.getScalarSizeInBits();
|
|
|
|
// Use VDUP for non-constant splats. For f32 constant splats, reduce to
|
|
// i32 and try again.
|
|
if (hasDominantValue && EltSize <= 32) {
|
|
if (!isConstant) {
|
|
SDValue N;
|
|
|
|
// If we are VDUPing a value that comes directly from a vector, that will
|
|
// cause an unnecessary move to and from a GPR, where instead we could
|
|
// just use VDUPLANE. We can only do this if the lane being extracted
|
|
// is at a constant index, as the VDUP from lane instructions only have
|
|
// constant-index forms.
|
|
ConstantSDNode *constIndex;
|
|
if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
|
|
(constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1)))) {
|
|
// We need to create a new undef vector to use for the VDUPLANE if the
|
|
// size of the vector from which we get the value is different than the
|
|
// size of the vector that we need to create. We will insert the element
|
|
// such that the register coalescer will remove unnecessary copies.
|
|
if (VT != Value->getOperand(0).getValueType()) {
|
|
unsigned index = constIndex->getAPIntValue().getLimitedValue() %
|
|
VT.getVectorNumElements();
|
|
N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
|
|
DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
|
|
Value, DAG.getConstant(index, dl, MVT::i32)),
|
|
DAG.getConstant(index, dl, MVT::i32));
|
|
} else
|
|
N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
|
|
Value->getOperand(0), Value->getOperand(1));
|
|
} else
|
|
N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
|
|
|
|
if (!usesOnlyOneValue) {
|
|
// The dominant value was splatted as 'N', but we now have to insert
|
|
// all differing elements.
|
|
for (unsigned I = 0; I < NumElts; ++I) {
|
|
if (Op.getOperand(I) == Value)
|
|
continue;
|
|
SmallVector<SDValue, 3> Ops;
|
|
Ops.push_back(N);
|
|
Ops.push_back(Op.getOperand(I));
|
|
Ops.push_back(DAG.getConstant(I, dl, MVT::i32));
|
|
N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ops);
|
|
}
|
|
}
|
|
return N;
|
|
}
|
|
if (VT.getVectorElementType().isFloatingPoint()) {
|
|
SmallVector<SDValue, 8> Ops;
|
|
for (unsigned i = 0; i < NumElts; ++i)
|
|
Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
|
|
Op.getOperand(i)));
|
|
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
|
|
SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
|
|
Val = LowerBUILD_VECTOR(Val, DAG, ST);
|
|
if (Val.getNode())
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, Val);
|
|
}
|
|
if (usesOnlyOneValue) {
|
|
SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
|
|
if (isConstant && Val.getNode())
|
|
return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
|
|
}
|
|
}
|
|
|
|
// If all elements are constants and the case above didn't get hit, fall back
|
|
// to the default expansion, which will generate a load from the constant
|
|
// pool.
|
|
if (isConstant)
|
|
return SDValue();
|
|
|
|
// Empirical tests suggest this is rarely worth it for vectors of length <= 2.
|
|
if (NumElts >= 4) {
|
|
SDValue shuffle = ReconstructShuffle(Op, DAG);
|
|
if (shuffle != SDValue())
|
|
return shuffle;
|
|
}
|
|
|
|
if (VT.is128BitVector() && VT != MVT::v2f64 && VT != MVT::v4f32) {
|
|
// If we haven't found an efficient lowering, try splitting a 128-bit vector
|
|
// into two 64-bit vectors; we might discover a better way to lower it.
|
|
SmallVector<SDValue, 64> Ops(Op->op_begin(), Op->op_begin() + NumElts);
|
|
EVT ExtVT = VT.getVectorElementType();
|
|
EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElts / 2);
|
|
SDValue Lower =
|
|
DAG.getBuildVector(HVT, dl, makeArrayRef(&Ops[0], NumElts / 2));
|
|
if (Lower.getOpcode() == ISD::BUILD_VECTOR)
|
|
Lower = LowerBUILD_VECTOR(Lower, DAG, ST);
|
|
SDValue Upper = DAG.getBuildVector(
|
|
HVT, dl, makeArrayRef(&Ops[NumElts / 2], NumElts / 2));
|
|
if (Upper.getOpcode() == ISD::BUILD_VECTOR)
|
|
Upper = LowerBUILD_VECTOR(Upper, DAG, ST);
|
|
if (Lower && Upper)
|
|
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lower, Upper);
|
|
}
|
|
|
|
// Vectors with 32- or 64-bit elements can be built by directly assigning
|
|
// the subregisters. Lower it to an ARMISD::BUILD_VECTOR so the operands
|
|
// will be legalized.
|
|
if (EltSize >= 32) {
|
|
// Do the expansion with floating-point types, since that is what the VFP
|
|
// registers are defined to use, and since i64 is not legal.
|
|
EVT EltVT = EVT::getFloatingPointVT(EltSize);
|
|
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
|
|
SmallVector<SDValue, 8> Ops;
|
|
for (unsigned i = 0; i < NumElts; ++i)
|
|
Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
|
|
SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, Val);
|
|
}
|
|
|
|
// If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
|
|
// know the default expansion would otherwise fall back on something even
|
|
// worse. For a vector with one or two non-undef values, that's
|
|
// scalar_to_vector for the elements followed by a shuffle (provided the
|
|
// shuffle is valid for the target) and materialization element by element
|
|
// on the stack followed by a load for everything else.
|
|
if (!isConstant && !usesOnlyOneValue) {
|
|
SDValue Vec = DAG.getUNDEF(VT);
|
|
for (unsigned i = 0 ; i < NumElts; ++i) {
|
|
SDValue V = Op.getOperand(i);
|
|
if (V.isUndef())
|
|
continue;
|
|
SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i32);
|
|
Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
|
|
}
|
|
return Vec;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// Gather data to see if the operation can be modelled as a
|
|
// shuffle in combination with VEXTs.
|
|
SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
|
|
SDLoc dl(Op);
|
|
EVT VT = Op.getValueType();
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
|
|
struct ShuffleSourceInfo {
|
|
SDValue Vec;
|
|
unsigned MinElt = std::numeric_limits<unsigned>::max();
|
|
unsigned MaxElt = 0;
|
|
|
|
// We may insert some combination of BITCASTs and VEXT nodes to force Vec to
|
|
// be compatible with the shuffle we intend to construct. As a result
|
|
// ShuffleVec will be some sliding window into the original Vec.
|
|
SDValue ShuffleVec;
|
|
|
|
// Code should guarantee that element i in Vec starts at element "WindowBase
|
|
// + i * WindowScale in ShuffleVec".
|
|
int WindowBase = 0;
|
|
int WindowScale = 1;
|
|
|
|
ShuffleSourceInfo(SDValue Vec) : Vec(Vec), ShuffleVec(Vec) {}
|
|
|
|
bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
|
|
};
|
|
|
|
// First gather all vectors used as an immediate source for this BUILD_VECTOR
|
|
// node.
|
|
SmallVector<ShuffleSourceInfo, 2> Sources;
|
|
for (unsigned i = 0; i < NumElts; ++i) {
|
|
SDValue V = Op.getOperand(i);
|
|
if (V.isUndef())
|
|
continue;
|
|
else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
|
|
// A shuffle can only come from building a vector from various
|
|
// elements of other vectors.
|
|
return SDValue();
|
|
} else if (!isa<ConstantSDNode>(V.getOperand(1))) {
|
|
// Furthermore, shuffles require a constant mask, whereas extractelts
|
|
// accept variable indices.
|
|
return SDValue();
|
|
}
|
|
|
|
// Add this element source to the list if it's not already there.
|
|
SDValue SourceVec = V.getOperand(0);
|
|
auto Source = llvm::find(Sources, SourceVec);
|
|
if (Source == Sources.end())
|
|
Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
|
|
|
|
// Update the minimum and maximum lane number seen.
|
|
unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
|
|
Source->MinElt = std::min(Source->MinElt, EltNo);
|
|
Source->MaxElt = std::max(Source->MaxElt, EltNo);
|
|
}
|
|
|
|
// Currently only do something sane when at most two source vectors
|
|
// are involved.
|
|
if (Sources.size() > 2)
|
|
return SDValue();
|
|
|
|
// Find out the smallest element size among result and two sources, and use
|
|
// it as element size to build the shuffle_vector.
|
|
EVT SmallestEltTy = VT.getVectorElementType();
|
|
for (auto &Source : Sources) {
|
|
EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
|
|
if (SrcEltTy.bitsLT(SmallestEltTy))
|
|
SmallestEltTy = SrcEltTy;
|
|
}
|
|
unsigned ResMultiplier =
|
|
VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits();
|
|
NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
|
|
EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
|
|
|
|
// If the source vector is too wide or too narrow, we may nevertheless be able
|
|
// to construct a compatible shuffle either by concatenating it with UNDEF or
|
|
// extracting a suitable range of elements.
|
|
for (auto &Src : Sources) {
|
|
EVT SrcVT = Src.ShuffleVec.getValueType();
|
|
|
|
if (SrcVT.getSizeInBits() == VT.getSizeInBits())
|
|
continue;
|
|
|
|
// This stage of the search produces a source with the same element type as
|
|
// the original, but with a total width matching the BUILD_VECTOR output.
|
|
EVT EltVT = SrcVT.getVectorElementType();
|
|
unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
|
|
EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
|
|
|
|
if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
|
|
if (2 * SrcVT.getSizeInBits() != VT.getSizeInBits())
|
|
return SDValue();
|
|
// We can pad out the smaller vector for free, so if it's part of a
|
|
// shuffle...
|
|
Src.ShuffleVec =
|
|
DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
|
|
DAG.getUNDEF(Src.ShuffleVec.getValueType()));
|
|
continue;
|
|
}
|
|
|
|
if (SrcVT.getSizeInBits() != 2 * VT.getSizeInBits())
|
|
return SDValue();
|
|
|
|
if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
|
|
// Span too large for a VEXT to cope
|
|
return SDValue();
|
|
}
|
|
|
|
if (Src.MinElt >= NumSrcElts) {
|
|
// The extraction can just take the second half
|
|
Src.ShuffleVec =
|
|
DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
|
|
DAG.getConstant(NumSrcElts, dl, MVT::i32));
|
|
Src.WindowBase = -NumSrcElts;
|
|
} else if (Src.MaxElt < NumSrcElts) {
|
|
// The extraction can just take the first half
|
|
Src.ShuffleVec =
|
|
DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
|
|
DAG.getConstant(0, dl, MVT::i32));
|
|
} else {
|
|
// An actual VEXT is needed
|
|
SDValue VEXTSrc1 =
|
|
DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
|
|
DAG.getConstant(0, dl, MVT::i32));
|
|
SDValue VEXTSrc2 =
|
|
DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
|
|
DAG.getConstant(NumSrcElts, dl, MVT::i32));
|
|
|
|
Src.ShuffleVec = DAG.getNode(ARMISD::VEXT, dl, DestVT, VEXTSrc1,
|
|
VEXTSrc2,
|
|
DAG.getConstant(Src.MinElt, dl, MVT::i32));
|
|
Src.WindowBase = -Src.MinElt;
|
|
}
|
|
}
|
|
|
|
// Another possible incompatibility occurs from the vector element types. We
|
|
// can fix this by bitcasting the source vectors to the same type we intend
|
|
// for the shuffle.
|
|
for (auto &Src : Sources) {
|
|
EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
|
|
if (SrcEltTy == SmallestEltTy)
|
|
continue;
|
|
assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
|
|
Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
|
|
Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
|
|
Src.WindowBase *= Src.WindowScale;
|
|
}
|
|
|
|
// Final sanity check before we try to actually produce a shuffle.
|
|
LLVM_DEBUG(for (auto Src
|
|
: Sources)
|
|
assert(Src.ShuffleVec.getValueType() == ShuffleVT););
|
|
|
|
// The stars all align, our next step is to produce the mask for the shuffle.
|
|
SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
|
|
int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits();
|
|
for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
|
|
SDValue Entry = Op.getOperand(i);
|
|
if (Entry.isUndef())
|
|
continue;
|
|
|
|
auto Src = llvm::find(Sources, Entry.getOperand(0));
|
|
int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
|
|
|
|
// EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
|
|
// trunc. So only std::min(SrcBits, DestBits) actually get defined in this
|
|
// segment.
|
|
EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
|
|
int BitsDefined = std::min(OrigEltTy.getSizeInBits(),
|
|
VT.getScalarSizeInBits());
|
|
int LanesDefined = BitsDefined / BitsPerShuffleLane;
|
|
|
|
// This source is expected to fill ResMultiplier lanes of the final shuffle,
|
|
// starting at the appropriate offset.
|
|
int *LaneMask = &Mask[i * ResMultiplier];
|
|
|
|
int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
|
|
ExtractBase += NumElts * (Src - Sources.begin());
|
|
for (int j = 0; j < LanesDefined; ++j)
|
|
LaneMask[j] = ExtractBase + j;
|
|
}
|
|
|
|
// Final check before we try to produce nonsense...
|
|
if (!isShuffleMaskLegal(Mask, ShuffleVT))
|
|
return SDValue();
|
|
|
|
// We can't handle more than two sources. This should have already
|
|
// been checked before this point.
|
|
assert(Sources.size() <= 2 && "Too many sources!");
|
|
|
|
SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
|
|
for (unsigned i = 0; i < Sources.size(); ++i)
|
|
ShuffleOps[i] = Sources[i].ShuffleVec;
|
|
|
|
SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
|
|
ShuffleOps[1], Mask);
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
|
|
}
|
|
|
|
/// isShuffleMaskLegal - Targets can use this to indicate that they only
|
|
/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
|
|
/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
|
|
/// are assumed to be legal.
|
|
bool ARMTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
|
|
if (VT.getVectorNumElements() == 4 &&
|
|
(VT.is128BitVector() || VT.is64BitVector())) {
|
|
unsigned PFIndexes[4];
|
|
for (unsigned i = 0; i != 4; ++i) {
|
|
if (M[i] < 0)
|
|
PFIndexes[i] = 8;
|
|
else
|
|
PFIndexes[i] = M[i];
|
|
}
|
|
|
|
// Compute the index in the perfect shuffle table.
|
|
unsigned PFTableIndex =
|
|
PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
|
|
unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
|
|
unsigned Cost = (PFEntry >> 30);
|
|
|
|
if (Cost <= 4)
|
|
return true;
|
|
}
|
|
|
|
bool ReverseVEXT, isV_UNDEF;
|
|
unsigned Imm, WhichResult;
|
|
|
|
unsigned EltSize = VT.getScalarSizeInBits();
|
|
return (EltSize >= 32 ||
|
|
ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
|
|
isVREVMask(M, VT, 64) ||
|
|
isVREVMask(M, VT, 32) ||
|
|
isVREVMask(M, VT, 16) ||
|
|
isVEXTMask(M, VT, ReverseVEXT, Imm) ||
|
|
isVTBLMask(M, VT) ||
|
|
isNEONTwoResultShuffleMask(M, VT, WhichResult, isV_UNDEF) ||
|
|
((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(M, VT)));
|
|
}
|
|
|
|
/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
|
|
/// the specified operations to build the shuffle.
|
|
static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
|
|
SDValue RHS, SelectionDAG &DAG,
|
|
const SDLoc &dl) {
|
|
unsigned OpNum = (PFEntry >> 26) & 0x0F;
|
|
unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
|
|
unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
|
|
|
|
enum {
|
|
OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
|
|
OP_VREV,
|
|
OP_VDUP0,
|
|
OP_VDUP1,
|
|
OP_VDUP2,
|
|
OP_VDUP3,
|
|
OP_VEXT1,
|
|
OP_VEXT2,
|
|
OP_VEXT3,
|
|
OP_VUZPL, // VUZP, left result
|
|
OP_VUZPR, // VUZP, right result
|
|
OP_VZIPL, // VZIP, left result
|
|
OP_VZIPR, // VZIP, right result
|
|
OP_VTRNL, // VTRN, left result
|
|
OP_VTRNR // VTRN, right result
|
|
};
|
|
|
|
if (OpNum == OP_COPY) {
|
|
if (LHSID == (1*9+2)*9+3) return LHS;
|
|
assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
|
|
return RHS;
|
|
}
|
|
|
|
SDValue OpLHS, OpRHS;
|
|
OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
|
|
OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
|
|
EVT VT = OpLHS.getValueType();
|
|
|
|
switch (OpNum) {
|
|
default: llvm_unreachable("Unknown shuffle opcode!");
|
|
case OP_VREV:
|
|
// VREV divides the vector in half and swaps within the half.
|
|
if (VT.getVectorElementType() == MVT::i32 ||
|
|
VT.getVectorElementType() == MVT::f32)
|
|
return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
|
|
// vrev <4 x i16> -> VREV32
|
|
if (VT.getVectorElementType() == MVT::i16)
|
|
return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
|
|
// vrev <4 x i8> -> VREV16
|
|
assert(VT.getVectorElementType() == MVT::i8);
|
|
return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
|
|
case OP_VDUP0:
|
|
case OP_VDUP1:
|
|
case OP_VDUP2:
|
|
case OP_VDUP3:
|
|
return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
|
|
OpLHS, DAG.getConstant(OpNum-OP_VDUP0, dl, MVT::i32));
|
|
case OP_VEXT1:
|
|
case OP_VEXT2:
|
|
case OP_VEXT3:
|
|
return DAG.getNode(ARMISD::VEXT, dl, VT,
|
|
OpLHS, OpRHS,
|
|
DAG.getConstant(OpNum - OP_VEXT1 + 1, dl, MVT::i32));
|
|
case OP_VUZPL:
|
|
case OP_VUZPR:
|
|
return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
|
|
OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
|
|
case OP_VZIPL:
|
|
case OP_VZIPR:
|
|
return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
|
|
OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
|
|
case OP_VTRNL:
|
|
case OP_VTRNR:
|
|
return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
|
|
OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
|
|
}
|
|
}
|
|
|
|
static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
|
|
ArrayRef<int> ShuffleMask,
|
|
SelectionDAG &DAG) {
|
|
// Check to see if we can use the VTBL instruction.
|
|
SDValue V1 = Op.getOperand(0);
|
|
SDValue V2 = Op.getOperand(1);
|
|
SDLoc DL(Op);
|
|
|
|
SmallVector<SDValue, 8> VTBLMask;
|
|
for (ArrayRef<int>::iterator
|
|
I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
|
|
VTBLMask.push_back(DAG.getConstant(*I, DL, MVT::i32));
|
|
|
|
if (V2.getNode()->isUndef())
|
|
return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
|
|
DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
|
|
|
|
return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
|
|
DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
|
|
}
|
|
|
|
static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,
|
|
SelectionDAG &DAG) {
|
|
SDLoc DL(Op);
|
|
SDValue OpLHS = Op.getOperand(0);
|
|
EVT VT = OpLHS.getValueType();
|
|
|
|
assert((VT == MVT::v8i16 || VT == MVT::v16i8) &&
|
|
"Expect an v8i16/v16i8 type");
|
|
OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS);
|
|
// For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
|
|
// extract the first 8 bytes into the top double word and the last 8 bytes
|
|
// into the bottom double word. The v8i16 case is similar.
|
|
unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4;
|
|
return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS,
|
|
DAG.getConstant(ExtractNum, DL, MVT::i32));
|
|
}
|
|
|
|
static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
|
|
SDValue V1 = Op.getOperand(0);
|
|
SDValue V2 = Op.getOperand(1);
|
|
SDLoc dl(Op);
|
|
EVT VT = Op.getValueType();
|
|
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
|
|
|
|
// Convert shuffles that are directly supported on NEON to target-specific
|
|
// DAG nodes, instead of keeping them as shuffles and matching them again
|
|
// during code selection. This is more efficient and avoids the possibility
|
|
// of inconsistencies between legalization and selection.
|
|
// FIXME: floating-point vectors should be canonicalized to integer vectors
|
|
// of the same time so that they get CSEd properly.
|
|
ArrayRef<int> ShuffleMask = SVN->getMask();
|
|
|
|
unsigned EltSize = VT.getScalarSizeInBits();
|
|
if (EltSize <= 32) {
|
|
if (SVN->isSplat()) {
|
|
int Lane = SVN->getSplatIndex();
|
|
// If this is undef splat, generate it via "just" vdup, if possible.
|
|
if (Lane == -1) Lane = 0;
|
|
|
|
// Test if V1 is a SCALAR_TO_VECTOR.
|
|
if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
|
|
return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
|
|
}
|
|
// Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
|
|
// (and probably will turn into a SCALAR_TO_VECTOR once legalization
|
|
// reaches it).
|
|
if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
|
|
!isa<ConstantSDNode>(V1.getOperand(0))) {
|
|
bool IsScalarToVector = true;
|
|
for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
|
|
if (!V1.getOperand(i).isUndef()) {
|
|
IsScalarToVector = false;
|
|
break;
|
|
}
|
|
if (IsScalarToVector)
|
|
return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
|
|
}
|
|
return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
|
|
DAG.getConstant(Lane, dl, MVT::i32));
|
|
}
|
|
|
|
bool ReverseVEXT;
|
|
unsigned Imm;
|
|
if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
|
|
if (ReverseVEXT)
|
|
std::swap(V1, V2);
|
|
return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
|
|
DAG.getConstant(Imm, dl, MVT::i32));
|
|
}
|
|
|
|
if (isVREVMask(ShuffleMask, VT, 64))
|
|
return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
|
|
if (isVREVMask(ShuffleMask, VT, 32))
|
|
return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
|
|
if (isVREVMask(ShuffleMask, VT, 16))
|
|
return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
|
|
|
|
if (V2->isUndef() && isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
|
|
return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
|
|
DAG.getConstant(Imm, dl, MVT::i32));
|
|
}
|
|
|
|
// Check for Neon shuffles that modify both input vectors in place.
|
|
// If both results are used, i.e., if there are two shuffles with the same
|
|
// source operands and with masks corresponding to both results of one of
|
|
// these operations, DAG memoization will ensure that a single node is
|
|
// used for both shuffles.
|
|
unsigned WhichResult;
|
|
bool isV_UNDEF;
|
|
if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
|
|
ShuffleMask, VT, WhichResult, isV_UNDEF)) {
|
|
if (isV_UNDEF)
|
|
V2 = V1;
|
|
return DAG.getNode(ShuffleOpc, dl, DAG.getVTList(VT, VT), V1, V2)
|
|
.getValue(WhichResult);
|
|
}
|
|
|
|
// Also check for these shuffles through CONCAT_VECTORS: we canonicalize
|
|
// shuffles that produce a result larger than their operands with:
|
|
// shuffle(concat(v1, undef), concat(v2, undef))
|
|
// ->
|
|
// shuffle(concat(v1, v2), undef)
|
|
// because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
|
|
//
|
|
// This is useful in the general case, but there are special cases where
|
|
// native shuffles produce larger results: the two-result ops.
|
|
//
|
|
// Look through the concat when lowering them:
|
|
// shuffle(concat(v1, v2), undef)
|
|
// ->
|
|
// concat(VZIP(v1, v2):0, :1)
|
|
//
|
|
if (V1->getOpcode() == ISD::CONCAT_VECTORS && V2->isUndef()) {
|
|
SDValue SubV1 = V1->getOperand(0);
|
|
SDValue SubV2 = V1->getOperand(1);
|
|
EVT SubVT = SubV1.getValueType();
|
|
|
|
// We expect these to have been canonicalized to -1.
|
|
assert(llvm::all_of(ShuffleMask, [&](int i) {
|
|
return i < (int)VT.getVectorNumElements();
|
|
}) && "Unexpected shuffle index into UNDEF operand!");
|
|
|
|
if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
|
|
ShuffleMask, SubVT, WhichResult, isV_UNDEF)) {
|
|
if (isV_UNDEF)
|
|
SubV2 = SubV1;
|
|
assert((WhichResult == 0) &&
|
|
"In-place shuffle of concat can only have one result!");
|
|
SDValue Res = DAG.getNode(ShuffleOpc, dl, DAG.getVTList(SubVT, SubVT),
|
|
SubV1, SubV2);
|
|
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Res.getValue(0),
|
|
Res.getValue(1));
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the shuffle is not directly supported and it has 4 elements, use
|
|
// the PerfectShuffle-generated table to synthesize it from other shuffles.
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
if (NumElts == 4) {
|
|
unsigned PFIndexes[4];
|
|
for (unsigned i = 0; i != 4; ++i) {
|
|
if (ShuffleMask[i] < 0)
|
|
PFIndexes[i] = 8;
|
|
else
|
|
PFIndexes[i] = ShuffleMask[i];
|
|
}
|
|
|
|
// Compute the index in the perfect shuffle table.
|
|
unsigned PFTableIndex =
|
|
PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
|
|
unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
|
|
unsigned Cost = (PFEntry >> 30);
|
|
|
|
if (Cost <= 4)
|
|
return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
|
|
}
|
|
|
|
// Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
|
|
if (EltSize >= 32) {
|
|
// Do the expansion with floating-point types, since that is what the VFP
|
|
// registers are defined to use, and since i64 is not legal.
|
|
EVT EltVT = EVT::getFloatingPointVT(EltSize);
|
|
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
|
|
V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
|
|
V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
|
|
SmallVector<SDValue, 8> Ops;
|
|
for (unsigned i = 0; i < NumElts; ++i) {
|
|
if (ShuffleMask[i] < 0)
|
|
Ops.push_back(DAG.getUNDEF(EltVT));
|
|
else
|
|
Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
|
|
ShuffleMask[i] < (int)NumElts ? V1 : V2,
|
|
DAG.getConstant(ShuffleMask[i] & (NumElts-1),
|
|
dl, MVT::i32)));
|
|
}
|
|
SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, Val);
|
|
}
|
|
|
|
if ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT))
|
|
return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op, DAG);
|
|
|
|
if (VT == MVT::v8i8)
|
|
if (SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG))
|
|
return NewOp;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
|
|
// INSERT_VECTOR_ELT is legal only for immediate indexes.
|
|
SDValue Lane = Op.getOperand(2);
|
|
if (!isa<ConstantSDNode>(Lane))
|
|
return SDValue();
|
|
|
|
return Op;
|
|
}
|
|
|
|
static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
|
|
// EXTRACT_VECTOR_ELT is legal only for immediate indexes.
|
|
SDValue Lane = Op.getOperand(1);
|
|
if (!isa<ConstantSDNode>(Lane))
|
|
return SDValue();
|
|
|
|
SDValue Vec = Op.getOperand(0);
|
|
if (Op.getValueType() == MVT::i32 && Vec.getScalarValueSizeInBits() < 32) {
|
|
SDLoc dl(Op);
|
|
return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
|
|
}
|
|
|
|
return Op;
|
|
}
|
|
|
|
static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
|
|
// The only time a CONCAT_VECTORS operation can have legal types is when
|
|
// two 64-bit vectors are concatenated to a 128-bit vector.
|
|
assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
|
|
"unexpected CONCAT_VECTORS");
|
|
SDLoc dl(Op);
|
|
SDValue Val = DAG.getUNDEF(MVT::v2f64);
|
|
SDValue Op0 = Op.getOperand(0);
|
|
SDValue Op1 = Op.getOperand(1);
|
|
if (!Op0.isUndef())
|
|
Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
|
|
DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
|
|
DAG.getIntPtrConstant(0, dl));
|
|
if (!Op1.isUndef())
|
|
Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
|
|
DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
|
|
DAG.getIntPtrConstant(1, dl));
|
|
return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
|
|
}
|
|
|
|
/// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
|
|
/// element has been zero/sign-extended, depending on the isSigned parameter,
|
|
/// from an integer type half its size.
|
|
static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
|
|
bool isSigned) {
|
|
// A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
|
|
EVT VT = N->getValueType(0);
|
|
if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
|
|
SDNode *BVN = N->getOperand(0).getNode();
|
|
if (BVN->getValueType(0) != MVT::v4i32 ||
|
|
BVN->getOpcode() != ISD::BUILD_VECTOR)
|
|
return false;
|
|
unsigned LoElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
|
|
unsigned HiElt = 1 - LoElt;
|
|
ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
|
|
ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
|
|
ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
|
|
ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
|
|
if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
|
|
return false;
|
|
if (isSigned) {
|
|
if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
|
|
Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
|
|
return true;
|
|
} else {
|
|
if (Hi0->isNullValue() && Hi1->isNullValue())
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
if (N->getOpcode() != ISD::BUILD_VECTOR)
|
|
return false;
|
|
|
|
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
|
|
SDNode *Elt = N->getOperand(i).getNode();
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
|
|
unsigned EltSize = VT.getScalarSizeInBits();
|
|
unsigned HalfSize = EltSize / 2;
|
|
if (isSigned) {
|
|
if (!isIntN(HalfSize, C->getSExtValue()))
|
|
return false;
|
|
} else {
|
|
if (!isUIntN(HalfSize, C->getZExtValue()))
|
|
return false;
|
|
}
|
|
continue;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isSignExtended - Check if a node is a vector value that is sign-extended
|
|
/// or a constant BUILD_VECTOR with sign-extended elements.
|
|
static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
|
|
if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
|
|
return true;
|
|
if (isExtendedBUILD_VECTOR(N, DAG, true))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// isZeroExtended - Check if a node is a vector value that is zero-extended
|
|
/// or a constant BUILD_VECTOR with zero-extended elements.
|
|
static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
|
|
if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
|
|
return true;
|
|
if (isExtendedBUILD_VECTOR(N, DAG, false))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static EVT getExtensionTo64Bits(const EVT &OrigVT) {
|
|
if (OrigVT.getSizeInBits() >= 64)
|
|
return OrigVT;
|
|
|
|
assert(OrigVT.isSimple() && "Expecting a simple value type");
|
|
|
|
MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
|
|
switch (OrigSimpleTy) {
|
|
default: llvm_unreachable("Unexpected Vector Type");
|
|
case MVT::v2i8:
|
|
case MVT::v2i16:
|
|
return MVT::v2i32;
|
|
case MVT::v4i8:
|
|
return MVT::v4i16;
|
|
}
|
|
}
|
|
|
|
/// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
|
|
/// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
|
|
/// We insert the required extension here to get the vector to fill a D register.
|
|
static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG,
|
|
const EVT &OrigTy,
|
|
const EVT &ExtTy,
|
|
unsigned ExtOpcode) {
|
|
// The vector originally had a size of OrigTy. It was then extended to ExtTy.
|
|
// We expect the ExtTy to be 128-bits total. If the OrigTy is less than
|
|
// 64-bits we need to insert a new extension so that it will be 64-bits.
|
|
assert(ExtTy.is128BitVector() && "Unexpected extension size");
|
|
if (OrigTy.getSizeInBits() >= 64)
|
|
return N;
|
|
|
|
// Must extend size to at least 64 bits to be used as an operand for VMULL.
|
|
EVT NewVT = getExtensionTo64Bits(OrigTy);
|
|
|
|
return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
|
|
}
|
|
|
|
/// SkipLoadExtensionForVMULL - return a load of the original vector size that
|
|
/// does not do any sign/zero extension. If the original vector is less
|
|
/// than 64 bits, an appropriate extension will be added after the load to
|
|
/// reach a total size of 64 bits. We have to add the extension separately
|
|
/// because ARM does not have a sign/zero extending load for vectors.
|
|
static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) {
|
|
EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT());
|
|
|
|
// The load already has the right type.
|
|
if (ExtendedTy == LD->getMemoryVT())
|
|
return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(),
|
|
LD->getBasePtr(), LD->getPointerInfo(),
|
|
LD->getAlignment(), LD->getMemOperand()->getFlags());
|
|
|
|
// We need to create a zextload/sextload. We cannot just create a load
|
|
// followed by a zext/zext node because LowerMUL is also run during normal
|
|
// operation legalization where we can't create illegal types.
|
|
return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy,
|
|
LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(),
|
|
LD->getMemoryVT(), LD->getAlignment(),
|
|
LD->getMemOperand()->getFlags());
|
|
}
|
|
|
|
/// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
|
|
/// extending load, or BUILD_VECTOR with extended elements, return the
|
|
/// unextended value. The unextended vector should be 64 bits so that it can
|
|
/// be used as an operand to a VMULL instruction. If the original vector size
|
|
/// before extension is less than 64 bits we add a an extension to resize
|
|
/// the vector to 64 bits.
|
|
static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) {
|
|
if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
|
|
return AddRequiredExtensionForVMULL(N->getOperand(0), DAG,
|
|
N->getOperand(0)->getValueType(0),
|
|
N->getValueType(0),
|
|
N->getOpcode());
|
|
|
|
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
|
|
assert((ISD::isSEXTLoad(LD) || ISD::isZEXTLoad(LD)) &&
|
|
"Expected extending load");
|
|
|
|
SDValue newLoad = SkipLoadExtensionForVMULL(LD, DAG);
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), newLoad.getValue(1));
|
|
unsigned Opcode = ISD::isSEXTLoad(LD) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
|
|
SDValue extLoad =
|
|
DAG.getNode(Opcode, SDLoc(newLoad), LD->getValueType(0), newLoad);
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 0), extLoad);
|
|
|
|
return newLoad;
|
|
}
|
|
|
|
// Otherwise, the value must be a BUILD_VECTOR. For v2i64, it will
|
|
// have been legalized as a BITCAST from v4i32.
|
|
if (N->getOpcode() == ISD::BITCAST) {
|
|
SDNode *BVN = N->getOperand(0).getNode();
|
|
assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
|
|
BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
|
|
unsigned LowElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
|
|
return DAG.getBuildVector(
|
|
MVT::v2i32, SDLoc(N),
|
|
{BVN->getOperand(LowElt), BVN->getOperand(LowElt + 2)});
|
|
}
|
|
// Construct a new BUILD_VECTOR with elements truncated to half the size.
|
|
assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
|
|
EVT VT = N->getValueType(0);
|
|
unsigned EltSize = VT.getScalarSizeInBits() / 2;
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
MVT TruncVT = MVT::getIntegerVT(EltSize);
|
|
SmallVector<SDValue, 8> Ops;
|
|
SDLoc dl(N);
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
|
|
const APInt &CInt = C->getAPIntValue();
|
|
// Element types smaller than 32 bits are not legal, so use i32 elements.
|
|
// The values are implicitly truncated so sext vs. zext doesn't matter.
|
|
Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
|
|
}
|
|
return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
|
|
}
|
|
|
|
static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
|
|
unsigned Opcode = N->getOpcode();
|
|
if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
|
|
SDNode *N0 = N->getOperand(0).getNode();
|
|
SDNode *N1 = N->getOperand(1).getNode();
|
|
return N0->hasOneUse() && N1->hasOneUse() &&
|
|
isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
|
|
unsigned Opcode = N->getOpcode();
|
|
if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
|
|
SDNode *N0 = N->getOperand(0).getNode();
|
|
SDNode *N1 = N->getOperand(1).getNode();
|
|
return N0->hasOneUse() && N1->hasOneUse() &&
|
|
isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
|
|
// Multiplications are only custom-lowered for 128-bit vectors so that
|
|
// VMULL can be detected. Otherwise v2i64 multiplications are not legal.
|
|
EVT VT = Op.getValueType();
|
|
assert(VT.is128BitVector() && VT.isInteger() &&
|
|
"unexpected type for custom-lowering ISD::MUL");
|
|
SDNode *N0 = Op.getOperand(0).getNode();
|
|
SDNode *N1 = Op.getOperand(1).getNode();
|
|
unsigned NewOpc = 0;
|
|
bool isMLA = false;
|
|
bool isN0SExt = isSignExtended(N0, DAG);
|
|
bool isN1SExt = isSignExtended(N1, DAG);
|
|
if (isN0SExt && isN1SExt)
|
|
NewOpc = ARMISD::VMULLs;
|
|
else {
|
|
bool isN0ZExt = isZeroExtended(N0, DAG);
|
|
bool isN1ZExt = isZeroExtended(N1, DAG);
|
|
if (isN0ZExt && isN1ZExt)
|
|
NewOpc = ARMISD::VMULLu;
|
|
else if (isN1SExt || isN1ZExt) {
|
|
// Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
|
|
// into (s/zext A * s/zext C) + (s/zext B * s/zext C)
|
|
if (isN1SExt && isAddSubSExt(N0, DAG)) {
|
|
NewOpc = ARMISD::VMULLs;
|
|
isMLA = true;
|
|
} else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
|
|
NewOpc = ARMISD::VMULLu;
|
|
isMLA = true;
|
|
} else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
|
|
std::swap(N0, N1);
|
|
NewOpc = ARMISD::VMULLu;
|
|
isMLA = true;
|
|
}
|
|
}
|
|
|
|
if (!NewOpc) {
|
|
if (VT == MVT::v2i64)
|
|
// Fall through to expand this. It is not legal.
|
|
return SDValue();
|
|
else
|
|
// Other vector multiplications are legal.
|
|
return Op;
|
|
}
|
|
}
|
|
|
|
// Legalize to a VMULL instruction.
|
|
SDLoc DL(Op);
|
|
SDValue Op0;
|
|
SDValue Op1 = SkipExtensionForVMULL(N1, DAG);
|
|
if (!isMLA) {
|
|
Op0 = SkipExtensionForVMULL(N0, DAG);
|
|
assert(Op0.getValueType().is64BitVector() &&
|
|
Op1.getValueType().is64BitVector() &&
|
|
"unexpected types for extended operands to VMULL");
|
|
return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
|
|
}
|
|
|
|
// Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
|
|
// isel lowering to take advantage of no-stall back to back vmul + vmla.
|
|
// vmull q0, d4, d6
|
|
// vmlal q0, d5, d6
|
|
// is faster than
|
|
// vaddl q0, d4, d5
|
|
// vmovl q1, d6
|
|
// vmul q0, q0, q1
|
|
SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG);
|
|
SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG);
|
|
EVT Op1VT = Op1.getValueType();
|
|
return DAG.getNode(N0->getOpcode(), DL, VT,
|
|
DAG.getNode(NewOpc, DL, VT,
|
|
DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
|
|
DAG.getNode(NewOpc, DL, VT,
|
|
DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
|
|
}
|
|
|
|
static SDValue LowerSDIV_v4i8(SDValue X, SDValue Y, const SDLoc &dl,
|
|
SelectionDAG &DAG) {
|
|
// TODO: Should this propagate fast-math-flags?
|
|
|
|
// Convert to float
|
|
// float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
|
|
// float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
|
|
X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
|
|
Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
|
|
X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
|
|
Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
|
|
// Get reciprocal estimate.
|
|
// float4 recip = vrecpeq_f32(yf);
|
|
Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
|
|
DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
|
|
Y);
|
|
// Because char has a smaller range than uchar, we can actually get away
|
|
// without any newton steps. This requires that we use a weird bias
|
|
// of 0xb000, however (again, this has been exhaustively tested).
|
|
// float4 result = as_float4(as_int4(xf*recip) + 0xb000);
|
|
X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
|
|
X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
|
|
Y = DAG.getConstant(0xb000, dl, MVT::v4i32);
|
|
X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
|
|
X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
|
|
// Convert back to short.
|
|
X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
|
|
X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
|
|
return X;
|
|
}
|
|
|
|
static SDValue LowerSDIV_v4i16(SDValue N0, SDValue N1, const SDLoc &dl,
|
|
SelectionDAG &DAG) {
|
|
// TODO: Should this propagate fast-math-flags?
|
|
|
|
SDValue N2;
|
|
// Convert to float.
|
|
// float4 yf = vcvt_f32_s32(vmovl_s16(y));
|
|
// float4 xf = vcvt_f32_s32(vmovl_s16(x));
|
|
N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
|
|
N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
|
|
N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
|
|
N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
|
|
|
|
// Use reciprocal estimate and one refinement step.
|
|
// float4 recip = vrecpeq_f32(yf);
|
|
// recip *= vrecpsq_f32(yf, recip);
|
|
N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
|
|
DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
|
|
N1);
|
|
N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
|
|
DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
|
|
N1, N2);
|
|
N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
|
|
// Because short has a smaller range than ushort, we can actually get away
|
|
// with only a single newton step. This requires that we use a weird bias
|
|
// of 89, however (again, this has been exhaustively tested).
|
|
// float4 result = as_float4(as_int4(xf*recip) + 0x89);
|
|
N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
|
|
N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
|
|
N1 = DAG.getConstant(0x89, dl, MVT::v4i32);
|
|
N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
|
|
N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
|
|
// Convert back to integer and return.
|
|
// return vmovn_s32(vcvt_s32_f32(result));
|
|
N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
|
|
N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
|
|
return N0;
|
|
}
|
|
|
|
static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
|
|
EVT VT = Op.getValueType();
|
|
assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
|
|
"unexpected type for custom-lowering ISD::SDIV");
|
|
|
|
SDLoc dl(Op);
|
|
SDValue N0 = Op.getOperand(0);
|
|
SDValue N1 = Op.getOperand(1);
|
|
SDValue N2, N3;
|
|
|
|
if (VT == MVT::v8i8) {
|
|
N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
|
|
N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
|
|
|
|
N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
|
|
DAG.getIntPtrConstant(4, dl));
|
|
N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
|
|
DAG.getIntPtrConstant(4, dl));
|
|
N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
|
|
DAG.getIntPtrConstant(0, dl));
|
|
N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
|
|
DAG.getIntPtrConstant(0, dl));
|
|
|
|
N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
|
|
N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
|
|
|
|
N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
|
|
N0 = LowerCONCAT_VECTORS(N0, DAG);
|
|
|
|
N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
|
|
return N0;
|
|
}
|
|
return LowerSDIV_v4i16(N0, N1, dl, DAG);
|
|
}
|
|
|
|
static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
|
|
// TODO: Should this propagate fast-math-flags?
|
|
EVT VT = Op.getValueType();
|
|
assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
|
|
"unexpected type for custom-lowering ISD::UDIV");
|
|
|
|
SDLoc dl(Op);
|
|
SDValue N0 = Op.getOperand(0);
|
|
SDValue N1 = Op.getOperand(1);
|
|
SDValue N2, N3;
|
|
|
|
if (VT == MVT::v8i8) {
|
|
N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
|
|
N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
|
|
|
|
N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
|
|
DAG.getIntPtrConstant(4, dl));
|
|
N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
|
|
DAG.getIntPtrConstant(4, dl));
|
|
N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
|
|
DAG.getIntPtrConstant(0, dl));
|
|
N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
|
|
DAG.getIntPtrConstant(0, dl));
|
|
|
|
N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
|
|
N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
|
|
|
|
N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
|
|
N0 = LowerCONCAT_VECTORS(N0, DAG);
|
|
|
|
N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
|
|
DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, dl,
|
|
MVT::i32),
|
|
N0);
|
|
return N0;
|
|
}
|
|
|
|
// v4i16 sdiv ... Convert to float.
|
|
// float4 yf = vcvt_f32_s32(vmovl_u16(y));
|
|
// float4 xf = vcvt_f32_s32(vmovl_u16(x));
|
|
N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
|
|
N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
|
|
N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
|
|
SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
|
|
|
|
// Use reciprocal estimate and two refinement steps.
|
|
// float4 recip = vrecpeq_f32(yf);
|
|
// recip *= vrecpsq_f32(yf, recip);
|
|
// recip *= vrecpsq_f32(yf, recip);
|
|
N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
|
|
DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
|
|
BN1);
|
|
N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
|
|
DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
|
|
BN1, N2);
|
|
N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
|
|
N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
|
|
DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
|
|
BN1, N2);
|
|
N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
|
|
// Simply multiplying by the reciprocal estimate can leave us a few ulps
|
|
// too low, so we add 2 ulps (exhaustive testing shows that this is enough,
|
|
// and that it will never cause us to return an answer too large).
|
|
// float4 result = as_float4(as_int4(xf*recip) + 2);
|
|
N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
|
|
N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
|
|
N1 = DAG.getConstant(2, dl, MVT::v4i32);
|
|
N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
|
|
N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
|
|
// Convert back to integer and return.
|
|
// return vmovn_u32(vcvt_s32_f32(result));
|
|
N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
|
|
N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
|
|
return N0;
|
|
}
|
|
|
|
static SDValue LowerADDSUBCARRY(SDValue Op, SelectionDAG &DAG) {
|
|
SDNode *N = Op.getNode();
|
|
EVT VT = N->getValueType(0);
|
|
SDVTList VTs = DAG.getVTList(VT, MVT::i32);
|
|
|
|
SDValue Carry = Op.getOperand(2);
|
|
|
|
SDLoc DL(Op);
|
|
|
|
SDValue Result;
|
|
if (Op.getOpcode() == ISD::ADDCARRY) {
|
|
// This converts the boolean value carry into the carry flag.
|
|
Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
|
|
|
|
// Do the addition proper using the carry flag we wanted.
|
|
Result = DAG.getNode(ARMISD::ADDE, DL, VTs, Op.getOperand(0),
|
|
Op.getOperand(1), Carry);
|
|
|
|
// Now convert the carry flag into a boolean value.
|
|
Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
|
|
} else {
|
|
// ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
|
|
// have to invert the carry first.
|
|
Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
|
|
DAG.getConstant(1, DL, MVT::i32), Carry);
|
|
// This converts the boolean value carry into the carry flag.
|
|
Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
|
|
|
|
// Do the subtraction proper using the carry flag we wanted.
|
|
Result = DAG.getNode(ARMISD::SUBE, DL, VTs, Op.getOperand(0),
|
|
Op.getOperand(1), Carry);
|
|
|
|
// Now convert the carry flag into a boolean value.
|
|
Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
|
|
// But the carry returned by ARMISD::SUBE is not a borrow as expected
|
|
// by ISD::SUBCARRY, so compute 1 - C.
|
|
Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
|
|
DAG.getConstant(1, DL, MVT::i32), Carry);
|
|
}
|
|
|
|
// Return both values.
|
|
return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Carry);
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
|
|
assert(Subtarget->isTargetDarwin());
|
|
|
|
// For iOS, we want to call an alternative entry point: __sincos_stret,
|
|
// return values are passed via sret.
|
|
SDLoc dl(Op);
|
|
SDValue Arg = Op.getOperand(0);
|
|
EVT ArgVT = Arg.getValueType();
|
|
Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
|
|
auto PtrVT = getPointerTy(DAG.getDataLayout());
|
|
|
|
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
|
|
// Pair of floats / doubles used to pass the result.
|
|
Type *RetTy = StructType::get(ArgTy, ArgTy);
|
|
auto &DL = DAG.getDataLayout();
|
|
|
|
ArgListTy Args;
|
|
bool ShouldUseSRet = Subtarget->isAPCS_ABI();
|
|
SDValue SRet;
|
|
if (ShouldUseSRet) {
|
|
// Create stack object for sret.
|
|
const uint64_t ByteSize = DL.getTypeAllocSize(RetTy);
|
|
const unsigned StackAlign = DL.getPrefTypeAlignment(RetTy);
|
|
int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
|
|
SRet = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy(DL));
|
|
|
|
ArgListEntry Entry;
|
|
Entry.Node = SRet;
|
|
Entry.Ty = RetTy->getPointerTo();
|
|
Entry.IsSExt = false;
|
|
Entry.IsZExt = false;
|
|
Entry.IsSRet = true;
|
|
Args.push_back(Entry);
|
|
RetTy = Type::getVoidTy(*DAG.getContext());
|
|
}
|
|
|
|
ArgListEntry Entry;
|
|
Entry.Node = Arg;
|
|
Entry.Ty = ArgTy;
|
|
Entry.IsSExt = false;
|
|
Entry.IsZExt = false;
|
|
Args.push_back(Entry);
|
|
|
|
RTLIB::Libcall LC =
|
|
(ArgVT == MVT::f64) ? RTLIB::SINCOS_STRET_F64 : RTLIB::SINCOS_STRET_F32;
|
|
const char *LibcallName = getLibcallName(LC);
|
|
CallingConv::ID CC = getLibcallCallingConv(LC);
|
|
SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy(DL));
|
|
|
|
TargetLowering::CallLoweringInfo CLI(DAG);
|
|
CLI.setDebugLoc(dl)
|
|
.setChain(DAG.getEntryNode())
|
|
.setCallee(CC, RetTy, Callee, std::move(Args))
|
|
.setDiscardResult(ShouldUseSRet);
|
|
std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
|
|
|
|
if (!ShouldUseSRet)
|
|
return CallResult.first;
|
|
|
|
SDValue LoadSin =
|
|
DAG.getLoad(ArgVT, dl, CallResult.second, SRet, MachinePointerInfo());
|
|
|
|
// Address of cos field.
|
|
SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, SRet,
|
|
DAG.getIntPtrConstant(ArgVT.getStoreSize(), dl));
|
|
SDValue LoadCos =
|
|
DAG.getLoad(ArgVT, dl, LoadSin.getValue(1), Add, MachinePointerInfo());
|
|
|
|
SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
|
|
return DAG.getNode(ISD::MERGE_VALUES, dl, Tys,
|
|
LoadSin.getValue(0), LoadCos.getValue(0));
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op, SelectionDAG &DAG,
|
|
bool Signed,
|
|
SDValue &Chain) const {
|
|
EVT VT = Op.getValueType();
|
|
assert((VT == MVT::i32 || VT == MVT::i64) &&
|
|
"unexpected type for custom lowering DIV");
|
|
SDLoc dl(Op);
|
|
|
|
const auto &DL = DAG.getDataLayout();
|
|
const auto &TLI = DAG.getTargetLoweringInfo();
|
|
|
|
const char *Name = nullptr;
|
|
if (Signed)
|
|
Name = (VT == MVT::i32) ? "__rt_sdiv" : "__rt_sdiv64";
|
|
else
|
|
Name = (VT == MVT::i32) ? "__rt_udiv" : "__rt_udiv64";
|
|
|
|
SDValue ES = DAG.getExternalSymbol(Name, TLI.getPointerTy(DL));
|
|
|
|
ARMTargetLowering::ArgListTy Args;
|
|
|
|
for (auto AI : {1, 0}) {
|
|
ArgListEntry Arg;
|
|
Arg.Node = Op.getOperand(AI);
|
|
Arg.Ty = Arg.Node.getValueType().getTypeForEVT(*DAG.getContext());
|
|
Args.push_back(Arg);
|
|
}
|
|
|
|
CallLoweringInfo CLI(DAG);
|
|
CLI.setDebugLoc(dl)
|
|
.setChain(Chain)
|
|
.setCallee(CallingConv::ARM_AAPCS_VFP, VT.getTypeForEVT(*DAG.getContext()),
|
|
ES, std::move(Args));
|
|
|
|
return LowerCallTo(CLI).first;
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerDIV_Windows(SDValue Op, SelectionDAG &DAG,
|
|
bool Signed) const {
|
|
assert(Op.getValueType() == MVT::i32 &&
|
|
"unexpected type for custom lowering DIV");
|
|
SDLoc dl(Op);
|
|
|
|
SDValue DBZCHK = DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other,
|
|
DAG.getEntryNode(), Op.getOperand(1));
|
|
|
|
return LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
|
|
}
|
|
|
|
static SDValue WinDBZCheckDenominator(SelectionDAG &DAG, SDNode *N, SDValue InChain) {
|
|
SDLoc DL(N);
|
|
SDValue Op = N->getOperand(1);
|
|
if (N->getValueType(0) == MVT::i32)
|
|
return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain, Op);
|
|
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
|
|
DAG.getConstant(0, DL, MVT::i32));
|
|
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
|
|
DAG.getConstant(1, DL, MVT::i32));
|
|
return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain,
|
|
DAG.getNode(ISD::OR, DL, MVT::i32, Lo, Hi));
|
|
}
|
|
|
|
void ARMTargetLowering::ExpandDIV_Windows(
|
|
SDValue Op, SelectionDAG &DAG, bool Signed,
|
|
SmallVectorImpl<SDValue> &Results) const {
|
|
const auto &DL = DAG.getDataLayout();
|
|
const auto &TLI = DAG.getTargetLoweringInfo();
|
|
|
|
assert(Op.getValueType() == MVT::i64 &&
|
|
"unexpected type for custom lowering DIV");
|
|
SDLoc dl(Op);
|
|
|
|
SDValue DBZCHK = WinDBZCheckDenominator(DAG, Op.getNode(), DAG.getEntryNode());
|
|
|
|
SDValue Result = LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
|
|
|
|
SDValue Lower = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Result);
|
|
SDValue Upper = DAG.getNode(ISD::SRL, dl, MVT::i64, Result,
|
|
DAG.getConstant(32, dl, TLI.getPointerTy(DL)));
|
|
Upper = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Upper);
|
|
|
|
Results.push_back(Lower);
|
|
Results.push_back(Upper);
|
|
}
|
|
|
|
static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
|
|
if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getOrdering()))
|
|
// Acquire/Release load/store is not legal for targets without a dmb or
|
|
// equivalent available.
|
|
return SDValue();
|
|
|
|
// Monotonic load/store is legal for all targets.
|
|
return Op;
|
|
}
|
|
|
|
static void ReplaceREADCYCLECOUNTER(SDNode *N,
|
|
SmallVectorImpl<SDValue> &Results,
|
|
SelectionDAG &DAG,
|
|
const ARMSubtarget *Subtarget) {
|
|
SDLoc DL(N);
|
|
// Under Power Management extensions, the cycle-count is:
|
|
// mrc p15, #0, <Rt>, c9, c13, #0
|
|
SDValue Ops[] = { N->getOperand(0), // Chain
|
|
DAG.getConstant(Intrinsic::arm_mrc, DL, MVT::i32),
|
|
DAG.getConstant(15, DL, MVT::i32),
|
|
DAG.getConstant(0, DL, MVT::i32),
|
|
DAG.getConstant(9, DL, MVT::i32),
|
|
DAG.getConstant(13, DL, MVT::i32),
|
|
DAG.getConstant(0, DL, MVT::i32)
|
|
};
|
|
|
|
SDValue Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
|
|
DAG.getVTList(MVT::i32, MVT::Other), Ops);
|
|
Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Cycles32,
|
|
DAG.getConstant(0, DL, MVT::i32)));
|
|
Results.push_back(Cycles32.getValue(1));
|
|
}
|
|
|
|
static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) {
|
|
SDLoc dl(V.getNode());
|
|
SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i32);
|
|
SDValue VHi = DAG.getAnyExtOrTrunc(
|
|
DAG.getNode(ISD::SRL, dl, MVT::i64, V, DAG.getConstant(32, dl, MVT::i32)),
|
|
dl, MVT::i32);
|
|
bool isBigEndian = DAG.getDataLayout().isBigEndian();
|
|
if (isBigEndian)
|
|
std::swap (VLo, VHi);
|
|
SDValue RegClass =
|
|
DAG.getTargetConstant(ARM::GPRPairRegClassID, dl, MVT::i32);
|
|
SDValue SubReg0 = DAG.getTargetConstant(ARM::gsub_0, dl, MVT::i32);
|
|
SDValue SubReg1 = DAG.getTargetConstant(ARM::gsub_1, dl, MVT::i32);
|
|
const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 };
|
|
return SDValue(
|
|
DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
|
|
}
|
|
|
|
static void ReplaceCMP_SWAP_64Results(SDNode *N,
|
|
SmallVectorImpl<SDValue> & Results,
|
|
SelectionDAG &DAG) {
|
|
assert(N->getValueType(0) == MVT::i64 &&
|
|
"AtomicCmpSwap on types less than 64 should be legal");
|
|
SDValue Ops[] = {N->getOperand(1),
|
|
createGPRPairNode(DAG, N->getOperand(2)),
|
|
createGPRPairNode(DAG, N->getOperand(3)),
|
|
N->getOperand(0)};
|
|
SDNode *CmpSwap = DAG.getMachineNode(
|
|
ARM::CMP_SWAP_64, SDLoc(N),
|
|
DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other), Ops);
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineSDNode::mmo_iterator MemOp = MF.allocateMemRefsArray(1);
|
|
MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
|
|
cast<MachineSDNode>(CmpSwap)->setMemRefs(MemOp, MemOp + 1);
|
|
|
|
bool isBigEndian = DAG.getDataLayout().isBigEndian();
|
|
|
|
Results.push_back(
|
|
DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_1 : ARM::gsub_0,
|
|
SDLoc(N), MVT::i32, SDValue(CmpSwap, 0)));
|
|
Results.push_back(
|
|
DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_0 : ARM::gsub_1,
|
|
SDLoc(N), MVT::i32, SDValue(CmpSwap, 0)));
|
|
Results.push_back(SDValue(CmpSwap, 2));
|
|
}
|
|
|
|
static SDValue LowerFPOWI(SDValue Op, const ARMSubtarget &Subtarget,
|
|
SelectionDAG &DAG) {
|
|
const auto &TLI = DAG.getTargetLoweringInfo();
|
|
|
|
assert(Subtarget.getTargetTriple().isOSMSVCRT() &&
|
|
"Custom lowering is MSVCRT specific!");
|
|
|
|
SDLoc dl(Op);
|
|
SDValue Val = Op.getOperand(0);
|
|
MVT Ty = Val->getSimpleValueType(0);
|
|
SDValue Exponent = DAG.getNode(ISD::SINT_TO_FP, dl, Ty, Op.getOperand(1));
|
|
SDValue Callee = DAG.getExternalSymbol(Ty == MVT::f32 ? "powf" : "pow",
|
|
TLI.getPointerTy(DAG.getDataLayout()));
|
|
|
|
TargetLowering::ArgListTy Args;
|
|
TargetLowering::ArgListEntry Entry;
|
|
|
|
Entry.Node = Val;
|
|
Entry.Ty = Val.getValueType().getTypeForEVT(*DAG.getContext());
|
|
Entry.IsZExt = true;
|
|
Args.push_back(Entry);
|
|
|
|
Entry.Node = Exponent;
|
|
Entry.Ty = Exponent.getValueType().getTypeForEVT(*DAG.getContext());
|
|
Entry.IsZExt = true;
|
|
Args.push_back(Entry);
|
|
|
|
Type *LCRTy = Val.getValueType().getTypeForEVT(*DAG.getContext());
|
|
|
|
// In the in-chain to the call is the entry node If we are emitting a
|
|
// tailcall, the chain will be mutated if the node has a non-entry input
|
|
// chain.
|
|
SDValue InChain = DAG.getEntryNode();
|
|
SDValue TCChain = InChain;
|
|
|
|
const Function &F = DAG.getMachineFunction().getFunction();
|
|
bool IsTC = TLI.isInTailCallPosition(DAG, Op.getNode(), TCChain) &&
|
|
F.getReturnType() == LCRTy;
|
|
if (IsTC)
|
|
InChain = TCChain;
|
|
|
|
TargetLowering::CallLoweringInfo CLI(DAG);
|
|
CLI.setDebugLoc(dl)
|
|
.setChain(InChain)
|
|
.setCallee(CallingConv::ARM_AAPCS_VFP, LCRTy, Callee, std::move(Args))
|
|
.setTailCall(IsTC);
|
|
std::pair<SDValue, SDValue> CI = TLI.LowerCallTo(CLI);
|
|
|
|
// Return the chain (the DAG root) if it is a tail call
|
|
return !CI.second.getNode() ? DAG.getRoot() : CI.first;
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
|
|
LLVM_DEBUG(dbgs() << "Lowering node: "; Op.dump());
|
|
switch (Op.getOpcode()) {
|
|
default: llvm_unreachable("Don't know how to custom lower this!");
|
|
case ISD::WRITE_REGISTER: return LowerWRITE_REGISTER(Op, DAG);
|
|
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
|
|
case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
|
|
case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
|
|
case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
|
|
case ISD::SELECT: return LowerSELECT(Op, DAG);
|
|
case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
|
|
case ISD::BRCOND: return LowerBRCOND(Op, DAG);
|
|
case ISD::BR_CC: return LowerBR_CC(Op, DAG);
|
|
case ISD::BR_JT: return LowerBR_JT(Op, DAG);
|
|
case ISD::VASTART: return LowerVASTART(Op, DAG);
|
|
case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG, Subtarget);
|
|
case ISD::PREFETCH: return LowerPREFETCH(Op, DAG, Subtarget);
|
|
case ISD::SINT_TO_FP:
|
|
case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG);
|
|
case ISD::FP_TO_SINT:
|
|
case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG);
|
|
case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
|
|
case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
|
|
case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
|
|
case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
|
|
case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
|
|
case ISD::EH_SJLJ_SETUP_DISPATCH: return LowerEH_SJLJ_SETUP_DISPATCH(Op, DAG);
|
|
case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
|
|
Subtarget);
|
|
case ISD::BITCAST: return ExpandBITCAST(Op.getNode(), DAG, Subtarget);
|
|
case ISD::SHL:
|
|
case ISD::SRL:
|
|
case ISD::SRA: return LowerShift(Op.getNode(), DAG, Subtarget);
|
|
case ISD::SREM: return LowerREM(Op.getNode(), DAG);
|
|
case ISD::UREM: return LowerREM(Op.getNode(), DAG);
|
|
case ISD::SHL_PARTS: return LowerShiftLeftParts(Op, DAG);
|
|
case ISD::SRL_PARTS:
|
|
case ISD::SRA_PARTS: return LowerShiftRightParts(Op, DAG);
|
|
case ISD::CTTZ:
|
|
case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op.getNode(), DAG, Subtarget);
|
|
case ISD::CTPOP: return LowerCTPOP(Op.getNode(), DAG, Subtarget);
|
|
case ISD::SETCC: return LowerVSETCC(Op, DAG);
|
|
case ISD::SETCCCARRY: return LowerSETCCCARRY(Op, DAG);
|
|
case ISD::ConstantFP: return LowerConstantFP(Op, DAG, Subtarget);
|
|
case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG, Subtarget);
|
|
case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
|
|
case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
|
|
case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
|
|
case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
|
|
case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
|
|
case ISD::MUL: return LowerMUL(Op, DAG);
|
|
case ISD::SDIV:
|
|
if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
|
|
return LowerDIV_Windows(Op, DAG, /* Signed */ true);
|
|
return LowerSDIV(Op, DAG);
|
|
case ISD::UDIV:
|
|
if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
|
|
return LowerDIV_Windows(Op, DAG, /* Signed */ false);
|
|
return LowerUDIV(Op, DAG);
|
|
case ISD::ADDCARRY:
|
|
case ISD::SUBCARRY: return LowerADDSUBCARRY(Op, DAG);
|
|
case ISD::SADDO:
|
|
case ISD::SSUBO:
|
|
return LowerSignedALUO(Op, DAG);
|
|
case ISD::UADDO:
|
|
case ISD::USUBO:
|
|
return LowerUnsignedALUO(Op, DAG);
|
|
case ISD::ATOMIC_LOAD:
|
|
case ISD::ATOMIC_STORE: return LowerAtomicLoadStore(Op, DAG);
|
|
case ISD::FSINCOS: return LowerFSINCOS(Op, DAG);
|
|
case ISD::SDIVREM:
|
|
case ISD::UDIVREM: return LowerDivRem(Op, DAG);
|
|
case ISD::DYNAMIC_STACKALLOC:
|
|
if (Subtarget->isTargetWindows())
|
|
return LowerDYNAMIC_STACKALLOC(Op, DAG);
|
|
llvm_unreachable("Don't know how to custom lower this!");
|
|
case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
|
|
case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
|
|
case ISD::FPOWI: return LowerFPOWI(Op, *Subtarget, DAG);
|
|
case ARMISD::WIN__DBZCHK: return SDValue();
|
|
}
|
|
}
|
|
|
|
static void ReplaceLongIntrinsic(SDNode *N, SmallVectorImpl<SDValue> &Results,
|
|
SelectionDAG &DAG) {
|
|
unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
|
|
unsigned Opc = 0;
|
|
if (IntNo == Intrinsic::arm_smlald)
|
|
Opc = ARMISD::SMLALD;
|
|
else if (IntNo == Intrinsic::arm_smlaldx)
|
|
Opc = ARMISD::SMLALDX;
|
|
else if (IntNo == Intrinsic::arm_smlsld)
|
|
Opc = ARMISD::SMLSLD;
|
|
else if (IntNo == Intrinsic::arm_smlsldx)
|
|
Opc = ARMISD::SMLSLDX;
|
|
else
|
|
return;
|
|
|
|
SDLoc dl(N);
|
|
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
|
|
N->getOperand(3),
|
|
DAG.getConstant(0, dl, MVT::i32));
|
|
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
|
|
N->getOperand(3),
|
|
DAG.getConstant(1, dl, MVT::i32));
|
|
|
|
SDValue LongMul = DAG.getNode(Opc, dl,
|
|
DAG.getVTList(MVT::i32, MVT::i32),
|
|
N->getOperand(1), N->getOperand(2),
|
|
Lo, Hi);
|
|
Results.push_back(LongMul.getValue(0));
|
|
Results.push_back(LongMul.getValue(1));
|
|
}
|
|
|
|
/// ReplaceNodeResults - Replace the results of node with an illegal result
|
|
/// type with new values built out of custom code.
|
|
void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
|
|
SmallVectorImpl<SDValue> &Results,
|
|
SelectionDAG &DAG) const {
|
|
SDValue Res;
|
|
switch (N->getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Don't know how to custom expand this!");
|
|
case ISD::READ_REGISTER:
|
|
ExpandREAD_REGISTER(N, Results, DAG);
|
|
break;
|
|
case ISD::BITCAST:
|
|
Res = ExpandBITCAST(N, DAG, Subtarget);
|
|
break;
|
|
case ISD::SRL:
|
|
case ISD::SRA:
|
|
Res = Expand64BitShift(N, DAG, Subtarget);
|
|
break;
|
|
case ISD::SREM:
|
|
case ISD::UREM:
|
|
Res = LowerREM(N, DAG);
|
|
break;
|
|
case ISD::SDIVREM:
|
|
case ISD::UDIVREM:
|
|
Res = LowerDivRem(SDValue(N, 0), DAG);
|
|
assert(Res.getNumOperands() == 2 && "DivRem needs two values");
|
|
Results.push_back(Res.getValue(0));
|
|
Results.push_back(Res.getValue(1));
|
|
return;
|
|
case ISD::READCYCLECOUNTER:
|
|
ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget);
|
|
return;
|
|
case ISD::UDIV:
|
|
case ISD::SDIV:
|
|
assert(Subtarget->isTargetWindows() && "can only expand DIV on Windows");
|
|
return ExpandDIV_Windows(SDValue(N, 0), DAG, N->getOpcode() == ISD::SDIV,
|
|
Results);
|
|
case ISD::ATOMIC_CMP_SWAP:
|
|
ReplaceCMP_SWAP_64Results(N, Results, DAG);
|
|
return;
|
|
case ISD::INTRINSIC_WO_CHAIN:
|
|
return ReplaceLongIntrinsic(N, Results, DAG);
|
|
}
|
|
if (Res.getNode())
|
|
Results.push_back(Res);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ARM Scheduler Hooks
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
|
|
/// registers the function context.
|
|
void ARMTargetLowering::SetupEntryBlockForSjLj(MachineInstr &MI,
|
|
MachineBasicBlock *MBB,
|
|
MachineBasicBlock *DispatchBB,
|
|
int FI) const {
|
|
assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
|
|
"ROPI/RWPI not currently supported with SjLj");
|
|
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
|
|
DebugLoc dl = MI.getDebugLoc();
|
|
MachineFunction *MF = MBB->getParent();
|
|
MachineRegisterInfo *MRI = &MF->getRegInfo();
|
|
MachineConstantPool *MCP = MF->getConstantPool();
|
|
ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
|
|
const Function &F = MF->getFunction();
|
|
|
|
bool isThumb = Subtarget->isThumb();
|
|
bool isThumb2 = Subtarget->isThumb2();
|
|
|
|
unsigned PCLabelId = AFI->createPICLabelUId();
|
|
unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
|
|
ARMConstantPoolValue *CPV =
|
|
ARMConstantPoolMBB::Create(F.getContext(), DispatchBB, PCLabelId, PCAdj);
|
|
unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
|
|
|
|
const TargetRegisterClass *TRC = isThumb ? &ARM::tGPRRegClass
|
|
: &ARM::GPRRegClass;
|
|
|
|
// Grab constant pool and fixed stack memory operands.
|
|
MachineMemOperand *CPMMO =
|
|
MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
|
|
MachineMemOperand::MOLoad, 4, 4);
|
|
|
|
MachineMemOperand *FIMMOSt =
|
|
MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
|
|
MachineMemOperand::MOStore, 4, 4);
|
|
|
|
// Load the address of the dispatch MBB into the jump buffer.
|
|
if (isThumb2) {
|
|
// Incoming value: jbuf
|
|
// ldr.n r5, LCPI1_1
|
|
// orr r5, r5, #1
|
|
// add r5, pc
|
|
// str r5, [$jbuf, #+4] ; &jbuf[1]
|
|
unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
|
|
BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
|
|
.addConstantPoolIndex(CPI)
|
|
.addMemOperand(CPMMO)
|
|
.add(predOps(ARMCC::AL));
|
|
// Set the low bit because of thumb mode.
|
|
unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
|
|
BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
|
|
.addReg(NewVReg1, RegState::Kill)
|
|
.addImm(0x01)
|
|
.add(predOps(ARMCC::AL))
|
|
.add(condCodeOp());
|
|
unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
|
|
BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
|
|
.addReg(NewVReg2, RegState::Kill)
|
|
.addImm(PCLabelId);
|
|
BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
|
|
.addReg(NewVReg3, RegState::Kill)
|
|
.addFrameIndex(FI)
|
|
.addImm(36) // &jbuf[1] :: pc
|
|
.addMemOperand(FIMMOSt)
|
|
.add(predOps(ARMCC::AL));
|
|
} else if (isThumb) {
|
|
// Incoming value: jbuf
|
|
// ldr.n r1, LCPI1_4
|
|
// add r1, pc
|
|
// mov r2, #1
|
|
// orrs r1, r2
|
|
// add r2, $jbuf, #+4 ; &jbuf[1]
|
|
// str r1, [r2]
|
|
unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
|
|
BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
|
|
.addConstantPoolIndex(CPI)
|
|
.addMemOperand(CPMMO)
|
|
.add(predOps(ARMCC::AL));
|
|
unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
|
|
BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
|
|
.addReg(NewVReg1, RegState::Kill)
|
|
.addImm(PCLabelId);
|
|
// Set the low bit because of thumb mode.
|
|
unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
|
|
BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
|
|
.addReg(ARM::CPSR, RegState::Define)
|
|
.addImm(1)
|
|
.add(predOps(ARMCC::AL));
|
|
unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
|
|
BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
|
|
.addReg(ARM::CPSR, RegState::Define)
|
|
.addReg(NewVReg2, RegState::Kill)
|
|
.addReg(NewVReg3, RegState::Kill)
|
|
.add(predOps(ARMCC::AL));
|
|
unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
|
|
BuildMI(*MBB, MI, dl, TII->get(ARM::tADDframe), NewVReg5)
|
|
.addFrameIndex(FI)
|
|
.addImm(36); // &jbuf[1] :: pc
|
|
BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
|
|
.addReg(NewVReg4, RegState::Kill)
|
|
.addReg(NewVReg5, RegState::Kill)
|
|
.addImm(0)
|
|
.addMemOperand(FIMMOSt)
|
|
.add(predOps(ARMCC::AL));
|
|
} else {
|
|
// Incoming value: jbuf
|
|
// ldr r1, LCPI1_1
|
|
// add r1, pc, r1
|
|
// str r1, [$jbuf, #+4] ; &jbuf[1]
|
|
unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
|
|
BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12), NewVReg1)
|
|
.addConstantPoolIndex(CPI)
|
|
.addImm(0)
|
|
.addMemOperand(CPMMO)
|
|
.add(predOps(ARMCC::AL));
|
|
unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
|
|
BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
|
|
.addReg(NewVReg1, RegState::Kill)
|
|
.addImm(PCLabelId)
|
|
.add(predOps(ARMCC::AL));
|
|
BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
|
|
.addReg(NewVReg2, RegState::Kill)
|
|
.addFrameIndex(FI)
|
|
.addImm(36) // &jbuf[1] :: pc
|
|
.addMemOperand(FIMMOSt)
|
|
.add(predOps(ARMCC::AL));
|
|
}
|
|
}
|
|
|
|
void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr &MI,
|
|
MachineBasicBlock *MBB) const {
|
|
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
|
|
DebugLoc dl = MI.getDebugLoc();
|
|
MachineFunction *MF = MBB->getParent();
|
|
MachineRegisterInfo *MRI = &MF->getRegInfo();
|
|
MachineFrameInfo &MFI = MF->getFrameInfo();
|
|
int FI = MFI.getFunctionContextIndex();
|
|
|
|
const TargetRegisterClass *TRC = Subtarget->isThumb() ? &ARM::tGPRRegClass
|
|
: &ARM::GPRnopcRegClass;
|
|
|
|
// Get a mapping of the call site numbers to all of the landing pads they're
|
|
// associated with.
|
|
DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2>> CallSiteNumToLPad;
|
|
unsigned MaxCSNum = 0;
|
|
for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
|
|
++BB) {
|
|
if (!BB->isEHPad()) continue;
|
|
|
|
// FIXME: We should assert that the EH_LABEL is the first MI in the landing
|
|
// pad.
|
|
for (MachineBasicBlock::iterator
|
|
II = BB->begin(), IE = BB->end(); II != IE; ++II) {
|
|
if (!II->isEHLabel()) continue;
|
|
|
|
MCSymbol *Sym = II->getOperand(0).getMCSymbol();
|
|
if (!MF->hasCallSiteLandingPad(Sym)) continue;
|
|
|
|
SmallVectorImpl<unsigned> &CallSiteIdxs = MF->getCallSiteLandingPad(Sym);
|
|
for (SmallVectorImpl<unsigned>::iterator
|
|
CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
|
|
CSI != CSE; ++CSI) {
|
|
CallSiteNumToLPad[*CSI].push_back(&*BB);
|
|
MaxCSNum = std::max(MaxCSNum, *CSI);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Get an ordered list of the machine basic blocks for the jump table.
|
|
std::vector<MachineBasicBlock*> LPadList;
|
|
SmallPtrSet<MachineBasicBlock*, 32> InvokeBBs;
|
|
LPadList.reserve(CallSiteNumToLPad.size());
|
|
for (unsigned I = 1; I <= MaxCSNum; ++I) {
|
|
SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
|
|
for (SmallVectorImpl<MachineBasicBlock*>::iterator
|
|
II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
|
|
LPadList.push_back(*II);
|
|
InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
|
|
}
|
|
}
|
|
|
|
assert(!LPadList.empty() &&
|
|
"No landing pad destinations for the dispatch jump table!");
|
|
|
|
// Create the jump table and associated information.
|
|
MachineJumpTableInfo *JTI =
|
|
MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
|
|
unsigned MJTI = JTI->createJumpTableIndex(LPadList);
|
|
|
|
// Create the MBBs for the dispatch code.
|
|
|
|
// Shove the dispatch's address into the return slot in the function context.
|
|
MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
|
|
DispatchBB->setIsEHPad();
|
|
|
|
MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
|
|
unsigned trap_opcode;
|
|
if (Subtarget->isThumb())
|
|
trap_opcode = ARM::tTRAP;
|
|
else
|
|
trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
|
|
|
|
BuildMI(TrapBB, dl, TII->get(trap_opcode));
|
|
DispatchBB->addSuccessor(TrapBB);
|
|
|
|
MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
|
|
DispatchBB->addSuccessor(DispContBB);
|
|
|
|
// Insert and MBBs.
|
|
MF->insert(MF->end(), DispatchBB);
|
|
MF->insert(MF->end(), DispContBB);
|
|
MF->insert(MF->end(), TrapBB);
|
|
|
|
// Insert code into the entry block that creates and registers the function
|
|
// context.
|
|
SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
|
|
|
|
MachineMemOperand *FIMMOLd = MF->getMachineMemOperand(
|
|
MachinePointerInfo::getFixedStack(*MF, FI),
|
|
MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 4, 4);
|
|
|
|
MachineInstrBuilder MIB;
|
|
MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
|
|
|
|
const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
|
|
const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
|
|
|
|
// Add a register mask with no preserved registers. This results in all
|
|
// registers being marked as clobbered. This can't work if the dispatch block
|
|
// is in a Thumb1 function and is linked with ARM code which uses the FP
|
|
// registers, as there is no way to preserve the FP registers in Thumb1 mode.
|
|
MIB.addRegMask(RI.getSjLjDispatchPreservedMask(*MF));
|
|
|
|
bool IsPositionIndependent = isPositionIndependent();
|
|
unsigned NumLPads = LPadList.size();
|
|
if (Subtarget->isThumb2()) {
|
|
unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
|
|
BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
|
|
.addFrameIndex(FI)
|
|
.addImm(4)
|
|
.addMemOperand(FIMMOLd)
|
|
.add(predOps(ARMCC::AL));
|
|
|
|
if (NumLPads < 256) {
|
|
BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
|
|
.addReg(NewVReg1)
|
|
.addImm(LPadList.size())
|
|
.add(predOps(ARMCC::AL));
|
|
} else {
|
|
unsigned VReg1 = MRI->createVirtualRegister(TRC);
|
|
BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
|
|
.addImm(NumLPads & 0xFFFF)
|
|
.add(predOps(ARMCC::AL));
|
|
|
|
unsigned VReg2 = VReg1;
|
|
if ((NumLPads & 0xFFFF0000) != 0) {
|
|
VReg2 = MRI->createVirtualRegister(TRC);
|
|
BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
|
|
.addReg(VReg1)
|
|
.addImm(NumLPads >> 16)
|
|
.add(predOps(ARMCC::AL));
|
|
}
|
|
|
|
BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
|
|
.addReg(NewVReg1)
|
|
.addReg(VReg2)
|
|
.add(predOps(ARMCC::AL));
|
|
}
|
|
|
|
BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
|
|
.addMBB(TrapBB)
|
|
.addImm(ARMCC::HI)
|
|
.addReg(ARM::CPSR);
|
|
|
|
unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
|
|
BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT), NewVReg3)
|
|
.addJumpTableIndex(MJTI)
|
|
.add(predOps(ARMCC::AL));
|
|
|
|
unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
|
|
BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
|
|
.addReg(NewVReg3, RegState::Kill)
|
|
.addReg(NewVReg1)
|
|
.addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
|
|
.add(predOps(ARMCC::AL))
|
|
.add(condCodeOp());
|
|
|
|
BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
|
|
.addReg(NewVReg4, RegState::Kill)
|
|
.addReg(NewVReg1)
|
|
.addJumpTableIndex(MJTI);
|
|
} else if (Subtarget->isThumb()) {
|
|
unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
|
|
BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
|
|
.addFrameIndex(FI)
|
|
.addImm(1)
|
|
.addMemOperand(FIMMOLd)
|
|
.add(predOps(ARMCC::AL));
|
|
|
|
if (NumLPads < 256) {
|
|
BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
|
|
.addReg(NewVReg1)
|
|
.addImm(NumLPads)
|
|
.add(predOps(ARMCC::AL));
|
|
} else {
|
|
MachineConstantPool *ConstantPool = MF->getConstantPool();
|
|
Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
|
|
const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
|
|
|
|
// MachineConstantPool wants an explicit alignment.
|
|
unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
|
|
if (Align == 0)
|
|
Align = MF->getDataLayout().getTypeAllocSize(C->getType());
|
|
unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
|
|
|
|
unsigned VReg1 = MRI->createVirtualRegister(TRC);
|
|
BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
|
|
.addReg(VReg1, RegState::Define)
|
|
.addConstantPoolIndex(Idx)
|
|
.add(predOps(ARMCC::AL));
|
|
BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
|
|
.addReg(NewVReg1)
|
|
.addReg(VReg1)
|
|
.add(predOps(ARMCC::AL));
|
|
}
|
|
|
|
BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
|
|
.addMBB(TrapBB)
|
|
.addImm(ARMCC::HI)
|
|
.addReg(ARM::CPSR);
|
|
|
|
unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
|
|
BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
|
|
.addReg(ARM::CPSR, RegState::Define)
|
|
.addReg(NewVReg1)
|
|
.addImm(2)
|
|
.add(predOps(ARMCC::AL));
|
|
|
|
unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
|
|
BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
|
|
.addJumpTableIndex(MJTI)
|
|
.add(predOps(ARMCC::AL));
|
|
|
|
unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
|
|
BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
|
|
.addReg(ARM::CPSR, RegState::Define)
|
|
.addReg(NewVReg2, RegState::Kill)
|
|
.addReg(NewVReg3)
|
|
.add(predOps(ARMCC::AL));
|
|
|
|
MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
|
|
MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
|
|
|
|
unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
|
|
BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
|
|
.addReg(NewVReg4, RegState::Kill)
|
|
.addImm(0)
|
|
.addMemOperand(JTMMOLd)
|
|
.add(predOps(ARMCC::AL));
|
|
|
|
unsigned NewVReg6 = NewVReg5;
|
|
if (IsPositionIndependent) {
|
|
NewVReg6 = MRI->createVirtualRegister(TRC);
|
|
BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
|
|
.addReg(ARM::CPSR, RegState::Define)
|
|
.addReg(NewVReg5, RegState::Kill)
|
|
.addReg(NewVReg3)
|
|
.add(predOps(ARMCC::AL));
|
|
}
|
|
|
|
BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
|
|
.addReg(NewVReg6, RegState::Kill)
|
|
.addJumpTableIndex(MJTI);
|
|
} else {
|
|
unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
|
|
BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
|
|
.addFrameIndex(FI)
|
|
.addImm(4)
|
|
.addMemOperand(FIMMOLd)
|
|
.add(predOps(ARMCC::AL));
|
|
|
|
if (NumLPads < 256) {
|
|
BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
|
|
.addReg(NewVReg1)
|
|
.addImm(NumLPads)
|
|
.add(predOps(ARMCC::AL));
|
|
} else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
|
|
unsigned VReg1 = MRI->createVirtualRegister(TRC);
|
|
BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
|
|
.addImm(NumLPads & 0xFFFF)
|
|
.add(predOps(ARMCC::AL));
|
|
|
|
unsigned VReg2 = VReg1;
|
|
if ((NumLPads & 0xFFFF0000) != 0) {
|
|
VReg2 = MRI->createVirtualRegister(TRC);
|
|
BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
|
|
.addReg(VReg1)
|
|
.addImm(NumLPads >> 16)
|
|
.add(predOps(ARMCC::AL));
|
|
}
|
|
|
|
BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
|
|
.addReg(NewVReg1)
|
|
.addReg(VReg2)
|
|
.add(predOps(ARMCC::AL));
|
|
} else {
|
|
MachineConstantPool *ConstantPool = MF->getConstantPool();
|
|
Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
|
|
const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
|
|
|
|
// MachineConstantPool wants an explicit alignment.
|
|
unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
|
|
if (Align == 0)
|
|
Align = MF->getDataLayout().getTypeAllocSize(C->getType());
|
|
unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
|
|
|
|
unsigned VReg1 = MRI->createVirtualRegister(TRC);
|
|
BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
|
|
.addReg(VReg1, RegState::Define)
|
|
.addConstantPoolIndex(Idx)
|
|
.addImm(0)
|
|
.add(predOps(ARMCC::AL));
|
|
BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
|
|
.addReg(NewVReg1)
|
|
.addReg(VReg1, RegState::Kill)
|
|
.add(predOps(ARMCC::AL));
|
|
}
|
|
|
|
BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
|
|
.addMBB(TrapBB)
|
|
.addImm(ARMCC::HI)
|
|
.addReg(ARM::CPSR);
|
|
|
|
unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
|
|
BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
|
|
.addReg(NewVReg1)
|
|
.addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
|
|
.add(predOps(ARMCC::AL))
|
|
.add(condCodeOp());
|
|
unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
|
|
BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
|
|
.addJumpTableIndex(MJTI)
|
|
.add(predOps(ARMCC::AL));
|
|
|
|
MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
|
|
MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
|
|
unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
|
|
BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
|
|
.addReg(NewVReg3, RegState::Kill)
|
|
.addReg(NewVReg4)
|
|
.addImm(0)
|
|
.addMemOperand(JTMMOLd)
|
|
.add(predOps(ARMCC::AL));
|
|
|
|
if (IsPositionIndependent) {
|
|
BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
|
|
.addReg(NewVReg5, RegState::Kill)
|
|
.addReg(NewVReg4)
|
|
.addJumpTableIndex(MJTI);
|
|
} else {
|
|
BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr))
|
|
.addReg(NewVReg5, RegState::Kill)
|
|
.addJumpTableIndex(MJTI);
|
|
}
|
|
}
|
|
|
|
// Add the jump table entries as successors to the MBB.
|
|
SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
|
|
for (std::vector<MachineBasicBlock*>::iterator
|
|
I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
|
|
MachineBasicBlock *CurMBB = *I;
|
|
if (SeenMBBs.insert(CurMBB).second)
|
|
DispContBB->addSuccessor(CurMBB);
|
|
}
|
|
|
|
// N.B. the order the invoke BBs are processed in doesn't matter here.
|
|
const MCPhysReg *SavedRegs = RI.getCalleeSavedRegs(MF);
|
|
SmallVector<MachineBasicBlock*, 64> MBBLPads;
|
|
for (MachineBasicBlock *BB : InvokeBBs) {
|
|
|
|
// Remove the landing pad successor from the invoke block and replace it
|
|
// with the new dispatch block.
|
|
SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
|
|
BB->succ_end());
|
|
while (!Successors.empty()) {
|
|
MachineBasicBlock *SMBB = Successors.pop_back_val();
|
|
if (SMBB->isEHPad()) {
|
|
BB->removeSuccessor(SMBB);
|
|
MBBLPads.push_back(SMBB);
|
|
}
|
|
}
|
|
|
|
BB->addSuccessor(DispatchBB, BranchProbability::getZero());
|
|
BB->normalizeSuccProbs();
|
|
|
|
// Find the invoke call and mark all of the callee-saved registers as
|
|
// 'implicit defined' so that they're spilled. This prevents code from
|
|
// moving instructions to before the EH block, where they will never be
|
|
// executed.
|
|
for (MachineBasicBlock::reverse_iterator
|
|
II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
|
|
if (!II->isCall()) continue;
|
|
|
|
DenseMap<unsigned, bool> DefRegs;
|
|
for (MachineInstr::mop_iterator
|
|
OI = II->operands_begin(), OE = II->operands_end();
|
|
OI != OE; ++OI) {
|
|
if (!OI->isReg()) continue;
|
|
DefRegs[OI->getReg()] = true;
|
|
}
|
|
|
|
MachineInstrBuilder MIB(*MF, &*II);
|
|
|
|
for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
|
|
unsigned Reg = SavedRegs[i];
|
|
if (Subtarget->isThumb2() &&
|
|
!ARM::tGPRRegClass.contains(Reg) &&
|
|
!ARM::hGPRRegClass.contains(Reg))
|
|
continue;
|
|
if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
|
|
continue;
|
|
if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
|
|
continue;
|
|
if (!DefRegs[Reg])
|
|
MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Mark all former landing pads as non-landing pads. The dispatch is the only
|
|
// landing pad now.
|
|
for (SmallVectorImpl<MachineBasicBlock*>::iterator
|
|
I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
|
|
(*I)->setIsEHPad(false);
|
|
|
|
// The instruction is gone now.
|
|
MI.eraseFromParent();
|
|
}
|
|
|
|
static
|
|
MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
|
|
for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
|
|
E = MBB->succ_end(); I != E; ++I)
|
|
if (*I != Succ)
|
|
return *I;
|
|
llvm_unreachable("Expecting a BB with two successors!");
|
|
}
|
|
|
|
/// Return the load opcode for a given load size. If load size >= 8,
|
|
/// neon opcode will be returned.
|
|
static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2) {
|
|
if (LdSize >= 8)
|
|
return LdSize == 16 ? ARM::VLD1q32wb_fixed
|
|
: LdSize == 8 ? ARM::VLD1d32wb_fixed : 0;
|
|
if (IsThumb1)
|
|
return LdSize == 4 ? ARM::tLDRi
|
|
: LdSize == 2 ? ARM::tLDRHi
|
|
: LdSize == 1 ? ARM::tLDRBi : 0;
|
|
if (IsThumb2)
|
|
return LdSize == 4 ? ARM::t2LDR_POST
|
|
: LdSize == 2 ? ARM::t2LDRH_POST
|
|
: LdSize == 1 ? ARM::t2LDRB_POST : 0;
|
|
return LdSize == 4 ? ARM::LDR_POST_IMM
|
|
: LdSize == 2 ? ARM::LDRH_POST
|
|
: LdSize == 1 ? ARM::LDRB_POST_IMM : 0;
|
|
}
|
|
|
|
/// Return the store opcode for a given store size. If store size >= 8,
|
|
/// neon opcode will be returned.
|
|
static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2) {
|
|
if (StSize >= 8)
|
|
return StSize == 16 ? ARM::VST1q32wb_fixed
|
|
: StSize == 8 ? ARM::VST1d32wb_fixed : 0;
|
|
if (IsThumb1)
|
|
return StSize == 4 ? ARM::tSTRi
|
|
: StSize == 2 ? ARM::tSTRHi
|
|
: StSize == 1 ? ARM::tSTRBi : 0;
|
|
if (IsThumb2)
|
|
return StSize == 4 ? ARM::t2STR_POST
|
|
: StSize == 2 ? ARM::t2STRH_POST
|
|
: StSize == 1 ? ARM::t2STRB_POST : 0;
|
|
return StSize == 4 ? ARM::STR_POST_IMM
|
|
: StSize == 2 ? ARM::STRH_POST
|
|
: StSize == 1 ? ARM::STRB_POST_IMM : 0;
|
|
}
|
|
|
|
/// Emit a post-increment load operation with given size. The instructions
|
|
/// will be added to BB at Pos.
|
|
static void emitPostLd(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
|
|
const TargetInstrInfo *TII, const DebugLoc &dl,
|
|
unsigned LdSize, unsigned Data, unsigned AddrIn,
|
|
unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
|
|
unsigned LdOpc = getLdOpcode(LdSize, IsThumb1, IsThumb2);
|
|
assert(LdOpc != 0 && "Should have a load opcode");
|
|
if (LdSize >= 8) {
|
|
BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
|
|
.addReg(AddrOut, RegState::Define)
|
|
.addReg(AddrIn)
|
|
.addImm(0)
|
|
.add(predOps(ARMCC::AL));
|
|
} else if (IsThumb1) {
|
|
// load + update AddrIn
|
|
BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
|
|
.addReg(AddrIn)
|
|
.addImm(0)
|
|
.add(predOps(ARMCC::AL));
|
|
BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
|
|
.add(t1CondCodeOp())
|
|
.addReg(AddrIn)
|
|
.addImm(LdSize)
|
|
.add(predOps(ARMCC::AL));
|
|
} else if (IsThumb2) {
|
|
BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
|
|
.addReg(AddrOut, RegState::Define)
|
|
.addReg(AddrIn)
|
|
.addImm(LdSize)
|
|
.add(predOps(ARMCC::AL));
|
|
} else { // arm
|
|
BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
|
|
.addReg(AddrOut, RegState::Define)
|
|
.addReg(AddrIn)
|
|
.addReg(0)
|
|
.addImm(LdSize)
|
|
.add(predOps(ARMCC::AL));
|
|
}
|
|
}
|
|
|
|
/// Emit a post-increment store operation with given size. The instructions
|
|
/// will be added to BB at Pos.
|
|
static void emitPostSt(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
|
|
const TargetInstrInfo *TII, const DebugLoc &dl,
|
|
unsigned StSize, unsigned Data, unsigned AddrIn,
|
|
unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
|
|
unsigned StOpc = getStOpcode(StSize, IsThumb1, IsThumb2);
|
|
assert(StOpc != 0 && "Should have a store opcode");
|
|
if (StSize >= 8) {
|
|
BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
|
|
.addReg(AddrIn)
|
|
.addImm(0)
|
|
.addReg(Data)
|
|
.add(predOps(ARMCC::AL));
|
|
} else if (IsThumb1) {
|
|
// store + update AddrIn
|
|
BuildMI(*BB, Pos, dl, TII->get(StOpc))
|
|
.addReg(Data)
|
|
.addReg(AddrIn)
|
|
.addImm(0)
|
|
.add(predOps(ARMCC::AL));
|
|
BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
|
|
.add(t1CondCodeOp())
|
|
.addReg(AddrIn)
|
|
.addImm(StSize)
|
|
.add(predOps(ARMCC::AL));
|
|
} else if (IsThumb2) {
|
|
BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
|
|
.addReg(Data)
|
|
.addReg(AddrIn)
|
|
.addImm(StSize)
|
|
.add(predOps(ARMCC::AL));
|
|
} else { // arm
|
|
BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
|
|
.addReg(Data)
|
|
.addReg(AddrIn)
|
|
.addReg(0)
|
|
.addImm(StSize)
|
|
.add(predOps(ARMCC::AL));
|
|
}
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
ARMTargetLowering::EmitStructByval(MachineInstr &MI,
|
|
MachineBasicBlock *BB) const {
|
|
// This pseudo instruction has 3 operands: dst, src, size
|
|
// We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
|
|
// Otherwise, we will generate unrolled scalar copies.
|
|
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineFunction::iterator It = ++BB->getIterator();
|
|
|
|
unsigned dest = MI.getOperand(0).getReg();
|
|
unsigned src = MI.getOperand(1).getReg();
|
|
unsigned SizeVal = MI.getOperand(2).getImm();
|
|
unsigned Align = MI.getOperand(3).getImm();
|
|
DebugLoc dl = MI.getDebugLoc();
|
|
|
|
MachineFunction *MF = BB->getParent();
|
|
MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
unsigned UnitSize = 0;
|
|
const TargetRegisterClass *TRC = nullptr;
|
|
const TargetRegisterClass *VecTRC = nullptr;
|
|
|
|
bool IsThumb1 = Subtarget->isThumb1Only();
|
|
bool IsThumb2 = Subtarget->isThumb2();
|
|
bool IsThumb = Subtarget->isThumb();
|
|
|
|
if (Align & 1) {
|
|
UnitSize = 1;
|
|
} else if (Align & 2) {
|
|
UnitSize = 2;
|
|
} else {
|
|
// Check whether we can use NEON instructions.
|
|
if (!MF->getFunction().hasFnAttribute(Attribute::NoImplicitFloat) &&
|
|
Subtarget->hasNEON()) {
|
|
if ((Align % 16 == 0) && SizeVal >= 16)
|
|
UnitSize = 16;
|
|
else if ((Align % 8 == 0) && SizeVal >= 8)
|
|
UnitSize = 8;
|
|
}
|
|
// Can't use NEON instructions.
|
|
if (UnitSize == 0)
|
|
UnitSize = 4;
|
|
}
|
|
|
|
// Select the correct opcode and register class for unit size load/store
|
|
bool IsNeon = UnitSize >= 8;
|
|
TRC = IsThumb ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
|
|
if (IsNeon)
|
|
VecTRC = UnitSize == 16 ? &ARM::DPairRegClass
|
|
: UnitSize == 8 ? &ARM::DPRRegClass
|
|
: nullptr;
|
|
|
|
unsigned BytesLeft = SizeVal % UnitSize;
|
|
unsigned LoopSize = SizeVal - BytesLeft;
|
|
|
|
if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
|
|
// Use LDR and STR to copy.
|
|
// [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
|
|
// [destOut] = STR_POST(scratch, destIn, UnitSize)
|
|
unsigned srcIn = src;
|
|
unsigned destIn = dest;
|
|
for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
|
|
unsigned srcOut = MRI.createVirtualRegister(TRC);
|
|
unsigned destOut = MRI.createVirtualRegister(TRC);
|
|
unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
|
|
emitPostLd(BB, MI, TII, dl, UnitSize, scratch, srcIn, srcOut,
|
|
IsThumb1, IsThumb2);
|
|
emitPostSt(BB, MI, TII, dl, UnitSize, scratch, destIn, destOut,
|
|
IsThumb1, IsThumb2);
|
|
srcIn = srcOut;
|
|
destIn = destOut;
|
|
}
|
|
|
|
// Handle the leftover bytes with LDRB and STRB.
|
|
// [scratch, srcOut] = LDRB_POST(srcIn, 1)
|
|
// [destOut] = STRB_POST(scratch, destIn, 1)
|
|
for (unsigned i = 0; i < BytesLeft; i++) {
|
|
unsigned srcOut = MRI.createVirtualRegister(TRC);
|
|
unsigned destOut = MRI.createVirtualRegister(TRC);
|
|
unsigned scratch = MRI.createVirtualRegister(TRC);
|
|
emitPostLd(BB, MI, TII, dl, 1, scratch, srcIn, srcOut,
|
|
IsThumb1, IsThumb2);
|
|
emitPostSt(BB, MI, TII, dl, 1, scratch, destIn, destOut,
|
|
IsThumb1, IsThumb2);
|
|
srcIn = srcOut;
|
|
destIn = destOut;
|
|
}
|
|
MI.eraseFromParent(); // The instruction is gone now.
|
|
return BB;
|
|
}
|
|
|
|
// Expand the pseudo op to a loop.
|
|
// thisMBB:
|
|
// ...
|
|
// movw varEnd, # --> with thumb2
|
|
// movt varEnd, #
|
|
// ldrcp varEnd, idx --> without thumb2
|
|
// fallthrough --> loopMBB
|
|
// loopMBB:
|
|
// PHI varPhi, varEnd, varLoop
|
|
// PHI srcPhi, src, srcLoop
|
|
// PHI destPhi, dst, destLoop
|
|
// [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
|
|
// [destLoop] = STR_POST(scratch, destPhi, UnitSize)
|
|
// subs varLoop, varPhi, #UnitSize
|
|
// bne loopMBB
|
|
// fallthrough --> exitMBB
|
|
// exitMBB:
|
|
// epilogue to handle left-over bytes
|
|
// [scratch, srcOut] = LDRB_POST(srcLoop, 1)
|
|
// [destOut] = STRB_POST(scratch, destLoop, 1)
|
|
MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MF->insert(It, loopMBB);
|
|
MF->insert(It, exitMBB);
|
|
|
|
// Transfer the remainder of BB and its successor edges to exitMBB.
|
|
exitMBB->splice(exitMBB->begin(), BB,
|
|
std::next(MachineBasicBlock::iterator(MI)), BB->end());
|
|
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
// Load an immediate to varEnd.
|
|
unsigned varEnd = MRI.createVirtualRegister(TRC);
|
|
if (Subtarget->useMovt(*MF)) {
|
|
unsigned Vtmp = varEnd;
|
|
if ((LoopSize & 0xFFFF0000) != 0)
|
|
Vtmp = MRI.createVirtualRegister(TRC);
|
|
BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVi16 : ARM::MOVi16), Vtmp)
|
|
.addImm(LoopSize & 0xFFFF)
|
|
.add(predOps(ARMCC::AL));
|
|
|
|
if ((LoopSize & 0xFFFF0000) != 0)
|
|
BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVTi16 : ARM::MOVTi16), varEnd)
|
|
.addReg(Vtmp)
|
|
.addImm(LoopSize >> 16)
|
|
.add(predOps(ARMCC::AL));
|
|
} else {
|
|
MachineConstantPool *ConstantPool = MF->getConstantPool();
|
|
Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
|
|
const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
|
|
|
|
// MachineConstantPool wants an explicit alignment.
|
|
unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
|
|
if (Align == 0)
|
|
Align = MF->getDataLayout().getTypeAllocSize(C->getType());
|
|
unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
|
|
|
|
if (IsThumb)
|
|
BuildMI(*BB, MI, dl, TII->get(ARM::tLDRpci))
|
|
.addReg(varEnd, RegState::Define)
|
|
.addConstantPoolIndex(Idx)
|
|
.add(predOps(ARMCC::AL));
|
|
else
|
|
BuildMI(*BB, MI, dl, TII->get(ARM::LDRcp))
|
|
.addReg(varEnd, RegState::Define)
|
|
.addConstantPoolIndex(Idx)
|
|
.addImm(0)
|
|
.add(predOps(ARMCC::AL));
|
|
}
|
|
BB->addSuccessor(loopMBB);
|
|
|
|
// Generate the loop body:
|
|
// varPhi = PHI(varLoop, varEnd)
|
|
// srcPhi = PHI(srcLoop, src)
|
|
// destPhi = PHI(destLoop, dst)
|
|
MachineBasicBlock *entryBB = BB;
|
|
BB = loopMBB;
|
|
unsigned varLoop = MRI.createVirtualRegister(TRC);
|
|
unsigned varPhi = MRI.createVirtualRegister(TRC);
|
|
unsigned srcLoop = MRI.createVirtualRegister(TRC);
|
|
unsigned srcPhi = MRI.createVirtualRegister(TRC);
|
|
unsigned destLoop = MRI.createVirtualRegister(TRC);
|
|
unsigned destPhi = MRI.createVirtualRegister(TRC);
|
|
|
|
BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
|
|
.addReg(varLoop).addMBB(loopMBB)
|
|
.addReg(varEnd).addMBB(entryBB);
|
|
BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
|
|
.addReg(srcLoop).addMBB(loopMBB)
|
|
.addReg(src).addMBB(entryBB);
|
|
BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
|
|
.addReg(destLoop).addMBB(loopMBB)
|
|
.addReg(dest).addMBB(entryBB);
|
|
|
|
// [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
|
|
// [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
|
|
unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
|
|
emitPostLd(BB, BB->end(), TII, dl, UnitSize, scratch, srcPhi, srcLoop,
|
|
IsThumb1, IsThumb2);
|
|
emitPostSt(BB, BB->end(), TII, dl, UnitSize, scratch, destPhi, destLoop,
|
|
IsThumb1, IsThumb2);
|
|
|
|
// Decrement loop variable by UnitSize.
|
|
if (IsThumb1) {
|
|
BuildMI(*BB, BB->end(), dl, TII->get(ARM::tSUBi8), varLoop)
|
|
.add(t1CondCodeOp())
|
|
.addReg(varPhi)
|
|
.addImm(UnitSize)
|
|
.add(predOps(ARMCC::AL));
|
|
} else {
|
|
MachineInstrBuilder MIB =
|
|
BuildMI(*BB, BB->end(), dl,
|
|
TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
|
|
MIB.addReg(varPhi)
|
|
.addImm(UnitSize)
|
|
.add(predOps(ARMCC::AL))
|
|
.add(condCodeOp());
|
|
MIB->getOperand(5).setReg(ARM::CPSR);
|
|
MIB->getOperand(5).setIsDef(true);
|
|
}
|
|
BuildMI(*BB, BB->end(), dl,
|
|
TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc))
|
|
.addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
|
|
|
|
// loopMBB can loop back to loopMBB or fall through to exitMBB.
|
|
BB->addSuccessor(loopMBB);
|
|
BB->addSuccessor(exitMBB);
|
|
|
|
// Add epilogue to handle BytesLeft.
|
|
BB = exitMBB;
|
|
auto StartOfExit = exitMBB->begin();
|
|
|
|
// [scratch, srcOut] = LDRB_POST(srcLoop, 1)
|
|
// [destOut] = STRB_POST(scratch, destLoop, 1)
|
|
unsigned srcIn = srcLoop;
|
|
unsigned destIn = destLoop;
|
|
for (unsigned i = 0; i < BytesLeft; i++) {
|
|
unsigned srcOut = MRI.createVirtualRegister(TRC);
|
|
unsigned destOut = MRI.createVirtualRegister(TRC);
|
|
unsigned scratch = MRI.createVirtualRegister(TRC);
|
|
emitPostLd(BB, StartOfExit, TII, dl, 1, scratch, srcIn, srcOut,
|
|
IsThumb1, IsThumb2);
|
|
emitPostSt(BB, StartOfExit, TII, dl, 1, scratch, destIn, destOut,
|
|
IsThumb1, IsThumb2);
|
|
srcIn = srcOut;
|
|
destIn = destOut;
|
|
}
|
|
|
|
MI.eraseFromParent(); // The instruction is gone now.
|
|
return BB;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
ARMTargetLowering::EmitLowered__chkstk(MachineInstr &MI,
|
|
MachineBasicBlock *MBB) const {
|
|
const TargetMachine &TM = getTargetMachine();
|
|
const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
|
|
assert(Subtarget->isTargetWindows() &&
|
|
"__chkstk is only supported on Windows");
|
|
assert(Subtarget->isThumb2() && "Windows on ARM requires Thumb-2 mode");
|
|
|
|
// __chkstk takes the number of words to allocate on the stack in R4, and
|
|
// returns the stack adjustment in number of bytes in R4. This will not
|
|
// clober any other registers (other than the obvious lr).
|
|
//
|
|
// Although, technically, IP should be considered a register which may be
|
|
// clobbered, the call itself will not touch it. Windows on ARM is a pure
|
|
// thumb-2 environment, so there is no interworking required. As a result, we
|
|
// do not expect a veneer to be emitted by the linker, clobbering IP.
|
|
//
|
|
// Each module receives its own copy of __chkstk, so no import thunk is
|
|
// required, again, ensuring that IP is not clobbered.
|
|
//
|
|
// Finally, although some linkers may theoretically provide a trampoline for
|
|
// out of range calls (which is quite common due to a 32M range limitation of
|
|
// branches for Thumb), we can generate the long-call version via
|
|
// -mcmodel=large, alleviating the need for the trampoline which may clobber
|
|
// IP.
|
|
|
|
switch (TM.getCodeModel()) {
|
|
case CodeModel::Small:
|
|
case CodeModel::Medium:
|
|
case CodeModel::Kernel:
|
|
BuildMI(*MBB, MI, DL, TII.get(ARM::tBL))
|
|
.add(predOps(ARMCC::AL))
|
|
.addExternalSymbol("__chkstk")
|
|
.addReg(ARM::R4, RegState::Implicit | RegState::Kill)
|
|
.addReg(ARM::R4, RegState::Implicit | RegState::Define)
|
|
.addReg(ARM::R12,
|
|
RegState::Implicit | RegState::Define | RegState::Dead)
|
|
.addReg(ARM::CPSR,
|
|
RegState::Implicit | RegState::Define | RegState::Dead);
|
|
break;
|
|
case CodeModel::Large: {
|
|
MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
|
|
unsigned Reg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
|
|
|
|
BuildMI(*MBB, MI, DL, TII.get(ARM::t2MOVi32imm), Reg)
|
|
.addExternalSymbol("__chkstk");
|
|
BuildMI(*MBB, MI, DL, TII.get(ARM::tBLXr))
|
|
.add(predOps(ARMCC::AL))
|
|
.addReg(Reg, RegState::Kill)
|
|
.addReg(ARM::R4, RegState::Implicit | RegState::Kill)
|
|
.addReg(ARM::R4, RegState::Implicit | RegState::Define)
|
|
.addReg(ARM::R12,
|
|
RegState::Implicit | RegState::Define | RegState::Dead)
|
|
.addReg(ARM::CPSR,
|
|
RegState::Implicit | RegState::Define | RegState::Dead);
|
|
break;
|
|
}
|
|
}
|
|
|
|
BuildMI(*MBB, MI, DL, TII.get(ARM::t2SUBrr), ARM::SP)
|
|
.addReg(ARM::SP, RegState::Kill)
|
|
.addReg(ARM::R4, RegState::Kill)
|
|
.setMIFlags(MachineInstr::FrameSetup)
|
|
.add(predOps(ARMCC::AL))
|
|
.add(condCodeOp());
|
|
|
|
MI.eraseFromParent();
|
|
return MBB;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
ARMTargetLowering::EmitLowered__dbzchk(MachineInstr &MI,
|
|
MachineBasicBlock *MBB) const {
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
MachineFunction *MF = MBB->getParent();
|
|
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
|
|
|
|
MachineBasicBlock *ContBB = MF->CreateMachineBasicBlock();
|
|
MF->insert(++MBB->getIterator(), ContBB);
|
|
ContBB->splice(ContBB->begin(), MBB,
|
|
std::next(MachineBasicBlock::iterator(MI)), MBB->end());
|
|
ContBB->transferSuccessorsAndUpdatePHIs(MBB);
|
|
MBB->addSuccessor(ContBB);
|
|
|
|
MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
|
|
BuildMI(TrapBB, DL, TII->get(ARM::t__brkdiv0));
|
|
MF->push_back(TrapBB);
|
|
MBB->addSuccessor(TrapBB);
|
|
|
|
BuildMI(*MBB, MI, DL, TII->get(ARM::tCMPi8))
|
|
.addReg(MI.getOperand(0).getReg())
|
|
.addImm(0)
|
|
.add(predOps(ARMCC::AL));
|
|
BuildMI(*MBB, MI, DL, TII->get(ARM::t2Bcc))
|
|
.addMBB(TrapBB)
|
|
.addImm(ARMCC::EQ)
|
|
.addReg(ARM::CPSR);
|
|
|
|
MI.eraseFromParent();
|
|
return ContBB;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
|
|
MachineBasicBlock *BB) const {
|
|
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
|
|
DebugLoc dl = MI.getDebugLoc();
|
|
bool isThumb2 = Subtarget->isThumb2();
|
|
switch (MI.getOpcode()) {
|
|
default: {
|
|
MI.print(errs());
|
|
llvm_unreachable("Unexpected instr type to insert");
|
|
}
|
|
|
|
// Thumb1 post-indexed loads are really just single-register LDMs.
|
|
case ARM::tLDR_postidx: {
|
|
MachineOperand Def(MI.getOperand(1));
|
|
BuildMI(*BB, MI, dl, TII->get(ARM::tLDMIA_UPD))
|
|
.add(Def) // Rn_wb
|
|
.add(MI.getOperand(2)) // Rn
|
|
.add(MI.getOperand(3)) // PredImm
|
|
.add(MI.getOperand(4)) // PredReg
|
|
.add(MI.getOperand(0)); // Rt
|
|
MI.eraseFromParent();
|
|
return BB;
|
|
}
|
|
|
|
// The Thumb2 pre-indexed stores have the same MI operands, they just
|
|
// define them differently in the .td files from the isel patterns, so
|
|
// they need pseudos.
|
|
case ARM::t2STR_preidx:
|
|
MI.setDesc(TII->get(ARM::t2STR_PRE));
|
|
return BB;
|
|
case ARM::t2STRB_preidx:
|
|
MI.setDesc(TII->get(ARM::t2STRB_PRE));
|
|
return BB;
|
|
case ARM::t2STRH_preidx:
|
|
MI.setDesc(TII->get(ARM::t2STRH_PRE));
|
|
return BB;
|
|
|
|
case ARM::STRi_preidx:
|
|
case ARM::STRBi_preidx: {
|
|
unsigned NewOpc = MI.getOpcode() == ARM::STRi_preidx ? ARM::STR_PRE_IMM
|
|
: ARM::STRB_PRE_IMM;
|
|
// Decode the offset.
|
|
unsigned Offset = MI.getOperand(4).getImm();
|
|
bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
|
|
Offset = ARM_AM::getAM2Offset(Offset);
|
|
if (isSub)
|
|
Offset = -Offset;
|
|
|
|
MachineMemOperand *MMO = *MI.memoperands_begin();
|
|
BuildMI(*BB, MI, dl, TII->get(NewOpc))
|
|
.add(MI.getOperand(0)) // Rn_wb
|
|
.add(MI.getOperand(1)) // Rt
|
|
.add(MI.getOperand(2)) // Rn
|
|
.addImm(Offset) // offset (skip GPR==zero_reg)
|
|
.add(MI.getOperand(5)) // pred
|
|
.add(MI.getOperand(6))
|
|
.addMemOperand(MMO);
|
|
MI.eraseFromParent();
|
|
return BB;
|
|
}
|
|
case ARM::STRr_preidx:
|
|
case ARM::STRBr_preidx:
|
|
case ARM::STRH_preidx: {
|
|
unsigned NewOpc;
|
|
switch (MI.getOpcode()) {
|
|
default: llvm_unreachable("unexpected opcode!");
|
|
case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
|
|
case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
|
|
case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
|
|
}
|
|
MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
|
|
for (unsigned i = 0; i < MI.getNumOperands(); ++i)
|
|
MIB.add(MI.getOperand(i));
|
|
MI.eraseFromParent();
|
|
return BB;
|
|
}
|
|
|
|
case ARM::tMOVCCr_pseudo: {
|
|
// To "insert" a SELECT_CC instruction, we actually have to insert the
|
|
// diamond control-flow pattern. The incoming instruction knows the
|
|
// destination vreg to set, the condition code register to branch on, the
|
|
// true/false values to select between, and a branch opcode to use.
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineFunction::iterator It = ++BB->getIterator();
|
|
|
|
// thisMBB:
|
|
// ...
|
|
// TrueVal = ...
|
|
// cmpTY ccX, r1, r2
|
|
// bCC copy1MBB
|
|
// fallthrough --> copy0MBB
|
|
MachineBasicBlock *thisMBB = BB;
|
|
MachineFunction *F = BB->getParent();
|
|
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
F->insert(It, copy0MBB);
|
|
F->insert(It, sinkMBB);
|
|
|
|
// Transfer the remainder of BB and its successor edges to sinkMBB.
|
|
sinkMBB->splice(sinkMBB->begin(), BB,
|
|
std::next(MachineBasicBlock::iterator(MI)), BB->end());
|
|
sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
BB->addSuccessor(copy0MBB);
|
|
BB->addSuccessor(sinkMBB);
|
|
|
|
BuildMI(BB, dl, TII->get(ARM::tBcc))
|
|
.addMBB(sinkMBB)
|
|
.addImm(MI.getOperand(3).getImm())
|
|
.addReg(MI.getOperand(4).getReg());
|
|
|
|
// copy0MBB:
|
|
// %FalseValue = ...
|
|
// # fallthrough to sinkMBB
|
|
BB = copy0MBB;
|
|
|
|
// Update machine-CFG edges
|
|
BB->addSuccessor(sinkMBB);
|
|
|
|
// sinkMBB:
|
|
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
|
|
// ...
|
|
BB = sinkMBB;
|
|
BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), MI.getOperand(0).getReg())
|
|
.addReg(MI.getOperand(1).getReg())
|
|
.addMBB(copy0MBB)
|
|
.addReg(MI.getOperand(2).getReg())
|
|
.addMBB(thisMBB);
|
|
|
|
MI.eraseFromParent(); // The pseudo instruction is gone now.
|
|
return BB;
|
|
}
|
|
|
|
case ARM::BCCi64:
|
|
case ARM::BCCZi64: {
|
|
// If there is an unconditional branch to the other successor, remove it.
|
|
BB->erase(std::next(MachineBasicBlock::iterator(MI)), BB->end());
|
|
|
|
// Compare both parts that make up the double comparison separately for
|
|
// equality.
|
|
bool RHSisZero = MI.getOpcode() == ARM::BCCZi64;
|
|
|
|
unsigned LHS1 = MI.getOperand(1).getReg();
|
|
unsigned LHS2 = MI.getOperand(2).getReg();
|
|
if (RHSisZero) {
|
|
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
|
|
.addReg(LHS1)
|
|
.addImm(0)
|
|
.add(predOps(ARMCC::AL));
|
|
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
|
|
.addReg(LHS2).addImm(0)
|
|
.addImm(ARMCC::EQ).addReg(ARM::CPSR);
|
|
} else {
|
|
unsigned RHS1 = MI.getOperand(3).getReg();
|
|
unsigned RHS2 = MI.getOperand(4).getReg();
|
|
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
|
|
.addReg(LHS1)
|
|
.addReg(RHS1)
|
|
.add(predOps(ARMCC::AL));
|
|
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
|
|
.addReg(LHS2).addReg(RHS2)
|
|
.addImm(ARMCC::EQ).addReg(ARM::CPSR);
|
|
}
|
|
|
|
MachineBasicBlock *destMBB = MI.getOperand(RHSisZero ? 3 : 5).getMBB();
|
|
MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
|
|
if (MI.getOperand(0).getImm() == ARMCC::NE)
|
|
std::swap(destMBB, exitMBB);
|
|
|
|
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
|
|
.addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
|
|
if (isThumb2)
|
|
BuildMI(BB, dl, TII->get(ARM::t2B))
|
|
.addMBB(exitMBB)
|
|
.add(predOps(ARMCC::AL));
|
|
else
|
|
BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
|
|
|
|
MI.eraseFromParent(); // The pseudo instruction is gone now.
|
|
return BB;
|
|
}
|
|
|
|
case ARM::Int_eh_sjlj_setjmp:
|
|
case ARM::Int_eh_sjlj_setjmp_nofp:
|
|
case ARM::tInt_eh_sjlj_setjmp:
|
|
case ARM::t2Int_eh_sjlj_setjmp:
|
|
case ARM::t2Int_eh_sjlj_setjmp_nofp:
|
|
return BB;
|
|
|
|
case ARM::Int_eh_sjlj_setup_dispatch:
|
|
EmitSjLjDispatchBlock(MI, BB);
|
|
return BB;
|
|
|
|
case ARM::ABS:
|
|
case ARM::t2ABS: {
|
|
// To insert an ABS instruction, we have to insert the
|
|
// diamond control-flow pattern. The incoming instruction knows the
|
|
// source vreg to test against 0, the destination vreg to set,
|
|
// the condition code register to branch on, the
|
|
// true/false values to select between, and a branch opcode to use.
|
|
// It transforms
|
|
// V1 = ABS V0
|
|
// into
|
|
// V2 = MOVS V0
|
|
// BCC (branch to SinkBB if V0 >= 0)
|
|
// RSBBB: V3 = RSBri V2, 0 (compute ABS if V2 < 0)
|
|
// SinkBB: V1 = PHI(V2, V3)
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineFunction::iterator BBI = ++BB->getIterator();
|
|
MachineFunction *Fn = BB->getParent();
|
|
MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *SinkBB = Fn->CreateMachineBasicBlock(LLVM_BB);
|
|
Fn->insert(BBI, RSBBB);
|
|
Fn->insert(BBI, SinkBB);
|
|
|
|
unsigned int ABSSrcReg = MI.getOperand(1).getReg();
|
|
unsigned int ABSDstReg = MI.getOperand(0).getReg();
|
|
bool ABSSrcKIll = MI.getOperand(1).isKill();
|
|
bool isThumb2 = Subtarget->isThumb2();
|
|
MachineRegisterInfo &MRI = Fn->getRegInfo();
|
|
// In Thumb mode S must not be specified if source register is the SP or
|
|
// PC and if destination register is the SP, so restrict register class
|
|
unsigned NewRsbDstReg =
|
|
MRI.createVirtualRegister(isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass);
|
|
|
|
// Transfer the remainder of BB and its successor edges to sinkMBB.
|
|
SinkBB->splice(SinkBB->begin(), BB,
|
|
std::next(MachineBasicBlock::iterator(MI)), BB->end());
|
|
SinkBB->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
BB->addSuccessor(RSBBB);
|
|
BB->addSuccessor(SinkBB);
|
|
|
|
// fall through to SinkMBB
|
|
RSBBB->addSuccessor(SinkBB);
|
|
|
|
// insert a cmp at the end of BB
|
|
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
|
|
.addReg(ABSSrcReg)
|
|
.addImm(0)
|
|
.add(predOps(ARMCC::AL));
|
|
|
|
// insert a bcc with opposite CC to ARMCC::MI at the end of BB
|
|
BuildMI(BB, dl,
|
|
TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
|
|
.addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
|
|
|
|
// insert rsbri in RSBBB
|
|
// Note: BCC and rsbri will be converted into predicated rsbmi
|
|
// by if-conversion pass
|
|
BuildMI(*RSBBB, RSBBB->begin(), dl,
|
|
TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
|
|
.addReg(ABSSrcReg, ABSSrcKIll ? RegState::Kill : 0)
|
|
.addImm(0)
|
|
.add(predOps(ARMCC::AL))
|
|
.add(condCodeOp());
|
|
|
|
// insert PHI in SinkBB,
|
|
// reuse ABSDstReg to not change uses of ABS instruction
|
|
BuildMI(*SinkBB, SinkBB->begin(), dl,
|
|
TII->get(ARM::PHI), ABSDstReg)
|
|
.addReg(NewRsbDstReg).addMBB(RSBBB)
|
|
.addReg(ABSSrcReg).addMBB(BB);
|
|
|
|
// remove ABS instruction
|
|
MI.eraseFromParent();
|
|
|
|
// return last added BB
|
|
return SinkBB;
|
|
}
|
|
case ARM::COPY_STRUCT_BYVAL_I32:
|
|
++NumLoopByVals;
|
|
return EmitStructByval(MI, BB);
|
|
case ARM::WIN__CHKSTK:
|
|
return EmitLowered__chkstk(MI, BB);
|
|
case ARM::WIN__DBZCHK:
|
|
return EmitLowered__dbzchk(MI, BB);
|
|
}
|
|
}
|
|
|
|
/// Attaches vregs to MEMCPY that it will use as scratch registers
|
|
/// when it is expanded into LDM/STM. This is done as a post-isel lowering
|
|
/// instead of as a custom inserter because we need the use list from the SDNode.
|
|
static void attachMEMCPYScratchRegs(const ARMSubtarget *Subtarget,
|
|
MachineInstr &MI, const SDNode *Node) {
|
|
bool isThumb1 = Subtarget->isThumb1Only();
|
|
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
MachineFunction *MF = MI.getParent()->getParent();
|
|
MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
MachineInstrBuilder MIB(*MF, MI);
|
|
|
|
// If the new dst/src is unused mark it as dead.
|
|
if (!Node->hasAnyUseOfValue(0)) {
|
|
MI.getOperand(0).setIsDead(true);
|
|
}
|
|
if (!Node->hasAnyUseOfValue(1)) {
|
|
MI.getOperand(1).setIsDead(true);
|
|
}
|
|
|
|
// The MEMCPY both defines and kills the scratch registers.
|
|
for (unsigned I = 0; I != MI.getOperand(4).getImm(); ++I) {
|
|
unsigned TmpReg = MRI.createVirtualRegister(isThumb1 ? &ARM::tGPRRegClass
|
|
: &ARM::GPRRegClass);
|
|
MIB.addReg(TmpReg, RegState::Define|RegState::Dead);
|
|
}
|
|
}
|
|
|
|
void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
|
|
SDNode *Node) const {
|
|
if (MI.getOpcode() == ARM::MEMCPY) {
|
|
attachMEMCPYScratchRegs(Subtarget, MI, Node);
|
|
return;
|
|
}
|
|
|
|
const MCInstrDesc *MCID = &MI.getDesc();
|
|
// Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
|
|
// RSC. Coming out of isel, they have an implicit CPSR def, but the optional
|
|
// operand is still set to noreg. If needed, set the optional operand's
|
|
// register to CPSR, and remove the redundant implicit def.
|
|
//
|
|
// e.g. ADCS (..., implicit-def CPSR) -> ADC (... opt:def CPSR).
|
|
|
|
// Rename pseudo opcodes.
|
|
unsigned NewOpc = convertAddSubFlagsOpcode(MI.getOpcode());
|
|
unsigned ccOutIdx;
|
|
if (NewOpc) {
|
|
const ARMBaseInstrInfo *TII = Subtarget->getInstrInfo();
|
|
MCID = &TII->get(NewOpc);
|
|
|
|
assert(MCID->getNumOperands() ==
|
|
MI.getDesc().getNumOperands() + 5 - MI.getDesc().getSize()
|
|
&& "converted opcode should be the same except for cc_out"
|
|
" (and, on Thumb1, pred)");
|
|
|
|
MI.setDesc(*MCID);
|
|
|
|
// Add the optional cc_out operand
|
|
MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
|
|
|
|
// On Thumb1, move all input operands to the end, then add the predicate
|
|
if (Subtarget->isThumb1Only()) {
|
|
for (unsigned c = MCID->getNumOperands() - 4; c--;) {
|
|
MI.addOperand(MI.getOperand(1));
|
|
MI.RemoveOperand(1);
|
|
}
|
|
|
|
// Restore the ties
|
|
for (unsigned i = MI.getNumOperands(); i--;) {
|
|
const MachineOperand& op = MI.getOperand(i);
|
|
if (op.isReg() && op.isUse()) {
|
|
int DefIdx = MCID->getOperandConstraint(i, MCOI::TIED_TO);
|
|
if (DefIdx != -1)
|
|
MI.tieOperands(DefIdx, i);
|
|
}
|
|
}
|
|
|
|
MI.addOperand(MachineOperand::CreateImm(ARMCC::AL));
|
|
MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/false));
|
|
ccOutIdx = 1;
|
|
} else
|
|
ccOutIdx = MCID->getNumOperands() - 1;
|
|
} else
|
|
ccOutIdx = MCID->getNumOperands() - 1;
|
|
|
|
// Any ARM instruction that sets the 's' bit should specify an optional
|
|
// "cc_out" operand in the last operand position.
|
|
if (!MI.hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
|
|
assert(!NewOpc && "Optional cc_out operand required");
|
|
return;
|
|
}
|
|
// Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
|
|
// since we already have an optional CPSR def.
|
|
bool definesCPSR = false;
|
|
bool deadCPSR = false;
|
|
for (unsigned i = MCID->getNumOperands(), e = MI.getNumOperands(); i != e;
|
|
++i) {
|
|
const MachineOperand &MO = MI.getOperand(i);
|
|
if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
|
|
definesCPSR = true;
|
|
if (MO.isDead())
|
|
deadCPSR = true;
|
|
MI.RemoveOperand(i);
|
|
break;
|
|
}
|
|
}
|
|
if (!definesCPSR) {
|
|
assert(!NewOpc && "Optional cc_out operand required");
|
|
return;
|
|
}
|
|
assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
|
|
if (deadCPSR) {
|
|
assert(!MI.getOperand(ccOutIdx).getReg() &&
|
|
"expect uninitialized optional cc_out operand");
|
|
// Thumb1 instructions must have the S bit even if the CPSR is dead.
|
|
if (!Subtarget->isThumb1Only())
|
|
return;
|
|
}
|
|
|
|
// If this instruction was defined with an optional CPSR def and its dag node
|
|
// had a live implicit CPSR def, then activate the optional CPSR def.
|
|
MachineOperand &MO = MI.getOperand(ccOutIdx);
|
|
MO.setReg(ARM::CPSR);
|
|
MO.setIsDef(true);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ARM Optimization Hooks
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Helper function that checks if N is a null or all ones constant.
|
|
static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
|
|
return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
|
|
}
|
|
|
|
// Return true if N is conditionally 0 or all ones.
|
|
// Detects these expressions where cc is an i1 value:
|
|
//
|
|
// (select cc 0, y) [AllOnes=0]
|
|
// (select cc y, 0) [AllOnes=0]
|
|
// (zext cc) [AllOnes=0]
|
|
// (sext cc) [AllOnes=0/1]
|
|
// (select cc -1, y) [AllOnes=1]
|
|
// (select cc y, -1) [AllOnes=1]
|
|
//
|
|
// Invert is set when N is the null/all ones constant when CC is false.
|
|
// OtherOp is set to the alternative value of N.
|
|
static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
|
|
SDValue &CC, bool &Invert,
|
|
SDValue &OtherOp,
|
|
SelectionDAG &DAG) {
|
|
switch (N->getOpcode()) {
|
|
default: return false;
|
|
case ISD::SELECT: {
|
|
CC = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
SDValue N2 = N->getOperand(2);
|
|
if (isZeroOrAllOnes(N1, AllOnes)) {
|
|
Invert = false;
|
|
OtherOp = N2;
|
|
return true;
|
|
}
|
|
if (isZeroOrAllOnes(N2, AllOnes)) {
|
|
Invert = true;
|
|
OtherOp = N1;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
case ISD::ZERO_EXTEND:
|
|
// (zext cc) can never be the all ones value.
|
|
if (AllOnes)
|
|
return false;
|
|
LLVM_FALLTHROUGH;
|
|
case ISD::SIGN_EXTEND: {
|
|
SDLoc dl(N);
|
|
EVT VT = N->getValueType(0);
|
|
CC = N->getOperand(0);
|
|
if (CC.getValueType() != MVT::i1 || CC.getOpcode() != ISD::SETCC)
|
|
return false;
|
|
Invert = !AllOnes;
|
|
if (AllOnes)
|
|
// When looking for an AllOnes constant, N is an sext, and the 'other'
|
|
// value is 0.
|
|
OtherOp = DAG.getConstant(0, dl, VT);
|
|
else if (N->getOpcode() == ISD::ZERO_EXTEND)
|
|
// When looking for a 0 constant, N can be zext or sext.
|
|
OtherOp = DAG.getConstant(1, dl, VT);
|
|
else
|
|
OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
|
|
VT);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Combine a constant select operand into its use:
|
|
//
|
|
// (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
|
|
// (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
|
|
// (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1]
|
|
// (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
|
|
// (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
|
|
//
|
|
// The transform is rejected if the select doesn't have a constant operand that
|
|
// is null, or all ones when AllOnes is set.
|
|
//
|
|
// Also recognize sext/zext from i1:
|
|
//
|
|
// (add (zext cc), x) -> (select cc (add x, 1), x)
|
|
// (add (sext cc), x) -> (select cc (add x, -1), x)
|
|
//
|
|
// These transformations eventually create predicated instructions.
|
|
//
|
|
// @param N The node to transform.
|
|
// @param Slct The N operand that is a select.
|
|
// @param OtherOp The other N operand (x above).
|
|
// @param DCI Context.
|
|
// @param AllOnes Require the select constant to be all ones instead of null.
|
|
// @returns The new node, or SDValue() on failure.
|
|
static
|
|
SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
bool AllOnes = false) {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
EVT VT = N->getValueType(0);
|
|
SDValue NonConstantVal;
|
|
SDValue CCOp;
|
|
bool SwapSelectOps;
|
|
if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
|
|
NonConstantVal, DAG))
|
|
return SDValue();
|
|
|
|
// Slct is now know to be the desired identity constant when CC is true.
|
|
SDValue TrueVal = OtherOp;
|
|
SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
|
|
OtherOp, NonConstantVal);
|
|
// Unless SwapSelectOps says CC should be false.
|
|
if (SwapSelectOps)
|
|
std::swap(TrueVal, FalseVal);
|
|
|
|
return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
|
|
CCOp, TrueVal, FalseVal);
|
|
}
|
|
|
|
// Attempt combineSelectAndUse on each operand of a commutative operator N.
|
|
static
|
|
SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
if (N0.getNode()->hasOneUse())
|
|
if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes))
|
|
return Result;
|
|
if (N1.getNode()->hasOneUse())
|
|
if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes))
|
|
return Result;
|
|
return SDValue();
|
|
}
|
|
|
|
static bool IsVUZPShuffleNode(SDNode *N) {
|
|
// VUZP shuffle node.
|
|
if (N->getOpcode() == ARMISD::VUZP)
|
|
return true;
|
|
|
|
// "VUZP" on i32 is an alias for VTRN.
|
|
if (N->getOpcode() == ARMISD::VTRN && N->getValueType(0) == MVT::v2i32)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static SDValue AddCombineToVPADD(SDNode *N, SDValue N0, SDValue N1,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const ARMSubtarget *Subtarget) {
|
|
// Look for ADD(VUZP.0, VUZP.1).
|
|
if (!IsVUZPShuffleNode(N0.getNode()) || N0.getNode() != N1.getNode() ||
|
|
N0 == N1)
|
|
return SDValue();
|
|
|
|
// Make sure the ADD is a 64-bit add; there is no 128-bit VPADD.
|
|
if (!N->getValueType(0).is64BitVector())
|
|
return SDValue();
|
|
|
|
// Generate vpadd.
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
SDLoc dl(N);
|
|
SDNode *Unzip = N0.getNode();
|
|
EVT VT = N->getValueType(0);
|
|
|
|
SmallVector<SDValue, 8> Ops;
|
|
Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpadd, dl,
|
|
TLI.getPointerTy(DAG.getDataLayout())));
|
|
Ops.push_back(Unzip->getOperand(0));
|
|
Ops.push_back(Unzip->getOperand(1));
|
|
|
|
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
|
|
}
|
|
|
|
static SDValue AddCombineVUZPToVPADDL(SDNode *N, SDValue N0, SDValue N1,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const ARMSubtarget *Subtarget) {
|
|
// Check for two extended operands.
|
|
if (!(N0.getOpcode() == ISD::SIGN_EXTEND &&
|
|
N1.getOpcode() == ISD::SIGN_EXTEND) &&
|
|
!(N0.getOpcode() == ISD::ZERO_EXTEND &&
|
|
N1.getOpcode() == ISD::ZERO_EXTEND))
|
|
return SDValue();
|
|
|
|
SDValue N00 = N0.getOperand(0);
|
|
SDValue N10 = N1.getOperand(0);
|
|
|
|
// Look for ADD(SEXT(VUZP.0), SEXT(VUZP.1))
|
|
if (!IsVUZPShuffleNode(N00.getNode()) || N00.getNode() != N10.getNode() ||
|
|
N00 == N10)
|
|
return SDValue();
|
|
|
|
// We only recognize Q register paddl here; this can't be reached until
|
|
// after type legalization.
|
|
if (!N00.getValueType().is64BitVector() ||
|
|
!N0.getValueType().is128BitVector())
|
|
return SDValue();
|
|
|
|
// Generate vpaddl.
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
SDLoc dl(N);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
SmallVector<SDValue, 8> Ops;
|
|
// Form vpaddl.sN or vpaddl.uN depending on the kind of extension.
|
|
unsigned Opcode;
|
|
if (N0.getOpcode() == ISD::SIGN_EXTEND)
|
|
Opcode = Intrinsic::arm_neon_vpaddls;
|
|
else
|
|
Opcode = Intrinsic::arm_neon_vpaddlu;
|
|
Ops.push_back(DAG.getConstant(Opcode, dl,
|
|
TLI.getPointerTy(DAG.getDataLayout())));
|
|
EVT ElemTy = N00.getValueType().getVectorElementType();
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
EVT ConcatVT = EVT::getVectorVT(*DAG.getContext(), ElemTy, NumElts * 2);
|
|
SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), ConcatVT,
|
|
N00.getOperand(0), N00.getOperand(1));
|
|
Ops.push_back(Concat);
|
|
|
|
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
|
|
}
|
|
|
|
// FIXME: This function shouldn't be necessary; if we lower BUILD_VECTOR in
|
|
// an appropriate manner, we end up with ADD(VUZP(ZEXT(N))), which is
|
|
// much easier to match.
|
|
static SDValue
|
|
AddCombineBUILD_VECTORToVPADDL(SDNode *N, SDValue N0, SDValue N1,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const ARMSubtarget *Subtarget) {
|
|
// Only perform optimization if after legalize, and if NEON is available. We
|
|
// also expected both operands to be BUILD_VECTORs.
|
|
if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
|
|
|| N0.getOpcode() != ISD::BUILD_VECTOR
|
|
|| N1.getOpcode() != ISD::BUILD_VECTOR)
|
|
return SDValue();
|
|
|
|
// Check output type since VPADDL operand elements can only be 8, 16, or 32.
|
|
EVT VT = N->getValueType(0);
|
|
if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
|
|
return SDValue();
|
|
|
|
// Check that the vector operands are of the right form.
|
|
// N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
|
|
// operands, where N is the size of the formed vector.
|
|
// Each EXTRACT_VECTOR should have the same input vector and odd or even
|
|
// index such that we have a pair wise add pattern.
|
|
|
|
// Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
|
|
if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
|
|
return SDValue();
|
|
SDValue Vec = N0->getOperand(0)->getOperand(0);
|
|
SDNode *V = Vec.getNode();
|
|
unsigned nextIndex = 0;
|
|
|
|
// For each operands to the ADD which are BUILD_VECTORs,
|
|
// check to see if each of their operands are an EXTRACT_VECTOR with
|
|
// the same vector and appropriate index.
|
|
for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
|
|
if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
|
|
&& N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
|
|
|
|
SDValue ExtVec0 = N0->getOperand(i);
|
|
SDValue ExtVec1 = N1->getOperand(i);
|
|
|
|
// First operand is the vector, verify its the same.
|
|
if (V != ExtVec0->getOperand(0).getNode() ||
|
|
V != ExtVec1->getOperand(0).getNode())
|
|
return SDValue();
|
|
|
|
// Second is the constant, verify its correct.
|
|
ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
|
|
ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
|
|
|
|
// For the constant, we want to see all the even or all the odd.
|
|
if (!C0 || !C1 || C0->getZExtValue() != nextIndex
|
|
|| C1->getZExtValue() != nextIndex+1)
|
|
return SDValue();
|
|
|
|
// Increment index.
|
|
nextIndex+=2;
|
|
} else
|
|
return SDValue();
|
|
}
|
|
|
|
// Don't generate vpaddl+vmovn; we'll match it to vpadd later. Also make sure
|
|
// we're using the entire input vector, otherwise there's a size/legality
|
|
// mismatch somewhere.
|
|
if (nextIndex != Vec.getValueType().getVectorNumElements() ||
|
|
Vec.getValueType().getVectorElementType() == VT.getVectorElementType())
|
|
return SDValue();
|
|
|
|
// Create VPADDL node.
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
|
|
SDLoc dl(N);
|
|
|
|
// Build operand list.
|
|
SmallVector<SDValue, 8> Ops;
|
|
Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls, dl,
|
|
TLI.getPointerTy(DAG.getDataLayout())));
|
|
|
|
// Input is the vector.
|
|
Ops.push_back(Vec);
|
|
|
|
// Get widened type and narrowed type.
|
|
MVT widenType;
|
|
unsigned numElem = VT.getVectorNumElements();
|
|
|
|
EVT inputLaneType = Vec.getValueType().getVectorElementType();
|
|
switch (inputLaneType.getSimpleVT().SimpleTy) {
|
|
case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
|
|
case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
|
|
case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
|
|
default:
|
|
llvm_unreachable("Invalid vector element type for padd optimization.");
|
|
}
|
|
|
|
SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, widenType, Ops);
|
|
unsigned ExtOp = VT.bitsGT(tmp.getValueType()) ? ISD::ANY_EXTEND : ISD::TRUNCATE;
|
|
return DAG.getNode(ExtOp, dl, VT, tmp);
|
|
}
|
|
|
|
static SDValue findMUL_LOHI(SDValue V) {
|
|
if (V->getOpcode() == ISD::UMUL_LOHI ||
|
|
V->getOpcode() == ISD::SMUL_LOHI)
|
|
return V;
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue AddCombineTo64BitSMLAL16(SDNode *AddcNode, SDNode *AddeNode,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const ARMSubtarget *Subtarget) {
|
|
if (Subtarget->isThumb()) {
|
|
if (!Subtarget->hasDSP())
|
|
return SDValue();
|
|
} else if (!Subtarget->hasV5TEOps())
|
|
return SDValue();
|
|
|
|
// SMLALBB, SMLALBT, SMLALTB, SMLALTT multiply two 16-bit values and
|
|
// accumulates the product into a 64-bit value. The 16-bit values will
|
|
// be sign extended somehow or SRA'd into 32-bit values
|
|
// (addc (adde (mul 16bit, 16bit), lo), hi)
|
|
SDValue Mul = AddcNode->getOperand(0);
|
|
SDValue Lo = AddcNode->getOperand(1);
|
|
if (Mul.getOpcode() != ISD::MUL) {
|
|
Lo = AddcNode->getOperand(0);
|
|
Mul = AddcNode->getOperand(1);
|
|
if (Mul.getOpcode() != ISD::MUL)
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue SRA = AddeNode->getOperand(0);
|
|
SDValue Hi = AddeNode->getOperand(1);
|
|
if (SRA.getOpcode() != ISD::SRA) {
|
|
SRA = AddeNode->getOperand(1);
|
|
Hi = AddeNode->getOperand(0);
|
|
if (SRA.getOpcode() != ISD::SRA)
|
|
return SDValue();
|
|
}
|
|
if (auto Const = dyn_cast<ConstantSDNode>(SRA.getOperand(1))) {
|
|
if (Const->getZExtValue() != 31)
|
|
return SDValue();
|
|
} else
|
|
return SDValue();
|
|
|
|
if (SRA.getOperand(0) != Mul)
|
|
return SDValue();
|
|
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDLoc dl(AddcNode);
|
|
unsigned Opcode = 0;
|
|
SDValue Op0;
|
|
SDValue Op1;
|
|
|
|
if (isS16(Mul.getOperand(0), DAG) && isS16(Mul.getOperand(1), DAG)) {
|
|
Opcode = ARMISD::SMLALBB;
|
|
Op0 = Mul.getOperand(0);
|
|
Op1 = Mul.getOperand(1);
|
|
} else if (isS16(Mul.getOperand(0), DAG) && isSRA16(Mul.getOperand(1))) {
|
|
Opcode = ARMISD::SMLALBT;
|
|
Op0 = Mul.getOperand(0);
|
|
Op1 = Mul.getOperand(1).getOperand(0);
|
|
} else if (isSRA16(Mul.getOperand(0)) && isS16(Mul.getOperand(1), DAG)) {
|
|
Opcode = ARMISD::SMLALTB;
|
|
Op0 = Mul.getOperand(0).getOperand(0);
|
|
Op1 = Mul.getOperand(1);
|
|
} else if (isSRA16(Mul.getOperand(0)) && isSRA16(Mul.getOperand(1))) {
|
|
Opcode = ARMISD::SMLALTT;
|
|
Op0 = Mul->getOperand(0).getOperand(0);
|
|
Op1 = Mul->getOperand(1).getOperand(0);
|
|
}
|
|
|
|
if (!Op0 || !Op1)
|
|
return SDValue();
|
|
|
|
SDValue SMLAL = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
|
|
Op0, Op1, Lo, Hi);
|
|
// Replace the ADDs' nodes uses by the MLA node's values.
|
|
SDValue HiMLALResult(SMLAL.getNode(), 1);
|
|
SDValue LoMLALResult(SMLAL.getNode(), 0);
|
|
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
|
|
|
|
// Return original node to notify the driver to stop replacing.
|
|
SDValue resNode(AddcNode, 0);
|
|
return resNode;
|
|
}
|
|
|
|
static SDValue AddCombineTo64bitMLAL(SDNode *AddeSubeNode,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const ARMSubtarget *Subtarget) {
|
|
// Look for multiply add opportunities.
|
|
// The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
|
|
// each add nodes consumes a value from ISD::UMUL_LOHI and there is
|
|
// a glue link from the first add to the second add.
|
|
// If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
|
|
// a S/UMLAL instruction.
|
|
// UMUL_LOHI
|
|
// / :lo \ :hi
|
|
// V \ [no multiline comment]
|
|
// loAdd -> ADDC |
|
|
// \ :carry /
|
|
// V V
|
|
// ADDE <- hiAdd
|
|
//
|
|
// In the special case where only the higher part of a signed result is used
|
|
// and the add to the low part of the result of ISD::UMUL_LOHI adds or subtracts
|
|
// a constant with the exact value of 0x80000000, we recognize we are dealing
|
|
// with a "rounded multiply and add" (or subtract) and transform it into
|
|
// either a ARMISD::SMMLAR or ARMISD::SMMLSR respectively.
|
|
|
|
assert((AddeSubeNode->getOpcode() == ARMISD::ADDE ||
|
|
AddeSubeNode->getOpcode() == ARMISD::SUBE) &&
|
|
"Expect an ADDE or SUBE");
|
|
|
|
assert(AddeSubeNode->getNumOperands() == 3 &&
|
|
AddeSubeNode->getOperand(2).getValueType() == MVT::i32 &&
|
|
"ADDE node has the wrong inputs");
|
|
|
|
// Check that we are chained to the right ADDC or SUBC node.
|
|
SDNode *AddcSubcNode = AddeSubeNode->getOperand(2).getNode();
|
|
if ((AddeSubeNode->getOpcode() == ARMISD::ADDE &&
|
|
AddcSubcNode->getOpcode() != ARMISD::ADDC) ||
|
|
(AddeSubeNode->getOpcode() == ARMISD::SUBE &&
|
|
AddcSubcNode->getOpcode() != ARMISD::SUBC))
|
|
return SDValue();
|
|
|
|
SDValue AddcSubcOp0 = AddcSubcNode->getOperand(0);
|
|
SDValue AddcSubcOp1 = AddcSubcNode->getOperand(1);
|
|
|
|
// Check if the two operands are from the same mul_lohi node.
|
|
if (AddcSubcOp0.getNode() == AddcSubcOp1.getNode())
|
|
return SDValue();
|
|
|
|
assert(AddcSubcNode->getNumValues() == 2 &&
|
|
AddcSubcNode->getValueType(0) == MVT::i32 &&
|
|
"Expect ADDC with two result values. First: i32");
|
|
|
|
// Check that the ADDC adds the low result of the S/UMUL_LOHI. If not, it
|
|
// maybe a SMLAL which multiplies two 16-bit values.
|
|
if (AddeSubeNode->getOpcode() == ARMISD::ADDE &&
|
|
AddcSubcOp0->getOpcode() != ISD::UMUL_LOHI &&
|
|
AddcSubcOp0->getOpcode() != ISD::SMUL_LOHI &&
|
|
AddcSubcOp1->getOpcode() != ISD::UMUL_LOHI &&
|
|
AddcSubcOp1->getOpcode() != ISD::SMUL_LOHI)
|
|
return AddCombineTo64BitSMLAL16(AddcSubcNode, AddeSubeNode, DCI, Subtarget);
|
|
|
|
// Check for the triangle shape.
|
|
SDValue AddeSubeOp0 = AddeSubeNode->getOperand(0);
|
|
SDValue AddeSubeOp1 = AddeSubeNode->getOperand(1);
|
|
|
|
// Make sure that the ADDE/SUBE operands are not coming from the same node.
|
|
if (AddeSubeOp0.getNode() == AddeSubeOp1.getNode())
|
|
return SDValue();
|
|
|
|
// Find the MUL_LOHI node walking up ADDE/SUBE's operands.
|
|
bool IsLeftOperandMUL = false;
|
|
SDValue MULOp = findMUL_LOHI(AddeSubeOp0);
|
|
if (MULOp == SDValue())
|
|
MULOp = findMUL_LOHI(AddeSubeOp1);
|
|
else
|
|
IsLeftOperandMUL = true;
|
|
if (MULOp == SDValue())
|
|
return SDValue();
|
|
|
|
// Figure out the right opcode.
|
|
unsigned Opc = MULOp->getOpcode();
|
|
unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
|
|
|
|
// Figure out the high and low input values to the MLAL node.
|
|
SDValue *HiAddSub = nullptr;
|
|
SDValue *LoMul = nullptr;
|
|
SDValue *LowAddSub = nullptr;
|
|
|
|
// Ensure that ADDE/SUBE is from high result of ISD::xMUL_LOHI.
|
|
if ((AddeSubeOp0 != MULOp.getValue(1)) && (AddeSubeOp1 != MULOp.getValue(1)))
|
|
return SDValue();
|
|
|
|
if (IsLeftOperandMUL)
|
|
HiAddSub = &AddeSubeOp1;
|
|
else
|
|
HiAddSub = &AddeSubeOp0;
|
|
|
|
// Ensure that LoMul and LowAddSub are taken from correct ISD::SMUL_LOHI node
|
|
// whose low result is fed to the ADDC/SUBC we are checking.
|
|
|
|
if (AddcSubcOp0 == MULOp.getValue(0)) {
|
|
LoMul = &AddcSubcOp0;
|
|
LowAddSub = &AddcSubcOp1;
|
|
}
|
|
if (AddcSubcOp1 == MULOp.getValue(0)) {
|
|
LoMul = &AddcSubcOp1;
|
|
LowAddSub = &AddcSubcOp0;
|
|
}
|
|
|
|
if (!LoMul)
|
|
return SDValue();
|
|
|
|
// If HiAddSub is the same node as ADDC/SUBC or is a predecessor of ADDC/SUBC
|
|
// the replacement below will create a cycle.
|
|
if (AddcSubcNode == HiAddSub->getNode() ||
|
|
AddcSubcNode->isPredecessorOf(HiAddSub->getNode()))
|
|
return SDValue();
|
|
|
|
// Create the merged node.
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
|
|
// Start building operand list.
|
|
SmallVector<SDValue, 8> Ops;
|
|
Ops.push_back(LoMul->getOperand(0));
|
|
Ops.push_back(LoMul->getOperand(1));
|
|
|
|
// Check whether we can use SMMLAR, SMMLSR or SMMULR instead. For this to be
|
|
// the case, we must be doing signed multiplication and only use the higher
|
|
// part of the result of the MLAL, furthermore the LowAddSub must be a constant
|
|
// addition or subtraction with the value of 0x800000.
|
|
if (Subtarget->hasV6Ops() && Subtarget->hasDSP() && Subtarget->useMulOps() &&
|
|
FinalOpc == ARMISD::SMLAL && !AddeSubeNode->hasAnyUseOfValue(1) &&
|
|
LowAddSub->getNode()->getOpcode() == ISD::Constant &&
|
|
static_cast<ConstantSDNode *>(LowAddSub->getNode())->getZExtValue() ==
|
|
0x80000000) {
|
|
Ops.push_back(*HiAddSub);
|
|
if (AddcSubcNode->getOpcode() == ARMISD::SUBC) {
|
|
FinalOpc = ARMISD::SMMLSR;
|
|
} else {
|
|
FinalOpc = ARMISD::SMMLAR;
|
|
}
|
|
SDValue NewNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode), MVT::i32, Ops);
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), NewNode);
|
|
|
|
return SDValue(AddeSubeNode, 0);
|
|
} else if (AddcSubcNode->getOpcode() == ARMISD::SUBC)
|
|
// SMMLS is generated during instruction selection and the rest of this
|
|
// function can not handle the case where AddcSubcNode is a SUBC.
|
|
return SDValue();
|
|
|
|
// Finish building the operand list for {U/S}MLAL
|
|
Ops.push_back(*LowAddSub);
|
|
Ops.push_back(*HiAddSub);
|
|
|
|
SDValue MLALNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode),
|
|
DAG.getVTList(MVT::i32, MVT::i32), Ops);
|
|
|
|
// Replace the ADDs' nodes uses by the MLA node's values.
|
|
SDValue HiMLALResult(MLALNode.getNode(), 1);
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), HiMLALResult);
|
|
|
|
SDValue LoMLALResult(MLALNode.getNode(), 0);
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(AddcSubcNode, 0), LoMLALResult);
|
|
|
|
// Return original node to notify the driver to stop replacing.
|
|
return SDValue(AddeSubeNode, 0);
|
|
}
|
|
|
|
static SDValue AddCombineTo64bitUMAAL(SDNode *AddeNode,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const ARMSubtarget *Subtarget) {
|
|
// UMAAL is similar to UMLAL except that it adds two unsigned values.
|
|
// While trying to combine for the other MLAL nodes, first search for the
|
|
// chance to use UMAAL. Check if Addc uses a node which has already
|
|
// been combined into a UMLAL. The other pattern is UMLAL using Addc/Adde
|
|
// as the addend, and it's handled in PerformUMLALCombine.
|
|
|
|
if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
|
|
return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);
|
|
|
|
// Check that we have a glued ADDC node.
|
|
SDNode* AddcNode = AddeNode->getOperand(2).getNode();
|
|
if (AddcNode->getOpcode() != ARMISD::ADDC)
|
|
return SDValue();
|
|
|
|
// Find the converted UMAAL or quit if it doesn't exist.
|
|
SDNode *UmlalNode = nullptr;
|
|
SDValue AddHi;
|
|
if (AddcNode->getOperand(0).getOpcode() == ARMISD::UMLAL) {
|
|
UmlalNode = AddcNode->getOperand(0).getNode();
|
|
AddHi = AddcNode->getOperand(1);
|
|
} else if (AddcNode->getOperand(1).getOpcode() == ARMISD::UMLAL) {
|
|
UmlalNode = AddcNode->getOperand(1).getNode();
|
|
AddHi = AddcNode->getOperand(0);
|
|
} else {
|
|
return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);
|
|
}
|
|
|
|
// The ADDC should be glued to an ADDE node, which uses the same UMLAL as
|
|
// the ADDC as well as Zero.
|
|
if (!isNullConstant(UmlalNode->getOperand(3)))
|
|
return SDValue();
|
|
|
|
if ((isNullConstant(AddeNode->getOperand(0)) &&
|
|
AddeNode->getOperand(1).getNode() == UmlalNode) ||
|
|
(AddeNode->getOperand(0).getNode() == UmlalNode &&
|
|
isNullConstant(AddeNode->getOperand(1)))) {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDValue Ops[] = { UmlalNode->getOperand(0), UmlalNode->getOperand(1),
|
|
UmlalNode->getOperand(2), AddHi };
|
|
SDValue UMAAL = DAG.getNode(ARMISD::UMAAL, SDLoc(AddcNode),
|
|
DAG.getVTList(MVT::i32, MVT::i32), Ops);
|
|
|
|
// Replace the ADDs' nodes uses by the UMAAL node's values.
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), SDValue(UMAAL.getNode(), 1));
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), SDValue(UMAAL.getNode(), 0));
|
|
|
|
// Return original node to notify the driver to stop replacing.
|
|
return SDValue(AddeNode, 0);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue PerformUMLALCombine(SDNode *N, SelectionDAG &DAG,
|
|
const ARMSubtarget *Subtarget) {
|
|
if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
|
|
return SDValue();
|
|
|
|
// Check that we have a pair of ADDC and ADDE as operands.
|
|
// Both addends of the ADDE must be zero.
|
|
SDNode* AddcNode = N->getOperand(2).getNode();
|
|
SDNode* AddeNode = N->getOperand(3).getNode();
|
|
if ((AddcNode->getOpcode() == ARMISD::ADDC) &&
|
|
(AddeNode->getOpcode() == ARMISD::ADDE) &&
|
|
isNullConstant(AddeNode->getOperand(0)) &&
|
|
isNullConstant(AddeNode->getOperand(1)) &&
|
|
(AddeNode->getOperand(2).getNode() == AddcNode))
|
|
return DAG.getNode(ARMISD::UMAAL, SDLoc(N),
|
|
DAG.getVTList(MVT::i32, MVT::i32),
|
|
{N->getOperand(0), N->getOperand(1),
|
|
AddcNode->getOperand(0), AddcNode->getOperand(1)});
|
|
else
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue PerformAddcSubcCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const ARMSubtarget *Subtarget) {
|
|
SelectionDAG &DAG(DCI.DAG);
|
|
|
|
if (N->getOpcode() == ARMISD::SUBC) {
|
|
// (SUBC (ADDE 0, 0, C), 1) -> C
|
|
SDValue LHS = N->getOperand(0);
|
|
SDValue RHS = N->getOperand(1);
|
|
if (LHS->getOpcode() == ARMISD::ADDE &&
|
|
isNullConstant(LHS->getOperand(0)) &&
|
|
isNullConstant(LHS->getOperand(1)) && isOneConstant(RHS)) {
|
|
return DCI.CombineTo(N, SDValue(N, 0), LHS->getOperand(2));
|
|
}
|
|
}
|
|
|
|
if (Subtarget->isThumb1Only()) {
|
|
SDValue RHS = N->getOperand(1);
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
|
|
int32_t imm = C->getSExtValue();
|
|
if (imm < 0 && imm > std::numeric_limits<int>::min()) {
|
|
SDLoc DL(N);
|
|
RHS = DAG.getConstant(-imm, DL, MVT::i32);
|
|
unsigned Opcode = (N->getOpcode() == ARMISD::ADDC) ? ARMISD::SUBC
|
|
: ARMISD::ADDC;
|
|
return DAG.getNode(Opcode, DL, N->getVTList(), N->getOperand(0), RHS);
|
|
}
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue PerformAddeSubeCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const ARMSubtarget *Subtarget) {
|
|
if (Subtarget->isThumb1Only()) {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDValue RHS = N->getOperand(1);
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
|
|
int64_t imm = C->getSExtValue();
|
|
if (imm < 0) {
|
|
SDLoc DL(N);
|
|
|
|
// The with-carry-in form matches bitwise not instead of the negation.
|
|
// Effectively, the inverse interpretation of the carry flag already
|
|
// accounts for part of the negation.
|
|
RHS = DAG.getConstant(~imm, DL, MVT::i32);
|
|
|
|
unsigned Opcode = (N->getOpcode() == ARMISD::ADDE) ? ARMISD::SUBE
|
|
: ARMISD::ADDE;
|
|
return DAG.getNode(Opcode, DL, N->getVTList(),
|
|
N->getOperand(0), RHS, N->getOperand(2));
|
|
}
|
|
}
|
|
} else if (N->getOperand(1)->getOpcode() == ISD::SMUL_LOHI) {
|
|
return AddCombineTo64bitMLAL(N, DCI, Subtarget);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
/// PerformADDECombine - Target-specific dag combine transform from
|
|
/// ARMISD::ADDC, ARMISD::ADDE, and ISD::MUL_LOHI to MLAL or
|
|
/// ARMISD::ADDC, ARMISD::ADDE and ARMISD::UMLAL to ARMISD::UMAAL
|
|
static SDValue PerformADDECombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const ARMSubtarget *Subtarget) {
|
|
// Only ARM and Thumb2 support UMLAL/SMLAL.
|
|
if (Subtarget->isThumb1Only())
|
|
return PerformAddeSubeCombine(N, DCI, Subtarget);
|
|
|
|
// Only perform the checks after legalize when the pattern is available.
|
|
if (DCI.isBeforeLegalize()) return SDValue();
|
|
|
|
return AddCombineTo64bitUMAAL(N, DCI, Subtarget);
|
|
}
|
|
|
|
/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
|
|
/// operands N0 and N1. This is a helper for PerformADDCombine that is
|
|
/// called with the default operands, and if that fails, with commuted
|
|
/// operands.
|
|
static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const ARMSubtarget *Subtarget){
|
|
// Attempt to create vpadd for this add.
|
|
if (SDValue Result = AddCombineToVPADD(N, N0, N1, DCI, Subtarget))
|
|
return Result;
|
|
|
|
// Attempt to create vpaddl for this add.
|
|
if (SDValue Result = AddCombineVUZPToVPADDL(N, N0, N1, DCI, Subtarget))
|
|
return Result;
|
|
if (SDValue Result = AddCombineBUILD_VECTORToVPADDL(N, N0, N1, DCI,
|
|
Subtarget))
|
|
return Result;
|
|
|
|
// fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
|
|
if (N0.getNode()->hasOneUse())
|
|
if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI))
|
|
return Result;
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue PerformSHLSimplify(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const ARMSubtarget *ST) {
|
|
// Allow the generic combiner to identify potential bswaps.
|
|
if (DCI.isBeforeLegalize())
|
|
return SDValue();
|
|
|
|
// DAG combiner will fold:
|
|
// (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
|
|
// (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2
|
|
// Other code patterns that can be also be modified have the following form:
|
|
// b + ((a << 1) | 510)
|
|
// b + ((a << 1) & 510)
|
|
// b + ((a << 1) ^ 510)
|
|
// b + ((a << 1) + 510)
|
|
|
|
// Many instructions can perform the shift for free, but it requires both
|
|
// the operands to be registers. If c1 << c2 is too large, a mov immediate
|
|
// instruction will needed. So, unfold back to the original pattern if:
|
|
// - if c1 and c2 are small enough that they don't require mov imms.
|
|
// - the user(s) of the node can perform an shl
|
|
|
|
// No shifted operands for 16-bit instructions.
|
|
if (ST->isThumb() && ST->isThumb1Only())
|
|
return SDValue();
|
|
|
|
// Check that all the users could perform the shl themselves.
|
|
for (auto U : N->uses()) {
|
|
switch(U->getOpcode()) {
|
|
default:
|
|
return SDValue();
|
|
case ISD::SUB:
|
|
case ISD::ADD:
|
|
case ISD::AND:
|
|
case ISD::OR:
|
|
case ISD::XOR:
|
|
case ISD::SETCC:
|
|
case ARMISD::CMP:
|
|
// Check that the user isn't already using a constant because there
|
|
// aren't any instructions that support an immediate operand and a
|
|
// shifted operand.
|
|
if (isa<ConstantSDNode>(U->getOperand(0)) ||
|
|
isa<ConstantSDNode>(U->getOperand(1)))
|
|
return SDValue();
|
|
|
|
// Check that it's not already using a shift.
|
|
if (U->getOperand(0).getOpcode() == ISD::SHL ||
|
|
U->getOperand(1).getOpcode() == ISD::SHL)
|
|
return SDValue();
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (N->getOpcode() != ISD::ADD && N->getOpcode() != ISD::OR &&
|
|
N->getOpcode() != ISD::XOR && N->getOpcode() != ISD::AND)
|
|
return SDValue();
|
|
|
|
if (N->getOperand(0).getOpcode() != ISD::SHL)
|
|
return SDValue();
|
|
|
|
SDValue SHL = N->getOperand(0);
|
|
|
|
auto *C1ShlC2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
|
|
auto *C2 = dyn_cast<ConstantSDNode>(SHL.getOperand(1));
|
|
if (!C1ShlC2 || !C2)
|
|
return SDValue();
|
|
|
|
APInt C2Int = C2->getAPIntValue();
|
|
APInt C1Int = C1ShlC2->getAPIntValue();
|
|
|
|
// Check that performing a lshr will not lose any information.
|
|
APInt Mask = APInt::getHighBitsSet(C2Int.getBitWidth(),
|
|
C2Int.getBitWidth() - C2->getZExtValue());
|
|
if ((C1Int & Mask) != C1Int)
|
|
return SDValue();
|
|
|
|
// Shift the first constant.
|
|
C1Int.lshrInPlace(C2Int);
|
|
|
|
// The immediates are encoded as an 8-bit value that can be rotated.
|
|
auto LargeImm = [](const APInt &Imm) {
|
|
unsigned Zeros = Imm.countLeadingZeros() + Imm.countTrailingZeros();
|
|
return Imm.getBitWidth() - Zeros > 8;
|
|
};
|
|
|
|
if (LargeImm(C1Int) || LargeImm(C2Int))
|
|
return SDValue();
|
|
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDLoc dl(N);
|
|
SDValue X = SHL.getOperand(0);
|
|
SDValue BinOp = DAG.getNode(N->getOpcode(), dl, MVT::i32, X,
|
|
DAG.getConstant(C1Int, dl, MVT::i32));
|
|
// Shift left to compensate for the lshr of C1Int.
|
|
SDValue Res = DAG.getNode(ISD::SHL, dl, MVT::i32, BinOp, SHL.getOperand(1));
|
|
|
|
LLVM_DEBUG(dbgs() << "Simplify shl use:\n"; SHL.getOperand(0).dump();
|
|
SHL.dump(); N->dump());
|
|
LLVM_DEBUG(dbgs() << "Into:\n"; X.dump(); BinOp.dump(); Res.dump());
|
|
|
|
DAG.ReplaceAllUsesWith(SDValue(N, 0), Res);
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
|
|
/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
|
|
///
|
|
static SDValue PerformADDCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const ARMSubtarget *Subtarget) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
|
|
// Only works one way, because it needs an immediate operand.
|
|
if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
|
|
return Result;
|
|
|
|
// First try with the default operand order.
|
|
if (SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget))
|
|
return Result;
|
|
|
|
// If that didn't work, try again with the operands commuted.
|
|
return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
|
|
}
|
|
|
|
/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
|
|
///
|
|
static SDValue PerformSUBCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
|
|
// fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
|
|
if (N1.getNode()->hasOneUse())
|
|
if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI))
|
|
return Result;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// PerformVMULCombine
|
|
/// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
|
|
/// special multiplier accumulator forwarding.
|
|
/// vmul d3, d0, d2
|
|
/// vmla d3, d1, d2
|
|
/// is faster than
|
|
/// vadd d3, d0, d1
|
|
/// vmul d3, d3, d2
|
|
// However, for (A + B) * (A + B),
|
|
// vadd d2, d0, d1
|
|
// vmul d3, d0, d2
|
|
// vmla d3, d1, d2
|
|
// is slower than
|
|
// vadd d2, d0, d1
|
|
// vmul d3, d2, d2
|
|
static SDValue PerformVMULCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const ARMSubtarget *Subtarget) {
|
|
if (!Subtarget->hasVMLxForwarding())
|
|
return SDValue();
|
|
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
unsigned Opcode = N0.getOpcode();
|
|
if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
|
|
Opcode != ISD::FADD && Opcode != ISD::FSUB) {
|
|
Opcode = N1.getOpcode();
|
|
if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
|
|
Opcode != ISD::FADD && Opcode != ISD::FSUB)
|
|
return SDValue();
|
|
std::swap(N0, N1);
|
|
}
|
|
|
|
if (N0 == N1)
|
|
return SDValue();
|
|
|
|
EVT VT = N->getValueType(0);
|
|
SDLoc DL(N);
|
|
SDValue N00 = N0->getOperand(0);
|
|
SDValue N01 = N0->getOperand(1);
|
|
return DAG.getNode(Opcode, DL, VT,
|
|
DAG.getNode(ISD::MUL, DL, VT, N00, N1),
|
|
DAG.getNode(ISD::MUL, DL, VT, N01, N1));
|
|
}
|
|
|
|
static SDValue PerformMULCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const ARMSubtarget *Subtarget) {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
|
|
if (Subtarget->isThumb1Only())
|
|
return SDValue();
|
|
|
|
if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
|
|
return SDValue();
|
|
|
|
EVT VT = N->getValueType(0);
|
|
if (VT.is64BitVector() || VT.is128BitVector())
|
|
return PerformVMULCombine(N, DCI, Subtarget);
|
|
if (VT != MVT::i32)
|
|
return SDValue();
|
|
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
|
|
if (!C)
|
|
return SDValue();
|
|
|
|
int64_t MulAmt = C->getSExtValue();
|
|
unsigned ShiftAmt = countTrailingZeros<uint64_t>(MulAmt);
|
|
|
|
ShiftAmt = ShiftAmt & (32 - 1);
|
|
SDValue V = N->getOperand(0);
|
|
SDLoc DL(N);
|
|
|
|
SDValue Res;
|
|
MulAmt >>= ShiftAmt;
|
|
|
|
if (MulAmt >= 0) {
|
|
if (isPowerOf2_32(MulAmt - 1)) {
|
|
// (mul x, 2^N + 1) => (add (shl x, N), x)
|
|
Res = DAG.getNode(ISD::ADD, DL, VT,
|
|
V,
|
|
DAG.getNode(ISD::SHL, DL, VT,
|
|
V,
|
|
DAG.getConstant(Log2_32(MulAmt - 1), DL,
|
|
MVT::i32)));
|
|
} else if (isPowerOf2_32(MulAmt + 1)) {
|
|
// (mul x, 2^N - 1) => (sub (shl x, N), x)
|
|
Res = DAG.getNode(ISD::SUB, DL, VT,
|
|
DAG.getNode(ISD::SHL, DL, VT,
|
|
V,
|
|
DAG.getConstant(Log2_32(MulAmt + 1), DL,
|
|
MVT::i32)),
|
|
V);
|
|
} else
|
|
return SDValue();
|
|
} else {
|
|
uint64_t MulAmtAbs = -MulAmt;
|
|
if (isPowerOf2_32(MulAmtAbs + 1)) {
|
|
// (mul x, -(2^N - 1)) => (sub x, (shl x, N))
|
|
Res = DAG.getNode(ISD::SUB, DL, VT,
|
|
V,
|
|
DAG.getNode(ISD::SHL, DL, VT,
|
|
V,
|
|
DAG.getConstant(Log2_32(MulAmtAbs + 1), DL,
|
|
MVT::i32)));
|
|
} else if (isPowerOf2_32(MulAmtAbs - 1)) {
|
|
// (mul x, -(2^N + 1)) => - (add (shl x, N), x)
|
|
Res = DAG.getNode(ISD::ADD, DL, VT,
|
|
V,
|
|
DAG.getNode(ISD::SHL, DL, VT,
|
|
V,
|
|
DAG.getConstant(Log2_32(MulAmtAbs - 1), DL,
|
|
MVT::i32)));
|
|
Res = DAG.getNode(ISD::SUB, DL, VT,
|
|
DAG.getConstant(0, DL, MVT::i32), Res);
|
|
} else
|
|
return SDValue();
|
|
}
|
|
|
|
if (ShiftAmt != 0)
|
|
Res = DAG.getNode(ISD::SHL, DL, VT,
|
|
Res, DAG.getConstant(ShiftAmt, DL, MVT::i32));
|
|
|
|
// Do not add new nodes to DAG combiner worklist.
|
|
DCI.CombineTo(N, Res, false);
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue PerformANDCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const ARMSubtarget *Subtarget) {
|
|
// Attempt to use immediate-form VBIC
|
|
BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
|
|
SDLoc dl(N);
|
|
EVT VT = N->getValueType(0);
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
|
|
if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
|
|
return SDValue();
|
|
|
|
APInt SplatBits, SplatUndef;
|
|
unsigned SplatBitSize;
|
|
bool HasAnyUndefs;
|
|
if (BVN &&
|
|
BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
|
|
if (SplatBitSize <= 64) {
|
|
EVT VbicVT;
|
|
SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
|
|
SplatUndef.getZExtValue(), SplatBitSize,
|
|
DAG, dl, VbicVT, VT.is128BitVector(),
|
|
OtherModImm);
|
|
if (Val.getNode()) {
|
|
SDValue Input =
|
|
DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
|
|
SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!Subtarget->isThumb1Only()) {
|
|
// fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
|
|
if (SDValue Result = combineSelectAndUseCommutative(N, true, DCI))
|
|
return Result;
|
|
|
|
if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
|
|
return Result;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// Try combining OR nodes to SMULWB, SMULWT.
|
|
static SDValue PerformORCombineToSMULWBT(SDNode *OR,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const ARMSubtarget *Subtarget) {
|
|
if (!Subtarget->hasV6Ops() ||
|
|
(Subtarget->isThumb() &&
|
|
(!Subtarget->hasThumb2() || !Subtarget->hasDSP())))
|
|
return SDValue();
|
|
|
|
SDValue SRL = OR->getOperand(0);
|
|
SDValue SHL = OR->getOperand(1);
|
|
|
|
if (SRL.getOpcode() != ISD::SRL || SHL.getOpcode() != ISD::SHL) {
|
|
SRL = OR->getOperand(1);
|
|
SHL = OR->getOperand(0);
|
|
}
|
|
if (!isSRL16(SRL) || !isSHL16(SHL))
|
|
return SDValue();
|
|
|
|
// The first operands to the shifts need to be the two results from the
|
|
// same smul_lohi node.
|
|
if ((SRL.getOperand(0).getNode() != SHL.getOperand(0).getNode()) ||
|
|
SRL.getOperand(0).getOpcode() != ISD::SMUL_LOHI)
|
|
return SDValue();
|
|
|
|
SDNode *SMULLOHI = SRL.getOperand(0).getNode();
|
|
if (SRL.getOperand(0) != SDValue(SMULLOHI, 0) ||
|
|
SHL.getOperand(0) != SDValue(SMULLOHI, 1))
|
|
return SDValue();
|
|
|
|
// Now we have:
|
|
// (or (srl (smul_lohi ?, ?), 16), (shl (smul_lohi ?, ?), 16)))
|
|
// For SMUL[B|T] smul_lohi will take a 32-bit and a 16-bit arguments.
|
|
// For SMUWB the 16-bit value will signed extended somehow.
|
|
// For SMULWT only the SRA is required.
|
|
// Check both sides of SMUL_LOHI
|
|
SDValue OpS16 = SMULLOHI->getOperand(0);
|
|
SDValue OpS32 = SMULLOHI->getOperand(1);
|
|
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
if (!isS16(OpS16, DAG) && !isSRA16(OpS16)) {
|
|
OpS16 = OpS32;
|
|
OpS32 = SMULLOHI->getOperand(0);
|
|
}
|
|
|
|
SDLoc dl(OR);
|
|
unsigned Opcode = 0;
|
|
if (isS16(OpS16, DAG))
|
|
Opcode = ARMISD::SMULWB;
|
|
else if (isSRA16(OpS16)) {
|
|
Opcode = ARMISD::SMULWT;
|
|
OpS16 = OpS16->getOperand(0);
|
|
}
|
|
else
|
|
return SDValue();
|
|
|
|
SDValue Res = DAG.getNode(Opcode, dl, MVT::i32, OpS32, OpS16);
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(OR, 0), Res);
|
|
return SDValue(OR, 0);
|
|
}
|
|
|
|
static SDValue PerformORCombineToBFI(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const ARMSubtarget *Subtarget) {
|
|
// BFI is only available on V6T2+
|
|
if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
|
|
return SDValue();
|
|
|
|
EVT VT = N->getValueType(0);
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDLoc DL(N);
|
|
// 1) or (and A, mask), val => ARMbfi A, val, mask
|
|
// iff (val & mask) == val
|
|
//
|
|
// 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
|
|
// 2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
|
|
// && mask == ~mask2
|
|
// 2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
|
|
// && ~mask == mask2
|
|
// (i.e., copy a bitfield value into another bitfield of the same width)
|
|
|
|
if (VT != MVT::i32)
|
|
return SDValue();
|
|
|
|
SDValue N00 = N0.getOperand(0);
|
|
|
|
// The value and the mask need to be constants so we can verify this is
|
|
// actually a bitfield set. If the mask is 0xffff, we can do better
|
|
// via a movt instruction, so don't use BFI in that case.
|
|
SDValue MaskOp = N0.getOperand(1);
|
|
ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
|
|
if (!MaskC)
|
|
return SDValue();
|
|
unsigned Mask = MaskC->getZExtValue();
|
|
if (Mask == 0xffff)
|
|
return SDValue();
|
|
SDValue Res;
|
|
// Case (1): or (and A, mask), val => ARMbfi A, val, mask
|
|
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
|
|
if (N1C) {
|
|
unsigned Val = N1C->getZExtValue();
|
|
if ((Val & ~Mask) != Val)
|
|
return SDValue();
|
|
|
|
if (ARM::isBitFieldInvertedMask(Mask)) {
|
|
Val >>= countTrailingZeros(~Mask);
|
|
|
|
Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
|
|
DAG.getConstant(Val, DL, MVT::i32),
|
|
DAG.getConstant(Mask, DL, MVT::i32));
|
|
|
|
DCI.CombineTo(N, Res, false);
|
|
// Return value from the original node to inform the combiner than N is
|
|
// now dead.
|
|
return SDValue(N, 0);
|
|
}
|
|
} else if (N1.getOpcode() == ISD::AND) {
|
|
// case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
|
|
ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
|
|
if (!N11C)
|
|
return SDValue();
|
|
unsigned Mask2 = N11C->getZExtValue();
|
|
|
|
// Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
|
|
// as is to match.
|
|
if (ARM::isBitFieldInvertedMask(Mask) &&
|
|
(Mask == ~Mask2)) {
|
|
// The pack halfword instruction works better for masks that fit it,
|
|
// so use that when it's available.
|
|
if (Subtarget->hasDSP() &&
|
|
(Mask == 0xffff || Mask == 0xffff0000))
|
|
return SDValue();
|
|
// 2a
|
|
unsigned amt = countTrailingZeros(Mask2);
|
|
Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
|
|
DAG.getConstant(amt, DL, MVT::i32));
|
|
Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
|
|
DAG.getConstant(Mask, DL, MVT::i32));
|
|
DCI.CombineTo(N, Res, false);
|
|
// Return value from the original node to inform the combiner than N is
|
|
// now dead.
|
|
return SDValue(N, 0);
|
|
} else if (ARM::isBitFieldInvertedMask(~Mask) &&
|
|
(~Mask == Mask2)) {
|
|
// The pack halfword instruction works better for masks that fit it,
|
|
// so use that when it's available.
|
|
if (Subtarget->hasDSP() &&
|
|
(Mask2 == 0xffff || Mask2 == 0xffff0000))
|
|
return SDValue();
|
|
// 2b
|
|
unsigned lsb = countTrailingZeros(Mask);
|
|
Res = DAG.getNode(ISD::SRL, DL, VT, N00,
|
|
DAG.getConstant(lsb, DL, MVT::i32));
|
|
Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
|
|
DAG.getConstant(Mask2, DL, MVT::i32));
|
|
DCI.CombineTo(N, Res, false);
|
|
// Return value from the original node to inform the combiner than N is
|
|
// now dead.
|
|
return SDValue(N, 0);
|
|
}
|
|
}
|
|
|
|
if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
|
|
N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
|
|
ARM::isBitFieldInvertedMask(~Mask)) {
|
|
// Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
|
|
// where lsb(mask) == #shamt and masked bits of B are known zero.
|
|
SDValue ShAmt = N00.getOperand(1);
|
|
unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
|
|
unsigned LSB = countTrailingZeros(Mask);
|
|
if (ShAmtC != LSB)
|
|
return SDValue();
|
|
|
|
Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
|
|
DAG.getConstant(~Mask, DL, MVT::i32));
|
|
|
|
DCI.CombineTo(N, Res, false);
|
|
// Return value from the original node to inform the combiner than N is
|
|
// now dead.
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
|
|
static SDValue PerformORCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const ARMSubtarget *Subtarget) {
|
|
// Attempt to use immediate-form VORR
|
|
BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
|
|
SDLoc dl(N);
|
|
EVT VT = N->getValueType(0);
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
|
|
if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
|
|
return SDValue();
|
|
|
|
APInt SplatBits, SplatUndef;
|
|
unsigned SplatBitSize;
|
|
bool HasAnyUndefs;
|
|
if (BVN && Subtarget->hasNEON() &&
|
|
BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
|
|
if (SplatBitSize <= 64) {
|
|
EVT VorrVT;
|
|
SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
|
|
SplatUndef.getZExtValue(), SplatBitSize,
|
|
DAG, dl, VorrVT, VT.is128BitVector(),
|
|
OtherModImm);
|
|
if (Val.getNode()) {
|
|
SDValue Input =
|
|
DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
|
|
SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!Subtarget->isThumb1Only()) {
|
|
// fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
|
|
if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
|
|
return Result;
|
|
if (SDValue Result = PerformORCombineToSMULWBT(N, DCI, Subtarget))
|
|
return Result;
|
|
}
|
|
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
|
|
// (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
|
|
if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
|
|
DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
|
|
|
|
// The code below optimizes (or (and X, Y), Z).
|
|
// The AND operand needs to have a single user to make these optimizations
|
|
// profitable.
|
|
if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
|
|
return SDValue();
|
|
|
|
APInt SplatUndef;
|
|
unsigned SplatBitSize;
|
|
bool HasAnyUndefs;
|
|
|
|
APInt SplatBits0, SplatBits1;
|
|
BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
|
|
BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
|
|
// Ensure that the second operand of both ands are constants
|
|
if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
|
|
HasAnyUndefs) && !HasAnyUndefs) {
|
|
if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
|
|
HasAnyUndefs) && !HasAnyUndefs) {
|
|
// Ensure that the bit width of the constants are the same and that
|
|
// the splat arguments are logical inverses as per the pattern we
|
|
// are trying to simplify.
|
|
if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() &&
|
|
SplatBits0 == ~SplatBits1) {
|
|
// Canonicalize the vector type to make instruction selection
|
|
// simpler.
|
|
EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
|
|
SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
|
|
N0->getOperand(1),
|
|
N0->getOperand(0),
|
|
N1->getOperand(0));
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, Result);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
|
|
// reasonable.
|
|
if (N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
|
|
if (SDValue Res = PerformORCombineToBFI(N, DCI, Subtarget))
|
|
return Res;
|
|
}
|
|
|
|
if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
|
|
return Result;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue PerformXORCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const ARMSubtarget *Subtarget) {
|
|
EVT VT = N->getValueType(0);
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
|
|
if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
|
|
return SDValue();
|
|
|
|
if (!Subtarget->isThumb1Only()) {
|
|
// fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
|
|
if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
|
|
return Result;
|
|
|
|
if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
|
|
return Result;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it,
|
|
// and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and
|
|
// their position in "to" (Rd).
|
|
static SDValue ParseBFI(SDNode *N, APInt &ToMask, APInt &FromMask) {
|
|
assert(N->getOpcode() == ARMISD::BFI);
|
|
|
|
SDValue From = N->getOperand(1);
|
|
ToMask = ~cast<ConstantSDNode>(N->getOperand(2))->getAPIntValue();
|
|
FromMask = APInt::getLowBitsSet(ToMask.getBitWidth(), ToMask.countPopulation());
|
|
|
|
// If the Base came from a SHR #C, we can deduce that it is really testing bit
|
|
// #C in the base of the SHR.
|
|
if (From->getOpcode() == ISD::SRL &&
|
|
isa<ConstantSDNode>(From->getOperand(1))) {
|
|
APInt Shift = cast<ConstantSDNode>(From->getOperand(1))->getAPIntValue();
|
|
assert(Shift.getLimitedValue() < 32 && "Shift too large!");
|
|
FromMask <<= Shift.getLimitedValue(31);
|
|
From = From->getOperand(0);
|
|
}
|
|
|
|
return From;
|
|
}
|
|
|
|
// If A and B contain one contiguous set of bits, does A | B == A . B?
|
|
//
|
|
// Neither A nor B must be zero.
|
|
static bool BitsProperlyConcatenate(const APInt &A, const APInt &B) {
|
|
unsigned LastActiveBitInA = A.countTrailingZeros();
|
|
unsigned FirstActiveBitInB = B.getBitWidth() - B.countLeadingZeros() - 1;
|
|
return LastActiveBitInA - 1 == FirstActiveBitInB;
|
|
}
|
|
|
|
static SDValue FindBFIToCombineWith(SDNode *N) {
|
|
// We have a BFI in N. Follow a possible chain of BFIs and find a BFI it can combine with,
|
|
// if one exists.
|
|
APInt ToMask, FromMask;
|
|
SDValue From = ParseBFI(N, ToMask, FromMask);
|
|
SDValue To = N->getOperand(0);
|
|
|
|
// Now check for a compatible BFI to merge with. We can pass through BFIs that
|
|
// aren't compatible, but not if they set the same bit in their destination as
|
|
// we do (or that of any BFI we're going to combine with).
|
|
SDValue V = To;
|
|
APInt CombinedToMask = ToMask;
|
|
while (V.getOpcode() == ARMISD::BFI) {
|
|
APInt NewToMask, NewFromMask;
|
|
SDValue NewFrom = ParseBFI(V.getNode(), NewToMask, NewFromMask);
|
|
if (NewFrom != From) {
|
|
// This BFI has a different base. Keep going.
|
|
CombinedToMask |= NewToMask;
|
|
V = V.getOperand(0);
|
|
continue;
|
|
}
|
|
|
|
// Do the written bits conflict with any we've seen so far?
|
|
if ((NewToMask & CombinedToMask).getBoolValue())
|
|
// Conflicting bits - bail out because going further is unsafe.
|
|
return SDValue();
|
|
|
|
// Are the new bits contiguous when combined with the old bits?
|
|
if (BitsProperlyConcatenate(ToMask, NewToMask) &&
|
|
BitsProperlyConcatenate(FromMask, NewFromMask))
|
|
return V;
|
|
if (BitsProperlyConcatenate(NewToMask, ToMask) &&
|
|
BitsProperlyConcatenate(NewFromMask, FromMask))
|
|
return V;
|
|
|
|
// We've seen a write to some bits, so track it.
|
|
CombinedToMask |= NewToMask;
|
|
// Keep going...
|
|
V = V.getOperand(0);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue PerformBFICombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
SDValue N1 = N->getOperand(1);
|
|
if (N1.getOpcode() == ISD::AND) {
|
|
// (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
|
|
// the bits being cleared by the AND are not demanded by the BFI.
|
|
ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
|
|
if (!N11C)
|
|
return SDValue();
|
|
unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
|
|
unsigned LSB = countTrailingZeros(~InvMask);
|
|
unsigned Width = (32 - countLeadingZeros(~InvMask)) - LSB;
|
|
assert(Width <
|
|
static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
|
|
"undefined behavior");
|
|
unsigned Mask = (1u << Width) - 1;
|
|
unsigned Mask2 = N11C->getZExtValue();
|
|
if ((Mask & (~Mask2)) == 0)
|
|
return DCI.DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0),
|
|
N->getOperand(0), N1.getOperand(0),
|
|
N->getOperand(2));
|
|
} else if (N->getOperand(0).getOpcode() == ARMISD::BFI) {
|
|
// We have a BFI of a BFI. Walk up the BFI chain to see how long it goes.
|
|
// Keep track of any consecutive bits set that all come from the same base
|
|
// value. We can combine these together into a single BFI.
|
|
SDValue CombineBFI = FindBFIToCombineWith(N);
|
|
if (CombineBFI == SDValue())
|
|
return SDValue();
|
|
|
|
// We've found a BFI.
|
|
APInt ToMask1, FromMask1;
|
|
SDValue From1 = ParseBFI(N, ToMask1, FromMask1);
|
|
|
|
APInt ToMask2, FromMask2;
|
|
SDValue From2 = ParseBFI(CombineBFI.getNode(), ToMask2, FromMask2);
|
|
assert(From1 == From2);
|
|
(void)From2;
|
|
|
|
// First, unlink CombineBFI.
|
|
DCI.DAG.ReplaceAllUsesWith(CombineBFI, CombineBFI.getOperand(0));
|
|
// Then create a new BFI, combining the two together.
|
|
APInt NewFromMask = FromMask1 | FromMask2;
|
|
APInt NewToMask = ToMask1 | ToMask2;
|
|
|
|
EVT VT = N->getValueType(0);
|
|
SDLoc dl(N);
|
|
|
|
if (NewFromMask[0] == 0)
|
|
From1 = DCI.DAG.getNode(
|
|
ISD::SRL, dl, VT, From1,
|
|
DCI.DAG.getConstant(NewFromMask.countTrailingZeros(), dl, VT));
|
|
return DCI.DAG.getNode(ARMISD::BFI, dl, VT, N->getOperand(0), From1,
|
|
DCI.DAG.getConstant(~NewToMask, dl, VT));
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
|
|
/// ARMISD::VMOVRRD.
|
|
static SDValue PerformVMOVRRDCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const ARMSubtarget *Subtarget) {
|
|
// vmovrrd(vmovdrr x, y) -> x,y
|
|
SDValue InDouble = N->getOperand(0);
|
|
if (InDouble.getOpcode() == ARMISD::VMOVDRR && !Subtarget->isFPOnlySP())
|
|
return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
|
|
|
|
// vmovrrd(load f64) -> (load i32), (load i32)
|
|
SDNode *InNode = InDouble.getNode();
|
|
if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
|
|
InNode->getValueType(0) == MVT::f64 &&
|
|
InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
|
|
!cast<LoadSDNode>(InNode)->isVolatile()) {
|
|
// TODO: Should this be done for non-FrameIndex operands?
|
|
LoadSDNode *LD = cast<LoadSDNode>(InNode);
|
|
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDLoc DL(LD);
|
|
SDValue BasePtr = LD->getBasePtr();
|
|
SDValue NewLD1 =
|
|
DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr, LD->getPointerInfo(),
|
|
LD->getAlignment(), LD->getMemOperand()->getFlags());
|
|
|
|
SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
|
|
DAG.getConstant(4, DL, MVT::i32));
|
|
SDValue NewLD2 = DAG.getLoad(
|
|
MVT::i32, DL, NewLD1.getValue(1), OffsetPtr, LD->getPointerInfo(),
|
|
std::min(4U, LD->getAlignment() / 2), LD->getMemOperand()->getFlags());
|
|
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
|
|
if (DCI.DAG.getDataLayout().isBigEndian())
|
|
std::swap (NewLD1, NewLD2);
|
|
SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
|
|
return Result;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// PerformVMOVDRRCombine - Target-specific dag combine xforms for
|
|
/// ARMISD::VMOVDRR. This is also used for BUILD_VECTORs with 2 operands.
|
|
static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
|
|
// N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
|
|
SDValue Op0 = N->getOperand(0);
|
|
SDValue Op1 = N->getOperand(1);
|
|
if (Op0.getOpcode() == ISD::BITCAST)
|
|
Op0 = Op0.getOperand(0);
|
|
if (Op1.getOpcode() == ISD::BITCAST)
|
|
Op1 = Op1.getOperand(0);
|
|
if (Op0.getOpcode() == ARMISD::VMOVRRD &&
|
|
Op0.getNode() == Op1.getNode() &&
|
|
Op0.getResNo() == 0 && Op1.getResNo() == 1)
|
|
return DAG.getNode(ISD::BITCAST, SDLoc(N),
|
|
N->getValueType(0), Op0.getOperand(0));
|
|
return SDValue();
|
|
}
|
|
|
|
/// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
|
|
/// are normal, non-volatile loads. If so, it is profitable to bitcast an
|
|
/// i64 vector to have f64 elements, since the value can then be loaded
|
|
/// directly into a VFP register.
|
|
static bool hasNormalLoadOperand(SDNode *N) {
|
|
unsigned NumElts = N->getValueType(0).getVectorNumElements();
|
|
for (unsigned i = 0; i < NumElts; ++i) {
|
|
SDNode *Elt = N->getOperand(i).getNode();
|
|
if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
|
|
/// ISD::BUILD_VECTOR.
|
|
static SDValue PerformBUILD_VECTORCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const ARMSubtarget *Subtarget) {
|
|
// build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
|
|
// VMOVRRD is introduced when legalizing i64 types. It forces the i64 value
|
|
// into a pair of GPRs, which is fine when the value is used as a scalar,
|
|
// but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
if (N->getNumOperands() == 2)
|
|
if (SDValue RV = PerformVMOVDRRCombine(N, DAG))
|
|
return RV;
|
|
|
|
// Load i64 elements as f64 values so that type legalization does not split
|
|
// them up into i32 values.
|
|
EVT VT = N->getValueType(0);
|
|
if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
|
|
return SDValue();
|
|
SDLoc dl(N);
|
|
SmallVector<SDValue, 8> Ops;
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
for (unsigned i = 0; i < NumElts; ++i) {
|
|
SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
|
|
Ops.push_back(V);
|
|
// Make the DAGCombiner fold the bitcast.
|
|
DCI.AddToWorklist(V.getNode());
|
|
}
|
|
EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
|
|
SDValue BV = DAG.getBuildVector(FloatVT, dl, Ops);
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, BV);
|
|
}
|
|
|
|
/// Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
|
|
static SDValue
|
|
PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
|
|
// ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
|
|
// At that time, we may have inserted bitcasts from integer to float.
|
|
// If these bitcasts have survived DAGCombine, change the lowering of this
|
|
// BUILD_VECTOR in something more vector friendly, i.e., that does not
|
|
// force to use floating point types.
|
|
|
|
// Make sure we can change the type of the vector.
|
|
// This is possible iff:
|
|
// 1. The vector is only used in a bitcast to a integer type. I.e.,
|
|
// 1.1. Vector is used only once.
|
|
// 1.2. Use is a bit convert to an integer type.
|
|
// 2. The size of its operands are 32-bits (64-bits are not legal).
|
|
EVT VT = N->getValueType(0);
|
|
EVT EltVT = VT.getVectorElementType();
|
|
|
|
// Check 1.1. and 2.
|
|
if (EltVT.getSizeInBits() != 32 || !N->hasOneUse())
|
|
return SDValue();
|
|
|
|
// By construction, the input type must be float.
|
|
assert(EltVT == MVT::f32 && "Unexpected type!");
|
|
|
|
// Check 1.2.
|
|
SDNode *Use = *N->use_begin();
|
|
if (Use->getOpcode() != ISD::BITCAST ||
|
|
Use->getValueType(0).isFloatingPoint())
|
|
return SDValue();
|
|
|
|
// Check profitability.
|
|
// Model is, if more than half of the relevant operands are bitcast from
|
|
// i32, turn the build_vector into a sequence of insert_vector_elt.
|
|
// Relevant operands are everything that is not statically
|
|
// (i.e., at compile time) bitcasted.
|
|
unsigned NumOfBitCastedElts = 0;
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
unsigned NumOfRelevantElts = NumElts;
|
|
for (unsigned Idx = 0; Idx < NumElts; ++Idx) {
|
|
SDValue Elt = N->getOperand(Idx);
|
|
if (Elt->getOpcode() == ISD::BITCAST) {
|
|
// Assume only bit cast to i32 will go away.
|
|
if (Elt->getOperand(0).getValueType() == MVT::i32)
|
|
++NumOfBitCastedElts;
|
|
} else if (Elt.isUndef() || isa<ConstantSDNode>(Elt))
|
|
// Constants are statically casted, thus do not count them as
|
|
// relevant operands.
|
|
--NumOfRelevantElts;
|
|
}
|
|
|
|
// Check if more than half of the elements require a non-free bitcast.
|
|
if (NumOfBitCastedElts <= NumOfRelevantElts / 2)
|
|
return SDValue();
|
|
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
// Create the new vector type.
|
|
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
|
|
// Check if the type is legal.
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
if (!TLI.isTypeLegal(VecVT))
|
|
return SDValue();
|
|
|
|
// Combine:
|
|
// ARMISD::BUILD_VECTOR E1, E2, ..., EN.
|
|
// => BITCAST INSERT_VECTOR_ELT
|
|
// (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
|
|
// (BITCAST EN), N.
|
|
SDValue Vec = DAG.getUNDEF(VecVT);
|
|
SDLoc dl(N);
|
|
for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) {
|
|
SDValue V = N->getOperand(Idx);
|
|
if (V.isUndef())
|
|
continue;
|
|
if (V.getOpcode() == ISD::BITCAST &&
|
|
V->getOperand(0).getValueType() == MVT::i32)
|
|
// Fold obvious case.
|
|
V = V.getOperand(0);
|
|
else {
|
|
V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V);
|
|
// Make the DAGCombiner fold the bitcasts.
|
|
DCI.AddToWorklist(V.getNode());
|
|
}
|
|
SDValue LaneIdx = DAG.getConstant(Idx, dl, MVT::i32);
|
|
Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx);
|
|
}
|
|
Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec);
|
|
// Make the DAGCombiner fold the bitcasts.
|
|
DCI.AddToWorklist(Vec.getNode());
|
|
return Vec;
|
|
}
|
|
|
|
/// PerformInsertEltCombine - Target-specific dag combine xforms for
|
|
/// ISD::INSERT_VECTOR_ELT.
|
|
static SDValue PerformInsertEltCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
// Bitcast an i64 load inserted into a vector to f64.
|
|
// Otherwise, the i64 value will be legalized to a pair of i32 values.
|
|
EVT VT = N->getValueType(0);
|
|
SDNode *Elt = N->getOperand(1).getNode();
|
|
if (VT.getVectorElementType() != MVT::i64 ||
|
|
!ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
|
|
return SDValue();
|
|
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDLoc dl(N);
|
|
EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
|
|
VT.getVectorNumElements());
|
|
SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
|
|
SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
|
|
// Make the DAGCombiner fold the bitcasts.
|
|
DCI.AddToWorklist(Vec.getNode());
|
|
DCI.AddToWorklist(V.getNode());
|
|
SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
|
|
Vec, V, N->getOperand(2));
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
|
|
}
|
|
|
|
/// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
|
|
/// ISD::VECTOR_SHUFFLE.
|
|
static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
|
|
// The LLVM shufflevector instruction does not require the shuffle mask
|
|
// length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
|
|
// have that requirement. When translating to ISD::VECTOR_SHUFFLE, if the
|
|
// operands do not match the mask length, they are extended by concatenating
|
|
// them with undef vectors. That is probably the right thing for other
|
|
// targets, but for NEON it is better to concatenate two double-register
|
|
// size vector operands into a single quad-register size vector. Do that
|
|
// transformation here:
|
|
// shuffle(concat(v1, undef), concat(v2, undef)) ->
|
|
// shuffle(concat(v1, v2), undef)
|
|
SDValue Op0 = N->getOperand(0);
|
|
SDValue Op1 = N->getOperand(1);
|
|
if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
|
|
Op1.getOpcode() != ISD::CONCAT_VECTORS ||
|
|
Op0.getNumOperands() != 2 ||
|
|
Op1.getNumOperands() != 2)
|
|
return SDValue();
|
|
SDValue Concat0Op1 = Op0.getOperand(1);
|
|
SDValue Concat1Op1 = Op1.getOperand(1);
|
|
if (!Concat0Op1.isUndef() || !Concat1Op1.isUndef())
|
|
return SDValue();
|
|
// Skip the transformation if any of the types are illegal.
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
EVT VT = N->getValueType(0);
|
|
if (!TLI.isTypeLegal(VT) ||
|
|
!TLI.isTypeLegal(Concat0Op1.getValueType()) ||
|
|
!TLI.isTypeLegal(Concat1Op1.getValueType()))
|
|
return SDValue();
|
|
|
|
SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
|
|
Op0.getOperand(0), Op1.getOperand(0));
|
|
// Translate the shuffle mask.
|
|
SmallVector<int, 16> NewMask;
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
unsigned HalfElts = NumElts/2;
|
|
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
|
|
for (unsigned n = 0; n < NumElts; ++n) {
|
|
int MaskElt = SVN->getMaskElt(n);
|
|
int NewElt = -1;
|
|
if (MaskElt < (int)HalfElts)
|
|
NewElt = MaskElt;
|
|
else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
|
|
NewElt = HalfElts + MaskElt - NumElts;
|
|
NewMask.push_back(NewElt);
|
|
}
|
|
return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat,
|
|
DAG.getUNDEF(VT), NewMask);
|
|
}
|
|
|
|
/// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
|
|
/// NEON load/store intrinsics, and generic vector load/stores, to merge
|
|
/// base address updates.
|
|
/// For generic load/stores, the memory type is assumed to be a vector.
|
|
/// The caller is assumed to have checked legality.
|
|
static SDValue CombineBaseUpdate(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
const bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
|
|
N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
|
|
const bool isStore = N->getOpcode() == ISD::STORE;
|
|
const unsigned AddrOpIdx = ((isIntrinsic || isStore) ? 2 : 1);
|
|
SDValue Addr = N->getOperand(AddrOpIdx);
|
|
MemSDNode *MemN = cast<MemSDNode>(N);
|
|
SDLoc dl(N);
|
|
|
|
// Search for a use of the address operand that is an increment.
|
|
for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
|
|
UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
|
|
SDNode *User = *UI;
|
|
if (User->getOpcode() != ISD::ADD ||
|
|
UI.getUse().getResNo() != Addr.getResNo())
|
|
continue;
|
|
|
|
// Check that the add is independent of the load/store. Otherwise, folding
|
|
// it would create a cycle.
|
|
if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
|
|
continue;
|
|
|
|
// Find the new opcode for the updating load/store.
|
|
bool isLoadOp = true;
|
|
bool isLaneOp = false;
|
|
unsigned NewOpc = 0;
|
|
unsigned NumVecs = 0;
|
|
if (isIntrinsic) {
|
|
unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
|
|
switch (IntNo) {
|
|
default: llvm_unreachable("unexpected intrinsic for Neon base update");
|
|
case Intrinsic::arm_neon_vld1: NewOpc = ARMISD::VLD1_UPD;
|
|
NumVecs = 1; break;
|
|
case Intrinsic::arm_neon_vld2: NewOpc = ARMISD::VLD2_UPD;
|
|
NumVecs = 2; break;
|
|
case Intrinsic::arm_neon_vld3: NewOpc = ARMISD::VLD3_UPD;
|
|
NumVecs = 3; break;
|
|
case Intrinsic::arm_neon_vld4: NewOpc = ARMISD::VLD4_UPD;
|
|
NumVecs = 4; break;
|
|
case Intrinsic::arm_neon_vld2dup:
|
|
case Intrinsic::arm_neon_vld3dup:
|
|
case Intrinsic::arm_neon_vld4dup:
|
|
// TODO: Support updating VLDxDUP nodes. For now, we just skip
|
|
// combining base updates for such intrinsics.
|
|
continue;
|
|
case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
|
|
NumVecs = 2; isLaneOp = true; break;
|
|
case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
|
|
NumVecs = 3; isLaneOp = true; break;
|
|
case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
|
|
NumVecs = 4; isLaneOp = true; break;
|
|
case Intrinsic::arm_neon_vst1: NewOpc = ARMISD::VST1_UPD;
|
|
NumVecs = 1; isLoadOp = false; break;
|
|
case Intrinsic::arm_neon_vst2: NewOpc = ARMISD::VST2_UPD;
|
|
NumVecs = 2; isLoadOp = false; break;
|
|
case Intrinsic::arm_neon_vst3: NewOpc = ARMISD::VST3_UPD;
|
|
NumVecs = 3; isLoadOp = false; break;
|
|
case Intrinsic::arm_neon_vst4: NewOpc = ARMISD::VST4_UPD;
|
|
NumVecs = 4; isLoadOp = false; break;
|
|
case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
|
|
NumVecs = 2; isLoadOp = false; isLaneOp = true; break;
|
|
case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
|
|
NumVecs = 3; isLoadOp = false; isLaneOp = true; break;
|
|
case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
|
|
NumVecs = 4; isLoadOp = false; isLaneOp = true; break;
|
|
}
|
|
} else {
|
|
isLaneOp = true;
|
|
switch (N->getOpcode()) {
|
|
default: llvm_unreachable("unexpected opcode for Neon base update");
|
|
case ARMISD::VLD1DUP: NewOpc = ARMISD::VLD1DUP_UPD; NumVecs = 1; break;
|
|
case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
|
|
case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
|
|
case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
|
|
case ISD::LOAD: NewOpc = ARMISD::VLD1_UPD;
|
|
NumVecs = 1; isLaneOp = false; break;
|
|
case ISD::STORE: NewOpc = ARMISD::VST1_UPD;
|
|
NumVecs = 1; isLaneOp = false; isLoadOp = false; break;
|
|
}
|
|
}
|
|
|
|
// Find the size of memory referenced by the load/store.
|
|
EVT VecTy;
|
|
if (isLoadOp) {
|
|
VecTy = N->getValueType(0);
|
|
} else if (isIntrinsic) {
|
|
VecTy = N->getOperand(AddrOpIdx+1).getValueType();
|
|
} else {
|
|
assert(isStore && "Node has to be a load, a store, or an intrinsic!");
|
|
VecTy = N->getOperand(1).getValueType();
|
|
}
|
|
|
|
unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
|
|
if (isLaneOp)
|
|
NumBytes /= VecTy.getVectorNumElements();
|
|
|
|
// If the increment is a constant, it must match the memory ref size.
|
|
SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
|
|
ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode());
|
|
if (NumBytes >= 3 * 16 && (!CInc || CInc->getZExtValue() != NumBytes)) {
|
|
// VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
|
|
// separate instructions that make it harder to use a non-constant update.
|
|
continue;
|
|
}
|
|
|
|
// OK, we found an ADD we can fold into the base update.
|
|
// Now, create a _UPD node, taking care of not breaking alignment.
|
|
|
|
EVT AlignedVecTy = VecTy;
|
|
unsigned Alignment = MemN->getAlignment();
|
|
|
|
// If this is a less-than-standard-aligned load/store, change the type to
|
|
// match the standard alignment.
|
|
// The alignment is overlooked when selecting _UPD variants; and it's
|
|
// easier to introduce bitcasts here than fix that.
|
|
// There are 3 ways to get to this base-update combine:
|
|
// - intrinsics: they are assumed to be properly aligned (to the standard
|
|
// alignment of the memory type), so we don't need to do anything.
|
|
// - ARMISD::VLDx nodes: they are only generated from the aforementioned
|
|
// intrinsics, so, likewise, there's nothing to do.
|
|
// - generic load/store instructions: the alignment is specified as an
|
|
// explicit operand, rather than implicitly as the standard alignment
|
|
// of the memory type (like the intrisics). We need to change the
|
|
// memory type to match the explicit alignment. That way, we don't
|
|
// generate non-standard-aligned ARMISD::VLDx nodes.
|
|
if (isa<LSBaseSDNode>(N)) {
|
|
if (Alignment == 0)
|
|
Alignment = 1;
|
|
if (Alignment < VecTy.getScalarSizeInBits() / 8) {
|
|
MVT EltTy = MVT::getIntegerVT(Alignment * 8);
|
|
assert(NumVecs == 1 && "Unexpected multi-element generic load/store.");
|
|
assert(!isLaneOp && "Unexpected generic load/store lane.");
|
|
unsigned NumElts = NumBytes / (EltTy.getSizeInBits() / 8);
|
|
AlignedVecTy = MVT::getVectorVT(EltTy, NumElts);
|
|
}
|
|
// Don't set an explicit alignment on regular load/stores that we want
|
|
// to transform to VLD/VST 1_UPD nodes.
|
|
// This matches the behavior of regular load/stores, which only get an
|
|
// explicit alignment if the MMO alignment is larger than the standard
|
|
// alignment of the memory type.
|
|
// Intrinsics, however, always get an explicit alignment, set to the
|
|
// alignment of the MMO.
|
|
Alignment = 1;
|
|
}
|
|
|
|
// Create the new updating load/store node.
|
|
// First, create an SDVTList for the new updating node's results.
|
|
EVT Tys[6];
|
|
unsigned NumResultVecs = (isLoadOp ? NumVecs : 0);
|
|
unsigned n;
|
|
for (n = 0; n < NumResultVecs; ++n)
|
|
Tys[n] = AlignedVecTy;
|
|
Tys[n++] = MVT::i32;
|
|
Tys[n] = MVT::Other;
|
|
SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs+2));
|
|
|
|
// Then, gather the new node's operands.
|
|
SmallVector<SDValue, 8> Ops;
|
|
Ops.push_back(N->getOperand(0)); // incoming chain
|
|
Ops.push_back(N->getOperand(AddrOpIdx));
|
|
Ops.push_back(Inc);
|
|
|
|
if (StoreSDNode *StN = dyn_cast<StoreSDNode>(N)) {
|
|
// Try to match the intrinsic's signature
|
|
Ops.push_back(StN->getValue());
|
|
} else {
|
|
// Loads (and of course intrinsics) match the intrinsics' signature,
|
|
// so just add all but the alignment operand.
|
|
for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands() - 1; ++i)
|
|
Ops.push_back(N->getOperand(i));
|
|
}
|
|
|
|
// For all node types, the alignment operand is always the last one.
|
|
Ops.push_back(DAG.getConstant(Alignment, dl, MVT::i32));
|
|
|
|
// If this is a non-standard-aligned STORE, the penultimate operand is the
|
|
// stored value. Bitcast it to the aligned type.
|
|
if (AlignedVecTy != VecTy && N->getOpcode() == ISD::STORE) {
|
|
SDValue &StVal = Ops[Ops.size()-2];
|
|
StVal = DAG.getNode(ISD::BITCAST, dl, AlignedVecTy, StVal);
|
|
}
|
|
|
|
EVT LoadVT = isLaneOp ? VecTy.getVectorElementType() : AlignedVecTy;
|
|
SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys, Ops, LoadVT,
|
|
MemN->getMemOperand());
|
|
|
|
// Update the uses.
|
|
SmallVector<SDValue, 5> NewResults;
|
|
for (unsigned i = 0; i < NumResultVecs; ++i)
|
|
NewResults.push_back(SDValue(UpdN.getNode(), i));
|
|
|
|
// If this is an non-standard-aligned LOAD, the first result is the loaded
|
|
// value. Bitcast it to the expected result type.
|
|
if (AlignedVecTy != VecTy && N->getOpcode() == ISD::LOAD) {
|
|
SDValue &LdVal = NewResults[0];
|
|
LdVal = DAG.getNode(ISD::BITCAST, dl, VecTy, LdVal);
|
|
}
|
|
|
|
NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
|
|
DCI.CombineTo(N, NewResults);
|
|
DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
|
|
|
|
break;
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue PerformVLDCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
|
|
return SDValue();
|
|
|
|
return CombineBaseUpdate(N, DCI);
|
|
}
|
|
|
|
/// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
|
|
/// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
|
|
/// are also VDUPLANEs. If so, combine them to a vldN-dup operation and
|
|
/// return true.
|
|
static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
EVT VT = N->getValueType(0);
|
|
// vldN-dup instructions only support 64-bit vectors for N > 1.
|
|
if (!VT.is64BitVector())
|
|
return false;
|
|
|
|
// Check if the VDUPLANE operand is a vldN-dup intrinsic.
|
|
SDNode *VLD = N->getOperand(0).getNode();
|
|
if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
|
|
return false;
|
|
unsigned NumVecs = 0;
|
|
unsigned NewOpc = 0;
|
|
unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
|
|
if (IntNo == Intrinsic::arm_neon_vld2lane) {
|
|
NumVecs = 2;
|
|
NewOpc = ARMISD::VLD2DUP;
|
|
} else if (IntNo == Intrinsic::arm_neon_vld3lane) {
|
|
NumVecs = 3;
|
|
NewOpc = ARMISD::VLD3DUP;
|
|
} else if (IntNo == Intrinsic::arm_neon_vld4lane) {
|
|
NumVecs = 4;
|
|
NewOpc = ARMISD::VLD4DUP;
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
// First check that all the vldN-lane uses are VDUPLANEs and that the lane
|
|
// numbers match the load.
|
|
unsigned VLDLaneNo =
|
|
cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
|
|
for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
|
|
UI != UE; ++UI) {
|
|
// Ignore uses of the chain result.
|
|
if (UI.getUse().getResNo() == NumVecs)
|
|
continue;
|
|
SDNode *User = *UI;
|
|
if (User->getOpcode() != ARMISD::VDUPLANE ||
|
|
VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
|
|
return false;
|
|
}
|
|
|
|
// Create the vldN-dup node.
|
|
EVT Tys[5];
|
|
unsigned n;
|
|
for (n = 0; n < NumVecs; ++n)
|
|
Tys[n] = VT;
|
|
Tys[n] = MVT::Other;
|
|
SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumVecs+1));
|
|
SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
|
|
MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
|
|
SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys,
|
|
Ops, VLDMemInt->getMemoryVT(),
|
|
VLDMemInt->getMemOperand());
|
|
|
|
// Update the uses.
|
|
for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
|
|
UI != UE; ++UI) {
|
|
unsigned ResNo = UI.getUse().getResNo();
|
|
// Ignore uses of the chain result.
|
|
if (ResNo == NumVecs)
|
|
continue;
|
|
SDNode *User = *UI;
|
|
DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
|
|
}
|
|
|
|
// Now the vldN-lane intrinsic is dead except for its chain result.
|
|
// Update uses of the chain.
|
|
std::vector<SDValue> VLDDupResults;
|
|
for (unsigned n = 0; n < NumVecs; ++n)
|
|
VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
|
|
VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
|
|
DCI.CombineTo(VLD, VLDDupResults);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// PerformVDUPLANECombine - Target-specific dag combine xforms for
|
|
/// ARMISD::VDUPLANE.
|
|
static SDValue PerformVDUPLANECombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
SDValue Op = N->getOperand(0);
|
|
|
|
// If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
|
|
// of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
|
|
if (CombineVLDDUP(N, DCI))
|
|
return SDValue(N, 0);
|
|
|
|
// If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
|
|
// redundant. Ignore bit_converts for now; element sizes are checked below.
|
|
while (Op.getOpcode() == ISD::BITCAST)
|
|
Op = Op.getOperand(0);
|
|
if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
|
|
return SDValue();
|
|
|
|
// Make sure the VMOV element size is not bigger than the VDUPLANE elements.
|
|
unsigned EltSize = Op.getScalarValueSizeInBits();
|
|
// The canonical VMOV for a zero vector uses a 32-bit element size.
|
|
unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
|
|
unsigned EltBits;
|
|
if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
|
|
EltSize = 8;
|
|
EVT VT = N->getValueType(0);
|
|
if (EltSize > VT.getScalarSizeInBits())
|
|
return SDValue();
|
|
|
|
return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
|
|
}
|
|
|
|
/// PerformVDUPCombine - Target-specific dag combine xforms for ARMISD::VDUP.
|
|
static SDValue PerformVDUPCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDValue Op = N->getOperand(0);
|
|
|
|
// Match VDUP(LOAD) -> VLD1DUP.
|
|
// We match this pattern here rather than waiting for isel because the
|
|
// transform is only legal for unindexed loads.
|
|
LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode());
|
|
if (LD && Op.hasOneUse() && LD->isUnindexed() &&
|
|
LD->getMemoryVT() == N->getValueType(0).getVectorElementType()) {
|
|
SDValue Ops[] = { LD->getOperand(0), LD->getOperand(1),
|
|
DAG.getConstant(LD->getAlignment(), SDLoc(N), MVT::i32) };
|
|
SDVTList SDTys = DAG.getVTList(N->getValueType(0), MVT::Other);
|
|
SDValue VLDDup = DAG.getMemIntrinsicNode(ARMISD::VLD1DUP, SDLoc(N), SDTys,
|
|
Ops, LD->getMemoryVT(),
|
|
LD->getMemOperand());
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), VLDDup.getValue(1));
|
|
return VLDDup;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue PerformLOADCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// If this is a legal vector load, try to combine it into a VLD1_UPD.
|
|
if (ISD::isNormalLoad(N) && VT.isVector() &&
|
|
DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
|
|
return CombineBaseUpdate(N, DCI);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// PerformSTORECombine - Target-specific dag combine xforms for
|
|
/// ISD::STORE.
|
|
static SDValue PerformSTORECombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
StoreSDNode *St = cast<StoreSDNode>(N);
|
|
if (St->isVolatile())
|
|
return SDValue();
|
|
|
|
// Optimize trunc store (of multiple scalars) to shuffle and store. First,
|
|
// pack all of the elements in one place. Next, store to memory in fewer
|
|
// chunks.
|
|
SDValue StVal = St->getValue();
|
|
EVT VT = StVal.getValueType();
|
|
if (St->isTruncatingStore() && VT.isVector()) {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
EVT StVT = St->getMemoryVT();
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
assert(StVT != VT && "Cannot truncate to the same type");
|
|
unsigned FromEltSz = VT.getScalarSizeInBits();
|
|
unsigned ToEltSz = StVT.getScalarSizeInBits();
|
|
|
|
// From, To sizes and ElemCount must be pow of two
|
|
if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue();
|
|
|
|
// We are going to use the original vector elt for storing.
|
|
// Accumulated smaller vector elements must be a multiple of the store size.
|
|
if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue();
|
|
|
|
unsigned SizeRatio = FromEltSz / ToEltSz;
|
|
assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
|
|
|
|
// Create a type on which we perform the shuffle.
|
|
EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
|
|
NumElems*SizeRatio);
|
|
assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
|
|
|
|
SDLoc DL(St);
|
|
SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
|
|
SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
|
|
for (unsigned i = 0; i < NumElems; ++i)
|
|
ShuffleVec[i] = DAG.getDataLayout().isBigEndian()
|
|
? (i + 1) * SizeRatio - 1
|
|
: i * SizeRatio;
|
|
|
|
// Can't shuffle using an illegal type.
|
|
if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
|
|
|
|
SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec,
|
|
DAG.getUNDEF(WideVec.getValueType()),
|
|
ShuffleVec);
|
|
// At this point all of the data is stored at the bottom of the
|
|
// register. We now need to save it to mem.
|
|
|
|
// Find the largest store unit
|
|
MVT StoreType = MVT::i8;
|
|
for (MVT Tp : MVT::integer_valuetypes()) {
|
|
if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
|
|
StoreType = Tp;
|
|
}
|
|
// Didn't find a legal store type.
|
|
if (!TLI.isTypeLegal(StoreType))
|
|
return SDValue();
|
|
|
|
// Bitcast the original vector into a vector of store-size units
|
|
EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
|
|
StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
|
|
assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
|
|
SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
|
|
SmallVector<SDValue, 8> Chains;
|
|
SDValue Increment = DAG.getConstant(StoreType.getSizeInBits() / 8, DL,
|
|
TLI.getPointerTy(DAG.getDataLayout()));
|
|
SDValue BasePtr = St->getBasePtr();
|
|
|
|
// Perform one or more big stores into memory.
|
|
unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits();
|
|
for (unsigned I = 0; I < E; I++) {
|
|
SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
|
|
StoreType, ShuffWide,
|
|
DAG.getIntPtrConstant(I, DL));
|
|
SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr,
|
|
St->getPointerInfo(), St->getAlignment(),
|
|
St->getMemOperand()->getFlags());
|
|
BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
|
|
Increment);
|
|
Chains.push_back(Ch);
|
|
}
|
|
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
|
|
}
|
|
|
|
if (!ISD::isNormalStore(St))
|
|
return SDValue();
|
|
|
|
// Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
|
|
// ARM stores of arguments in the same cache line.
|
|
if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
|
|
StVal.getNode()->hasOneUse()) {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
bool isBigEndian = DAG.getDataLayout().isBigEndian();
|
|
SDLoc DL(St);
|
|
SDValue BasePtr = St->getBasePtr();
|
|
SDValue NewST1 = DAG.getStore(
|
|
St->getChain(), DL, StVal.getNode()->getOperand(isBigEndian ? 1 : 0),
|
|
BasePtr, St->getPointerInfo(), St->getAlignment(),
|
|
St->getMemOperand()->getFlags());
|
|
|
|
SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
|
|
DAG.getConstant(4, DL, MVT::i32));
|
|
return DAG.getStore(NewST1.getValue(0), DL,
|
|
StVal.getNode()->getOperand(isBigEndian ? 0 : 1),
|
|
OffsetPtr, St->getPointerInfo(),
|
|
std::min(4U, St->getAlignment() / 2),
|
|
St->getMemOperand()->getFlags());
|
|
}
|
|
|
|
if (StVal.getValueType() == MVT::i64 &&
|
|
StVal.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
|
|
|
|
// Bitcast an i64 store extracted from a vector to f64.
|
|
// Otherwise, the i64 value will be legalized to a pair of i32 values.
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDLoc dl(StVal);
|
|
SDValue IntVec = StVal.getOperand(0);
|
|
EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
|
|
IntVec.getValueType().getVectorNumElements());
|
|
SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
|
|
SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
|
|
Vec, StVal.getOperand(1));
|
|
dl = SDLoc(N);
|
|
SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
|
|
// Make the DAGCombiner fold the bitcasts.
|
|
DCI.AddToWorklist(Vec.getNode());
|
|
DCI.AddToWorklist(ExtElt.getNode());
|
|
DCI.AddToWorklist(V.getNode());
|
|
return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
|
|
St->getPointerInfo(), St->getAlignment(),
|
|
St->getMemOperand()->getFlags(), St->getAAInfo());
|
|
}
|
|
|
|
// If this is a legal vector store, try to combine it into a VST1_UPD.
|
|
if (ISD::isNormalStore(N) && VT.isVector() &&
|
|
DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
|
|
return CombineBaseUpdate(N, DCI);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
|
|
/// can replace combinations of VMUL and VCVT (floating-point to integer)
|
|
/// when the VMUL has a constant operand that is a power of 2.
|
|
///
|
|
/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
|
|
/// vmul.f32 d16, d17, d16
|
|
/// vcvt.s32.f32 d16, d16
|
|
/// becomes:
|
|
/// vcvt.s32.f32 d16, d16, #3
|
|
static SDValue PerformVCVTCombine(SDNode *N, SelectionDAG &DAG,
|
|
const ARMSubtarget *Subtarget) {
|
|
if (!Subtarget->hasNEON())
|
|
return SDValue();
|
|
|
|
SDValue Op = N->getOperand(0);
|
|
if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
|
|
Op.getOpcode() != ISD::FMUL)
|
|
return SDValue();
|
|
|
|
SDValue ConstVec = Op->getOperand(1);
|
|
if (!isa<BuildVectorSDNode>(ConstVec))
|
|
return SDValue();
|
|
|
|
MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
|
|
uint32_t FloatBits = FloatTy.getSizeInBits();
|
|
MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
|
|
uint32_t IntBits = IntTy.getSizeInBits();
|
|
unsigned NumLanes = Op.getValueType().getVectorNumElements();
|
|
if (FloatBits != 32 || IntBits > 32 || NumLanes > 4) {
|
|
// These instructions only exist converting from f32 to i32. We can handle
|
|
// smaller integers by generating an extra truncate, but larger ones would
|
|
// be lossy. We also can't handle more then 4 lanes, since these intructions
|
|
// only support v2i32/v4i32 types.
|
|
return SDValue();
|
|
}
|
|
|
|
BitVector UndefElements;
|
|
BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
|
|
int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
|
|
if (C == -1 || C == 0 || C > 32)
|
|
return SDValue();
|
|
|
|
SDLoc dl(N);
|
|
bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
|
|
unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
|
|
Intrinsic::arm_neon_vcvtfp2fxu;
|
|
SDValue FixConv = DAG.getNode(
|
|
ISD::INTRINSIC_WO_CHAIN, dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
|
|
DAG.getConstant(IntrinsicOpcode, dl, MVT::i32), Op->getOperand(0),
|
|
DAG.getConstant(C, dl, MVT::i32));
|
|
|
|
if (IntBits < FloatBits)
|
|
FixConv = DAG.getNode(ISD::TRUNCATE, dl, N->getValueType(0), FixConv);
|
|
|
|
return FixConv;
|
|
}
|
|
|
|
/// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
|
|
/// can replace combinations of VCVT (integer to floating-point) and VDIV
|
|
/// when the VDIV has a constant operand that is a power of 2.
|
|
///
|
|
/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
|
|
/// vcvt.f32.s32 d16, d16
|
|
/// vdiv.f32 d16, d17, d16
|
|
/// becomes:
|
|
/// vcvt.f32.s32 d16, d16, #3
|
|
static SDValue PerformVDIVCombine(SDNode *N, SelectionDAG &DAG,
|
|
const ARMSubtarget *Subtarget) {
|
|
if (!Subtarget->hasNEON())
|
|
return SDValue();
|
|
|
|
SDValue Op = N->getOperand(0);
|
|
unsigned OpOpcode = Op.getNode()->getOpcode();
|
|
if (!N->getValueType(0).isVector() || !N->getValueType(0).isSimple() ||
|
|
(OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
|
|
return SDValue();
|
|
|
|
SDValue ConstVec = N->getOperand(1);
|
|
if (!isa<BuildVectorSDNode>(ConstVec))
|
|
return SDValue();
|
|
|
|
MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
|
|
uint32_t FloatBits = FloatTy.getSizeInBits();
|
|
MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
|
|
uint32_t IntBits = IntTy.getSizeInBits();
|
|
unsigned NumLanes = Op.getValueType().getVectorNumElements();
|
|
if (FloatBits != 32 || IntBits > 32 || NumLanes > 4) {
|
|
// These instructions only exist converting from i32 to f32. We can handle
|
|
// smaller integers by generating an extra extend, but larger ones would
|
|
// be lossy. We also can't handle more then 4 lanes, since these intructions
|
|
// only support v2i32/v4i32 types.
|
|
return SDValue();
|
|
}
|
|
|
|
BitVector UndefElements;
|
|
BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
|
|
int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
|
|
if (C == -1 || C == 0 || C > 32)
|
|
return SDValue();
|
|
|
|
SDLoc dl(N);
|
|
bool isSigned = OpOpcode == ISD::SINT_TO_FP;
|
|
SDValue ConvInput = Op.getOperand(0);
|
|
if (IntBits < FloatBits)
|
|
ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
|
|
dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
|
|
ConvInput);
|
|
|
|
unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
|
|
Intrinsic::arm_neon_vcvtfxu2fp;
|
|
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl,
|
|
Op.getValueType(),
|
|
DAG.getConstant(IntrinsicOpcode, dl, MVT::i32),
|
|
ConvInput, DAG.getConstant(C, dl, MVT::i32));
|
|
}
|
|
|
|
/// Getvshiftimm - Check if this is a valid build_vector for the immediate
|
|
/// operand of a vector shift operation, where all the elements of the
|
|
/// build_vector must have the same constant integer value.
|
|
static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
|
|
// Ignore bit_converts.
|
|
while (Op.getOpcode() == ISD::BITCAST)
|
|
Op = Op.getOperand(0);
|
|
BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
|
|
APInt SplatBits, SplatUndef;
|
|
unsigned SplatBitSize;
|
|
bool HasAnyUndefs;
|
|
if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
|
|
HasAnyUndefs, ElementBits) ||
|
|
SplatBitSize > ElementBits)
|
|
return false;
|
|
Cnt = SplatBits.getSExtValue();
|
|
return true;
|
|
}
|
|
|
|
/// isVShiftLImm - Check if this is a valid build_vector for the immediate
|
|
/// operand of a vector shift left operation. That value must be in the range:
|
|
/// 0 <= Value < ElementBits for a left shift; or
|
|
/// 0 <= Value <= ElementBits for a long left shift.
|
|
static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
|
|
assert(VT.isVector() && "vector shift count is not a vector type");
|
|
int64_t ElementBits = VT.getScalarSizeInBits();
|
|
if (! getVShiftImm(Op, ElementBits, Cnt))
|
|
return false;
|
|
return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
|
|
}
|
|
|
|
/// isVShiftRImm - Check if this is a valid build_vector for the immediate
|
|
/// operand of a vector shift right operation. For a shift opcode, the value
|
|
/// is positive, but for an intrinsic the value count must be negative. The
|
|
/// absolute value must be in the range:
|
|
/// 1 <= |Value| <= ElementBits for a right shift; or
|
|
/// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
|
|
static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
|
|
int64_t &Cnt) {
|
|
assert(VT.isVector() && "vector shift count is not a vector type");
|
|
int64_t ElementBits = VT.getScalarSizeInBits();
|
|
if (! getVShiftImm(Op, ElementBits, Cnt))
|
|
return false;
|
|
if (!isIntrinsic)
|
|
return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
|
|
if (Cnt >= -(isNarrow ? ElementBits/2 : ElementBits) && Cnt <= -1) {
|
|
Cnt = -Cnt;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
|
|
static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
|
|
unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
|
|
switch (IntNo) {
|
|
default:
|
|
// Don't do anything for most intrinsics.
|
|
break;
|
|
|
|
// Vector shifts: check for immediate versions and lower them.
|
|
// Note: This is done during DAG combining instead of DAG legalizing because
|
|
// the build_vectors for 64-bit vector element shift counts are generally
|
|
// not legal, and it is hard to see their values after they get legalized to
|
|
// loads from a constant pool.
|
|
case Intrinsic::arm_neon_vshifts:
|
|
case Intrinsic::arm_neon_vshiftu:
|
|
case Intrinsic::arm_neon_vrshifts:
|
|
case Intrinsic::arm_neon_vrshiftu:
|
|
case Intrinsic::arm_neon_vrshiftn:
|
|
case Intrinsic::arm_neon_vqshifts:
|
|
case Intrinsic::arm_neon_vqshiftu:
|
|
case Intrinsic::arm_neon_vqshiftsu:
|
|
case Intrinsic::arm_neon_vqshiftns:
|
|
case Intrinsic::arm_neon_vqshiftnu:
|
|
case Intrinsic::arm_neon_vqshiftnsu:
|
|
case Intrinsic::arm_neon_vqrshiftns:
|
|
case Intrinsic::arm_neon_vqrshiftnu:
|
|
case Intrinsic::arm_neon_vqrshiftnsu: {
|
|
EVT VT = N->getOperand(1).getValueType();
|
|
int64_t Cnt;
|
|
unsigned VShiftOpc = 0;
|
|
|
|
switch (IntNo) {
|
|
case Intrinsic::arm_neon_vshifts:
|
|
case Intrinsic::arm_neon_vshiftu:
|
|
if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
|
|
VShiftOpc = ARMISD::VSHL;
|
|
break;
|
|
}
|
|
if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
|
|
VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
|
|
ARMISD::VSHRs : ARMISD::VSHRu);
|
|
break;
|
|
}
|
|
return SDValue();
|
|
|
|
case Intrinsic::arm_neon_vrshifts:
|
|
case Intrinsic::arm_neon_vrshiftu:
|
|
if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
|
|
break;
|
|
return SDValue();
|
|
|
|
case Intrinsic::arm_neon_vqshifts:
|
|
case Intrinsic::arm_neon_vqshiftu:
|
|
if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
|
|
break;
|
|
return SDValue();
|
|
|
|
case Intrinsic::arm_neon_vqshiftsu:
|
|
if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
|
|
break;
|
|
llvm_unreachable("invalid shift count for vqshlu intrinsic");
|
|
|
|
case Intrinsic::arm_neon_vrshiftn:
|
|
case Intrinsic::arm_neon_vqshiftns:
|
|
case Intrinsic::arm_neon_vqshiftnu:
|
|
case Intrinsic::arm_neon_vqshiftnsu:
|
|
case Intrinsic::arm_neon_vqrshiftns:
|
|
case Intrinsic::arm_neon_vqrshiftnu:
|
|
case Intrinsic::arm_neon_vqrshiftnsu:
|
|
// Narrowing shifts require an immediate right shift.
|
|
if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
|
|
break;
|
|
llvm_unreachable("invalid shift count for narrowing vector shift "
|
|
"intrinsic");
|
|
|
|
default:
|
|
llvm_unreachable("unhandled vector shift");
|
|
}
|
|
|
|
switch (IntNo) {
|
|
case Intrinsic::arm_neon_vshifts:
|
|
case Intrinsic::arm_neon_vshiftu:
|
|
// Opcode already set above.
|
|
break;
|
|
case Intrinsic::arm_neon_vrshifts:
|
|
VShiftOpc = ARMISD::VRSHRs; break;
|
|
case Intrinsic::arm_neon_vrshiftu:
|
|
VShiftOpc = ARMISD::VRSHRu; break;
|
|
case Intrinsic::arm_neon_vrshiftn:
|
|
VShiftOpc = ARMISD::VRSHRN; break;
|
|
case Intrinsic::arm_neon_vqshifts:
|
|
VShiftOpc = ARMISD::VQSHLs; break;
|
|
case Intrinsic::arm_neon_vqshiftu:
|
|
VShiftOpc = ARMISD::VQSHLu; break;
|
|
case Intrinsic::arm_neon_vqshiftsu:
|
|
VShiftOpc = ARMISD::VQSHLsu; break;
|
|
case Intrinsic::arm_neon_vqshiftns:
|
|
VShiftOpc = ARMISD::VQSHRNs; break;
|
|
case Intrinsic::arm_neon_vqshiftnu:
|
|
VShiftOpc = ARMISD::VQSHRNu; break;
|
|
case Intrinsic::arm_neon_vqshiftnsu:
|
|
VShiftOpc = ARMISD::VQSHRNsu; break;
|
|
case Intrinsic::arm_neon_vqrshiftns:
|
|
VShiftOpc = ARMISD::VQRSHRNs; break;
|
|
case Intrinsic::arm_neon_vqrshiftnu:
|
|
VShiftOpc = ARMISD::VQRSHRNu; break;
|
|
case Intrinsic::arm_neon_vqrshiftnsu:
|
|
VShiftOpc = ARMISD::VQRSHRNsu; break;
|
|
}
|
|
|
|
SDLoc dl(N);
|
|
return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
|
|
N->getOperand(1), DAG.getConstant(Cnt, dl, MVT::i32));
|
|
}
|
|
|
|
case Intrinsic::arm_neon_vshiftins: {
|
|
EVT VT = N->getOperand(1).getValueType();
|
|
int64_t Cnt;
|
|
unsigned VShiftOpc = 0;
|
|
|
|
if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
|
|
VShiftOpc = ARMISD::VSLI;
|
|
else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
|
|
VShiftOpc = ARMISD::VSRI;
|
|
else {
|
|
llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
|
|
}
|
|
|
|
SDLoc dl(N);
|
|
return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
|
|
N->getOperand(1), N->getOperand(2),
|
|
DAG.getConstant(Cnt, dl, MVT::i32));
|
|
}
|
|
|
|
case Intrinsic::arm_neon_vqrshifts:
|
|
case Intrinsic::arm_neon_vqrshiftu:
|
|
// No immediate versions of these to check for.
|
|
break;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// PerformShiftCombine - Checks for immediate versions of vector shifts and
|
|
/// lowers them. As with the vector shift intrinsics, this is done during DAG
|
|
/// combining instead of DAG legalizing because the build_vectors for 64-bit
|
|
/// vector element shift counts are generally not legal, and it is hard to see
|
|
/// their values after they get legalized to loads from a constant pool.
|
|
static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
|
|
const ARMSubtarget *ST) {
|
|
EVT VT = N->getValueType(0);
|
|
if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
|
|
// Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
|
|
// 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
|
|
SDValue N1 = N->getOperand(1);
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
|
|
SDValue N0 = N->getOperand(0);
|
|
if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
|
|
DAG.MaskedValueIsZero(N0.getOperand(0),
|
|
APInt::getHighBitsSet(32, 16)))
|
|
return DAG.getNode(ISD::ROTR, SDLoc(N), VT, N0, N1);
|
|
}
|
|
}
|
|
|
|
// Nothing to be done for scalar shifts.
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
if (!VT.isVector() || !TLI.isTypeLegal(VT))
|
|
return SDValue();
|
|
|
|
assert(ST->hasNEON() && "unexpected vector shift");
|
|
int64_t Cnt;
|
|
|
|
switch (N->getOpcode()) {
|
|
default: llvm_unreachable("unexpected shift opcode");
|
|
|
|
case ISD::SHL:
|
|
if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) {
|
|
SDLoc dl(N);
|
|
return DAG.getNode(ARMISD::VSHL, dl, VT, N->getOperand(0),
|
|
DAG.getConstant(Cnt, dl, MVT::i32));
|
|
}
|
|
break;
|
|
|
|
case ISD::SRA:
|
|
case ISD::SRL:
|
|
if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
|
|
unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
|
|
ARMISD::VSHRs : ARMISD::VSHRu);
|
|
SDLoc dl(N);
|
|
return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
|
|
DAG.getConstant(Cnt, dl, MVT::i32));
|
|
}
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
|
|
/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
|
|
static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
|
|
const ARMSubtarget *ST) {
|
|
SDValue N0 = N->getOperand(0);
|
|
|
|
// Check for sign- and zero-extensions of vector extract operations of 8-
|
|
// and 16-bit vector elements. NEON supports these directly. They are
|
|
// handled during DAG combining because type legalization will promote them
|
|
// to 32-bit types and it is messy to recognize the operations after that.
|
|
if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
|
|
SDValue Vec = N0.getOperand(0);
|
|
SDValue Lane = N0.getOperand(1);
|
|
EVT VT = N->getValueType(0);
|
|
EVT EltVT = N0.getValueType();
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
|
|
if (VT == MVT::i32 &&
|
|
(EltVT == MVT::i8 || EltVT == MVT::i16) &&
|
|
TLI.isTypeLegal(Vec.getValueType()) &&
|
|
isa<ConstantSDNode>(Lane)) {
|
|
|
|
unsigned Opc = 0;
|
|
switch (N->getOpcode()) {
|
|
default: llvm_unreachable("unexpected opcode");
|
|
case ISD::SIGN_EXTEND:
|
|
Opc = ARMISD::VGETLANEs;
|
|
break;
|
|
case ISD::ZERO_EXTEND:
|
|
case ISD::ANY_EXTEND:
|
|
Opc = ARMISD::VGETLANEu;
|
|
break;
|
|
}
|
|
return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane);
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static const APInt *isPowerOf2Constant(SDValue V) {
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
|
|
if (!C)
|
|
return nullptr;
|
|
const APInt *CV = &C->getAPIntValue();
|
|
return CV->isPowerOf2() ? CV : nullptr;
|
|
}
|
|
|
|
SDValue ARMTargetLowering::PerformCMOVToBFICombine(SDNode *CMOV, SelectionDAG &DAG) const {
|
|
// If we have a CMOV, OR and AND combination such as:
|
|
// if (x & CN)
|
|
// y |= CM;
|
|
//
|
|
// And:
|
|
// * CN is a single bit;
|
|
// * All bits covered by CM are known zero in y
|
|
//
|
|
// Then we can convert this into a sequence of BFI instructions. This will
|
|
// always be a win if CM is a single bit, will always be no worse than the
|
|
// TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is
|
|
// three bits (due to the extra IT instruction).
|
|
|
|
SDValue Op0 = CMOV->getOperand(0);
|
|
SDValue Op1 = CMOV->getOperand(1);
|
|
auto CCNode = cast<ConstantSDNode>(CMOV->getOperand(2));
|
|
auto CC = CCNode->getAPIntValue().getLimitedValue();
|
|
SDValue CmpZ = CMOV->getOperand(4);
|
|
|
|
// The compare must be against zero.
|
|
if (!isNullConstant(CmpZ->getOperand(1)))
|
|
return SDValue();
|
|
|
|
assert(CmpZ->getOpcode() == ARMISD::CMPZ);
|
|
SDValue And = CmpZ->getOperand(0);
|
|
if (And->getOpcode() != ISD::AND)
|
|
return SDValue();
|
|
const APInt *AndC = isPowerOf2Constant(And->getOperand(1));
|
|
if (!AndC)
|
|
return SDValue();
|
|
SDValue X = And->getOperand(0);
|
|
|
|
if (CC == ARMCC::EQ) {
|
|
// We're performing an "equal to zero" compare. Swap the operands so we
|
|
// canonicalize on a "not equal to zero" compare.
|
|
std::swap(Op0, Op1);
|
|
} else {
|
|
assert(CC == ARMCC::NE && "How can a CMPZ node not be EQ or NE?");
|
|
}
|
|
|
|
if (Op1->getOpcode() != ISD::OR)
|
|
return SDValue();
|
|
|
|
ConstantSDNode *OrC = dyn_cast<ConstantSDNode>(Op1->getOperand(1));
|
|
if (!OrC)
|
|
return SDValue();
|
|
SDValue Y = Op1->getOperand(0);
|
|
|
|
if (Op0 != Y)
|
|
return SDValue();
|
|
|
|
// Now, is it profitable to continue?
|
|
APInt OrCI = OrC->getAPIntValue();
|
|
unsigned Heuristic = Subtarget->isThumb() ? 3 : 2;
|
|
if (OrCI.countPopulation() > Heuristic)
|
|
return SDValue();
|
|
|
|
// Lastly, can we determine that the bits defined by OrCI
|
|
// are zero in Y?
|
|
KnownBits Known;
|
|
DAG.computeKnownBits(Y, Known);
|
|
if ((OrCI & Known.Zero) != OrCI)
|
|
return SDValue();
|
|
|
|
// OK, we can do the combine.
|
|
SDValue V = Y;
|
|
SDLoc dl(X);
|
|
EVT VT = X.getValueType();
|
|
unsigned BitInX = AndC->logBase2();
|
|
|
|
if (BitInX != 0) {
|
|
// We must shift X first.
|
|
X = DAG.getNode(ISD::SRL, dl, VT, X,
|
|
DAG.getConstant(BitInX, dl, VT));
|
|
}
|
|
|
|
for (unsigned BitInY = 0, NumActiveBits = OrCI.getActiveBits();
|
|
BitInY < NumActiveBits; ++BitInY) {
|
|
if (OrCI[BitInY] == 0)
|
|
continue;
|
|
APInt Mask(VT.getSizeInBits(), 0);
|
|
Mask.setBit(BitInY);
|
|
V = DAG.getNode(ARMISD::BFI, dl, VT, V, X,
|
|
// Confusingly, the operand is an *inverted* mask.
|
|
DAG.getConstant(~Mask, dl, VT));
|
|
}
|
|
|
|
return V;
|
|
}
|
|
|
|
/// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND.
|
|
SDValue
|
|
ARMTargetLowering::PerformBRCONDCombine(SDNode *N, SelectionDAG &DAG) const {
|
|
SDValue Cmp = N->getOperand(4);
|
|
if (Cmp.getOpcode() != ARMISD::CMPZ)
|
|
// Only looking at NE cases.
|
|
return SDValue();
|
|
|
|
EVT VT = N->getValueType(0);
|
|
SDLoc dl(N);
|
|
SDValue LHS = Cmp.getOperand(0);
|
|
SDValue RHS = Cmp.getOperand(1);
|
|
SDValue Chain = N->getOperand(0);
|
|
SDValue BB = N->getOperand(1);
|
|
SDValue ARMcc = N->getOperand(2);
|
|
ARMCC::CondCodes CC =
|
|
(ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
|
|
|
|
// (brcond Chain BB ne CPSR (cmpz (and (cmov 0 1 CC CPSR Cmp) 1) 0))
|
|
// -> (brcond Chain BB CC CPSR Cmp)
|
|
if (CC == ARMCC::NE && LHS.getOpcode() == ISD::AND && LHS->hasOneUse() &&
|
|
LHS->getOperand(0)->getOpcode() == ARMISD::CMOV &&
|
|
LHS->getOperand(0)->hasOneUse()) {
|
|
auto *LHS00C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(0));
|
|
auto *LHS01C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(1));
|
|
auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
|
|
auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
|
|
if ((LHS00C && LHS00C->getZExtValue() == 0) &&
|
|
(LHS01C && LHS01C->getZExtValue() == 1) &&
|
|
(LHS1C && LHS1C->getZExtValue() == 1) &&
|
|
(RHSC && RHSC->getZExtValue() == 0)) {
|
|
return DAG.getNode(
|
|
ARMISD::BRCOND, dl, VT, Chain, BB, LHS->getOperand(0)->getOperand(2),
|
|
LHS->getOperand(0)->getOperand(3), LHS->getOperand(0)->getOperand(4));
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
|
|
SDValue
|
|
ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
|
|
SDValue Cmp = N->getOperand(4);
|
|
if (Cmp.getOpcode() != ARMISD::CMPZ)
|
|
// Only looking at EQ and NE cases.
|
|
return SDValue();
|
|
|
|
EVT VT = N->getValueType(0);
|
|
SDLoc dl(N);
|
|
SDValue LHS = Cmp.getOperand(0);
|
|
SDValue RHS = Cmp.getOperand(1);
|
|
SDValue FalseVal = N->getOperand(0);
|
|
SDValue TrueVal = N->getOperand(1);
|
|
SDValue ARMcc = N->getOperand(2);
|
|
ARMCC::CondCodes CC =
|
|
(ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
|
|
|
|
// BFI is only available on V6T2+.
|
|
if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops()) {
|
|
SDValue R = PerformCMOVToBFICombine(N, DAG);
|
|
if (R)
|
|
return R;
|
|
}
|
|
|
|
// Simplify
|
|
// mov r1, r0
|
|
// cmp r1, x
|
|
// mov r0, y
|
|
// moveq r0, x
|
|
// to
|
|
// cmp r0, x
|
|
// movne r0, y
|
|
//
|
|
// mov r1, r0
|
|
// cmp r1, x
|
|
// mov r0, x
|
|
// movne r0, y
|
|
// to
|
|
// cmp r0, x
|
|
// movne r0, y
|
|
/// FIXME: Turn this into a target neutral optimization?
|
|
SDValue Res;
|
|
if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
|
|
Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
|
|
N->getOperand(3), Cmp);
|
|
} else if (CC == ARMCC::EQ && TrueVal == RHS) {
|
|
SDValue ARMcc;
|
|
SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
|
|
Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
|
|
N->getOperand(3), NewCmp);
|
|
}
|
|
|
|
// (cmov F T ne CPSR (cmpz (cmov 0 1 CC CPSR Cmp) 0))
|
|
// -> (cmov F T CC CPSR Cmp)
|
|
if (CC == ARMCC::NE && LHS.getOpcode() == ARMISD::CMOV && LHS->hasOneUse()) {
|
|
auto *LHS0C = dyn_cast<ConstantSDNode>(LHS->getOperand(0));
|
|
auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
|
|
auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
|
|
if ((LHS0C && LHS0C->getZExtValue() == 0) &&
|
|
(LHS1C && LHS1C->getZExtValue() == 1) &&
|
|
(RHSC && RHSC->getZExtValue() == 0)) {
|
|
return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
|
|
LHS->getOperand(2), LHS->getOperand(3),
|
|
LHS->getOperand(4));
|
|
}
|
|
}
|
|
|
|
if (!VT.isInteger())
|
|
return SDValue();
|
|
|
|
// Materialize a boolean comparison for integers so we can avoid branching.
|
|
if (isNullConstant(FalseVal)) {
|
|
if (CC == ARMCC::EQ && isOneConstant(TrueVal)) {
|
|
if (!Subtarget->isThumb1Only() && Subtarget->hasV5TOps()) {
|
|
// If x == y then x - y == 0 and ARM's CLZ will return 32, shifting it
|
|
// right 5 bits will make that 32 be 1, otherwise it will be 0.
|
|
// CMOV 0, 1, ==, (CMPZ x, y) -> SRL (CTLZ (SUB x, y)), 5
|
|
SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
|
|
Res = DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::CTLZ, dl, VT, Sub),
|
|
DAG.getConstant(5, dl, MVT::i32));
|
|
} else {
|
|
// CMOV 0, 1, ==, (CMPZ x, y) ->
|
|
// (ADDCARRY (SUB x, y), t:0, t:1)
|
|
// where t = (SUBCARRY 0, (SUB x, y), 0)
|
|
//
|
|
// The SUBCARRY computes 0 - (x - y) and this will give a borrow when
|
|
// x != y. In other words, a carry C == 1 when x == y, C == 0
|
|
// otherwise.
|
|
// The final ADDCARRY computes
|
|
// x - y + (0 - (x - y)) + C == C
|
|
SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
|
|
SDVTList VTs = DAG.getVTList(VT, MVT::i32);
|
|
SDValue Neg = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, Sub);
|
|
// ISD::SUBCARRY returns a borrow but we want the carry here
|
|
// actually.
|
|
SDValue Carry =
|
|
DAG.getNode(ISD::SUB, dl, MVT::i32,
|
|
DAG.getConstant(1, dl, MVT::i32), Neg.getValue(1));
|
|
Res = DAG.getNode(ISD::ADDCARRY, dl, VTs, Sub, Neg, Carry);
|
|
}
|
|
} else if (CC == ARMCC::NE && LHS != RHS &&
|
|
(!Subtarget->isThumb1Only() || isPowerOf2Constant(TrueVal))) {
|
|
// This seems pointless but will allow us to combine it further below.
|
|
// CMOV 0, z, !=, (CMPZ x, y) -> CMOV (SUB x, y), z, !=, (CMPZ x, y)
|
|
SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
|
|
Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, TrueVal, ARMcc,
|
|
N->getOperand(3), Cmp);
|
|
}
|
|
} else if (isNullConstant(TrueVal)) {
|
|
if (CC == ARMCC::EQ && LHS != RHS &&
|
|
(!Subtarget->isThumb1Only() || isPowerOf2Constant(FalseVal))) {
|
|
// This seems pointless but will allow us to combine it further below
|
|
// Note that we change == for != as this is the dual for the case above.
|
|
// CMOV z, 0, ==, (CMPZ x, y) -> CMOV (SUB x, y), z, !=, (CMPZ x, y)
|
|
SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
|
|
Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, FalseVal,
|
|
DAG.getConstant(ARMCC::NE, dl, MVT::i32),
|
|
N->getOperand(3), Cmp);
|
|
}
|
|
}
|
|
|
|
// On Thumb1, the DAG above may be further combined if z is a power of 2
|
|
// (z == 2 ^ K).
|
|
// CMOV (SUB x, y), z, !=, (CMPZ x, y) ->
|
|
// merge t3, t4
|
|
// where t1 = (SUBCARRY (SUB x, y), z, 0)
|
|
// t2 = (SUBCARRY (SUB x, y), t1:0, t1:1)
|
|
// t3 = if K != 0 then (SHL t2:0, K) else t2:0
|
|
// t4 = (SUB 1, t2:1) [ we want a carry, not a borrow ]
|
|
const APInt *TrueConst;
|
|
if (Subtarget->isThumb1Only() && CC == ARMCC::NE &&
|
|
(FalseVal.getOpcode() == ISD::SUB) && (FalseVal.getOperand(0) == LHS) &&
|
|
(FalseVal.getOperand(1) == RHS) &&
|
|
(TrueConst = isPowerOf2Constant(TrueVal))) {
|
|
SDVTList VTs = DAG.getVTList(VT, MVT::i32);
|
|
unsigned ShiftAmount = TrueConst->logBase2();
|
|
if (ShiftAmount)
|
|
TrueVal = DAG.getConstant(1, dl, VT);
|
|
SDValue Subc = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, TrueVal);
|
|
Res = DAG.getNode(ISD::SUBCARRY, dl, VTs, FalseVal, Subc, Subc.getValue(1));
|
|
// Make it a carry, not a borrow.
|
|
SDValue Carry = DAG.getNode(
|
|
ISD::SUB, dl, VT, DAG.getConstant(1, dl, MVT::i32), Res.getValue(1));
|
|
Res = DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Res, Carry);
|
|
|
|
if (ShiftAmount)
|
|
Res = DAG.getNode(ISD::SHL, dl, VT, Res,
|
|
DAG.getConstant(ShiftAmount, dl, MVT::i32));
|
|
}
|
|
|
|
if (Res.getNode()) {
|
|
KnownBits Known;
|
|
DAG.computeKnownBits(SDValue(N,0), Known);
|
|
// Capture demanded bits information that would be otherwise lost.
|
|
if (Known.Zero == 0xfffffffe)
|
|
Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
|
|
DAG.getValueType(MVT::i1));
|
|
else if (Known.Zero == 0xffffff00)
|
|
Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
|
|
DAG.getValueType(MVT::i8));
|
|
else if (Known.Zero == 0xffff0000)
|
|
Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
|
|
DAG.getValueType(MVT::i16));
|
|
}
|
|
|
|
return Res;
|
|
}
|
|
|
|
SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
|
|
DAGCombinerInfo &DCI) const {
|
|
switch (N->getOpcode()) {
|
|
default: break;
|
|
case ARMISD::ADDE: return PerformADDECombine(N, DCI, Subtarget);
|
|
case ARMISD::UMLAL: return PerformUMLALCombine(N, DCI.DAG, Subtarget);
|
|
case ISD::ADD: return PerformADDCombine(N, DCI, Subtarget);
|
|
case ISD::SUB: return PerformSUBCombine(N, DCI);
|
|
case ISD::MUL: return PerformMULCombine(N, DCI, Subtarget);
|
|
case ISD::OR: return PerformORCombine(N, DCI, Subtarget);
|
|
case ISD::XOR: return PerformXORCombine(N, DCI, Subtarget);
|
|
case ISD::AND: return PerformANDCombine(N, DCI, Subtarget);
|
|
case ARMISD::ADDC:
|
|
case ARMISD::SUBC: return PerformAddcSubcCombine(N, DCI, Subtarget);
|
|
case ARMISD::SUBE: return PerformAddeSubeCombine(N, DCI, Subtarget);
|
|
case ARMISD::BFI: return PerformBFICombine(N, DCI);
|
|
case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI, Subtarget);
|
|
case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
|
|
case ISD::STORE: return PerformSTORECombine(N, DCI);
|
|
case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI, Subtarget);
|
|
case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
|
|
case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
|
|
case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
|
|
case ARMISD::VDUP: return PerformVDUPCombine(N, DCI);
|
|
case ISD::FP_TO_SINT:
|
|
case ISD::FP_TO_UINT:
|
|
return PerformVCVTCombine(N, DCI.DAG, Subtarget);
|
|
case ISD::FDIV:
|
|
return PerformVDIVCombine(N, DCI.DAG, Subtarget);
|
|
case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
|
|
case ISD::SHL:
|
|
case ISD::SRA:
|
|
case ISD::SRL: return PerformShiftCombine(N, DCI.DAG, Subtarget);
|
|
case ISD::SIGN_EXTEND:
|
|
case ISD::ZERO_EXTEND:
|
|
case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
|
|
case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
|
|
case ARMISD::BRCOND: return PerformBRCONDCombine(N, DCI.DAG);
|
|
case ISD::LOAD: return PerformLOADCombine(N, DCI);
|
|
case ARMISD::VLD1DUP:
|
|
case ARMISD::VLD2DUP:
|
|
case ARMISD::VLD3DUP:
|
|
case ARMISD::VLD4DUP:
|
|
return PerformVLDCombine(N, DCI);
|
|
case ARMISD::BUILD_VECTOR:
|
|
return PerformARMBUILD_VECTORCombine(N, DCI);
|
|
case ARMISD::SMULWB: {
|
|
unsigned BitWidth = N->getValueType(0).getSizeInBits();
|
|
APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
|
|
if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
|
|
return SDValue();
|
|
break;
|
|
}
|
|
case ARMISD::SMULWT: {
|
|
unsigned BitWidth = N->getValueType(0).getSizeInBits();
|
|
APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
|
|
if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
|
|
return SDValue();
|
|
break;
|
|
}
|
|
case ARMISD::SMLALBB: {
|
|
unsigned BitWidth = N->getValueType(0).getSizeInBits();
|
|
APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
|
|
if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
|
|
(SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
|
|
return SDValue();
|
|
break;
|
|
}
|
|
case ARMISD::SMLALBT: {
|
|
unsigned LowWidth = N->getOperand(0).getValueType().getSizeInBits();
|
|
APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
|
|
unsigned HighWidth = N->getOperand(1).getValueType().getSizeInBits();
|
|
APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
|
|
if ((SimplifyDemandedBits(N->getOperand(0), LowMask, DCI)) ||
|
|
(SimplifyDemandedBits(N->getOperand(1), HighMask, DCI)))
|
|
return SDValue();
|
|
break;
|
|
}
|
|
case ARMISD::SMLALTB: {
|
|
unsigned HighWidth = N->getOperand(0).getValueType().getSizeInBits();
|
|
APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
|
|
unsigned LowWidth = N->getOperand(1).getValueType().getSizeInBits();
|
|
APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
|
|
if ((SimplifyDemandedBits(N->getOperand(0), HighMask, DCI)) ||
|
|
(SimplifyDemandedBits(N->getOperand(1), LowMask, DCI)))
|
|
return SDValue();
|
|
break;
|
|
}
|
|
case ARMISD::SMLALTT: {
|
|
unsigned BitWidth = N->getValueType(0).getSizeInBits();
|
|
APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
|
|
if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
|
|
(SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
|
|
return SDValue();
|
|
break;
|
|
}
|
|
case ISD::INTRINSIC_VOID:
|
|
case ISD::INTRINSIC_W_CHAIN:
|
|
switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
|
|
case Intrinsic::arm_neon_vld1:
|
|
case Intrinsic::arm_neon_vld1x2:
|
|
case Intrinsic::arm_neon_vld1x3:
|
|
case Intrinsic::arm_neon_vld1x4:
|
|
case Intrinsic::arm_neon_vld2:
|
|
case Intrinsic::arm_neon_vld3:
|
|
case Intrinsic::arm_neon_vld4:
|
|
case Intrinsic::arm_neon_vld2lane:
|
|
case Intrinsic::arm_neon_vld3lane:
|
|
case Intrinsic::arm_neon_vld4lane:
|
|
case Intrinsic::arm_neon_vld2dup:
|
|
case Intrinsic::arm_neon_vld3dup:
|
|
case Intrinsic::arm_neon_vld4dup:
|
|
case Intrinsic::arm_neon_vst1:
|
|
case Intrinsic::arm_neon_vst1x2:
|
|
case Intrinsic::arm_neon_vst1x3:
|
|
case Intrinsic::arm_neon_vst1x4:
|
|
case Intrinsic::arm_neon_vst2:
|
|
case Intrinsic::arm_neon_vst3:
|
|
case Intrinsic::arm_neon_vst4:
|
|
case Intrinsic::arm_neon_vst2lane:
|
|
case Intrinsic::arm_neon_vst3lane:
|
|
case Intrinsic::arm_neon_vst4lane:
|
|
return PerformVLDCombine(N, DCI);
|
|
default: break;
|
|
}
|
|
break;
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
|
|
EVT VT) const {
|
|
return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
|
|
}
|
|
|
|
bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
|
|
unsigned,
|
|
unsigned,
|
|
bool *Fast) const {
|
|
// Depends what it gets converted into if the type is weird.
|
|
if (!VT.isSimple())
|
|
return false;
|
|
|
|
// The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
|
|
bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
|
|
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default:
|
|
return false;
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
case MVT::i32: {
|
|
// Unaligned access can use (for example) LRDB, LRDH, LDR
|
|
if (AllowsUnaligned) {
|
|
if (Fast)
|
|
*Fast = Subtarget->hasV7Ops();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
case MVT::f64:
|
|
case MVT::v2f64: {
|
|
// For any little-endian targets with neon, we can support unaligned ld/st
|
|
// of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
|
|
// A big-endian target may also explicitly support unaligned accesses
|
|
if (Subtarget->hasNEON() && (AllowsUnaligned || Subtarget->isLittle())) {
|
|
if (Fast)
|
|
*Fast = true;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
|
|
unsigned AlignCheck) {
|
|
return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
|
|
(DstAlign == 0 || DstAlign % AlignCheck == 0));
|
|
}
|
|
|
|
EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size,
|
|
unsigned DstAlign, unsigned SrcAlign,
|
|
bool IsMemset, bool ZeroMemset,
|
|
bool MemcpyStrSrc,
|
|
MachineFunction &MF) const {
|
|
const Function &F = MF.getFunction();
|
|
|
|
// See if we can use NEON instructions for this...
|
|
if ((!IsMemset || ZeroMemset) && Subtarget->hasNEON() &&
|
|
!F.hasFnAttribute(Attribute::NoImplicitFloat)) {
|
|
bool Fast;
|
|
if (Size >= 16 &&
|
|
(memOpAlign(SrcAlign, DstAlign, 16) ||
|
|
(allowsMisalignedMemoryAccesses(MVT::v2f64, 0, 1, &Fast) && Fast))) {
|
|
return MVT::v2f64;
|
|
} else if (Size >= 8 &&
|
|
(memOpAlign(SrcAlign, DstAlign, 8) ||
|
|
(allowsMisalignedMemoryAccesses(MVT::f64, 0, 1, &Fast) &&
|
|
Fast))) {
|
|
return MVT::f64;
|
|
}
|
|
}
|
|
|
|
// Let the target-independent logic figure it out.
|
|
return MVT::Other;
|
|
}
|
|
|
|
// 64-bit integers are split into their high and low parts and held in two
|
|
// different registers, so the trunc is free since the low register can just
|
|
// be used.
|
|
bool ARMTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
|
|
if (!SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
|
|
return false;
|
|
unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
|
|
unsigned DestBits = DstTy->getPrimitiveSizeInBits();
|
|
return (SrcBits == 64 && DestBits == 32);
|
|
}
|
|
|
|
bool ARMTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
|
|
if (SrcVT.isVector() || DstVT.isVector() || !SrcVT.isInteger() ||
|
|
!DstVT.isInteger())
|
|
return false;
|
|
unsigned SrcBits = SrcVT.getSizeInBits();
|
|
unsigned DestBits = DstVT.getSizeInBits();
|
|
return (SrcBits == 64 && DestBits == 32);
|
|
}
|
|
|
|
bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
|
|
if (Val.getOpcode() != ISD::LOAD)
|
|
return false;
|
|
|
|
EVT VT1 = Val.getValueType();
|
|
if (!VT1.isSimple() || !VT1.isInteger() ||
|
|
!VT2.isSimple() || !VT2.isInteger())
|
|
return false;
|
|
|
|
switch (VT1.getSimpleVT().SimpleTy) {
|
|
default: break;
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
// 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool ARMTargetLowering::isFNegFree(EVT VT) const {
|
|
if (!VT.isSimple())
|
|
return false;
|
|
|
|
// There are quite a few FP16 instructions (e.g. VNMLA, VNMLS, etc.) that
|
|
// negate values directly (fneg is free). So, we don't want to let the DAG
|
|
// combiner rewrite fneg into xors and some other instructions. For f16 and
|
|
// FullFP16 argument passing, some bitcast nodes may be introduced,
|
|
// triggering this DAG combine rewrite, so we are avoiding that with this.
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default: break;
|
|
case MVT::f16:
|
|
return Subtarget->hasFullFP16();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
|
|
EVT VT = ExtVal.getValueType();
|
|
|
|
if (!isTypeLegal(VT))
|
|
return false;
|
|
|
|
// Don't create a loadext if we can fold the extension into a wide/long
|
|
// instruction.
|
|
// If there's more than one user instruction, the loadext is desirable no
|
|
// matter what. There can be two uses by the same instruction.
|
|
if (ExtVal->use_empty() ||
|
|
!ExtVal->use_begin()->isOnlyUserOf(ExtVal.getNode()))
|
|
return true;
|
|
|
|
SDNode *U = *ExtVal->use_begin();
|
|
if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB ||
|
|
U->getOpcode() == ISD::SHL || U->getOpcode() == ARMISD::VSHL))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
|
|
if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
|
|
return false;
|
|
|
|
if (!isTypeLegal(EVT::getEVT(Ty1)))
|
|
return false;
|
|
|
|
assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
|
|
|
|
// Assuming the caller doesn't have a zeroext or signext return parameter,
|
|
// truncation all the way down to i1 is valid.
|
|
return true;
|
|
}
|
|
|
|
int ARMTargetLowering::getScalingFactorCost(const DataLayout &DL,
|
|
const AddrMode &AM, Type *Ty,
|
|
unsigned AS) const {
|
|
if (isLegalAddressingMode(DL, AM, Ty, AS)) {
|
|
if (Subtarget->hasFPAO())
|
|
return AM.Scale < 0 ? 1 : 0; // positive offsets execute faster
|
|
return 0;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
|
|
if (V < 0)
|
|
return false;
|
|
|
|
unsigned Scale = 1;
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default: return false;
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
// Scale == 1;
|
|
break;
|
|
case MVT::i16:
|
|
// Scale == 2;
|
|
Scale = 2;
|
|
break;
|
|
case MVT::i32:
|
|
// Scale == 4;
|
|
Scale = 4;
|
|
break;
|
|
}
|
|
|
|
if ((V & (Scale - 1)) != 0)
|
|
return false;
|
|
V /= Scale;
|
|
return V == (V & ((1LL << 5) - 1));
|
|
}
|
|
|
|
static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
|
|
const ARMSubtarget *Subtarget) {
|
|
bool isNeg = false;
|
|
if (V < 0) {
|
|
isNeg = true;
|
|
V = - V;
|
|
}
|
|
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default: return false;
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
case MVT::i32:
|
|
// + imm12 or - imm8
|
|
if (isNeg)
|
|
return V == (V & ((1LL << 8) - 1));
|
|
return V == (V & ((1LL << 12) - 1));
|
|
case MVT::f32:
|
|
case MVT::f64:
|
|
// Same as ARM mode. FIXME: NEON?
|
|
if (!Subtarget->hasVFP2())
|
|
return false;
|
|
if ((V & 3) != 0)
|
|
return false;
|
|
V >>= 2;
|
|
return V == (V & ((1LL << 8) - 1));
|
|
}
|
|
}
|
|
|
|
/// isLegalAddressImmediate - Return true if the integer value can be used
|
|
/// as the offset of the target addressing mode for load / store of the
|
|
/// given type.
|
|
static bool isLegalAddressImmediate(int64_t V, EVT VT,
|
|
const ARMSubtarget *Subtarget) {
|
|
if (V == 0)
|
|
return true;
|
|
|
|
if (!VT.isSimple())
|
|
return false;
|
|
|
|
if (Subtarget->isThumb1Only())
|
|
return isLegalT1AddressImmediate(V, VT);
|
|
else if (Subtarget->isThumb2())
|
|
return isLegalT2AddressImmediate(V, VT, Subtarget);
|
|
|
|
// ARM mode.
|
|
if (V < 0)
|
|
V = - V;
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default: return false;
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
case MVT::i32:
|
|
// +- imm12
|
|
return V == (V & ((1LL << 12) - 1));
|
|
case MVT::i16:
|
|
// +- imm8
|
|
return V == (V & ((1LL << 8) - 1));
|
|
case MVT::f32:
|
|
case MVT::f64:
|
|
if (!Subtarget->hasVFP2()) // FIXME: NEON?
|
|
return false;
|
|
if ((V & 3) != 0)
|
|
return false;
|
|
V >>= 2;
|
|
return V == (V & ((1LL << 8) - 1));
|
|
}
|
|
}
|
|
|
|
bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
|
|
EVT VT) const {
|
|
int Scale = AM.Scale;
|
|
if (Scale < 0)
|
|
return false;
|
|
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default: return false;
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
case MVT::i32:
|
|
if (Scale == 1)
|
|
return true;
|
|
// r + r << imm
|
|
Scale = Scale & ~1;
|
|
return Scale == 2 || Scale == 4 || Scale == 8;
|
|
case MVT::i64:
|
|
// FIXME: What are we trying to model here? ldrd doesn't have an r + r
|
|
// version in Thumb mode.
|
|
// r + r
|
|
if (Scale == 1)
|
|
return true;
|
|
// r * 2 (this can be lowered to r + r).
|
|
if (!AM.HasBaseReg && Scale == 2)
|
|
return true;
|
|
return false;
|
|
case MVT::isVoid:
|
|
// Note, we allow "void" uses (basically, uses that aren't loads or
|
|
// stores), because arm allows folding a scale into many arithmetic
|
|
// operations. This should be made more precise and revisited later.
|
|
|
|
// Allow r << imm, but the imm has to be a multiple of two.
|
|
if (Scale & 1) return false;
|
|
return isPowerOf2_32(Scale);
|
|
}
|
|
}
|
|
|
|
bool ARMTargetLowering::isLegalT1ScaledAddressingMode(const AddrMode &AM,
|
|
EVT VT) const {
|
|
const int Scale = AM.Scale;
|
|
|
|
// Negative scales are not supported in Thumb1.
|
|
if (Scale < 0)
|
|
return false;
|
|
|
|
// Thumb1 addressing modes do not support register scaling excepting the
|
|
// following cases:
|
|
// 1. Scale == 1 means no scaling.
|
|
// 2. Scale == 2 this can be lowered to r + r if there is no base register.
|
|
return (Scale == 1) || (!AM.HasBaseReg && Scale == 2);
|
|
}
|
|
|
|
/// isLegalAddressingMode - Return true if the addressing mode represented
|
|
/// by AM is legal for this target, for a load/store of the specified type.
|
|
bool ARMTargetLowering::isLegalAddressingMode(const DataLayout &DL,
|
|
const AddrMode &AM, Type *Ty,
|
|
unsigned AS, Instruction *I) const {
|
|
EVT VT = getValueType(DL, Ty, true);
|
|
if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
|
|
return false;
|
|
|
|
// Can never fold addr of global into load/store.
|
|
if (AM.BaseGV)
|
|
return false;
|
|
|
|
switch (AM.Scale) {
|
|
case 0: // no scale reg, must be "r+i" or "r", or "i".
|
|
break;
|
|
default:
|
|
// ARM doesn't support any R+R*scale+imm addr modes.
|
|
if (AM.BaseOffs)
|
|
return false;
|
|
|
|
if (!VT.isSimple())
|
|
return false;
|
|
|
|
if (Subtarget->isThumb1Only())
|
|
return isLegalT1ScaledAddressingMode(AM, VT);
|
|
|
|
if (Subtarget->isThumb2())
|
|
return isLegalT2ScaledAddressingMode(AM, VT);
|
|
|
|
int Scale = AM.Scale;
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default: return false;
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
case MVT::i32:
|
|
if (Scale < 0) Scale = -Scale;
|
|
if (Scale == 1)
|
|
return true;
|
|
// r + r << imm
|
|
return isPowerOf2_32(Scale & ~1);
|
|
case MVT::i16:
|
|
case MVT::i64:
|
|
// r +/- r
|
|
if (Scale == 1 || (AM.HasBaseReg && Scale == -1))
|
|
return true;
|
|
// r * 2 (this can be lowered to r + r).
|
|
if (!AM.HasBaseReg && Scale == 2)
|
|
return true;
|
|
return false;
|
|
|
|
case MVT::isVoid:
|
|
// Note, we allow "void" uses (basically, uses that aren't loads or
|
|
// stores), because arm allows folding a scale into many arithmetic
|
|
// operations. This should be made more precise and revisited later.
|
|
|
|
// Allow r << imm, but the imm has to be a multiple of two.
|
|
if (Scale & 1) return false;
|
|
return isPowerOf2_32(Scale);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// isLegalICmpImmediate - Return true if the specified immediate is legal
|
|
/// icmp immediate, that is the target has icmp instructions which can compare
|
|
/// a register against the immediate without having to materialize the
|
|
/// immediate into a register.
|
|
bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
|
|
// Thumb2 and ARM modes can use cmn for negative immediates.
|
|
if (!Subtarget->isThumb())
|
|
return ARM_AM::getSOImmVal(std::abs(Imm)) != -1;
|
|
if (Subtarget->isThumb2())
|
|
return ARM_AM::getT2SOImmVal(std::abs(Imm)) != -1;
|
|
// Thumb1 doesn't have cmn, and only 8-bit immediates.
|
|
return Imm >= 0 && Imm <= 255;
|
|
}
|
|
|
|
/// isLegalAddImmediate - Return true if the specified immediate is a legal add
|
|
/// *or sub* immediate, that is the target has add or sub instructions which can
|
|
/// add a register with the immediate without having to materialize the
|
|
/// immediate into a register.
|
|
bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
|
|
// Same encoding for add/sub, just flip the sign.
|
|
int64_t AbsImm = std::abs(Imm);
|
|
if (!Subtarget->isThumb())
|
|
return ARM_AM::getSOImmVal(AbsImm) != -1;
|
|
if (Subtarget->isThumb2())
|
|
return ARM_AM::getT2SOImmVal(AbsImm) != -1;
|
|
// Thumb1 only has 8-bit unsigned immediate.
|
|
return AbsImm >= 0 && AbsImm <= 255;
|
|
}
|
|
|
|
static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
|
|
bool isSEXTLoad, SDValue &Base,
|
|
SDValue &Offset, bool &isInc,
|
|
SelectionDAG &DAG) {
|
|
if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
|
|
return false;
|
|
|
|
if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
|
|
// AddressingMode 3
|
|
Base = Ptr->getOperand(0);
|
|
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
|
|
int RHSC = (int)RHS->getZExtValue();
|
|
if (RHSC < 0 && RHSC > -256) {
|
|
assert(Ptr->getOpcode() == ISD::ADD);
|
|
isInc = false;
|
|
Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
|
|
return true;
|
|
}
|
|
}
|
|
isInc = (Ptr->getOpcode() == ISD::ADD);
|
|
Offset = Ptr->getOperand(1);
|
|
return true;
|
|
} else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
|
|
// AddressingMode 2
|
|
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
|
|
int RHSC = (int)RHS->getZExtValue();
|
|
if (RHSC < 0 && RHSC > -0x1000) {
|
|
assert(Ptr->getOpcode() == ISD::ADD);
|
|
isInc = false;
|
|
Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
|
|
Base = Ptr->getOperand(0);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (Ptr->getOpcode() == ISD::ADD) {
|
|
isInc = true;
|
|
ARM_AM::ShiftOpc ShOpcVal=
|
|
ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
|
|
if (ShOpcVal != ARM_AM::no_shift) {
|
|
Base = Ptr->getOperand(1);
|
|
Offset = Ptr->getOperand(0);
|
|
} else {
|
|
Base = Ptr->getOperand(0);
|
|
Offset = Ptr->getOperand(1);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
isInc = (Ptr->getOpcode() == ISD::ADD);
|
|
Base = Ptr->getOperand(0);
|
|
Offset = Ptr->getOperand(1);
|
|
return true;
|
|
}
|
|
|
|
// FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
|
|
return false;
|
|
}
|
|
|
|
static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
|
|
bool isSEXTLoad, SDValue &Base,
|
|
SDValue &Offset, bool &isInc,
|
|
SelectionDAG &DAG) {
|
|
if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
|
|
return false;
|
|
|
|
Base = Ptr->getOperand(0);
|
|
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
|
|
int RHSC = (int)RHS->getZExtValue();
|
|
if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
|
|
assert(Ptr->getOpcode() == ISD::ADD);
|
|
isInc = false;
|
|
Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
|
|
return true;
|
|
} else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
|
|
isInc = Ptr->getOpcode() == ISD::ADD;
|
|
Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0));
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// getPreIndexedAddressParts - returns true by value, base pointer and
|
|
/// offset pointer and addressing mode by reference if the node's address
|
|
/// can be legally represented as pre-indexed load / store address.
|
|
bool
|
|
ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
|
|
SDValue &Offset,
|
|
ISD::MemIndexedMode &AM,
|
|
SelectionDAG &DAG) const {
|
|
if (Subtarget->isThumb1Only())
|
|
return false;
|
|
|
|
EVT VT;
|
|
SDValue Ptr;
|
|
bool isSEXTLoad = false;
|
|
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
|
|
Ptr = LD->getBasePtr();
|
|
VT = LD->getMemoryVT();
|
|
isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
|
|
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
|
|
Ptr = ST->getBasePtr();
|
|
VT = ST->getMemoryVT();
|
|
} else
|
|
return false;
|
|
|
|
bool isInc;
|
|
bool isLegal = false;
|
|
if (Subtarget->isThumb2())
|
|
isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
|
|
Offset, isInc, DAG);
|
|
else
|
|
isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
|
|
Offset, isInc, DAG);
|
|
if (!isLegal)
|
|
return false;
|
|
|
|
AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
|
|
return true;
|
|
}
|
|
|
|
/// getPostIndexedAddressParts - returns true by value, base pointer and
|
|
/// offset pointer and addressing mode by reference if this node can be
|
|
/// combined with a load / store to form a post-indexed load / store.
|
|
bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
|
|
SDValue &Base,
|
|
SDValue &Offset,
|
|
ISD::MemIndexedMode &AM,
|
|
SelectionDAG &DAG) const {
|
|
EVT VT;
|
|
SDValue Ptr;
|
|
bool isSEXTLoad = false, isNonExt;
|
|
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
|
|
VT = LD->getMemoryVT();
|
|
Ptr = LD->getBasePtr();
|
|
isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
|
|
isNonExt = LD->getExtensionType() == ISD::NON_EXTLOAD;
|
|
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
|
|
VT = ST->getMemoryVT();
|
|
Ptr = ST->getBasePtr();
|
|
isNonExt = !ST->isTruncatingStore();
|
|
} else
|
|
return false;
|
|
|
|
if (Subtarget->isThumb1Only()) {
|
|
// Thumb-1 can do a limited post-inc load or store as an updating LDM. It
|
|
// must be non-extending/truncating, i32, with an offset of 4.
|
|
assert(Op->getValueType(0) == MVT::i32 && "Non-i32 post-inc op?!");
|
|
if (Op->getOpcode() != ISD::ADD || !isNonExt)
|
|
return false;
|
|
auto *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1));
|
|
if (!RHS || RHS->getZExtValue() != 4)
|
|
return false;
|
|
|
|
Offset = Op->getOperand(1);
|
|
Base = Op->getOperand(0);
|
|
AM = ISD::POST_INC;
|
|
return true;
|
|
}
|
|
|
|
bool isInc;
|
|
bool isLegal = false;
|
|
if (Subtarget->isThumb2())
|
|
isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
|
|
isInc, DAG);
|
|
else
|
|
isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
|
|
isInc, DAG);
|
|
if (!isLegal)
|
|
return false;
|
|
|
|
if (Ptr != Base) {
|
|
// Swap base ptr and offset to catch more post-index load / store when
|
|
// it's legal. In Thumb2 mode, offset must be an immediate.
|
|
if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
|
|
!Subtarget->isThumb2())
|
|
std::swap(Base, Offset);
|
|
|
|
// Post-indexed load / store update the base pointer.
|
|
if (Ptr != Base)
|
|
return false;
|
|
}
|
|
|
|
AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
|
|
return true;
|
|
}
|
|
|
|
void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
|
|
KnownBits &Known,
|
|
const APInt &DemandedElts,
|
|
const SelectionDAG &DAG,
|
|
unsigned Depth) const {
|
|
unsigned BitWidth = Known.getBitWidth();
|
|
Known.resetAll();
|
|
switch (Op.getOpcode()) {
|
|
default: break;
|
|
case ARMISD::ADDC:
|
|
case ARMISD::ADDE:
|
|
case ARMISD::SUBC:
|
|
case ARMISD::SUBE:
|
|
// Special cases when we convert a carry to a boolean.
|
|
if (Op.getResNo() == 0) {
|
|
SDValue LHS = Op.getOperand(0);
|
|
SDValue RHS = Op.getOperand(1);
|
|
// (ADDE 0, 0, C) will give us a single bit.
|
|
if (Op->getOpcode() == ARMISD::ADDE && isNullConstant(LHS) &&
|
|
isNullConstant(RHS)) {
|
|
Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
|
|
return;
|
|
}
|
|
}
|
|
break;
|
|
case ARMISD::CMOV: {
|
|
// Bits are known zero/one if known on the LHS and RHS.
|
|
DAG.computeKnownBits(Op.getOperand(0), Known, Depth+1);
|
|
if (Known.isUnknown())
|
|
return;
|
|
|
|
KnownBits KnownRHS;
|
|
DAG.computeKnownBits(Op.getOperand(1), KnownRHS, Depth+1);
|
|
Known.Zero &= KnownRHS.Zero;
|
|
Known.One &= KnownRHS.One;
|
|
return;
|
|
}
|
|
case ISD::INTRINSIC_W_CHAIN: {
|
|
ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
|
|
Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
|
|
switch (IntID) {
|
|
default: return;
|
|
case Intrinsic::arm_ldaex:
|
|
case Intrinsic::arm_ldrex: {
|
|
EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
|
|
unsigned MemBits = VT.getScalarSizeInBits();
|
|
Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
case ARMISD::BFI: {
|
|
// Conservatively, we can recurse down the first operand
|
|
// and just mask out all affected bits.
|
|
DAG.computeKnownBits(Op.getOperand(0), Known, Depth + 1);
|
|
|
|
// The operand to BFI is already a mask suitable for removing the bits it
|
|
// sets.
|
|
ConstantSDNode *CI = cast<ConstantSDNode>(Op.getOperand(2));
|
|
const APInt &Mask = CI->getAPIntValue();
|
|
Known.Zero &= Mask;
|
|
Known.One &= Mask;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ARM Inline Assembly Support
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
|
|
// Looking for "rev" which is V6+.
|
|
if (!Subtarget->hasV6Ops())
|
|
return false;
|
|
|
|
InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
|
|
std::string AsmStr = IA->getAsmString();
|
|
SmallVector<StringRef, 4> AsmPieces;
|
|
SplitString(AsmStr, AsmPieces, ";\n");
|
|
|
|
switch (AsmPieces.size()) {
|
|
default: return false;
|
|
case 1:
|
|
AsmStr = AsmPieces[0];
|
|
AsmPieces.clear();
|
|
SplitString(AsmStr, AsmPieces, " \t,");
|
|
|
|
// rev $0, $1
|
|
if (AsmPieces.size() == 3 &&
|
|
AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
|
|
IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
|
|
IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
|
|
if (Ty && Ty->getBitWidth() == 32)
|
|
return IntrinsicLowering::LowerToByteSwap(CI);
|
|
}
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
const char *ARMTargetLowering::LowerXConstraint(EVT ConstraintVT) const {
|
|
// At this point, we have to lower this constraint to something else, so we
|
|
// lower it to an "r" or "w". However, by doing this we will force the result
|
|
// to be in register, while the X constraint is much more permissive.
|
|
//
|
|
// Although we are correct (we are free to emit anything, without
|
|
// constraints), we might break use cases that would expect us to be more
|
|
// efficient and emit something else.
|
|
if (!Subtarget->hasVFP2())
|
|
return "r";
|
|
if (ConstraintVT.isFloatingPoint())
|
|
return "w";
|
|
if (ConstraintVT.isVector() && Subtarget->hasNEON() &&
|
|
(ConstraintVT.getSizeInBits() == 64 ||
|
|
ConstraintVT.getSizeInBits() == 128))
|
|
return "w";
|
|
|
|
return "r";
|
|
}
|
|
|
|
/// getConstraintType - Given a constraint letter, return the type of
|
|
/// constraint it is for this target.
|
|
ARMTargetLowering::ConstraintType
|
|
ARMTargetLowering::getConstraintType(StringRef Constraint) const {
|
|
if (Constraint.size() == 1) {
|
|
switch (Constraint[0]) {
|
|
default: break;
|
|
case 'l': return C_RegisterClass;
|
|
case 'w': return C_RegisterClass;
|
|
case 'h': return C_RegisterClass;
|
|
case 'x': return C_RegisterClass;
|
|
case 't': return C_RegisterClass;
|
|
case 'j': return C_Other; // Constant for movw.
|
|
// An address with a single base register. Due to the way we
|
|
// currently handle addresses it is the same as an 'r' memory constraint.
|
|
case 'Q': return C_Memory;
|
|
}
|
|
} else if (Constraint.size() == 2) {
|
|
switch (Constraint[0]) {
|
|
default: break;
|
|
// All 'U+' constraints are addresses.
|
|
case 'U': return C_Memory;
|
|
}
|
|
}
|
|
return TargetLowering::getConstraintType(Constraint);
|
|
}
|
|
|
|
/// Examine constraint type and operand type and determine a weight value.
|
|
/// This object must already have been set up with the operand type
|
|
/// and the current alternative constraint selected.
|
|
TargetLowering::ConstraintWeight
|
|
ARMTargetLowering::getSingleConstraintMatchWeight(
|
|
AsmOperandInfo &info, const char *constraint) const {
|
|
ConstraintWeight weight = CW_Invalid;
|
|
Value *CallOperandVal = info.CallOperandVal;
|
|
// If we don't have a value, we can't do a match,
|
|
// but allow it at the lowest weight.
|
|
if (!CallOperandVal)
|
|
return CW_Default;
|
|
Type *type = CallOperandVal->getType();
|
|
// Look at the constraint type.
|
|
switch (*constraint) {
|
|
default:
|
|
weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
|
|
break;
|
|
case 'l':
|
|
if (type->isIntegerTy()) {
|
|
if (Subtarget->isThumb())
|
|
weight = CW_SpecificReg;
|
|
else
|
|
weight = CW_Register;
|
|
}
|
|
break;
|
|
case 'w':
|
|
if (type->isFloatingPointTy())
|
|
weight = CW_Register;
|
|
break;
|
|
}
|
|
return weight;
|
|
}
|
|
|
|
using RCPair = std::pair<unsigned, const TargetRegisterClass *>;
|
|
|
|
RCPair ARMTargetLowering::getRegForInlineAsmConstraint(
|
|
const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
|
|
if (Constraint.size() == 1) {
|
|
// GCC ARM Constraint Letters
|
|
switch (Constraint[0]) {
|
|
case 'l': // Low regs or general regs.
|
|
if (Subtarget->isThumb())
|
|
return RCPair(0U, &ARM::tGPRRegClass);
|
|
return RCPair(0U, &ARM::GPRRegClass);
|
|
case 'h': // High regs or no regs.
|
|
if (Subtarget->isThumb())
|
|
return RCPair(0U, &ARM::hGPRRegClass);
|
|
break;
|
|
case 'r':
|
|
if (Subtarget->isThumb1Only())
|
|
return RCPair(0U, &ARM::tGPRRegClass);
|
|
return RCPair(0U, &ARM::GPRRegClass);
|
|
case 'w':
|
|
if (VT == MVT::Other)
|
|
break;
|
|
if (VT == MVT::f32)
|
|
return RCPair(0U, &ARM::SPRRegClass);
|
|
if (VT.getSizeInBits() == 64)
|
|
return RCPair(0U, &ARM::DPRRegClass);
|
|
if (VT.getSizeInBits() == 128)
|
|
return RCPair(0U, &ARM::QPRRegClass);
|
|
break;
|
|
case 'x':
|
|
if (VT == MVT::Other)
|
|
break;
|
|
if (VT == MVT::f32)
|
|
return RCPair(0U, &ARM::SPR_8RegClass);
|
|
if (VT.getSizeInBits() == 64)
|
|
return RCPair(0U, &ARM::DPR_8RegClass);
|
|
if (VT.getSizeInBits() == 128)
|
|
return RCPair(0U, &ARM::QPR_8RegClass);
|
|
break;
|
|
case 't':
|
|
if (VT == MVT::Other)
|
|
break;
|
|
if (VT == MVT::f32 || VT == MVT::i32)
|
|
return RCPair(0U, &ARM::SPRRegClass);
|
|
if (VT.getSizeInBits() == 64)
|
|
return RCPair(0U, &ARM::DPR_VFP2RegClass);
|
|
if (VT.getSizeInBits() == 128)
|
|
return RCPair(0U, &ARM::QPR_VFP2RegClass);
|
|
break;
|
|
}
|
|
}
|
|
if (StringRef("{cc}").equals_lower(Constraint))
|
|
return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
|
|
|
|
return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
|
|
}
|
|
|
|
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
|
|
/// vector. If it is invalid, don't add anything to Ops.
|
|
void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
|
|
std::string &Constraint,
|
|
std::vector<SDValue>&Ops,
|
|
SelectionDAG &DAG) const {
|
|
SDValue Result;
|
|
|
|
// Currently only support length 1 constraints.
|
|
if (Constraint.length() != 1) return;
|
|
|
|
char ConstraintLetter = Constraint[0];
|
|
switch (ConstraintLetter) {
|
|
default: break;
|
|
case 'j':
|
|
case 'I': case 'J': case 'K': case 'L':
|
|
case 'M': case 'N': case 'O':
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
|
|
if (!C)
|
|
return;
|
|
|
|
int64_t CVal64 = C->getSExtValue();
|
|
int CVal = (int) CVal64;
|
|
// None of these constraints allow values larger than 32 bits. Check
|
|
// that the value fits in an int.
|
|
if (CVal != CVal64)
|
|
return;
|
|
|
|
switch (ConstraintLetter) {
|
|
case 'j':
|
|
// Constant suitable for movw, must be between 0 and
|
|
// 65535.
|
|
if (Subtarget->hasV6T2Ops())
|
|
if (CVal >= 0 && CVal <= 65535)
|
|
break;
|
|
return;
|
|
case 'I':
|
|
if (Subtarget->isThumb1Only()) {
|
|
// This must be a constant between 0 and 255, for ADD
|
|
// immediates.
|
|
if (CVal >= 0 && CVal <= 255)
|
|
break;
|
|
} else if (Subtarget->isThumb2()) {
|
|
// A constant that can be used as an immediate value in a
|
|
// data-processing instruction.
|
|
if (ARM_AM::getT2SOImmVal(CVal) != -1)
|
|
break;
|
|
} else {
|
|
// A constant that can be used as an immediate value in a
|
|
// data-processing instruction.
|
|
if (ARM_AM::getSOImmVal(CVal) != -1)
|
|
break;
|
|
}
|
|
return;
|
|
|
|
case 'J':
|
|
if (Subtarget->isThumb1Only()) {
|
|
// This must be a constant between -255 and -1, for negated ADD
|
|
// immediates. This can be used in GCC with an "n" modifier that
|
|
// prints the negated value, for use with SUB instructions. It is
|
|
// not useful otherwise but is implemented for compatibility.
|
|
if (CVal >= -255 && CVal <= -1)
|
|
break;
|
|
} else {
|
|
// This must be a constant between -4095 and 4095. It is not clear
|
|
// what this constraint is intended for. Implemented for
|
|
// compatibility with GCC.
|
|
if (CVal >= -4095 && CVal <= 4095)
|
|
break;
|
|
}
|
|
return;
|
|
|
|
case 'K':
|
|
if (Subtarget->isThumb1Only()) {
|
|
// A 32-bit value where only one byte has a nonzero value. Exclude
|
|
// zero to match GCC. This constraint is used by GCC internally for
|
|
// constants that can be loaded with a move/shift combination.
|
|
// It is not useful otherwise but is implemented for compatibility.
|
|
if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
|
|
break;
|
|
} else if (Subtarget->isThumb2()) {
|
|
// A constant whose bitwise inverse can be used as an immediate
|
|
// value in a data-processing instruction. This can be used in GCC
|
|
// with a "B" modifier that prints the inverted value, for use with
|
|
// BIC and MVN instructions. It is not useful otherwise but is
|
|
// implemented for compatibility.
|
|
if (ARM_AM::getT2SOImmVal(~CVal) != -1)
|
|
break;
|
|
} else {
|
|
// A constant whose bitwise inverse can be used as an immediate
|
|
// value in a data-processing instruction. This can be used in GCC
|
|
// with a "B" modifier that prints the inverted value, for use with
|
|
// BIC and MVN instructions. It is not useful otherwise but is
|
|
// implemented for compatibility.
|
|
if (ARM_AM::getSOImmVal(~CVal) != -1)
|
|
break;
|
|
}
|
|
return;
|
|
|
|
case 'L':
|
|
if (Subtarget->isThumb1Only()) {
|
|
// This must be a constant between -7 and 7,
|
|
// for 3-operand ADD/SUB immediate instructions.
|
|
if (CVal >= -7 && CVal < 7)
|
|
break;
|
|
} else if (Subtarget->isThumb2()) {
|
|
// A constant whose negation can be used as an immediate value in a
|
|
// data-processing instruction. This can be used in GCC with an "n"
|
|
// modifier that prints the negated value, for use with SUB
|
|
// instructions. It is not useful otherwise but is implemented for
|
|
// compatibility.
|
|
if (ARM_AM::getT2SOImmVal(-CVal) != -1)
|
|
break;
|
|
} else {
|
|
// A constant whose negation can be used as an immediate value in a
|
|
// data-processing instruction. This can be used in GCC with an "n"
|
|
// modifier that prints the negated value, for use with SUB
|
|
// instructions. It is not useful otherwise but is implemented for
|
|
// compatibility.
|
|
if (ARM_AM::getSOImmVal(-CVal) != -1)
|
|
break;
|
|
}
|
|
return;
|
|
|
|
case 'M':
|
|
if (Subtarget->isThumb1Only()) {
|
|
// This must be a multiple of 4 between 0 and 1020, for
|
|
// ADD sp + immediate.
|
|
if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
|
|
break;
|
|
} else {
|
|
// A power of two or a constant between 0 and 32. This is used in
|
|
// GCC for the shift amount on shifted register operands, but it is
|
|
// useful in general for any shift amounts.
|
|
if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
|
|
break;
|
|
}
|
|
return;
|
|
|
|
case 'N':
|
|
if (Subtarget->isThumb()) { // FIXME thumb2
|
|
// This must be a constant between 0 and 31, for shift amounts.
|
|
if (CVal >= 0 && CVal <= 31)
|
|
break;
|
|
}
|
|
return;
|
|
|
|
case 'O':
|
|
if (Subtarget->isThumb()) { // FIXME thumb2
|
|
// This must be a multiple of 4 between -508 and 508, for
|
|
// ADD/SUB sp = sp + immediate.
|
|
if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
|
|
break;
|
|
}
|
|
return;
|
|
}
|
|
Result = DAG.getTargetConstant(CVal, SDLoc(Op), Op.getValueType());
|
|
break;
|
|
}
|
|
|
|
if (Result.getNode()) {
|
|
Ops.push_back(Result);
|
|
return;
|
|
}
|
|
return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
|
|
}
|
|
|
|
static RTLIB::Libcall getDivRemLibcall(
|
|
const SDNode *N, MVT::SimpleValueType SVT) {
|
|
assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
|
|
N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM) &&
|
|
"Unhandled Opcode in getDivRemLibcall");
|
|
bool isSigned = N->getOpcode() == ISD::SDIVREM ||
|
|
N->getOpcode() == ISD::SREM;
|
|
RTLIB::Libcall LC;
|
|
switch (SVT) {
|
|
default: llvm_unreachable("Unexpected request for libcall!");
|
|
case MVT::i8: LC = isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
|
|
case MVT::i16: LC = isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
|
|
case MVT::i32: LC = isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
|
|
case MVT::i64: LC = isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
|
|
}
|
|
return LC;
|
|
}
|
|
|
|
static TargetLowering::ArgListTy getDivRemArgList(
|
|
const SDNode *N, LLVMContext *Context, const ARMSubtarget *Subtarget) {
|
|
assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
|
|
N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM) &&
|
|
"Unhandled Opcode in getDivRemArgList");
|
|
bool isSigned = N->getOpcode() == ISD::SDIVREM ||
|
|
N->getOpcode() == ISD::SREM;
|
|
TargetLowering::ArgListTy Args;
|
|
TargetLowering::ArgListEntry Entry;
|
|
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
|
|
EVT ArgVT = N->getOperand(i).getValueType();
|
|
Type *ArgTy = ArgVT.getTypeForEVT(*Context);
|
|
Entry.Node = N->getOperand(i);
|
|
Entry.Ty = ArgTy;
|
|
Entry.IsSExt = isSigned;
|
|
Entry.IsZExt = !isSigned;
|
|
Args.push_back(Entry);
|
|
}
|
|
if (Subtarget->isTargetWindows() && Args.size() >= 2)
|
|
std::swap(Args[0], Args[1]);
|
|
return Args;
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
|
|
assert((Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
|
|
Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
|
|
Subtarget->isTargetWindows()) &&
|
|
"Register-based DivRem lowering only");
|
|
unsigned Opcode = Op->getOpcode();
|
|
assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
|
|
"Invalid opcode for Div/Rem lowering");
|
|
bool isSigned = (Opcode == ISD::SDIVREM);
|
|
EVT VT = Op->getValueType(0);
|
|
Type *Ty = VT.getTypeForEVT(*DAG.getContext());
|
|
SDLoc dl(Op);
|
|
|
|
// If the target has hardware divide, use divide + multiply + subtract:
|
|
// div = a / b
|
|
// rem = a - b * div
|
|
// return {div, rem}
|
|
// This should be lowered into UDIV/SDIV + MLS later on.
|
|
bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
|
|
: Subtarget->hasDivideInARMMode();
|
|
if (hasDivide && Op->getValueType(0).isSimple() &&
|
|
Op->getSimpleValueType(0) == MVT::i32) {
|
|
unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
|
|
const SDValue Dividend = Op->getOperand(0);
|
|
const SDValue Divisor = Op->getOperand(1);
|
|
SDValue Div = DAG.getNode(DivOpcode, dl, VT, Dividend, Divisor);
|
|
SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Div, Divisor);
|
|
SDValue Rem = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
|
|
|
|
SDValue Values[2] = {Div, Rem};
|
|
return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VT, VT), Values);
|
|
}
|
|
|
|
RTLIB::Libcall LC = getDivRemLibcall(Op.getNode(),
|
|
VT.getSimpleVT().SimpleTy);
|
|
SDValue InChain = DAG.getEntryNode();
|
|
|
|
TargetLowering::ArgListTy Args = getDivRemArgList(Op.getNode(),
|
|
DAG.getContext(),
|
|
Subtarget);
|
|
|
|
SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
|
|
getPointerTy(DAG.getDataLayout()));
|
|
|
|
Type *RetTy = StructType::get(Ty, Ty);
|
|
|
|
if (Subtarget->isTargetWindows())
|
|
InChain = WinDBZCheckDenominator(DAG, Op.getNode(), InChain);
|
|
|
|
TargetLowering::CallLoweringInfo CLI(DAG);
|
|
CLI.setDebugLoc(dl).setChain(InChain)
|
|
.setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
|
|
.setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
|
|
|
|
std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
|
|
return CallInfo.first;
|
|
}
|
|
|
|
// Lowers REM using divmod helpers
|
|
// see RTABI section 4.2/4.3
|
|
SDValue ARMTargetLowering::LowerREM(SDNode *N, SelectionDAG &DAG) const {
|
|
// Build return types (div and rem)
|
|
std::vector<Type*> RetTyParams;
|
|
Type *RetTyElement;
|
|
|
|
switch (N->getValueType(0).getSimpleVT().SimpleTy) {
|
|
default: llvm_unreachable("Unexpected request for libcall!");
|
|
case MVT::i8: RetTyElement = Type::getInt8Ty(*DAG.getContext()); break;
|
|
case MVT::i16: RetTyElement = Type::getInt16Ty(*DAG.getContext()); break;
|
|
case MVT::i32: RetTyElement = Type::getInt32Ty(*DAG.getContext()); break;
|
|
case MVT::i64: RetTyElement = Type::getInt64Ty(*DAG.getContext()); break;
|
|
}
|
|
|
|
RetTyParams.push_back(RetTyElement);
|
|
RetTyParams.push_back(RetTyElement);
|
|
ArrayRef<Type*> ret = ArrayRef<Type*>(RetTyParams);
|
|
Type *RetTy = StructType::get(*DAG.getContext(), ret);
|
|
|
|
RTLIB::Libcall LC = getDivRemLibcall(N, N->getValueType(0).getSimpleVT().
|
|
SimpleTy);
|
|
SDValue InChain = DAG.getEntryNode();
|
|
TargetLowering::ArgListTy Args = getDivRemArgList(N, DAG.getContext(),
|
|
Subtarget);
|
|
bool isSigned = N->getOpcode() == ISD::SREM;
|
|
SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
|
|
getPointerTy(DAG.getDataLayout()));
|
|
|
|
if (Subtarget->isTargetWindows())
|
|
InChain = WinDBZCheckDenominator(DAG, N, InChain);
|
|
|
|
// Lower call
|
|
CallLoweringInfo CLI(DAG);
|
|
CLI.setChain(InChain)
|
|
.setCallee(CallingConv::ARM_AAPCS, RetTy, Callee, std::move(Args))
|
|
.setSExtResult(isSigned).setZExtResult(!isSigned).setDebugLoc(SDLoc(N));
|
|
std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
|
|
|
|
// Return second (rem) result operand (first contains div)
|
|
SDNode *ResNode = CallResult.first.getNode();
|
|
assert(ResNode->getNumOperands() == 2 && "divmod should return two operands");
|
|
return ResNode->getOperand(1);
|
|
}
|
|
|
|
SDValue
|
|
ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
|
|
assert(Subtarget->isTargetWindows() && "unsupported target platform");
|
|
SDLoc DL(Op);
|
|
|
|
// Get the inputs.
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue Size = Op.getOperand(1);
|
|
|
|
if (DAG.getMachineFunction().getFunction().hasFnAttribute(
|
|
"no-stack-arg-probe")) {
|
|
unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
|
|
SDValue SP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
|
|
Chain = SP.getValue(1);
|
|
SP = DAG.getNode(ISD::SUB, DL, MVT::i32, SP, Size);
|
|
if (Align)
|
|
SP = DAG.getNode(ISD::AND, DL, MVT::i32, SP.getValue(0),
|
|
DAG.getConstant(-(uint64_t)Align, DL, MVT::i32));
|
|
Chain = DAG.getCopyToReg(Chain, DL, ARM::SP, SP);
|
|
SDValue Ops[2] = { SP, Chain };
|
|
return DAG.getMergeValues(Ops, DL);
|
|
}
|
|
|
|
SDValue Words = DAG.getNode(ISD::SRL, DL, MVT::i32, Size,
|
|
DAG.getConstant(2, DL, MVT::i32));
|
|
|
|
SDValue Flag;
|
|
Chain = DAG.getCopyToReg(Chain, DL, ARM::R4, Words, Flag);
|
|
Flag = Chain.getValue(1);
|
|
|
|
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
Chain = DAG.getNode(ARMISD::WIN__CHKSTK, DL, NodeTys, Chain, Flag);
|
|
|
|
SDValue NewSP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
|
|
Chain = NewSP.getValue(1);
|
|
|
|
SDValue Ops[2] = { NewSP, Chain };
|
|
return DAG.getMergeValues(Ops, DL);
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
|
|
assert(Op.getValueType() == MVT::f64 && Subtarget->isFPOnlySP() &&
|
|
"Unexpected type for custom-lowering FP_EXTEND");
|
|
|
|
RTLIB::Libcall LC;
|
|
LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
|
|
|
|
SDValue SrcVal = Op.getOperand(0);
|
|
return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
|
|
SDLoc(Op)).first;
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
|
|
assert(Op.getOperand(0).getValueType() == MVT::f64 &&
|
|
Subtarget->isFPOnlySP() &&
|
|
"Unexpected type for custom-lowering FP_ROUND");
|
|
|
|
RTLIB::Libcall LC;
|
|
LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
|
|
|
|
SDValue SrcVal = Op.getOperand(0);
|
|
return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
|
|
SDLoc(Op)).first;
|
|
}
|
|
|
|
bool
|
|
ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
|
|
// The ARM target isn't yet aware of offsets.
|
|
return false;
|
|
}
|
|
|
|
bool ARM::isBitFieldInvertedMask(unsigned v) {
|
|
if (v == 0xffffffff)
|
|
return false;
|
|
|
|
// there can be 1's on either or both "outsides", all the "inside"
|
|
// bits must be 0's
|
|
return isShiftedMask_32(~v);
|
|
}
|
|
|
|
/// isFPImmLegal - Returns true if the target can instruction select the
|
|
/// specified FP immediate natively. If false, the legalizer will
|
|
/// materialize the FP immediate as a load from a constant pool.
|
|
bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
|
|
if (!Subtarget->hasVFP3())
|
|
return false;
|
|
if (VT == MVT::f16 && Subtarget->hasFullFP16())
|
|
return ARM_AM::getFP16Imm(Imm) != -1;
|
|
if (VT == MVT::f32)
|
|
return ARM_AM::getFP32Imm(Imm) != -1;
|
|
if (VT == MVT::f64 && !Subtarget->isFPOnlySP())
|
|
return ARM_AM::getFP64Imm(Imm) != -1;
|
|
return false;
|
|
}
|
|
|
|
/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
|
|
/// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
|
|
/// specified in the intrinsic calls.
|
|
bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
|
|
const CallInst &I,
|
|
MachineFunction &MF,
|
|
unsigned Intrinsic) const {
|
|
switch (Intrinsic) {
|
|
case Intrinsic::arm_neon_vld1:
|
|
case Intrinsic::arm_neon_vld2:
|
|
case Intrinsic::arm_neon_vld3:
|
|
case Intrinsic::arm_neon_vld4:
|
|
case Intrinsic::arm_neon_vld2lane:
|
|
case Intrinsic::arm_neon_vld3lane:
|
|
case Intrinsic::arm_neon_vld4lane:
|
|
case Intrinsic::arm_neon_vld2dup:
|
|
case Intrinsic::arm_neon_vld3dup:
|
|
case Intrinsic::arm_neon_vld4dup: {
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
// Conservatively set memVT to the entire set of vectors loaded.
|
|
auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
|
|
uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
|
|
Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
|
|
Info.ptrVal = I.getArgOperand(0);
|
|
Info.offset = 0;
|
|
Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
|
|
Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
|
|
// volatile loads with NEON intrinsics not supported
|
|
Info.flags = MachineMemOperand::MOLoad;
|
|
return true;
|
|
}
|
|
case Intrinsic::arm_neon_vld1x2:
|
|
case Intrinsic::arm_neon_vld1x3:
|
|
case Intrinsic::arm_neon_vld1x4: {
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
// Conservatively set memVT to the entire set of vectors loaded.
|
|
auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
|
|
uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
|
|
Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
|
|
Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
|
|
Info.offset = 0;
|
|
Info.align = 0;
|
|
// volatile loads with NEON intrinsics not supported
|
|
Info.flags = MachineMemOperand::MOLoad;
|
|
return true;
|
|
}
|
|
case Intrinsic::arm_neon_vst1:
|
|
case Intrinsic::arm_neon_vst2:
|
|
case Intrinsic::arm_neon_vst3:
|
|
case Intrinsic::arm_neon_vst4:
|
|
case Intrinsic::arm_neon_vst2lane:
|
|
case Intrinsic::arm_neon_vst3lane:
|
|
case Intrinsic::arm_neon_vst4lane: {
|
|
Info.opc = ISD::INTRINSIC_VOID;
|
|
// Conservatively set memVT to the entire set of vectors stored.
|
|
auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
|
|
unsigned NumElts = 0;
|
|
for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
|
|
Type *ArgTy = I.getArgOperand(ArgI)->getType();
|
|
if (!ArgTy->isVectorTy())
|
|
break;
|
|
NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
|
|
}
|
|
Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
|
|
Info.ptrVal = I.getArgOperand(0);
|
|
Info.offset = 0;
|
|
Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
|
|
Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
|
|
// volatile stores with NEON intrinsics not supported
|
|
Info.flags = MachineMemOperand::MOStore;
|
|
return true;
|
|
}
|
|
case Intrinsic::arm_neon_vst1x2:
|
|
case Intrinsic::arm_neon_vst1x3:
|
|
case Intrinsic::arm_neon_vst1x4: {
|
|
Info.opc = ISD::INTRINSIC_VOID;
|
|
// Conservatively set memVT to the entire set of vectors stored.
|
|
auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
|
|
unsigned NumElts = 0;
|
|
for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
|
|
Type *ArgTy = I.getArgOperand(ArgI)->getType();
|
|
if (!ArgTy->isVectorTy())
|
|
break;
|
|
NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
|
|
}
|
|
Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
|
|
Info.ptrVal = I.getArgOperand(0);
|
|
Info.offset = 0;
|
|
Info.align = 0;
|
|
// volatile stores with NEON intrinsics not supported
|
|
Info.flags = MachineMemOperand::MOStore;
|
|
return true;
|
|
}
|
|
case Intrinsic::arm_ldaex:
|
|
case Intrinsic::arm_ldrex: {
|
|
auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
|
|
PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
Info.memVT = MVT::getVT(PtrTy->getElementType());
|
|
Info.ptrVal = I.getArgOperand(0);
|
|
Info.offset = 0;
|
|
Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
|
|
Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
|
|
return true;
|
|
}
|
|
case Intrinsic::arm_stlex:
|
|
case Intrinsic::arm_strex: {
|
|
auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
|
|
PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
Info.memVT = MVT::getVT(PtrTy->getElementType());
|
|
Info.ptrVal = I.getArgOperand(1);
|
|
Info.offset = 0;
|
|
Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
|
|
Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
|
|
return true;
|
|
}
|
|
case Intrinsic::arm_stlexd:
|
|
case Intrinsic::arm_strexd:
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
Info.memVT = MVT::i64;
|
|
Info.ptrVal = I.getArgOperand(2);
|
|
Info.offset = 0;
|
|
Info.align = 8;
|
|
Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
|
|
return true;
|
|
|
|
case Intrinsic::arm_ldaexd:
|
|
case Intrinsic::arm_ldrexd:
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
Info.memVT = MVT::i64;
|
|
Info.ptrVal = I.getArgOperand(0);
|
|
Info.offset = 0;
|
|
Info.align = 8;
|
|
Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
|
|
return true;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Returns true if it is beneficial to convert a load of a constant
|
|
/// to just the constant itself.
|
|
bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
|
|
Type *Ty) const {
|
|
assert(Ty->isIntegerTy());
|
|
|
|
unsigned Bits = Ty->getPrimitiveSizeInBits();
|
|
if (Bits == 0 || Bits > 32)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
bool ARMTargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
|
|
unsigned Index) const {
|
|
if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
|
|
return false;
|
|
|
|
return (Index == 0 || Index == ResVT.getVectorNumElements());
|
|
}
|
|
|
|
Instruction* ARMTargetLowering::makeDMB(IRBuilder<> &Builder,
|
|
ARM_MB::MemBOpt Domain) const {
|
|
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
|
|
|
|
// First, if the target has no DMB, see what fallback we can use.
|
|
if (!Subtarget->hasDataBarrier()) {
|
|
// Some ARMv6 cpus can support data barriers with an mcr instruction.
|
|
// Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
|
|
// here.
|
|
if (Subtarget->hasV6Ops() && !Subtarget->isThumb()) {
|
|
Function *MCR = Intrinsic::getDeclaration(M, Intrinsic::arm_mcr);
|
|
Value* args[6] = {Builder.getInt32(15), Builder.getInt32(0),
|
|
Builder.getInt32(0), Builder.getInt32(7),
|
|
Builder.getInt32(10), Builder.getInt32(5)};
|
|
return Builder.CreateCall(MCR, args);
|
|
} else {
|
|
// Instead of using barriers, atomic accesses on these subtargets use
|
|
// libcalls.
|
|
llvm_unreachable("makeDMB on a target so old that it has no barriers");
|
|
}
|
|
} else {
|
|
Function *DMB = Intrinsic::getDeclaration(M, Intrinsic::arm_dmb);
|
|
// Only a full system barrier exists in the M-class architectures.
|
|
Domain = Subtarget->isMClass() ? ARM_MB::SY : Domain;
|
|
Constant *CDomain = Builder.getInt32(Domain);
|
|
return Builder.CreateCall(DMB, CDomain);
|
|
}
|
|
}
|
|
|
|
// Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
|
|
Instruction *ARMTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
|
|
Instruction *Inst,
|
|
AtomicOrdering Ord) const {
|
|
switch (Ord) {
|
|
case AtomicOrdering::NotAtomic:
|
|
case AtomicOrdering::Unordered:
|
|
llvm_unreachable("Invalid fence: unordered/non-atomic");
|
|
case AtomicOrdering::Monotonic:
|
|
case AtomicOrdering::Acquire:
|
|
return nullptr; // Nothing to do
|
|
case AtomicOrdering::SequentiallyConsistent:
|
|
if (!Inst->hasAtomicStore())
|
|
return nullptr; // Nothing to do
|
|
LLVM_FALLTHROUGH;
|
|
case AtomicOrdering::Release:
|
|
case AtomicOrdering::AcquireRelease:
|
|
if (Subtarget->preferISHSTBarriers())
|
|
return makeDMB(Builder, ARM_MB::ISHST);
|
|
// FIXME: add a comment with a link to documentation justifying this.
|
|
else
|
|
return makeDMB(Builder, ARM_MB::ISH);
|
|
}
|
|
llvm_unreachable("Unknown fence ordering in emitLeadingFence");
|
|
}
|
|
|
|
Instruction *ARMTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
|
|
Instruction *Inst,
|
|
AtomicOrdering Ord) const {
|
|
switch (Ord) {
|
|
case AtomicOrdering::NotAtomic:
|
|
case AtomicOrdering::Unordered:
|
|
llvm_unreachable("Invalid fence: unordered/not-atomic");
|
|
case AtomicOrdering::Monotonic:
|
|
case AtomicOrdering::Release:
|
|
return nullptr; // Nothing to do
|
|
case AtomicOrdering::Acquire:
|
|
case AtomicOrdering::AcquireRelease:
|
|
case AtomicOrdering::SequentiallyConsistent:
|
|
return makeDMB(Builder, ARM_MB::ISH);
|
|
}
|
|
llvm_unreachable("Unknown fence ordering in emitTrailingFence");
|
|
}
|
|
|
|
// Loads and stores less than 64-bits are already atomic; ones above that
|
|
// are doomed anyway, so defer to the default libcall and blame the OS when
|
|
// things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
|
|
// anything for those.
|
|
bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
|
|
unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
|
|
return (Size == 64) && !Subtarget->isMClass();
|
|
}
|
|
|
|
// Loads and stores less than 64-bits are already atomic; ones above that
|
|
// are doomed anyway, so defer to the default libcall and blame the OS when
|
|
// things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
|
|
// anything for those.
|
|
// FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
|
|
// guarantee, see DDI0406C ARM architecture reference manual,
|
|
// sections A8.8.72-74 LDRD)
|
|
TargetLowering::AtomicExpansionKind
|
|
ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
|
|
unsigned Size = LI->getType()->getPrimitiveSizeInBits();
|
|
return ((Size == 64) && !Subtarget->isMClass()) ? AtomicExpansionKind::LLOnly
|
|
: AtomicExpansionKind::None;
|
|
}
|
|
|
|
// For the real atomic operations, we have ldrex/strex up to 32 bits,
|
|
// and up to 64 bits on the non-M profiles
|
|
TargetLowering::AtomicExpansionKind
|
|
ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
|
|
unsigned Size = AI->getType()->getPrimitiveSizeInBits();
|
|
bool hasAtomicRMW = !Subtarget->isThumb() || Subtarget->hasV8MBaselineOps();
|
|
return (Size <= (Subtarget->isMClass() ? 32U : 64U) && hasAtomicRMW)
|
|
? AtomicExpansionKind::LLSC
|
|
: AtomicExpansionKind::None;
|
|
}
|
|
|
|
bool ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(
|
|
AtomicCmpXchgInst *AI) const {
|
|
// At -O0, fast-regalloc cannot cope with the live vregs necessary to
|
|
// implement cmpxchg without spilling. If the address being exchanged is also
|
|
// on the stack and close enough to the spill slot, this can lead to a
|
|
// situation where the monitor always gets cleared and the atomic operation
|
|
// can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
|
|
bool hasAtomicCmpXchg =
|
|
!Subtarget->isThumb() || Subtarget->hasV8MBaselineOps();
|
|
return getTargetMachine().getOptLevel() != 0 && hasAtomicCmpXchg;
|
|
}
|
|
|
|
bool ARMTargetLowering::shouldInsertFencesForAtomic(
|
|
const Instruction *I) const {
|
|
return InsertFencesForAtomic;
|
|
}
|
|
|
|
// This has so far only been implemented for MachO.
|
|
bool ARMTargetLowering::useLoadStackGuardNode() const {
|
|
return Subtarget->isTargetMachO();
|
|
}
|
|
|
|
bool ARMTargetLowering::canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
|
|
unsigned &Cost) const {
|
|
// If we do not have NEON, vector types are not natively supported.
|
|
if (!Subtarget->hasNEON())
|
|
return false;
|
|
|
|
// Floating point values and vector values map to the same register file.
|
|
// Therefore, although we could do a store extract of a vector type, this is
|
|
// better to leave at float as we have more freedom in the addressing mode for
|
|
// those.
|
|
if (VectorTy->isFPOrFPVectorTy())
|
|
return false;
|
|
|
|
// If the index is unknown at compile time, this is very expensive to lower
|
|
// and it is not possible to combine the store with the extract.
|
|
if (!isa<ConstantInt>(Idx))
|
|
return false;
|
|
|
|
assert(VectorTy->isVectorTy() && "VectorTy is not a vector type");
|
|
unsigned BitWidth = cast<VectorType>(VectorTy)->getBitWidth();
|
|
// We can do a store + vector extract on any vector that fits perfectly in a D
|
|
// or Q register.
|
|
if (BitWidth == 64 || BitWidth == 128) {
|
|
Cost = 0;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool ARMTargetLowering::isCheapToSpeculateCttz() const {
|
|
return Subtarget->hasV6T2Ops();
|
|
}
|
|
|
|
bool ARMTargetLowering::isCheapToSpeculateCtlz() const {
|
|
return Subtarget->hasV6T2Ops();
|
|
}
|
|
|
|
Value *ARMTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
|
|
AtomicOrdering Ord) const {
|
|
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
|
|
Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
|
|
bool IsAcquire = isAcquireOrStronger(Ord);
|
|
|
|
// Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
|
|
// intrinsic must return {i32, i32} and we have to recombine them into a
|
|
// single i64 here.
|
|
if (ValTy->getPrimitiveSizeInBits() == 64) {
|
|
Intrinsic::ID Int =
|
|
IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd;
|
|
Function *Ldrex = Intrinsic::getDeclaration(M, Int);
|
|
|
|
Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
|
|
Value *LoHi = Builder.CreateCall(Ldrex, Addr, "lohi");
|
|
|
|
Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
|
|
Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
|
|
if (!Subtarget->isLittle())
|
|
std::swap (Lo, Hi);
|
|
Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
|
|
Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
|
|
return Builder.CreateOr(
|
|
Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 32)), "val64");
|
|
}
|
|
|
|
Type *Tys[] = { Addr->getType() };
|
|
Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex;
|
|
Function *Ldrex = Intrinsic::getDeclaration(M, Int, Tys);
|
|
|
|
return Builder.CreateTruncOrBitCast(
|
|
Builder.CreateCall(Ldrex, Addr),
|
|
cast<PointerType>(Addr->getType())->getElementType());
|
|
}
|
|
|
|
void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
|
|
IRBuilder<> &Builder) const {
|
|
if (!Subtarget->hasV7Ops())
|
|
return;
|
|
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
|
|
Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::arm_clrex));
|
|
}
|
|
|
|
Value *ARMTargetLowering::emitStoreConditional(IRBuilder<> &Builder, Value *Val,
|
|
Value *Addr,
|
|
AtomicOrdering Ord) const {
|
|
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
|
|
bool IsRelease = isReleaseOrStronger(Ord);
|
|
|
|
// Since the intrinsics must have legal type, the i64 intrinsics take two
|
|
// parameters: "i32, i32". We must marshal Val into the appropriate form
|
|
// before the call.
|
|
if (Val->getType()->getPrimitiveSizeInBits() == 64) {
|
|
Intrinsic::ID Int =
|
|
IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd;
|
|
Function *Strex = Intrinsic::getDeclaration(M, Int);
|
|
Type *Int32Ty = Type::getInt32Ty(M->getContext());
|
|
|
|
Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo");
|
|
Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi");
|
|
if (!Subtarget->isLittle())
|
|
std::swap(Lo, Hi);
|
|
Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
|
|
return Builder.CreateCall(Strex, {Lo, Hi, Addr});
|
|
}
|
|
|
|
Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex;
|
|
Type *Tys[] = { Addr->getType() };
|
|
Function *Strex = Intrinsic::getDeclaration(M, Int, Tys);
|
|
|
|
return Builder.CreateCall(
|
|
Strex, {Builder.CreateZExtOrBitCast(
|
|
Val, Strex->getFunctionType()->getParamType(0)),
|
|
Addr});
|
|
}
|
|
|
|
/// A helper function for determining the number of interleaved accesses we
|
|
/// will generate when lowering accesses of the given type.
|
|
unsigned
|
|
ARMTargetLowering::getNumInterleavedAccesses(VectorType *VecTy,
|
|
const DataLayout &DL) const {
|
|
return (DL.getTypeSizeInBits(VecTy) + 127) / 128;
|
|
}
|
|
|
|
bool ARMTargetLowering::isLegalInterleavedAccessType(
|
|
VectorType *VecTy, const DataLayout &DL) const {
|
|
|
|
unsigned VecSize = DL.getTypeSizeInBits(VecTy);
|
|
unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType());
|
|
|
|
// Ensure the vector doesn't have f16 elements. Even though we could do an
|
|
// i16 vldN, we can't hold the f16 vectors and will end up converting via
|
|
// f32.
|
|
if (VecTy->getElementType()->isHalfTy())
|
|
return false;
|
|
|
|
// Ensure the number of vector elements is greater than 1.
|
|
if (VecTy->getNumElements() < 2)
|
|
return false;
|
|
|
|
// Ensure the element type is legal.
|
|
if (ElSize != 8 && ElSize != 16 && ElSize != 32)
|
|
return false;
|
|
|
|
// Ensure the total vector size is 64 or a multiple of 128. Types larger than
|
|
// 128 will be split into multiple interleaved accesses.
|
|
return VecSize == 64 || VecSize % 128 == 0;
|
|
}
|
|
|
|
/// Lower an interleaved load into a vldN intrinsic.
|
|
///
|
|
/// E.g. Lower an interleaved load (Factor = 2):
|
|
/// %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
|
|
/// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements
|
|
/// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements
|
|
///
|
|
/// Into:
|
|
/// %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
|
|
/// %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
|
|
/// %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1
|
|
bool ARMTargetLowering::lowerInterleavedLoad(
|
|
LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
|
|
ArrayRef<unsigned> Indices, unsigned Factor) const {
|
|
assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
|
|
"Invalid interleave factor");
|
|
assert(!Shuffles.empty() && "Empty shufflevector input");
|
|
assert(Shuffles.size() == Indices.size() &&
|
|
"Unmatched number of shufflevectors and indices");
|
|
|
|
VectorType *VecTy = Shuffles[0]->getType();
|
|
Type *EltTy = VecTy->getVectorElementType();
|
|
|
|
const DataLayout &DL = LI->getModule()->getDataLayout();
|
|
|
|
// Skip if we do not have NEON and skip illegal vector types. We can
|
|
// "legalize" wide vector types into multiple interleaved accesses as long as
|
|
// the vector types are divisible by 128.
|
|
if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(VecTy, DL))
|
|
return false;
|
|
|
|
unsigned NumLoads = getNumInterleavedAccesses(VecTy, DL);
|
|
|
|
// A pointer vector can not be the return type of the ldN intrinsics. Need to
|
|
// load integer vectors first and then convert to pointer vectors.
|
|
if (EltTy->isPointerTy())
|
|
VecTy =
|
|
VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements());
|
|
|
|
IRBuilder<> Builder(LI);
|
|
|
|
// The base address of the load.
|
|
Value *BaseAddr = LI->getPointerOperand();
|
|
|
|
if (NumLoads > 1) {
|
|
// If we're going to generate more than one load, reset the sub-vector type
|
|
// to something legal.
|
|
VecTy = VectorType::get(VecTy->getVectorElementType(),
|
|
VecTy->getVectorNumElements() / NumLoads);
|
|
|
|
// We will compute the pointer operand of each load from the original base
|
|
// address using GEPs. Cast the base address to a pointer to the scalar
|
|
// element type.
|
|
BaseAddr = Builder.CreateBitCast(
|
|
BaseAddr, VecTy->getVectorElementType()->getPointerTo(
|
|
LI->getPointerAddressSpace()));
|
|
}
|
|
|
|
assert(isTypeLegal(EVT::getEVT(VecTy)) && "Illegal vldN vector type!");
|
|
|
|
Type *Int8Ptr = Builder.getInt8PtrTy(LI->getPointerAddressSpace());
|
|
Type *Tys[] = {VecTy, Int8Ptr};
|
|
static const Intrinsic::ID LoadInts[3] = {Intrinsic::arm_neon_vld2,
|
|
Intrinsic::arm_neon_vld3,
|
|
Intrinsic::arm_neon_vld4};
|
|
Function *VldnFunc =
|
|
Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
|
|
|
|
// Holds sub-vectors extracted from the load intrinsic return values. The
|
|
// sub-vectors are associated with the shufflevector instructions they will
|
|
// replace.
|
|
DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs;
|
|
|
|
for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) {
|
|
// If we're generating more than one load, compute the base address of
|
|
// subsequent loads as an offset from the previous.
|
|
if (LoadCount > 0)
|
|
BaseAddr = Builder.CreateConstGEP1_32(
|
|
BaseAddr, VecTy->getVectorNumElements() * Factor);
|
|
|
|
SmallVector<Value *, 2> Ops;
|
|
Ops.push_back(Builder.CreateBitCast(BaseAddr, Int8Ptr));
|
|
Ops.push_back(Builder.getInt32(LI->getAlignment()));
|
|
|
|
CallInst *VldN = Builder.CreateCall(VldnFunc, Ops, "vldN");
|
|
|
|
// Replace uses of each shufflevector with the corresponding vector loaded
|
|
// by ldN.
|
|
for (unsigned i = 0; i < Shuffles.size(); i++) {
|
|
ShuffleVectorInst *SV = Shuffles[i];
|
|
unsigned Index = Indices[i];
|
|
|
|
Value *SubVec = Builder.CreateExtractValue(VldN, Index);
|
|
|
|
// Convert the integer vector to pointer vector if the element is pointer.
|
|
if (EltTy->isPointerTy())
|
|
SubVec = Builder.CreateIntToPtr(
|
|
SubVec, VectorType::get(SV->getType()->getVectorElementType(),
|
|
VecTy->getVectorNumElements()));
|
|
|
|
SubVecs[SV].push_back(SubVec);
|
|
}
|
|
}
|
|
|
|
// Replace uses of the shufflevector instructions with the sub-vectors
|
|
// returned by the load intrinsic. If a shufflevector instruction is
|
|
// associated with more than one sub-vector, those sub-vectors will be
|
|
// concatenated into a single wide vector.
|
|
for (ShuffleVectorInst *SVI : Shuffles) {
|
|
auto &SubVec = SubVecs[SVI];
|
|
auto *WideVec =
|
|
SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0];
|
|
SVI->replaceAllUsesWith(WideVec);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Lower an interleaved store into a vstN intrinsic.
|
|
///
|
|
/// E.g. Lower an interleaved store (Factor = 3):
|
|
/// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
|
|
/// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
|
|
/// store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
|
|
///
|
|
/// Into:
|
|
/// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
|
|
/// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
|
|
/// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
|
|
/// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
|
|
///
|
|
/// Note that the new shufflevectors will be removed and we'll only generate one
|
|
/// vst3 instruction in CodeGen.
|
|
///
|
|
/// Example for a more general valid mask (Factor 3). Lower:
|
|
/// %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
|
|
/// <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
|
|
/// store <12 x i32> %i.vec, <12 x i32>* %ptr
|
|
///
|
|
/// Into:
|
|
/// %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
|
|
/// %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
|
|
/// %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
|
|
/// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
|
|
bool ARMTargetLowering::lowerInterleavedStore(StoreInst *SI,
|
|
ShuffleVectorInst *SVI,
|
|
unsigned Factor) const {
|
|
assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
|
|
"Invalid interleave factor");
|
|
|
|
VectorType *VecTy = SVI->getType();
|
|
assert(VecTy->getVectorNumElements() % Factor == 0 &&
|
|
"Invalid interleaved store");
|
|
|
|
unsigned LaneLen = VecTy->getVectorNumElements() / Factor;
|
|
Type *EltTy = VecTy->getVectorElementType();
|
|
VectorType *SubVecTy = VectorType::get(EltTy, LaneLen);
|
|
|
|
const DataLayout &DL = SI->getModule()->getDataLayout();
|
|
|
|
// Skip if we do not have NEON and skip illegal vector types. We can
|
|
// "legalize" wide vector types into multiple interleaved accesses as long as
|
|
// the vector types are divisible by 128.
|
|
if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(SubVecTy, DL))
|
|
return false;
|
|
|
|
unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL);
|
|
|
|
Value *Op0 = SVI->getOperand(0);
|
|
Value *Op1 = SVI->getOperand(1);
|
|
IRBuilder<> Builder(SI);
|
|
|
|
// StN intrinsics don't support pointer vectors as arguments. Convert pointer
|
|
// vectors to integer vectors.
|
|
if (EltTy->isPointerTy()) {
|
|
Type *IntTy = DL.getIntPtrType(EltTy);
|
|
|
|
// Convert to the corresponding integer vector.
|
|
Type *IntVecTy =
|
|
VectorType::get(IntTy, Op0->getType()->getVectorNumElements());
|
|
Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
|
|
Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
|
|
|
|
SubVecTy = VectorType::get(IntTy, LaneLen);
|
|
}
|
|
|
|
// The base address of the store.
|
|
Value *BaseAddr = SI->getPointerOperand();
|
|
|
|
if (NumStores > 1) {
|
|
// If we're going to generate more than one store, reset the lane length
|
|
// and sub-vector type to something legal.
|
|
LaneLen /= NumStores;
|
|
SubVecTy = VectorType::get(SubVecTy->getVectorElementType(), LaneLen);
|
|
|
|
// We will compute the pointer operand of each store from the original base
|
|
// address using GEPs. Cast the base address to a pointer to the scalar
|
|
// element type.
|
|
BaseAddr = Builder.CreateBitCast(
|
|
BaseAddr, SubVecTy->getVectorElementType()->getPointerTo(
|
|
SI->getPointerAddressSpace()));
|
|
}
|
|
|
|
assert(isTypeLegal(EVT::getEVT(SubVecTy)) && "Illegal vstN vector type!");
|
|
|
|
auto Mask = SVI->getShuffleMask();
|
|
|
|
Type *Int8Ptr = Builder.getInt8PtrTy(SI->getPointerAddressSpace());
|
|
Type *Tys[] = {Int8Ptr, SubVecTy};
|
|
static const Intrinsic::ID StoreInts[3] = {Intrinsic::arm_neon_vst2,
|
|
Intrinsic::arm_neon_vst3,
|
|
Intrinsic::arm_neon_vst4};
|
|
|
|
for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) {
|
|
// If we generating more than one store, we compute the base address of
|
|
// subsequent stores as an offset from the previous.
|
|
if (StoreCount > 0)
|
|
BaseAddr = Builder.CreateConstGEP1_32(BaseAddr, LaneLen * Factor);
|
|
|
|
SmallVector<Value *, 6> Ops;
|
|
Ops.push_back(Builder.CreateBitCast(BaseAddr, Int8Ptr));
|
|
|
|
Function *VstNFunc =
|
|
Intrinsic::getDeclaration(SI->getModule(), StoreInts[Factor - 2], Tys);
|
|
|
|
// Split the shufflevector operands into sub vectors for the new vstN call.
|
|
for (unsigned i = 0; i < Factor; i++) {
|
|
unsigned IdxI = StoreCount * LaneLen * Factor + i;
|
|
if (Mask[IdxI] >= 0) {
|
|
Ops.push_back(Builder.CreateShuffleVector(
|
|
Op0, Op1, createSequentialMask(Builder, Mask[IdxI], LaneLen, 0)));
|
|
} else {
|
|
unsigned StartMask = 0;
|
|
for (unsigned j = 1; j < LaneLen; j++) {
|
|
unsigned IdxJ = StoreCount * LaneLen * Factor + j;
|
|
if (Mask[IdxJ * Factor + IdxI] >= 0) {
|
|
StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ;
|
|
break;
|
|
}
|
|
}
|
|
// Note: If all elements in a chunk are undefs, StartMask=0!
|
|
// Note: Filling undef gaps with random elements is ok, since
|
|
// those elements were being written anyway (with undefs).
|
|
// In the case of all undefs we're defaulting to using elems from 0
|
|
// Note: StartMask cannot be negative, it's checked in
|
|
// isReInterleaveMask
|
|
Ops.push_back(Builder.CreateShuffleVector(
|
|
Op0, Op1, createSequentialMask(Builder, StartMask, LaneLen, 0)));
|
|
}
|
|
}
|
|
|
|
Ops.push_back(Builder.getInt32(SI->getAlignment()));
|
|
Builder.CreateCall(VstNFunc, Ops);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
enum HABaseType {
|
|
HA_UNKNOWN = 0,
|
|
HA_FLOAT,
|
|
HA_DOUBLE,
|
|
HA_VECT64,
|
|
HA_VECT128
|
|
};
|
|
|
|
static bool isHomogeneousAggregate(Type *Ty, HABaseType &Base,
|
|
uint64_t &Members) {
|
|
if (auto *ST = dyn_cast<StructType>(Ty)) {
|
|
for (unsigned i = 0; i < ST->getNumElements(); ++i) {
|
|
uint64_t SubMembers = 0;
|
|
if (!isHomogeneousAggregate(ST->getElementType(i), Base, SubMembers))
|
|
return false;
|
|
Members += SubMembers;
|
|
}
|
|
} else if (auto *AT = dyn_cast<ArrayType>(Ty)) {
|
|
uint64_t SubMembers = 0;
|
|
if (!isHomogeneousAggregate(AT->getElementType(), Base, SubMembers))
|
|
return false;
|
|
Members += SubMembers * AT->getNumElements();
|
|
} else if (Ty->isFloatTy()) {
|
|
if (Base != HA_UNKNOWN && Base != HA_FLOAT)
|
|
return false;
|
|
Members = 1;
|
|
Base = HA_FLOAT;
|
|
} else if (Ty->isDoubleTy()) {
|
|
if (Base != HA_UNKNOWN && Base != HA_DOUBLE)
|
|
return false;
|
|
Members = 1;
|
|
Base = HA_DOUBLE;
|
|
} else if (auto *VT = dyn_cast<VectorType>(Ty)) {
|
|
Members = 1;
|
|
switch (Base) {
|
|
case HA_FLOAT:
|
|
case HA_DOUBLE:
|
|
return false;
|
|
case HA_VECT64:
|
|
return VT->getBitWidth() == 64;
|
|
case HA_VECT128:
|
|
return VT->getBitWidth() == 128;
|
|
case HA_UNKNOWN:
|
|
switch (VT->getBitWidth()) {
|
|
case 64:
|
|
Base = HA_VECT64;
|
|
return true;
|
|
case 128:
|
|
Base = HA_VECT128;
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return (Members > 0 && Members <= 4);
|
|
}
|
|
|
|
/// Return the correct alignment for the current calling convention.
|
|
unsigned
|
|
ARMTargetLowering::getABIAlignmentForCallingConv(Type *ArgTy,
|
|
DataLayout DL) const {
|
|
if (!ArgTy->isVectorTy())
|
|
return DL.getABITypeAlignment(ArgTy);
|
|
|
|
// Avoid over-aligning vector parameters. It would require realigning the
|
|
// stack and waste space for no real benefit.
|
|
return std::min(DL.getABITypeAlignment(ArgTy), DL.getStackAlignment());
|
|
}
|
|
|
|
/// Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
|
|
/// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
|
|
/// passing according to AAPCS rules.
|
|
bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
|
|
Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
|
|
if (getEffectiveCallingConv(CallConv, isVarArg) !=
|
|
CallingConv::ARM_AAPCS_VFP)
|
|
return false;
|
|
|
|
HABaseType Base = HA_UNKNOWN;
|
|
uint64_t Members = 0;
|
|
bool IsHA = isHomogeneousAggregate(Ty, Base, Members);
|
|
LLVM_DEBUG(dbgs() << "isHA: " << IsHA << " "; Ty->dump());
|
|
|
|
bool IsIntArray = Ty->isArrayTy() && Ty->getArrayElementType()->isIntegerTy();
|
|
return IsHA || IsIntArray;
|
|
}
|
|
|
|
unsigned ARMTargetLowering::getExceptionPointerRegister(
|
|
const Constant *PersonalityFn) const {
|
|
// Platforms which do not use SjLj EH may return values in these registers
|
|
// via the personality function.
|
|
return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R0;
|
|
}
|
|
|
|
unsigned ARMTargetLowering::getExceptionSelectorRegister(
|
|
const Constant *PersonalityFn) const {
|
|
// Platforms which do not use SjLj EH may return values in these registers
|
|
// via the personality function.
|
|
return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R1;
|
|
}
|
|
|
|
void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
|
|
// Update IsSplitCSR in ARMFunctionInfo.
|
|
ARMFunctionInfo *AFI = Entry->getParent()->getInfo<ARMFunctionInfo>();
|
|
AFI->setIsSplitCSR(true);
|
|
}
|
|
|
|
void ARMTargetLowering::insertCopiesSplitCSR(
|
|
MachineBasicBlock *Entry,
|
|
const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
|
|
const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
|
|
const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
|
|
if (!IStart)
|
|
return;
|
|
|
|
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
|
|
MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
|
|
MachineBasicBlock::iterator MBBI = Entry->begin();
|
|
for (const MCPhysReg *I = IStart; *I; ++I) {
|
|
const TargetRegisterClass *RC = nullptr;
|
|
if (ARM::GPRRegClass.contains(*I))
|
|
RC = &ARM::GPRRegClass;
|
|
else if (ARM::DPRRegClass.contains(*I))
|
|
RC = &ARM::DPRRegClass;
|
|
else
|
|
llvm_unreachable("Unexpected register class in CSRsViaCopy!");
|
|
|
|
unsigned NewVR = MRI->createVirtualRegister(RC);
|
|
// Create copy from CSR to a virtual register.
|
|
// FIXME: this currently does not emit CFI pseudo-instructions, it works
|
|
// fine for CXX_FAST_TLS since the C++-style TLS access functions should be
|
|
// nounwind. If we want to generalize this later, we may need to emit
|
|
// CFI pseudo-instructions.
|
|
assert(Entry->getParent()->getFunction().hasFnAttribute(
|
|
Attribute::NoUnwind) &&
|
|
"Function should be nounwind in insertCopiesSplitCSR!");
|
|
Entry->addLiveIn(*I);
|
|
BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
|
|
.addReg(*I);
|
|
|
|
// Insert the copy-back instructions right before the terminator.
|
|
for (auto *Exit : Exits)
|
|
BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
|
|
TII->get(TargetOpcode::COPY), *I)
|
|
.addReg(NewVR);
|
|
}
|
|
}
|
|
|
|
void ARMTargetLowering::finalizeLowering(MachineFunction &MF) const {
|
|
MF.getFrameInfo().computeMaxCallFrameSize(MF);
|
|
TargetLoweringBase::finalizeLowering(MF);
|
|
}
|