forked from OSchip/llvm-project
2182 lines
82 KiB
C++
2182 lines
82 KiB
C++
//===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by Chris Lattner and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the interfaces that X86 uses to lower LLVM code into a
|
|
// selection DAG.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "X86.h"
|
|
#include "X86InstrBuilder.h"
|
|
#include "X86ISelLowering.h"
|
|
#include "X86TargetMachine.h"
|
|
#include "llvm/CallingConv.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/CodeGen/SSARegMap.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/ADT/VectorExtras.h"
|
|
using namespace llvm;
|
|
|
|
// FIXME: temporary.
|
|
#include "llvm/Support/CommandLine.h"
|
|
static cl::opt<bool> EnableFastCC("enable-x86-fastcc", cl::Hidden,
|
|
cl::desc("Enable fastcc on X86"));
|
|
|
|
X86TargetLowering::X86TargetLowering(TargetMachine &TM)
|
|
: TargetLowering(TM) {
|
|
Subtarget = &TM.getSubtarget<X86Subtarget>();
|
|
X86ScalarSSE = Subtarget->hasSSE2();
|
|
|
|
// Set up the TargetLowering object.
|
|
|
|
// X86 is weird, it always uses i8 for shift amounts and setcc results.
|
|
setShiftAmountType(MVT::i8);
|
|
setSetCCResultType(MVT::i8);
|
|
setSetCCResultContents(ZeroOrOneSetCCResult);
|
|
setSchedulingPreference(SchedulingForRegPressure);
|
|
setShiftAmountFlavor(Mask); // shl X, 32 == shl X, 0
|
|
setStackPointerRegisterToSaveRestore(X86::ESP);
|
|
|
|
// Set up the register classes.
|
|
addRegisterClass(MVT::i8, X86::R8RegisterClass);
|
|
addRegisterClass(MVT::i16, X86::R16RegisterClass);
|
|
addRegisterClass(MVT::i32, X86::R32RegisterClass);
|
|
|
|
// Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
|
|
// operation.
|
|
setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote);
|
|
setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote);
|
|
setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote);
|
|
|
|
if (X86ScalarSSE)
|
|
// No SSE i64 SINT_TO_FP, so expand i32 UINT_TO_FP instead.
|
|
setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Expand);
|
|
else
|
|
setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
|
|
|
|
// Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
|
|
// this operation.
|
|
setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote);
|
|
setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote);
|
|
// SSE has no i16 to fp conversion, only i32
|
|
if (X86ScalarSSE)
|
|
setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
|
|
else {
|
|
setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom);
|
|
setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
|
|
}
|
|
|
|
// We can handle SINT_TO_FP and FP_TO_SINT from/to i64 even though i64
|
|
// isn't legal.
|
|
setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom);
|
|
setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom);
|
|
|
|
// Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
|
|
// this operation.
|
|
setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote);
|
|
setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote);
|
|
|
|
if (X86ScalarSSE) {
|
|
setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote);
|
|
} else {
|
|
setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom);
|
|
setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
|
|
}
|
|
|
|
// Handle FP_TO_UINT by promoting the destination to a larger signed
|
|
// conversion.
|
|
setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote);
|
|
setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote);
|
|
setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote);
|
|
|
|
if (X86ScalarSSE && !Subtarget->hasSSE3())
|
|
// Expand FP_TO_UINT into a select.
|
|
// FIXME: We would like to use a Custom expander here eventually to do
|
|
// the optimal thing for SSE vs. the default expansion in the legalizer.
|
|
setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand);
|
|
else
|
|
// With SSE3 we can use fisttpll to convert to a signed i64.
|
|
setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
|
|
|
|
setOperationAction(ISD::BIT_CONVERT , MVT::f32 , Expand);
|
|
setOperationAction(ISD::BIT_CONVERT , MVT::i32 , Expand);
|
|
|
|
setOperationAction(ISD::BRCOND , MVT::Other, Custom);
|
|
setOperationAction(ISD::BRCONDTWOWAY , MVT::Other, Expand);
|
|
setOperationAction(ISD::BRTWOWAY_CC , MVT::Other, Expand);
|
|
setOperationAction(ISD::BR_CC , MVT::Other, Expand);
|
|
setOperationAction(ISD::SELECT_CC , MVT::Other, Expand);
|
|
setOperationAction(ISD::MEMMOVE , MVT::Other, Expand);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Expand);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Expand);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
|
|
setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand);
|
|
setOperationAction(ISD::SEXTLOAD , MVT::i1 , Expand);
|
|
setOperationAction(ISD::FREM , MVT::f64 , Expand);
|
|
setOperationAction(ISD::CTPOP , MVT::i8 , Expand);
|
|
setOperationAction(ISD::CTTZ , MVT::i8 , Expand);
|
|
setOperationAction(ISD::CTLZ , MVT::i8 , Expand);
|
|
setOperationAction(ISD::CTPOP , MVT::i16 , Expand);
|
|
setOperationAction(ISD::CTTZ , MVT::i16 , Expand);
|
|
setOperationAction(ISD::CTLZ , MVT::i16 , Expand);
|
|
setOperationAction(ISD::CTPOP , MVT::i32 , Expand);
|
|
setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
|
|
setOperationAction(ISD::CTLZ , MVT::i32 , Expand);
|
|
setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom);
|
|
setOperationAction(ISD::BSWAP , MVT::i16 , Expand);
|
|
|
|
// These should be promoted to a larger select which is supported.
|
|
setOperationAction(ISD::SELECT , MVT::i1 , Promote);
|
|
setOperationAction(ISD::SELECT , MVT::i8 , Promote);
|
|
|
|
// X86 wants to expand cmov itself.
|
|
setOperationAction(ISD::SELECT , MVT::i16 , Custom);
|
|
setOperationAction(ISD::SELECT , MVT::i32 , Custom);
|
|
setOperationAction(ISD::SELECT , MVT::f32 , Custom);
|
|
setOperationAction(ISD::SELECT , MVT::f64 , Custom);
|
|
setOperationAction(ISD::SETCC , MVT::i8 , Custom);
|
|
setOperationAction(ISD::SETCC , MVT::i16 , Custom);
|
|
setOperationAction(ISD::SETCC , MVT::i32 , Custom);
|
|
setOperationAction(ISD::SETCC , MVT::f32 , Custom);
|
|
setOperationAction(ISD::SETCC , MVT::f64 , Custom);
|
|
// X86 ret instruction may pop stack.
|
|
setOperationAction(ISD::RET , MVT::Other, Custom);
|
|
// Darwin ABI issue.
|
|
setOperationAction(ISD::ConstantPool , MVT::i32 , Custom);
|
|
setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom);
|
|
setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom);
|
|
// 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
|
|
setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom);
|
|
setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom);
|
|
setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom);
|
|
// X86 wants to expand memset / memcpy itself.
|
|
setOperationAction(ISD::MEMSET , MVT::Other, Custom);
|
|
setOperationAction(ISD::MEMCPY , MVT::Other, Custom);
|
|
|
|
// We don't have line number support yet.
|
|
setOperationAction(ISD::LOCATION, MVT::Other, Expand);
|
|
setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
|
|
// FIXME - use subtarget debug flags
|
|
if (!TM.getSubtarget<X86Subtarget>().isTargetDarwin())
|
|
setOperationAction(ISD::DEBUG_LABEL, MVT::Other, Expand);
|
|
|
|
// VASTART needs to be custom lowered to use the VarArgsFrameIndex
|
|
setOperationAction(ISD::VASTART , MVT::Other, Custom);
|
|
|
|
// Use the default implementation.
|
|
setOperationAction(ISD::VAARG , MVT::Other, Expand);
|
|
setOperationAction(ISD::VACOPY , MVT::Other, Expand);
|
|
setOperationAction(ISD::VAEND , MVT::Other, Expand);
|
|
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
|
|
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
|
|
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Expand);
|
|
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
|
|
|
|
if (X86ScalarSSE) {
|
|
// Set up the FP register classes.
|
|
addRegisterClass(MVT::f32, X86::FR32RegisterClass);
|
|
addRegisterClass(MVT::f64, X86::FR64RegisterClass);
|
|
|
|
// SSE has no load+extend ops
|
|
setOperationAction(ISD::EXTLOAD, MVT::f32, Expand);
|
|
setOperationAction(ISD::ZEXTLOAD, MVT::f32, Expand);
|
|
|
|
// Use ANDPD to simulate FABS.
|
|
setOperationAction(ISD::FABS , MVT::f64, Custom);
|
|
setOperationAction(ISD::FABS , MVT::f32, Custom);
|
|
|
|
// Use XORP to simulate FNEG.
|
|
setOperationAction(ISD::FNEG , MVT::f64, Custom);
|
|
setOperationAction(ISD::FNEG , MVT::f32, Custom);
|
|
|
|
// We don't support sin/cos/fmod
|
|
setOperationAction(ISD::FSIN , MVT::f64, Expand);
|
|
setOperationAction(ISD::FCOS , MVT::f64, Expand);
|
|
setOperationAction(ISD::FREM , MVT::f64, Expand);
|
|
setOperationAction(ISD::FSIN , MVT::f32, Expand);
|
|
setOperationAction(ISD::FCOS , MVT::f32, Expand);
|
|
setOperationAction(ISD::FREM , MVT::f32, Expand);
|
|
|
|
// Expand FP immediates into loads from the stack, except for the special
|
|
// cases we handle.
|
|
setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
|
|
setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
|
|
addLegalFPImmediate(+0.0); // xorps / xorpd
|
|
} else {
|
|
// Set up the FP register classes.
|
|
addRegisterClass(MVT::f64, X86::RFPRegisterClass);
|
|
|
|
setOperationAction(ISD::UNDEF, MVT::f64, Expand);
|
|
|
|
if (!UnsafeFPMath) {
|
|
setOperationAction(ISD::FSIN , MVT::f64 , Expand);
|
|
setOperationAction(ISD::FCOS , MVT::f64 , Expand);
|
|
}
|
|
|
|
setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
|
|
addLegalFPImmediate(+0.0); // FLD0
|
|
addLegalFPImmediate(+1.0); // FLD1
|
|
addLegalFPImmediate(-0.0); // FLD0/FCHS
|
|
addLegalFPImmediate(-1.0); // FLD1/FCHS
|
|
}
|
|
|
|
// First set operation action for all vector types to expand. Then we
|
|
// will selectively turn on ones that can be effectively codegen'd.
|
|
for (unsigned VT = (unsigned)MVT::Vector + 1;
|
|
VT != (unsigned)MVT::LAST_VALUETYPE; VT++) {
|
|
setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
|
|
setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
|
|
setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
|
|
setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
|
|
}
|
|
|
|
if (TM.getSubtarget<X86Subtarget>().hasMMX()) {
|
|
addRegisterClass(MVT::v8i8, X86::VR64RegisterClass);
|
|
addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
|
|
addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
|
|
|
|
// FIXME: add MMX packed arithmetics
|
|
setOperationAction(ISD::ConstantVec, MVT::v8i8, Expand);
|
|
setOperationAction(ISD::ConstantVec, MVT::v4i16, Expand);
|
|
setOperationAction(ISD::ConstantVec, MVT::v2i32, Expand);
|
|
}
|
|
|
|
if (TM.getSubtarget<X86Subtarget>().hasSSE1()) {
|
|
addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
|
|
|
|
setOperationAction(ISD::ADD , MVT::v4f32, Legal);
|
|
setOperationAction(ISD::SUB , MVT::v4f32, Legal);
|
|
setOperationAction(ISD::MUL , MVT::v4f32, Legal);
|
|
setOperationAction(ISD::LOAD , MVT::v4f32, Legal);
|
|
setOperationAction(ISD::ConstantVec, MVT::v4f32, Expand);
|
|
}
|
|
|
|
if (TM.getSubtarget<X86Subtarget>().hasSSE2()) {
|
|
addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
|
|
addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
|
|
addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
|
|
addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
|
|
addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
|
|
|
|
|
|
setOperationAction(ISD::ADD , MVT::v2f64, Legal);
|
|
setOperationAction(ISD::SUB , MVT::v2f64, Legal);
|
|
setOperationAction(ISD::MUL , MVT::v2f64, Legal);
|
|
setOperationAction(ISD::LOAD , MVT::v2f64, Legal);
|
|
setOperationAction(ISD::ConstantVec, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::ConstantVec, MVT::v16i8, Expand);
|
|
setOperationAction(ISD::ConstantVec, MVT::v8i16, Expand);
|
|
setOperationAction(ISD::ConstantVec, MVT::v4i32, Expand);
|
|
setOperationAction(ISD::ConstantVec, MVT::v2i64, Expand);
|
|
}
|
|
|
|
computeRegisterProperties();
|
|
|
|
// FIXME: These should be based on subtarget info. Plus, the values should
|
|
// be smaller when we are in optimizing for size mode.
|
|
maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
|
|
maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
|
|
maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
|
|
allowUnalignedMemoryAccesses = true; // x86 supports it!
|
|
}
|
|
|
|
std::vector<SDOperand>
|
|
X86TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
|
|
if (F.getCallingConv() == CallingConv::Fast && EnableFastCC)
|
|
return LowerFastCCArguments(F, DAG);
|
|
return LowerCCCArguments(F, DAG);
|
|
}
|
|
|
|
std::pair<SDOperand, SDOperand>
|
|
X86TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
|
|
bool isVarArg, unsigned CallingConv,
|
|
bool isTailCall,
|
|
SDOperand Callee, ArgListTy &Args,
|
|
SelectionDAG &DAG) {
|
|
assert((!isVarArg || CallingConv == CallingConv::C) &&
|
|
"Only C takes varargs!");
|
|
|
|
// If the callee is a GlobalAddress node (quite common, every direct call is)
|
|
// turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
|
|
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
|
|
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
|
|
else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
|
|
Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
|
|
|
|
if (CallingConv == CallingConv::Fast && EnableFastCC)
|
|
return LowerFastCCCallTo(Chain, RetTy, isTailCall, Callee, Args, DAG);
|
|
return LowerCCCCallTo(Chain, RetTy, isVarArg, isTailCall, Callee, Args, DAG);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// C Calling Convention implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
std::vector<SDOperand>
|
|
X86TargetLowering::LowerCCCArguments(Function &F, SelectionDAG &DAG) {
|
|
std::vector<SDOperand> ArgValues;
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
|
|
// Add DAG nodes to load the arguments... On entry to a function on the X86,
|
|
// the stack frame looks like this:
|
|
//
|
|
// [ESP] -- return address
|
|
// [ESP + 4] -- first argument (leftmost lexically)
|
|
// [ESP + 8] -- second argument, if first argument is four bytes in size
|
|
// ...
|
|
//
|
|
unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
|
|
for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
|
|
MVT::ValueType ObjectVT = getValueType(I->getType());
|
|
unsigned ArgIncrement = 4;
|
|
unsigned ObjSize;
|
|
switch (ObjectVT) {
|
|
default: assert(0 && "Unhandled argument type!");
|
|
case MVT::i1:
|
|
case MVT::i8: ObjSize = 1; break;
|
|
case MVT::i16: ObjSize = 2; break;
|
|
case MVT::i32: ObjSize = 4; break;
|
|
case MVT::i64: ObjSize = ArgIncrement = 8; break;
|
|
case MVT::f32: ObjSize = 4; break;
|
|
case MVT::f64: ObjSize = ArgIncrement = 8; break;
|
|
}
|
|
// Create the frame index object for this incoming parameter...
|
|
int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
|
|
|
|
// Create the SelectionDAG nodes corresponding to a load from this parameter
|
|
SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
|
|
|
|
// Don't codegen dead arguments. FIXME: remove this check when we can nuke
|
|
// dead loads.
|
|
SDOperand ArgValue;
|
|
if (!I->use_empty())
|
|
ArgValue = DAG.getLoad(ObjectVT, DAG.getEntryNode(), FIN,
|
|
DAG.getSrcValue(NULL));
|
|
else {
|
|
if (MVT::isInteger(ObjectVT))
|
|
ArgValue = DAG.getConstant(0, ObjectVT);
|
|
else
|
|
ArgValue = DAG.getConstantFP(0, ObjectVT);
|
|
}
|
|
ArgValues.push_back(ArgValue);
|
|
|
|
ArgOffset += ArgIncrement; // Move on to the next argument...
|
|
}
|
|
|
|
// If the function takes variable number of arguments, make a frame index for
|
|
// the start of the first vararg value... for expansion of llvm.va_start.
|
|
if (F.isVarArg())
|
|
VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
|
|
ReturnAddrIndex = 0; // No return address slot generated yet.
|
|
BytesToPopOnReturn = 0; // Callee pops nothing.
|
|
BytesCallerReserves = ArgOffset;
|
|
|
|
// Finally, inform the code generator which regs we return values in.
|
|
switch (getValueType(F.getReturnType())) {
|
|
default: assert(0 && "Unknown type!");
|
|
case MVT::isVoid: break;
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
case MVT::i32:
|
|
MF.addLiveOut(X86::EAX);
|
|
break;
|
|
case MVT::i64:
|
|
MF.addLiveOut(X86::EAX);
|
|
MF.addLiveOut(X86::EDX);
|
|
break;
|
|
case MVT::f32:
|
|
case MVT::f64:
|
|
MF.addLiveOut(X86::ST0);
|
|
break;
|
|
}
|
|
return ArgValues;
|
|
}
|
|
|
|
std::pair<SDOperand, SDOperand>
|
|
X86TargetLowering::LowerCCCCallTo(SDOperand Chain, const Type *RetTy,
|
|
bool isVarArg, bool isTailCall,
|
|
SDOperand Callee, ArgListTy &Args,
|
|
SelectionDAG &DAG) {
|
|
// Count how many bytes are to be pushed on the stack.
|
|
unsigned NumBytes = 0;
|
|
|
|
if (Args.empty()) {
|
|
// Save zero bytes.
|
|
Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(0, getPointerTy()));
|
|
} else {
|
|
for (unsigned i = 0, e = Args.size(); i != e; ++i)
|
|
switch (getValueType(Args[i].second)) {
|
|
default: assert(0 && "Unknown value type!");
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
case MVT::i32:
|
|
case MVT::f32:
|
|
NumBytes += 4;
|
|
break;
|
|
case MVT::i64:
|
|
case MVT::f64:
|
|
NumBytes += 8;
|
|
break;
|
|
}
|
|
|
|
Chain = DAG.getCALLSEQ_START(Chain,
|
|
DAG.getConstant(NumBytes, getPointerTy()));
|
|
|
|
// Arguments go on the stack in reverse order, as specified by the ABI.
|
|
unsigned ArgOffset = 0;
|
|
SDOperand StackPtr = DAG.getRegister(X86::ESP, MVT::i32);
|
|
std::vector<SDOperand> Stores;
|
|
|
|
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
|
|
SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
|
|
PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
|
|
|
|
switch (getValueType(Args[i].second)) {
|
|
default: assert(0 && "Unexpected ValueType for argument!");
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
// Promote the integer to 32 bits. If the input type is signed use a
|
|
// sign extend, otherwise use a zero extend.
|
|
if (Args[i].second->isSigned())
|
|
Args[i].first =DAG.getNode(ISD::SIGN_EXTEND, MVT::i32, Args[i].first);
|
|
else
|
|
Args[i].first =DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Args[i].first);
|
|
|
|
// FALL THROUGH
|
|
case MVT::i32:
|
|
case MVT::f32:
|
|
Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
|
|
Args[i].first, PtrOff,
|
|
DAG.getSrcValue(NULL)));
|
|
ArgOffset += 4;
|
|
break;
|
|
case MVT::i64:
|
|
case MVT::f64:
|
|
Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
|
|
Args[i].first, PtrOff,
|
|
DAG.getSrcValue(NULL)));
|
|
ArgOffset += 8;
|
|
break;
|
|
}
|
|
}
|
|
Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, Stores);
|
|
}
|
|
|
|
std::vector<MVT::ValueType> RetVals;
|
|
MVT::ValueType RetTyVT = getValueType(RetTy);
|
|
RetVals.push_back(MVT::Other);
|
|
|
|
// The result values produced have to be legal. Promote the result.
|
|
switch (RetTyVT) {
|
|
case MVT::isVoid: break;
|
|
default:
|
|
RetVals.push_back(RetTyVT);
|
|
break;
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
RetVals.push_back(MVT::i32);
|
|
break;
|
|
case MVT::f32:
|
|
if (X86ScalarSSE)
|
|
RetVals.push_back(MVT::f32);
|
|
else
|
|
RetVals.push_back(MVT::f64);
|
|
break;
|
|
case MVT::i64:
|
|
RetVals.push_back(MVT::i32);
|
|
RetVals.push_back(MVT::i32);
|
|
break;
|
|
}
|
|
|
|
std::vector<MVT::ValueType> NodeTys;
|
|
NodeTys.push_back(MVT::Other); // Returns a chain
|
|
NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
|
|
std::vector<SDOperand> Ops;
|
|
Ops.push_back(Chain);
|
|
Ops.push_back(Callee);
|
|
|
|
// FIXME: Do not generate X86ISD::TAILCALL for now.
|
|
Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops);
|
|
SDOperand InFlag = Chain.getValue(1);
|
|
|
|
NodeTys.clear();
|
|
NodeTys.push_back(MVT::Other); // Returns a chain
|
|
NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
|
|
Ops.clear();
|
|
Ops.push_back(Chain);
|
|
Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
|
|
Ops.push_back(DAG.getConstant(0, getPointerTy()));
|
|
Ops.push_back(InFlag);
|
|
Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, Ops);
|
|
InFlag = Chain.getValue(1);
|
|
|
|
SDOperand RetVal;
|
|
if (RetTyVT != MVT::isVoid) {
|
|
switch (RetTyVT) {
|
|
default: assert(0 && "Unknown value type to return!");
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
RetVal = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag);
|
|
Chain = RetVal.getValue(1);
|
|
if (RetTyVT == MVT::i1)
|
|
RetVal = DAG.getNode(ISD::TRUNCATE, MVT::i1, RetVal);
|
|
break;
|
|
case MVT::i16:
|
|
RetVal = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag);
|
|
Chain = RetVal.getValue(1);
|
|
break;
|
|
case MVT::i32:
|
|
RetVal = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag);
|
|
Chain = RetVal.getValue(1);
|
|
break;
|
|
case MVT::i64: {
|
|
SDOperand Lo = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag);
|
|
SDOperand Hi = DAG.getCopyFromReg(Lo.getValue(1), X86::EDX, MVT::i32,
|
|
Lo.getValue(2));
|
|
RetVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Lo, Hi);
|
|
Chain = Hi.getValue(1);
|
|
break;
|
|
}
|
|
case MVT::f32:
|
|
case MVT::f64: {
|
|
std::vector<MVT::ValueType> Tys;
|
|
Tys.push_back(MVT::f64);
|
|
Tys.push_back(MVT::Other);
|
|
Tys.push_back(MVT::Flag);
|
|
std::vector<SDOperand> Ops;
|
|
Ops.push_back(Chain);
|
|
Ops.push_back(InFlag);
|
|
RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, Ops);
|
|
Chain = RetVal.getValue(1);
|
|
InFlag = RetVal.getValue(2);
|
|
if (X86ScalarSSE) {
|
|
// FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
|
|
// shouldn't be necessary except that RFP cannot be live across
|
|
// multiple blocks. When stackifier is fixed, they can be uncoupled.
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
|
|
SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
|
|
Tys.clear();
|
|
Tys.push_back(MVT::Other);
|
|
Ops.clear();
|
|
Ops.push_back(Chain);
|
|
Ops.push_back(RetVal);
|
|
Ops.push_back(StackSlot);
|
|
Ops.push_back(DAG.getValueType(RetTyVT));
|
|
Ops.push_back(InFlag);
|
|
Chain = DAG.getNode(X86ISD::FST, Tys, Ops);
|
|
RetVal = DAG.getLoad(RetTyVT, Chain, StackSlot,
|
|
DAG.getSrcValue(NULL));
|
|
Chain = RetVal.getValue(1);
|
|
}
|
|
|
|
if (RetTyVT == MVT::f32 && !X86ScalarSSE)
|
|
// FIXME: we would really like to remember that this FP_ROUND
|
|
// operation is okay to eliminate if we allow excess FP precision.
|
|
RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return std::make_pair(RetVal, Chain);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Fast Calling Convention implementation
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// The X86 'fast' calling convention passes up to two integer arguments in
|
|
// registers (an appropriate portion of EAX/EDX), passes arguments in C order,
|
|
// and requires that the callee pop its arguments off the stack (allowing proper
|
|
// tail calls), and has the same return value conventions as C calling convs.
|
|
//
|
|
// This calling convention always arranges for the callee pop value to be 8n+4
|
|
// bytes, which is needed for tail recursion elimination and stack alignment
|
|
// reasons.
|
|
//
|
|
// Note that this can be enhanced in the future to pass fp vals in registers
|
|
// (when we have a global fp allocator) and do other tricks.
|
|
//
|
|
|
|
/// AddLiveIn - This helper function adds the specified physical register to the
|
|
/// MachineFunction as a live in value. It also creates a corresponding virtual
|
|
/// register for it.
|
|
static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
|
|
TargetRegisterClass *RC) {
|
|
assert(RC->contains(PReg) && "Not the correct regclass!");
|
|
unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC);
|
|
MF.addLiveIn(PReg, VReg);
|
|
return VReg;
|
|
}
|
|
|
|
|
|
std::vector<SDOperand>
|
|
X86TargetLowering::LowerFastCCArguments(Function &F, SelectionDAG &DAG) {
|
|
std::vector<SDOperand> ArgValues;
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
|
|
// Add DAG nodes to load the arguments... On entry to a function the stack
|
|
// frame looks like this:
|
|
//
|
|
// [ESP] -- return address
|
|
// [ESP + 4] -- first nonreg argument (leftmost lexically)
|
|
// [ESP + 8] -- second nonreg argument, if first argument is 4 bytes in size
|
|
// ...
|
|
unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
|
|
|
|
// Keep track of the number of integer regs passed so far. This can be either
|
|
// 0 (neither EAX or EDX used), 1 (EAX is used) or 2 (EAX and EDX are both
|
|
// used).
|
|
unsigned NumIntRegs = 0;
|
|
|
|
for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
|
|
MVT::ValueType ObjectVT = getValueType(I->getType());
|
|
unsigned ArgIncrement = 4;
|
|
unsigned ObjSize = 0;
|
|
SDOperand ArgValue;
|
|
|
|
switch (ObjectVT) {
|
|
default: assert(0 && "Unhandled argument type!");
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
if (NumIntRegs < 2) {
|
|
if (!I->use_empty()) {
|
|
unsigned VReg = AddLiveIn(MF, NumIntRegs ? X86::DL : X86::AL,
|
|
X86::R8RegisterClass);
|
|
ArgValue = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i8);
|
|
DAG.setRoot(ArgValue.getValue(1));
|
|
if (ObjectVT == MVT::i1)
|
|
// FIXME: Should insert a assertzext here.
|
|
ArgValue = DAG.getNode(ISD::TRUNCATE, MVT::i1, ArgValue);
|
|
}
|
|
++NumIntRegs;
|
|
break;
|
|
}
|
|
|
|
ObjSize = 1;
|
|
break;
|
|
case MVT::i16:
|
|
if (NumIntRegs < 2) {
|
|
if (!I->use_empty()) {
|
|
unsigned VReg = AddLiveIn(MF, NumIntRegs ? X86::DX : X86::AX,
|
|
X86::R16RegisterClass);
|
|
ArgValue = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i16);
|
|
DAG.setRoot(ArgValue.getValue(1));
|
|
}
|
|
++NumIntRegs;
|
|
break;
|
|
}
|
|
ObjSize = 2;
|
|
break;
|
|
case MVT::i32:
|
|
if (NumIntRegs < 2) {
|
|
if (!I->use_empty()) {
|
|
unsigned VReg = AddLiveIn(MF,NumIntRegs ? X86::EDX : X86::EAX,
|
|
X86::R32RegisterClass);
|
|
ArgValue = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i32);
|
|
DAG.setRoot(ArgValue.getValue(1));
|
|
}
|
|
++NumIntRegs;
|
|
break;
|
|
}
|
|
ObjSize = 4;
|
|
break;
|
|
case MVT::i64:
|
|
if (NumIntRegs == 0) {
|
|
if (!I->use_empty()) {
|
|
unsigned BotReg = AddLiveIn(MF, X86::EAX, X86::R32RegisterClass);
|
|
unsigned TopReg = AddLiveIn(MF, X86::EDX, X86::R32RegisterClass);
|
|
|
|
SDOperand Low = DAG.getCopyFromReg(DAG.getRoot(), BotReg, MVT::i32);
|
|
SDOperand Hi = DAG.getCopyFromReg(Low.getValue(1), TopReg, MVT::i32);
|
|
DAG.setRoot(Hi.getValue(1));
|
|
|
|
ArgValue = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Low, Hi);
|
|
}
|
|
NumIntRegs = 2;
|
|
break;
|
|
} else if (NumIntRegs == 1) {
|
|
if (!I->use_empty()) {
|
|
unsigned BotReg = AddLiveIn(MF, X86::EDX, X86::R32RegisterClass);
|
|
SDOperand Low = DAG.getCopyFromReg(DAG.getRoot(), BotReg, MVT::i32);
|
|
DAG.setRoot(Low.getValue(1));
|
|
|
|
// Load the high part from memory.
|
|
// Create the frame index object for this incoming parameter...
|
|
int FI = MFI->CreateFixedObject(4, ArgOffset);
|
|
SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
|
|
SDOperand Hi = DAG.getLoad(MVT::i32, DAG.getEntryNode(), FIN,
|
|
DAG.getSrcValue(NULL));
|
|
ArgValue = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Low, Hi);
|
|
}
|
|
ArgOffset += 4;
|
|
NumIntRegs = 2;
|
|
break;
|
|
}
|
|
ObjSize = ArgIncrement = 8;
|
|
break;
|
|
case MVT::f32: ObjSize = 4; break;
|
|
case MVT::f64: ObjSize = ArgIncrement = 8; break;
|
|
}
|
|
|
|
// Don't codegen dead arguments. FIXME: remove this check when we can nuke
|
|
// dead loads.
|
|
if (ObjSize && !I->use_empty()) {
|
|
// Create the frame index object for this incoming parameter...
|
|
int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
|
|
|
|
// Create the SelectionDAG nodes corresponding to a load from this
|
|
// parameter.
|
|
SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
|
|
|
|
ArgValue = DAG.getLoad(ObjectVT, DAG.getEntryNode(), FIN,
|
|
DAG.getSrcValue(NULL));
|
|
} else if (ArgValue.Val == 0) {
|
|
if (MVT::isInteger(ObjectVT))
|
|
ArgValue = DAG.getConstant(0, ObjectVT);
|
|
else
|
|
ArgValue = DAG.getConstantFP(0, ObjectVT);
|
|
}
|
|
ArgValues.push_back(ArgValue);
|
|
|
|
if (ObjSize)
|
|
ArgOffset += ArgIncrement; // Move on to the next argument.
|
|
}
|
|
|
|
// Make sure the instruction takes 8n+4 bytes to make sure the start of the
|
|
// arguments and the arguments after the retaddr has been pushed are aligned.
|
|
if ((ArgOffset & 7) == 0)
|
|
ArgOffset += 4;
|
|
|
|
VarArgsFrameIndex = 0xAAAAAAA; // fastcc functions can't have varargs.
|
|
ReturnAddrIndex = 0; // No return address slot generated yet.
|
|
BytesToPopOnReturn = ArgOffset; // Callee pops all stack arguments.
|
|
BytesCallerReserves = 0;
|
|
|
|
// Finally, inform the code generator which regs we return values in.
|
|
switch (getValueType(F.getReturnType())) {
|
|
default: assert(0 && "Unknown type!");
|
|
case MVT::isVoid: break;
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
case MVT::i32:
|
|
MF.addLiveOut(X86::EAX);
|
|
break;
|
|
case MVT::i64:
|
|
MF.addLiveOut(X86::EAX);
|
|
MF.addLiveOut(X86::EDX);
|
|
break;
|
|
case MVT::f32:
|
|
case MVT::f64:
|
|
MF.addLiveOut(X86::ST0);
|
|
break;
|
|
}
|
|
return ArgValues;
|
|
}
|
|
|
|
std::pair<SDOperand, SDOperand>
|
|
X86TargetLowering::LowerFastCCCallTo(SDOperand Chain, const Type *RetTy,
|
|
bool isTailCall, SDOperand Callee,
|
|
ArgListTy &Args, SelectionDAG &DAG) {
|
|
// Count how many bytes are to be pushed on the stack.
|
|
unsigned NumBytes = 0;
|
|
|
|
// Keep track of the number of integer regs passed so far. This can be either
|
|
// 0 (neither EAX or EDX used), 1 (EAX is used) or 2 (EAX and EDX are both
|
|
// used).
|
|
unsigned NumIntRegs = 0;
|
|
|
|
for (unsigned i = 0, e = Args.size(); i != e; ++i)
|
|
switch (getValueType(Args[i].second)) {
|
|
default: assert(0 && "Unknown value type!");
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
case MVT::i32:
|
|
if (NumIntRegs < 2) {
|
|
++NumIntRegs;
|
|
break;
|
|
}
|
|
// fall through
|
|
case MVT::f32:
|
|
NumBytes += 4;
|
|
break;
|
|
case MVT::i64:
|
|
if (NumIntRegs == 0) {
|
|
NumIntRegs = 2;
|
|
break;
|
|
} else if (NumIntRegs == 1) {
|
|
NumIntRegs = 2;
|
|
NumBytes += 4;
|
|
break;
|
|
}
|
|
|
|
// fall through
|
|
case MVT::f64:
|
|
NumBytes += 8;
|
|
break;
|
|
}
|
|
|
|
// Make sure the instruction takes 8n+4 bytes to make sure the start of the
|
|
// arguments and the arguments after the retaddr has been pushed are aligned.
|
|
if ((NumBytes & 7) == 0)
|
|
NumBytes += 4;
|
|
|
|
Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
|
|
|
|
// Arguments go on the stack in reverse order, as specified by the ABI.
|
|
unsigned ArgOffset = 0;
|
|
SDOperand StackPtr = DAG.getRegister(X86::ESP, MVT::i32);
|
|
NumIntRegs = 0;
|
|
std::vector<SDOperand> Stores;
|
|
std::vector<SDOperand> RegValuesToPass;
|
|
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
|
|
switch (getValueType(Args[i].second)) {
|
|
default: assert(0 && "Unexpected ValueType for argument!");
|
|
case MVT::i1:
|
|
Args[i].first = DAG.getNode(ISD::ANY_EXTEND, MVT::i8, Args[i].first);
|
|
// Fall through.
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
case MVT::i32:
|
|
if (NumIntRegs < 2) {
|
|
RegValuesToPass.push_back(Args[i].first);
|
|
++NumIntRegs;
|
|
break;
|
|
}
|
|
// Fall through
|
|
case MVT::f32: {
|
|
SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
|
|
PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
|
|
Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
|
|
Args[i].first, PtrOff,
|
|
DAG.getSrcValue(NULL)));
|
|
ArgOffset += 4;
|
|
break;
|
|
}
|
|
case MVT::i64:
|
|
if (NumIntRegs < 2) { // Can pass part of it in regs?
|
|
SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
|
|
Args[i].first, DAG.getConstant(1, MVT::i32));
|
|
SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
|
|
Args[i].first, DAG.getConstant(0, MVT::i32));
|
|
RegValuesToPass.push_back(Lo);
|
|
++NumIntRegs;
|
|
if (NumIntRegs < 2) { // Pass both parts in regs?
|
|
RegValuesToPass.push_back(Hi);
|
|
++NumIntRegs;
|
|
} else {
|
|
// Pass the high part in memory.
|
|
SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
|
|
PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
|
|
Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
|
|
Hi, PtrOff, DAG.getSrcValue(NULL)));
|
|
ArgOffset += 4;
|
|
}
|
|
break;
|
|
}
|
|
// Fall through
|
|
case MVT::f64:
|
|
SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
|
|
PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
|
|
Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
|
|
Args[i].first, PtrOff,
|
|
DAG.getSrcValue(NULL)));
|
|
ArgOffset += 8;
|
|
break;
|
|
}
|
|
}
|
|
if (!Stores.empty())
|
|
Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, Stores);
|
|
|
|
// Make sure the instruction takes 8n+4 bytes to make sure the start of the
|
|
// arguments and the arguments after the retaddr has been pushed are aligned.
|
|
if ((ArgOffset & 7) == 0)
|
|
ArgOffset += 4;
|
|
|
|
std::vector<MVT::ValueType> RetVals;
|
|
MVT::ValueType RetTyVT = getValueType(RetTy);
|
|
|
|
RetVals.push_back(MVT::Other);
|
|
|
|
// The result values produced have to be legal. Promote the result.
|
|
switch (RetTyVT) {
|
|
case MVT::isVoid: break;
|
|
default:
|
|
RetVals.push_back(RetTyVT);
|
|
break;
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
RetVals.push_back(MVT::i32);
|
|
break;
|
|
case MVT::f32:
|
|
if (X86ScalarSSE)
|
|
RetVals.push_back(MVT::f32);
|
|
else
|
|
RetVals.push_back(MVT::f64);
|
|
break;
|
|
case MVT::i64:
|
|
RetVals.push_back(MVT::i32);
|
|
RetVals.push_back(MVT::i32);
|
|
break;
|
|
}
|
|
|
|
// Build a sequence of copy-to-reg nodes chained together with token chain
|
|
// and flag operands which copy the outgoing args into registers.
|
|
SDOperand InFlag;
|
|
for (unsigned i = 0, e = RegValuesToPass.size(); i != e; ++i) {
|
|
unsigned CCReg;
|
|
SDOperand RegToPass = RegValuesToPass[i];
|
|
switch (RegToPass.getValueType()) {
|
|
default: assert(0 && "Bad thing to pass in regs");
|
|
case MVT::i8:
|
|
CCReg = (i == 0) ? X86::AL : X86::DL;
|
|
break;
|
|
case MVT::i16:
|
|
CCReg = (i == 0) ? X86::AX : X86::DX;
|
|
break;
|
|
case MVT::i32:
|
|
CCReg = (i == 0) ? X86::EAX : X86::EDX;
|
|
break;
|
|
}
|
|
|
|
Chain = DAG.getCopyToReg(Chain, CCReg, RegToPass, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
std::vector<MVT::ValueType> NodeTys;
|
|
NodeTys.push_back(MVT::Other); // Returns a chain
|
|
NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
|
|
std::vector<SDOperand> Ops;
|
|
Ops.push_back(Chain);
|
|
Ops.push_back(Callee);
|
|
if (InFlag.Val)
|
|
Ops.push_back(InFlag);
|
|
|
|
// FIXME: Do not generate X86ISD::TAILCALL for now.
|
|
Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops);
|
|
InFlag = Chain.getValue(1);
|
|
|
|
NodeTys.clear();
|
|
NodeTys.push_back(MVT::Other); // Returns a chain
|
|
NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
|
|
Ops.clear();
|
|
Ops.push_back(Chain);
|
|
Ops.push_back(DAG.getConstant(ArgOffset, getPointerTy()));
|
|
Ops.push_back(DAG.getConstant(ArgOffset, getPointerTy()));
|
|
Ops.push_back(InFlag);
|
|
Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, Ops);
|
|
InFlag = Chain.getValue(1);
|
|
|
|
SDOperand RetVal;
|
|
if (RetTyVT != MVT::isVoid) {
|
|
switch (RetTyVT) {
|
|
default: assert(0 && "Unknown value type to return!");
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
RetVal = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag);
|
|
Chain = RetVal.getValue(1);
|
|
if (RetTyVT == MVT::i1)
|
|
RetVal = DAG.getNode(ISD::TRUNCATE, MVT::i1, RetVal);
|
|
break;
|
|
case MVT::i16:
|
|
RetVal = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag);
|
|
Chain = RetVal.getValue(1);
|
|
break;
|
|
case MVT::i32:
|
|
RetVal = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag);
|
|
Chain = RetVal.getValue(1);
|
|
break;
|
|
case MVT::i64: {
|
|
SDOperand Lo = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag);
|
|
SDOperand Hi = DAG.getCopyFromReg(Lo.getValue(1), X86::EDX, MVT::i32,
|
|
Lo.getValue(2));
|
|
RetVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Lo, Hi);
|
|
Chain = Hi.getValue(1);
|
|
break;
|
|
}
|
|
case MVT::f32:
|
|
case MVT::f64: {
|
|
std::vector<MVT::ValueType> Tys;
|
|
Tys.push_back(MVT::f64);
|
|
Tys.push_back(MVT::Other);
|
|
Tys.push_back(MVT::Flag);
|
|
std::vector<SDOperand> Ops;
|
|
Ops.push_back(Chain);
|
|
Ops.push_back(InFlag);
|
|
RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, Ops);
|
|
Chain = RetVal.getValue(1);
|
|
InFlag = RetVal.getValue(2);
|
|
if (X86ScalarSSE) {
|
|
// FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
|
|
// shouldn't be necessary except that RFP cannot be live across
|
|
// multiple blocks. When stackifier is fixed, they can be uncoupled.
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
|
|
SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
|
|
Tys.clear();
|
|
Tys.push_back(MVT::Other);
|
|
Ops.clear();
|
|
Ops.push_back(Chain);
|
|
Ops.push_back(RetVal);
|
|
Ops.push_back(StackSlot);
|
|
Ops.push_back(DAG.getValueType(RetTyVT));
|
|
Ops.push_back(InFlag);
|
|
Chain = DAG.getNode(X86ISD::FST, Tys, Ops);
|
|
RetVal = DAG.getLoad(RetTyVT, Chain, StackSlot,
|
|
DAG.getSrcValue(NULL));
|
|
Chain = RetVal.getValue(1);
|
|
}
|
|
|
|
if (RetTyVT == MVT::f32 && !X86ScalarSSE)
|
|
// FIXME: we would really like to remember that this FP_ROUND
|
|
// operation is okay to eliminate if we allow excess FP precision.
|
|
RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return std::make_pair(RetVal, Chain);
|
|
}
|
|
|
|
SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
|
|
if (ReturnAddrIndex == 0) {
|
|
// Set up a frame object for the return address.
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
|
|
}
|
|
|
|
return DAG.getFrameIndex(ReturnAddrIndex, MVT::i32);
|
|
}
|
|
|
|
|
|
|
|
std::pair<SDOperand, SDOperand> X86TargetLowering::
|
|
LowerFrameReturnAddress(bool isFrameAddress, SDOperand Chain, unsigned Depth,
|
|
SelectionDAG &DAG) {
|
|
SDOperand Result;
|
|
if (Depth) // Depths > 0 not supported yet!
|
|
Result = DAG.getConstant(0, getPointerTy());
|
|
else {
|
|
SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
|
|
if (!isFrameAddress)
|
|
// Just load the return address
|
|
Result = DAG.getLoad(MVT::i32, DAG.getEntryNode(), RetAddrFI,
|
|
DAG.getSrcValue(NULL));
|
|
else
|
|
Result = DAG.getNode(ISD::SUB, MVT::i32, RetAddrFI,
|
|
DAG.getConstant(4, MVT::i32));
|
|
}
|
|
return std::make_pair(Result, Chain);
|
|
}
|
|
|
|
/// getCondBrOpcodeForX86CC - Returns the X86 conditional branch opcode
|
|
/// which corresponds to the condition code.
|
|
static unsigned getCondBrOpcodeForX86CC(unsigned X86CC) {
|
|
switch (X86CC) {
|
|
default: assert(0 && "Unknown X86 conditional code!");
|
|
case X86ISD::COND_A: return X86::JA;
|
|
case X86ISD::COND_AE: return X86::JAE;
|
|
case X86ISD::COND_B: return X86::JB;
|
|
case X86ISD::COND_BE: return X86::JBE;
|
|
case X86ISD::COND_E: return X86::JE;
|
|
case X86ISD::COND_G: return X86::JG;
|
|
case X86ISD::COND_GE: return X86::JGE;
|
|
case X86ISD::COND_L: return X86::JL;
|
|
case X86ISD::COND_LE: return X86::JLE;
|
|
case X86ISD::COND_NE: return X86::JNE;
|
|
case X86ISD::COND_NO: return X86::JNO;
|
|
case X86ISD::COND_NP: return X86::JNP;
|
|
case X86ISD::COND_NS: return X86::JNS;
|
|
case X86ISD::COND_O: return X86::JO;
|
|
case X86ISD::COND_P: return X86::JP;
|
|
case X86ISD::COND_S: return X86::JS;
|
|
}
|
|
}
|
|
|
|
/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
|
|
/// specific condition code. It returns a false if it cannot do a direct
|
|
/// translation. X86CC is the translated CondCode. Flip is set to true if the
|
|
/// the order of comparison operands should be flipped.
|
|
static bool translateX86CC(SDOperand CC, bool isFP, unsigned &X86CC,
|
|
bool &Flip) {
|
|
ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
|
|
Flip = false;
|
|
X86CC = X86ISD::COND_INVALID;
|
|
if (!isFP) {
|
|
switch (SetCCOpcode) {
|
|
default: break;
|
|
case ISD::SETEQ: X86CC = X86ISD::COND_E; break;
|
|
case ISD::SETGT: X86CC = X86ISD::COND_G; break;
|
|
case ISD::SETGE: X86CC = X86ISD::COND_GE; break;
|
|
case ISD::SETLT: X86CC = X86ISD::COND_L; break;
|
|
case ISD::SETLE: X86CC = X86ISD::COND_LE; break;
|
|
case ISD::SETNE: X86CC = X86ISD::COND_NE; break;
|
|
case ISD::SETULT: X86CC = X86ISD::COND_B; break;
|
|
case ISD::SETUGT: X86CC = X86ISD::COND_A; break;
|
|
case ISD::SETULE: X86CC = X86ISD::COND_BE; break;
|
|
case ISD::SETUGE: X86CC = X86ISD::COND_AE; break;
|
|
}
|
|
} else {
|
|
// On a floating point condition, the flags are set as follows:
|
|
// ZF PF CF op
|
|
// 0 | 0 | 0 | X > Y
|
|
// 0 | 0 | 1 | X < Y
|
|
// 1 | 0 | 0 | X == Y
|
|
// 1 | 1 | 1 | unordered
|
|
switch (SetCCOpcode) {
|
|
default: break;
|
|
case ISD::SETUEQ:
|
|
case ISD::SETEQ: X86CC = X86ISD::COND_E; break;
|
|
case ISD::SETOLE: Flip = true; // Fallthrough
|
|
case ISD::SETOGT:
|
|
case ISD::SETGT: X86CC = X86ISD::COND_A; break;
|
|
case ISD::SETOLT: Flip = true; // Fallthrough
|
|
case ISD::SETOGE:
|
|
case ISD::SETGE: X86CC = X86ISD::COND_AE; break;
|
|
case ISD::SETUGE: Flip = true; // Fallthrough
|
|
case ISD::SETULT:
|
|
case ISD::SETLT: X86CC = X86ISD::COND_B; break;
|
|
case ISD::SETUGT: Flip = true; // Fallthrough
|
|
case ISD::SETULE:
|
|
case ISD::SETLE: X86CC = X86ISD::COND_BE; break;
|
|
case ISD::SETONE:
|
|
case ISD::SETNE: X86CC = X86ISD::COND_NE; break;
|
|
case ISD::SETUO: X86CC = X86ISD::COND_P; break;
|
|
case ISD::SETO: X86CC = X86ISD::COND_NP; break;
|
|
}
|
|
}
|
|
|
|
return X86CC != X86ISD::COND_INVALID;
|
|
}
|
|
|
|
/// hasFPCMov - is there a floating point cmov for the specific X86 condition
|
|
/// code. Current x86 isa includes the following FP cmov instructions:
|
|
/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
|
|
static bool hasFPCMov(unsigned X86CC) {
|
|
switch (X86CC) {
|
|
default:
|
|
return false;
|
|
case X86ISD::COND_B:
|
|
case X86ISD::COND_BE:
|
|
case X86ISD::COND_E:
|
|
case X86ISD::COND_P:
|
|
case X86ISD::COND_A:
|
|
case X86ISD::COND_AE:
|
|
case X86ISD::COND_NE:
|
|
case X86ISD::COND_NP:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
|
|
MachineBasicBlock *BB) {
|
|
switch (MI->getOpcode()) {
|
|
default: assert(false && "Unexpected instr type to insert");
|
|
case X86::CMOV_FR32:
|
|
case X86::CMOV_FR64: {
|
|
// To "insert" a SELECT_CC instruction, we actually have to insert the
|
|
// diamond control-flow pattern. The incoming instruction knows the
|
|
// destination vreg to set, the condition code register to branch on, the
|
|
// true/false values to select between, and a branch opcode to use.
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
ilist<MachineBasicBlock>::iterator It = BB;
|
|
++It;
|
|
|
|
// thisMBB:
|
|
// ...
|
|
// TrueVal = ...
|
|
// cmpTY ccX, r1, r2
|
|
// bCC copy1MBB
|
|
// fallthrough --> copy0MBB
|
|
MachineBasicBlock *thisMBB = BB;
|
|
MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
|
|
unsigned Opc = getCondBrOpcodeForX86CC(MI->getOperand(3).getImmedValue());
|
|
BuildMI(BB, Opc, 1).addMBB(sinkMBB);
|
|
MachineFunction *F = BB->getParent();
|
|
F->getBasicBlockList().insert(It, copy0MBB);
|
|
F->getBasicBlockList().insert(It, sinkMBB);
|
|
// Update machine-CFG edges
|
|
BB->addSuccessor(copy0MBB);
|
|
BB->addSuccessor(sinkMBB);
|
|
|
|
// copy0MBB:
|
|
// %FalseValue = ...
|
|
// # fallthrough to sinkMBB
|
|
BB = copy0MBB;
|
|
|
|
// Update machine-CFG edges
|
|
BB->addSuccessor(sinkMBB);
|
|
|
|
// sinkMBB:
|
|
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
|
|
// ...
|
|
BB = sinkMBB;
|
|
BuildMI(BB, X86::PHI, 4, MI->getOperand(0).getReg())
|
|
.addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
|
|
.addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
|
|
|
|
delete MI; // The pseudo instruction is gone now.
|
|
return BB;
|
|
}
|
|
|
|
case X86::FP_TO_INT16_IN_MEM:
|
|
case X86::FP_TO_INT32_IN_MEM:
|
|
case X86::FP_TO_INT64_IN_MEM: {
|
|
// Change the floating point control register to use "round towards zero"
|
|
// mode when truncating to an integer value.
|
|
MachineFunction *F = BB->getParent();
|
|
int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
|
|
addFrameReference(BuildMI(BB, X86::FNSTCW16m, 4), CWFrameIdx);
|
|
|
|
// Load the old value of the high byte of the control word...
|
|
unsigned OldCW =
|
|
F->getSSARegMap()->createVirtualRegister(X86::R16RegisterClass);
|
|
addFrameReference(BuildMI(BB, X86::MOV16rm, 4, OldCW), CWFrameIdx);
|
|
|
|
// Set the high part to be round to zero...
|
|
addFrameReference(BuildMI(BB, X86::MOV16mi, 5), CWFrameIdx).addImm(0xC7F);
|
|
|
|
// Reload the modified control word now...
|
|
addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx);
|
|
|
|
// Restore the memory image of control word to original value
|
|
addFrameReference(BuildMI(BB, X86::MOV16mr, 5), CWFrameIdx).addReg(OldCW);
|
|
|
|
// Get the X86 opcode to use.
|
|
unsigned Opc;
|
|
switch (MI->getOpcode()) {
|
|
default: assert(0 && "illegal opcode!");
|
|
case X86::FP_TO_INT16_IN_MEM: Opc = X86::FpIST16m; break;
|
|
case X86::FP_TO_INT32_IN_MEM: Opc = X86::FpIST32m; break;
|
|
case X86::FP_TO_INT64_IN_MEM: Opc = X86::FpIST64m; break;
|
|
}
|
|
|
|
X86AddressMode AM;
|
|
MachineOperand &Op = MI->getOperand(0);
|
|
if (Op.isRegister()) {
|
|
AM.BaseType = X86AddressMode::RegBase;
|
|
AM.Base.Reg = Op.getReg();
|
|
} else {
|
|
AM.BaseType = X86AddressMode::FrameIndexBase;
|
|
AM.Base.FrameIndex = Op.getFrameIndex();
|
|
}
|
|
Op = MI->getOperand(1);
|
|
if (Op.isImmediate())
|
|
AM.Scale = Op.getImmedValue();
|
|
Op = MI->getOperand(2);
|
|
if (Op.isImmediate())
|
|
AM.IndexReg = Op.getImmedValue();
|
|
Op = MI->getOperand(3);
|
|
if (Op.isGlobalAddress()) {
|
|
AM.GV = Op.getGlobal();
|
|
} else {
|
|
AM.Disp = Op.getImmedValue();
|
|
}
|
|
addFullAddress(BuildMI(BB, Opc, 5), AM).addReg(MI->getOperand(4).getReg());
|
|
|
|
// Reload the original control word now.
|
|
addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx);
|
|
|
|
delete MI; // The pseudo instruction is gone now.
|
|
return BB;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// X86 Custom Lowering Hooks
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// LowerOperation - Provide custom lowering hooks for some operations.
|
|
///
|
|
SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
|
|
switch (Op.getOpcode()) {
|
|
default: assert(0 && "Should not custom lower this!");
|
|
case ISD::SHL_PARTS:
|
|
case ISD::SRA_PARTS:
|
|
case ISD::SRL_PARTS: {
|
|
assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
|
|
"Not an i64 shift!");
|
|
bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
|
|
SDOperand ShOpLo = Op.getOperand(0);
|
|
SDOperand ShOpHi = Op.getOperand(1);
|
|
SDOperand ShAmt = Op.getOperand(2);
|
|
SDOperand Tmp1 = isSRA ? DAG.getNode(ISD::SRA, MVT::i32, ShOpHi,
|
|
DAG.getConstant(31, MVT::i8))
|
|
: DAG.getConstant(0, MVT::i32);
|
|
|
|
SDOperand Tmp2, Tmp3;
|
|
if (Op.getOpcode() == ISD::SHL_PARTS) {
|
|
Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt);
|
|
Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt);
|
|
} else {
|
|
Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt);
|
|
Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt);
|
|
}
|
|
|
|
SDOperand InFlag = DAG.getNode(X86ISD::TEST, MVT::Flag,
|
|
ShAmt, DAG.getConstant(32, MVT::i8));
|
|
|
|
SDOperand Hi, Lo;
|
|
SDOperand CC = DAG.getConstant(X86ISD::COND_NE, MVT::i8);
|
|
|
|
std::vector<MVT::ValueType> Tys;
|
|
Tys.push_back(MVT::i32);
|
|
Tys.push_back(MVT::Flag);
|
|
std::vector<SDOperand> Ops;
|
|
if (Op.getOpcode() == ISD::SHL_PARTS) {
|
|
Ops.push_back(Tmp2);
|
|
Ops.push_back(Tmp3);
|
|
Ops.push_back(CC);
|
|
Ops.push_back(InFlag);
|
|
Hi = DAG.getNode(X86ISD::CMOV, Tys, Ops);
|
|
InFlag = Hi.getValue(1);
|
|
|
|
Ops.clear();
|
|
Ops.push_back(Tmp3);
|
|
Ops.push_back(Tmp1);
|
|
Ops.push_back(CC);
|
|
Ops.push_back(InFlag);
|
|
Lo = DAG.getNode(X86ISD::CMOV, Tys, Ops);
|
|
} else {
|
|
Ops.push_back(Tmp2);
|
|
Ops.push_back(Tmp3);
|
|
Ops.push_back(CC);
|
|
Ops.push_back(InFlag);
|
|
Lo = DAG.getNode(X86ISD::CMOV, Tys, Ops);
|
|
InFlag = Lo.getValue(1);
|
|
|
|
Ops.clear();
|
|
Ops.push_back(Tmp3);
|
|
Ops.push_back(Tmp1);
|
|
Ops.push_back(CC);
|
|
Ops.push_back(InFlag);
|
|
Hi = DAG.getNode(X86ISD::CMOV, Tys, Ops);
|
|
}
|
|
|
|
Tys.clear();
|
|
Tys.push_back(MVT::i32);
|
|
Tys.push_back(MVT::i32);
|
|
Ops.clear();
|
|
Ops.push_back(Lo);
|
|
Ops.push_back(Hi);
|
|
return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops);
|
|
}
|
|
case ISD::SINT_TO_FP: {
|
|
assert(Op.getOperand(0).getValueType() <= MVT::i64 &&
|
|
Op.getOperand(0).getValueType() >= MVT::i16 &&
|
|
"Unknown SINT_TO_FP to lower!");
|
|
|
|
SDOperand Result;
|
|
MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
|
|
unsigned Size = MVT::getSizeInBits(SrcVT)/8;
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
|
|
SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
|
|
SDOperand Chain = DAG.getNode(ISD::STORE, MVT::Other,
|
|
DAG.getEntryNode(), Op.getOperand(0),
|
|
StackSlot, DAG.getSrcValue(NULL));
|
|
|
|
// Build the FILD
|
|
std::vector<MVT::ValueType> Tys;
|
|
Tys.push_back(MVT::f64);
|
|
Tys.push_back(MVT::Other);
|
|
if (X86ScalarSSE) Tys.push_back(MVT::Flag);
|
|
std::vector<SDOperand> Ops;
|
|
Ops.push_back(Chain);
|
|
Ops.push_back(StackSlot);
|
|
Ops.push_back(DAG.getValueType(SrcVT));
|
|
Result = DAG.getNode(X86ScalarSSE ? X86ISD::FILD_FLAG :X86ISD::FILD,
|
|
Tys, Ops);
|
|
|
|
if (X86ScalarSSE) {
|
|
Chain = Result.getValue(1);
|
|
SDOperand InFlag = Result.getValue(2);
|
|
|
|
// FIXME: Currently the FST is flagged to the FILD_FLAG. This
|
|
// shouldn't be necessary except that RFP cannot be live across
|
|
// multiple blocks. When stackifier is fixed, they can be uncoupled.
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
|
|
SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
|
|
std::vector<MVT::ValueType> Tys;
|
|
Tys.push_back(MVT::Other);
|
|
std::vector<SDOperand> Ops;
|
|
Ops.push_back(Chain);
|
|
Ops.push_back(Result);
|
|
Ops.push_back(StackSlot);
|
|
Ops.push_back(DAG.getValueType(Op.getValueType()));
|
|
Ops.push_back(InFlag);
|
|
Chain = DAG.getNode(X86ISD::FST, Tys, Ops);
|
|
Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot,
|
|
DAG.getSrcValue(NULL));
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
case ISD::FP_TO_SINT: {
|
|
assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
|
|
"Unknown FP_TO_SINT to lower!");
|
|
// We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
|
|
// stack slot.
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
|
|
int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
|
|
SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
|
|
|
|
unsigned Opc;
|
|
switch (Op.getValueType()) {
|
|
default: assert(0 && "Invalid FP_TO_SINT to lower!");
|
|
case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
|
|
case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
|
|
case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
|
|
}
|
|
|
|
SDOperand Chain = DAG.getEntryNode();
|
|
SDOperand Value = Op.getOperand(0);
|
|
if (X86ScalarSSE) {
|
|
assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
|
|
Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Value, StackSlot,
|
|
DAG.getSrcValue(0));
|
|
std::vector<MVT::ValueType> Tys;
|
|
Tys.push_back(MVT::f64);
|
|
Tys.push_back(MVT::Other);
|
|
std::vector<SDOperand> Ops;
|
|
Ops.push_back(Chain);
|
|
Ops.push_back(StackSlot);
|
|
Ops.push_back(DAG.getValueType(Op.getOperand(0).getValueType()));
|
|
Value = DAG.getNode(X86ISD::FLD, Tys, Ops);
|
|
Chain = Value.getValue(1);
|
|
SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
|
|
StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
|
|
}
|
|
|
|
// Build the FP_TO_INT*_IN_MEM
|
|
std::vector<SDOperand> Ops;
|
|
Ops.push_back(Chain);
|
|
Ops.push_back(Value);
|
|
Ops.push_back(StackSlot);
|
|
SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops);
|
|
|
|
// Load the result.
|
|
return DAG.getLoad(Op.getValueType(), FIST, StackSlot,
|
|
DAG.getSrcValue(NULL));
|
|
}
|
|
case ISD::READCYCLECOUNTER: {
|
|
std::vector<MVT::ValueType> Tys;
|
|
Tys.push_back(MVT::Other);
|
|
Tys.push_back(MVT::Flag);
|
|
std::vector<SDOperand> Ops;
|
|
Ops.push_back(Op.getOperand(0));
|
|
SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, Ops);
|
|
Ops.clear();
|
|
Ops.push_back(DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1)));
|
|
Ops.push_back(DAG.getCopyFromReg(Ops[0].getValue(1), X86::EDX,
|
|
MVT::i32, Ops[0].getValue(2)));
|
|
Ops.push_back(Ops[1].getValue(1));
|
|
Tys[0] = Tys[1] = MVT::i32;
|
|
Tys.push_back(MVT::Other);
|
|
return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops);
|
|
}
|
|
case ISD::FABS: {
|
|
MVT::ValueType VT = Op.getValueType();
|
|
const Type *OpNTy = MVT::getTypeForValueType(VT);
|
|
std::vector<Constant*> CV;
|
|
if (VT == MVT::f64) {
|
|
CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(~(1ULL << 63))));
|
|
CV.push_back(ConstantFP::get(OpNTy, 0.0));
|
|
} else {
|
|
CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(~(1U << 31))));
|
|
CV.push_back(ConstantFP::get(OpNTy, 0.0));
|
|
CV.push_back(ConstantFP::get(OpNTy, 0.0));
|
|
CV.push_back(ConstantFP::get(OpNTy, 0.0));
|
|
}
|
|
Constant *CS = ConstantStruct::get(CV);
|
|
SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
|
|
SDOperand Mask
|
|
= DAG.getNode(X86ISD::LOAD_PACK,
|
|
VT, DAG.getEntryNode(), CPIdx, DAG.getSrcValue(NULL));
|
|
return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
|
|
}
|
|
case ISD::FNEG: {
|
|
MVT::ValueType VT = Op.getValueType();
|
|
const Type *OpNTy = MVT::getTypeForValueType(VT);
|
|
std::vector<Constant*> CV;
|
|
if (VT == MVT::f64) {
|
|
CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(1ULL << 63)));
|
|
CV.push_back(ConstantFP::get(OpNTy, 0.0));
|
|
} else {
|
|
CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(1U << 31)));
|
|
CV.push_back(ConstantFP::get(OpNTy, 0.0));
|
|
CV.push_back(ConstantFP::get(OpNTy, 0.0));
|
|
CV.push_back(ConstantFP::get(OpNTy, 0.0));
|
|
}
|
|
Constant *CS = ConstantStruct::get(CV);
|
|
SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
|
|
SDOperand Mask
|
|
= DAG.getNode(X86ISD::LOAD_PACK,
|
|
VT, DAG.getEntryNode(), CPIdx, DAG.getSrcValue(NULL));
|
|
return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
|
|
}
|
|
case ISD::SETCC: {
|
|
assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
|
|
SDOperand Cond;
|
|
SDOperand CC = Op.getOperand(2);
|
|
ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
|
|
bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
|
|
bool Flip;
|
|
unsigned X86CC;
|
|
if (translateX86CC(CC, isFP, X86CC, Flip)) {
|
|
if (Flip)
|
|
Cond = DAG.getNode(X86ISD::CMP, MVT::Flag,
|
|
Op.getOperand(1), Op.getOperand(0));
|
|
else
|
|
Cond = DAG.getNode(X86ISD::CMP, MVT::Flag,
|
|
Op.getOperand(0), Op.getOperand(1));
|
|
return DAG.getNode(X86ISD::SETCC, MVT::i8,
|
|
DAG.getConstant(X86CC, MVT::i8), Cond);
|
|
} else {
|
|
assert(isFP && "Illegal integer SetCC!");
|
|
|
|
Cond = DAG.getNode(X86ISD::CMP, MVT::Flag,
|
|
Op.getOperand(0), Op.getOperand(1));
|
|
std::vector<MVT::ValueType> Tys;
|
|
std::vector<SDOperand> Ops;
|
|
switch (SetCCOpcode) {
|
|
default: assert(false && "Illegal floating point SetCC!");
|
|
case ISD::SETOEQ: { // !PF & ZF
|
|
Tys.push_back(MVT::i8);
|
|
Tys.push_back(MVT::Flag);
|
|
Ops.push_back(DAG.getConstant(X86ISD::COND_NP, MVT::i8));
|
|
Ops.push_back(Cond);
|
|
SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, Tys, Ops);
|
|
SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
|
|
DAG.getConstant(X86ISD::COND_E, MVT::i8),
|
|
Tmp1.getValue(1));
|
|
return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
|
|
}
|
|
case ISD::SETUNE: { // PF | !ZF
|
|
Tys.push_back(MVT::i8);
|
|
Tys.push_back(MVT::Flag);
|
|
Ops.push_back(DAG.getConstant(X86ISD::COND_P, MVT::i8));
|
|
Ops.push_back(Cond);
|
|
SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, Tys, Ops);
|
|
SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
|
|
DAG.getConstant(X86ISD::COND_NE, MVT::i8),
|
|
Tmp1.getValue(1));
|
|
return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
case ISD::SELECT: {
|
|
MVT::ValueType VT = Op.getValueType();
|
|
bool isFP = MVT::isFloatingPoint(VT);
|
|
bool isFPStack = isFP && !X86ScalarSSE;
|
|
bool isFPSSE = isFP && X86ScalarSSE;
|
|
bool addTest = false;
|
|
SDOperand Op0 = Op.getOperand(0);
|
|
SDOperand Cond, CC;
|
|
if (Op0.getOpcode() == ISD::SETCC)
|
|
Op0 = LowerOperation(Op0, DAG);
|
|
|
|
if (Op0.getOpcode() == X86ISD::SETCC) {
|
|
// If condition flag is set by a X86ISD::CMP, then make a copy of it
|
|
// (since flag operand cannot be shared). If the X86ISD::SETCC does not
|
|
// have another use it will be eliminated.
|
|
// If the X86ISD::SETCC has more than one use, then it's probably better
|
|
// to use a test instead of duplicating the X86ISD::CMP (for register
|
|
// pressure reason).
|
|
if (Op0.getOperand(1).getOpcode() == X86ISD::CMP) {
|
|
if (!Op0.hasOneUse()) {
|
|
std::vector<MVT::ValueType> Tys;
|
|
for (unsigned i = 0; i < Op0.Val->getNumValues(); ++i)
|
|
Tys.push_back(Op0.Val->getValueType(i));
|
|
std::vector<SDOperand> Ops;
|
|
for (unsigned i = 0; i < Op0.getNumOperands(); ++i)
|
|
Ops.push_back(Op0.getOperand(i));
|
|
Op0 = DAG.getNode(X86ISD::SETCC, Tys, Ops);
|
|
}
|
|
|
|
CC = Op0.getOperand(0);
|
|
Cond = Op0.getOperand(1);
|
|
// Make a copy as flag result cannot be used by more than one.
|
|
Cond = DAG.getNode(X86ISD::CMP, MVT::Flag,
|
|
Cond.getOperand(0), Cond.getOperand(1));
|
|
addTest =
|
|
isFPStack && !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
|
|
} else
|
|
addTest = true;
|
|
} else
|
|
addTest = true;
|
|
|
|
if (addTest) {
|
|
CC = DAG.getConstant(X86ISD::COND_NE, MVT::i8);
|
|
Cond = DAG.getNode(X86ISD::TEST, MVT::Flag, Op0, Op0);
|
|
}
|
|
|
|
std::vector<MVT::ValueType> Tys;
|
|
Tys.push_back(Op.getValueType());
|
|
Tys.push_back(MVT::Flag);
|
|
std::vector<SDOperand> Ops;
|
|
// X86ISD::CMOV means set the result (which is operand 1) to the RHS if
|
|
// condition is true.
|
|
Ops.push_back(Op.getOperand(2));
|
|
Ops.push_back(Op.getOperand(1));
|
|
Ops.push_back(CC);
|
|
Ops.push_back(Cond);
|
|
return DAG.getNode(X86ISD::CMOV, Tys, Ops);
|
|
}
|
|
case ISD::BRCOND: {
|
|
bool addTest = false;
|
|
SDOperand Cond = Op.getOperand(1);
|
|
SDOperand Dest = Op.getOperand(2);
|
|
SDOperand CC;
|
|
if (Cond.getOpcode() == ISD::SETCC)
|
|
Cond = LowerOperation(Cond, DAG);
|
|
|
|
if (Cond.getOpcode() == X86ISD::SETCC) {
|
|
// If condition flag is set by a X86ISD::CMP, then make a copy of it
|
|
// (since flag operand cannot be shared). If the X86ISD::SETCC does not
|
|
// have another use it will be eliminated.
|
|
// If the X86ISD::SETCC has more than one use, then it's probably better
|
|
// to use a test instead of duplicating the X86ISD::CMP (for register
|
|
// pressure reason).
|
|
if (Cond.getOperand(1).getOpcode() == X86ISD::CMP) {
|
|
if (!Cond.hasOneUse()) {
|
|
std::vector<MVT::ValueType> Tys;
|
|
for (unsigned i = 0; i < Cond.Val->getNumValues(); ++i)
|
|
Tys.push_back(Cond.Val->getValueType(i));
|
|
std::vector<SDOperand> Ops;
|
|
for (unsigned i = 0; i < Cond.getNumOperands(); ++i)
|
|
Ops.push_back(Cond.getOperand(i));
|
|
Cond = DAG.getNode(X86ISD::SETCC, Tys, Ops);
|
|
}
|
|
|
|
CC = Cond.getOperand(0);
|
|
Cond = Cond.getOperand(1);
|
|
// Make a copy as flag result cannot be used by more than one.
|
|
Cond = DAG.getNode(X86ISD::CMP, MVT::Flag,
|
|
Cond.getOperand(0), Cond.getOperand(1));
|
|
} else
|
|
addTest = true;
|
|
} else
|
|
addTest = true;
|
|
|
|
if (addTest) {
|
|
CC = DAG.getConstant(X86ISD::COND_NE, MVT::i8);
|
|
Cond = DAG.getNode(X86ISD::TEST, MVT::Flag, Cond, Cond);
|
|
}
|
|
return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
|
|
Op.getOperand(0), Op.getOperand(2), CC, Cond);
|
|
}
|
|
case ISD::MEMSET: {
|
|
SDOperand InFlag(0, 0);
|
|
SDOperand Chain = Op.getOperand(0);
|
|
unsigned Align =
|
|
(unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
|
|
if (Align == 0) Align = 1;
|
|
|
|
ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
|
|
// If not DWORD aligned, call memset if size is less than the threshold.
|
|
// It knows how to align to the right boundary first.
|
|
if ((Align & 3) != 0 ||
|
|
(I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) {
|
|
MVT::ValueType IntPtr = getPointerTy();
|
|
const Type *IntPtrTy = getTargetData().getIntPtrType();
|
|
std::vector<std::pair<SDOperand, const Type*> > Args;
|
|
Args.push_back(std::make_pair(Op.getOperand(1), IntPtrTy));
|
|
// Extend the ubyte argument to be an int value for the call.
|
|
SDOperand Val = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
|
|
Args.push_back(std::make_pair(Val, IntPtrTy));
|
|
Args.push_back(std::make_pair(Op.getOperand(3), IntPtrTy));
|
|
std::pair<SDOperand,SDOperand> CallResult =
|
|
LowerCallTo(Chain, Type::VoidTy, false, CallingConv::C, false,
|
|
DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
|
|
return CallResult.second;
|
|
}
|
|
|
|
MVT::ValueType AVT;
|
|
SDOperand Count;
|
|
ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
|
|
unsigned BytesLeft = 0;
|
|
bool TwoRepStos = false;
|
|
if (ValC) {
|
|
unsigned ValReg;
|
|
unsigned Val = ValC->getValue() & 255;
|
|
|
|
// If the value is a constant, then we can potentially use larger sets.
|
|
switch (Align & 3) {
|
|
case 2: // WORD aligned
|
|
AVT = MVT::i16;
|
|
Count = DAG.getConstant(I->getValue() / 2, MVT::i32);
|
|
BytesLeft = I->getValue() % 2;
|
|
Val = (Val << 8) | Val;
|
|
ValReg = X86::AX;
|
|
break;
|
|
case 0: // DWORD aligned
|
|
AVT = MVT::i32;
|
|
if (I) {
|
|
Count = DAG.getConstant(I->getValue() / 4, MVT::i32);
|
|
BytesLeft = I->getValue() % 4;
|
|
} else {
|
|
Count = DAG.getNode(ISD::SRL, MVT::i32, Op.getOperand(3),
|
|
DAG.getConstant(2, MVT::i8));
|
|
TwoRepStos = true;
|
|
}
|
|
Val = (Val << 8) | Val;
|
|
Val = (Val << 16) | Val;
|
|
ValReg = X86::EAX;
|
|
break;
|
|
default: // Byte aligned
|
|
AVT = MVT::i8;
|
|
Count = Op.getOperand(3);
|
|
ValReg = X86::AL;
|
|
break;
|
|
}
|
|
|
|
Chain = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
|
|
InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
} else {
|
|
AVT = MVT::i8;
|
|
Count = Op.getOperand(3);
|
|
Chain = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
Chain = DAG.getCopyToReg(Chain, X86::ECX, Count, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
Chain = DAG.getCopyToReg(Chain, X86::EDI, Op.getOperand(1), InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
|
|
std::vector<MVT::ValueType> Tys;
|
|
Tys.push_back(MVT::Other);
|
|
Tys.push_back(MVT::Flag);
|
|
std::vector<SDOperand> Ops;
|
|
Ops.push_back(Chain);
|
|
Ops.push_back(DAG.getValueType(AVT));
|
|
Ops.push_back(InFlag);
|
|
Chain = DAG.getNode(X86ISD::REP_STOS, Tys, Ops);
|
|
|
|
if (TwoRepStos) {
|
|
InFlag = Chain.getValue(1);
|
|
Count = Op.getOperand(3);
|
|
MVT::ValueType CVT = Count.getValueType();
|
|
SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
|
|
DAG.getConstant(3, CVT));
|
|
Chain = DAG.getCopyToReg(Chain, X86::ECX, Left, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
Tys.clear();
|
|
Tys.push_back(MVT::Other);
|
|
Tys.push_back(MVT::Flag);
|
|
Ops.clear();
|
|
Ops.push_back(Chain);
|
|
Ops.push_back(DAG.getValueType(MVT::i8));
|
|
Ops.push_back(InFlag);
|
|
Chain = DAG.getNode(X86ISD::REP_STOS, Tys, Ops);
|
|
} else if (BytesLeft) {
|
|
// Issue stores for the last 1 - 3 bytes.
|
|
SDOperand Value;
|
|
unsigned Val = ValC->getValue() & 255;
|
|
unsigned Offset = I->getValue() - BytesLeft;
|
|
SDOperand DstAddr = Op.getOperand(1);
|
|
MVT::ValueType AddrVT = DstAddr.getValueType();
|
|
if (BytesLeft >= 2) {
|
|
Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
|
|
Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
|
|
DAG.getNode(ISD::ADD, AddrVT, DstAddr,
|
|
DAG.getConstant(Offset, AddrVT)),
|
|
DAG.getSrcValue(NULL));
|
|
BytesLeft -= 2;
|
|
Offset += 2;
|
|
}
|
|
|
|
if (BytesLeft == 1) {
|
|
Value = DAG.getConstant(Val, MVT::i8);
|
|
Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
|
|
DAG.getNode(ISD::ADD, AddrVT, DstAddr,
|
|
DAG.getConstant(Offset, AddrVT)),
|
|
DAG.getSrcValue(NULL));
|
|
}
|
|
}
|
|
|
|
return Chain;
|
|
}
|
|
case ISD::MEMCPY: {
|
|
SDOperand Chain = Op.getOperand(0);
|
|
unsigned Align =
|
|
(unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
|
|
if (Align == 0) Align = 1;
|
|
|
|
ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
|
|
// If not DWORD aligned, call memcpy if size is less than the threshold.
|
|
// It knows how to align to the right boundary first.
|
|
if ((Align & 3) != 0 ||
|
|
(I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) {
|
|
MVT::ValueType IntPtr = getPointerTy();
|
|
const Type *IntPtrTy = getTargetData().getIntPtrType();
|
|
std::vector<std::pair<SDOperand, const Type*> > Args;
|
|
Args.push_back(std::make_pair(Op.getOperand(1), IntPtrTy));
|
|
Args.push_back(std::make_pair(Op.getOperand(2), IntPtrTy));
|
|
Args.push_back(std::make_pair(Op.getOperand(3), IntPtrTy));
|
|
std::pair<SDOperand,SDOperand> CallResult =
|
|
LowerCallTo(Chain, Type::VoidTy, false, CallingConv::C, false,
|
|
DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
|
|
return CallResult.second;
|
|
}
|
|
|
|
MVT::ValueType AVT;
|
|
SDOperand Count;
|
|
unsigned BytesLeft = 0;
|
|
bool TwoRepMovs = false;
|
|
switch (Align & 3) {
|
|
case 2: // WORD aligned
|
|
AVT = MVT::i16;
|
|
Count = DAG.getConstant(I->getValue() / 2, MVT::i32);
|
|
BytesLeft = I->getValue() % 2;
|
|
break;
|
|
case 0: // DWORD aligned
|
|
AVT = MVT::i32;
|
|
if (I) {
|
|
Count = DAG.getConstant(I->getValue() / 4, MVT::i32);
|
|
BytesLeft = I->getValue() % 4;
|
|
} else {
|
|
Count = DAG.getNode(ISD::SRL, MVT::i32, Op.getOperand(3),
|
|
DAG.getConstant(2, MVT::i8));
|
|
TwoRepMovs = true;
|
|
}
|
|
break;
|
|
default: // Byte aligned
|
|
AVT = MVT::i8;
|
|
Count = Op.getOperand(3);
|
|
break;
|
|
}
|
|
|
|
SDOperand InFlag(0, 0);
|
|
Chain = DAG.getCopyToReg(Chain, X86::ECX, Count, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
Chain = DAG.getCopyToReg(Chain, X86::EDI, Op.getOperand(1), InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
Chain = DAG.getCopyToReg(Chain, X86::ESI, Op.getOperand(2), InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
|
|
std::vector<MVT::ValueType> Tys;
|
|
Tys.push_back(MVT::Other);
|
|
Tys.push_back(MVT::Flag);
|
|
std::vector<SDOperand> Ops;
|
|
Ops.push_back(Chain);
|
|
Ops.push_back(DAG.getValueType(AVT));
|
|
Ops.push_back(InFlag);
|
|
Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, Ops);
|
|
|
|
if (TwoRepMovs) {
|
|
InFlag = Chain.getValue(1);
|
|
Count = Op.getOperand(3);
|
|
MVT::ValueType CVT = Count.getValueType();
|
|
SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
|
|
DAG.getConstant(3, CVT));
|
|
Chain = DAG.getCopyToReg(Chain, X86::ECX, Left, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
Tys.clear();
|
|
Tys.push_back(MVT::Other);
|
|
Tys.push_back(MVT::Flag);
|
|
Ops.clear();
|
|
Ops.push_back(Chain);
|
|
Ops.push_back(DAG.getValueType(MVT::i8));
|
|
Ops.push_back(InFlag);
|
|
Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, Ops);
|
|
} else if (BytesLeft) {
|
|
// Issue loads and stores for the last 1 - 3 bytes.
|
|
unsigned Offset = I->getValue() - BytesLeft;
|
|
SDOperand DstAddr = Op.getOperand(1);
|
|
MVT::ValueType DstVT = DstAddr.getValueType();
|
|
SDOperand SrcAddr = Op.getOperand(2);
|
|
MVT::ValueType SrcVT = SrcAddr.getValueType();
|
|
SDOperand Value;
|
|
if (BytesLeft >= 2) {
|
|
Value = DAG.getLoad(MVT::i16, Chain,
|
|
DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
|
|
DAG.getConstant(Offset, SrcVT)),
|
|
DAG.getSrcValue(NULL));
|
|
Chain = Value.getValue(1);
|
|
Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
|
|
DAG.getNode(ISD::ADD, DstVT, DstAddr,
|
|
DAG.getConstant(Offset, DstVT)),
|
|
DAG.getSrcValue(NULL));
|
|
BytesLeft -= 2;
|
|
Offset += 2;
|
|
}
|
|
|
|
if (BytesLeft == 1) {
|
|
Value = DAG.getLoad(MVT::i8, Chain,
|
|
DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
|
|
DAG.getConstant(Offset, SrcVT)),
|
|
DAG.getSrcValue(NULL));
|
|
Chain = Value.getValue(1);
|
|
Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
|
|
DAG.getNode(ISD::ADD, DstVT, DstAddr,
|
|
DAG.getConstant(Offset, DstVT)),
|
|
DAG.getSrcValue(NULL));
|
|
}
|
|
}
|
|
|
|
return Chain;
|
|
}
|
|
|
|
// ConstantPool, GlobalAddress, and ExternalSymbol are lowered as their
|
|
// target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
|
|
// one of the above mentioned nodes. It has to be wrapped because otherwise
|
|
// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
|
|
// be used to form addressing mode. These wrapped nodes will be selected
|
|
// into MOV32ri.
|
|
case ISD::ConstantPool: {
|
|
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
|
|
SDOperand Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(),
|
|
DAG.getTargetConstantPool(CP->get(), getPointerTy(),
|
|
CP->getAlignment()));
|
|
if (getTargetMachine().getSubtarget<X86Subtarget>().isTargetDarwin()) {
|
|
// With PIC, the address is actually $g + Offset.
|
|
if (getTargetMachine().getRelocationModel() == Reloc::PIC)
|
|
Result = DAG.getNode(ISD::ADD, getPointerTy(),
|
|
DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), Result);
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
case ISD::GlobalAddress: {
|
|
GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
|
|
SDOperand Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(),
|
|
DAG.getTargetGlobalAddress(GV, getPointerTy()));
|
|
if (getTargetMachine().
|
|
getSubtarget<X86Subtarget>().isTargetDarwin()) {
|
|
// With PIC, the address is actually $g + Offset.
|
|
if (getTargetMachine().getRelocationModel() == Reloc::PIC)
|
|
Result = DAG.getNode(ISD::ADD, getPointerTy(),
|
|
DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), Result);
|
|
|
|
// For Darwin, external and weak symbols are indirect, so we want to load
|
|
// the value at address GV, not the value of GV itself. This means that
|
|
// the GlobalAddress must be in the base or index register of the address,
|
|
// not the GV offset field.
|
|
if (getTargetMachine().getRelocationModel() != Reloc::Static &&
|
|
(GV->hasWeakLinkage() || GV->hasLinkOnceLinkage() ||
|
|
(GV->isExternal() && !GV->hasNotBeenReadFromBytecode())))
|
|
Result = DAG.getLoad(MVT::i32, DAG.getEntryNode(),
|
|
Result, DAG.getSrcValue(NULL));
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
case ISD::ExternalSymbol: {
|
|
const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
|
|
SDOperand Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(),
|
|
DAG.getTargetExternalSymbol(Sym, getPointerTy()));
|
|
if (getTargetMachine().
|
|
getSubtarget<X86Subtarget>().isTargetDarwin()) {
|
|
// With PIC, the address is actually $g + Offset.
|
|
if (getTargetMachine().getRelocationModel() == Reloc::PIC)
|
|
Result = DAG.getNode(ISD::ADD, getPointerTy(),
|
|
DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), Result);
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
case ISD::VASTART: {
|
|
// vastart just stores the address of the VarArgsFrameIndex slot into the
|
|
// memory location argument.
|
|
// FIXME: Replace MVT::i32 with PointerTy
|
|
SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32);
|
|
return DAG.getNode(ISD::STORE, MVT::Other, Op.getOperand(0), FR,
|
|
Op.getOperand(1), Op.getOperand(2));
|
|
}
|
|
case ISD::RET: {
|
|
SDOperand Copy;
|
|
|
|
switch(Op.getNumOperands()) {
|
|
default:
|
|
assert(0 && "Do not know how to return this many arguments!");
|
|
abort();
|
|
case 1:
|
|
return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Op.getOperand(0),
|
|
DAG.getConstant(getBytesToPopOnReturn(), MVT::i16));
|
|
case 2: {
|
|
MVT::ValueType ArgVT = Op.getOperand(1).getValueType();
|
|
if (MVT::isInteger(ArgVT))
|
|
Copy = DAG.getCopyToReg(Op.getOperand(0), X86::EAX, Op.getOperand(1),
|
|
SDOperand());
|
|
else if (!X86ScalarSSE) {
|
|
std::vector<MVT::ValueType> Tys;
|
|
Tys.push_back(MVT::Other);
|
|
Tys.push_back(MVT::Flag);
|
|
std::vector<SDOperand> Ops;
|
|
Ops.push_back(Op.getOperand(0));
|
|
Ops.push_back(Op.getOperand(1));
|
|
Copy = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops);
|
|
} else {
|
|
SDOperand MemLoc;
|
|
SDOperand Chain = Op.getOperand(0);
|
|
SDOperand Value = Op.getOperand(1);
|
|
|
|
if (Value.getOpcode() == ISD::LOAD &&
|
|
(Chain == Value.getValue(1) || Chain == Value.getOperand(0))) {
|
|
Chain = Value.getOperand(0);
|
|
MemLoc = Value.getOperand(1);
|
|
} else {
|
|
// Spill the value to memory and reload it into top of stack.
|
|
unsigned Size = MVT::getSizeInBits(ArgVT)/8;
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
|
|
MemLoc = DAG.getFrameIndex(SSFI, getPointerTy());
|
|
Chain = DAG.getNode(ISD::STORE, MVT::Other, Op.getOperand(0),
|
|
Value, MemLoc, DAG.getSrcValue(0));
|
|
}
|
|
std::vector<MVT::ValueType> Tys;
|
|
Tys.push_back(MVT::f64);
|
|
Tys.push_back(MVT::Other);
|
|
std::vector<SDOperand> Ops;
|
|
Ops.push_back(Chain);
|
|
Ops.push_back(MemLoc);
|
|
Ops.push_back(DAG.getValueType(ArgVT));
|
|
Copy = DAG.getNode(X86ISD::FLD, Tys, Ops);
|
|
Tys.clear();
|
|
Tys.push_back(MVT::Other);
|
|
Tys.push_back(MVT::Flag);
|
|
Ops.clear();
|
|
Ops.push_back(Copy.getValue(1));
|
|
Ops.push_back(Copy);
|
|
Copy = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops);
|
|
}
|
|
break;
|
|
}
|
|
case 3:
|
|
Copy = DAG.getCopyToReg(Op.getOperand(0), X86::EDX, Op.getOperand(2),
|
|
SDOperand());
|
|
Copy = DAG.getCopyToReg(Copy, X86::EAX,Op.getOperand(1),Copy.getValue(1));
|
|
break;
|
|
}
|
|
return DAG.getNode(X86ISD::RET_FLAG, MVT::Other,
|
|
Copy, DAG.getConstant(getBytesToPopOnReturn(), MVT::i16),
|
|
Copy.getValue(1));
|
|
}
|
|
}
|
|
}
|
|
|
|
const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
|
|
switch (Opcode) {
|
|
default: return NULL;
|
|
case X86ISD::SHLD: return "X86ISD::SHLD";
|
|
case X86ISD::SHRD: return "X86ISD::SHRD";
|
|
case X86ISD::FAND: return "X86ISD::FAND";
|
|
case X86ISD::FXOR: return "X86ISD::FXOR";
|
|
case X86ISD::FILD: return "X86ISD::FILD";
|
|
case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG";
|
|
case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
|
|
case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
|
|
case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
|
|
case X86ISD::FLD: return "X86ISD::FLD";
|
|
case X86ISD::FST: return "X86ISD::FST";
|
|
case X86ISD::FP_GET_RESULT: return "X86ISD::FP_GET_RESULT";
|
|
case X86ISD::FP_SET_RESULT: return "X86ISD::FP_SET_RESULT";
|
|
case X86ISD::CALL: return "X86ISD::CALL";
|
|
case X86ISD::TAILCALL: return "X86ISD::TAILCALL";
|
|
case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG";
|
|
case X86ISD::CMP: return "X86ISD::CMP";
|
|
case X86ISD::TEST: return "X86ISD::TEST";
|
|
case X86ISD::SETCC: return "X86ISD::SETCC";
|
|
case X86ISD::CMOV: return "X86ISD::CMOV";
|
|
case X86ISD::BRCOND: return "X86ISD::BRCOND";
|
|
case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG";
|
|
case X86ISD::REP_STOS: return "X86ISD::REP_STOS";
|
|
case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS";
|
|
case X86ISD::LOAD_PACK: return "X86ISD::LOAD_PACK";
|
|
case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg";
|
|
case X86ISD::Wrapper: return "X86ISD::Wrapper";
|
|
}
|
|
}
|
|
|
|
void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
|
|
uint64_t Mask,
|
|
uint64_t &KnownZero,
|
|
uint64_t &KnownOne,
|
|
unsigned Depth) const {
|
|
|
|
unsigned Opc = Op.getOpcode();
|
|
KnownZero = KnownOne = 0; // Don't know anything.
|
|
|
|
switch (Opc) {
|
|
default:
|
|
assert(Opc >= ISD::BUILTIN_OP_END && "Expected a target specific node");
|
|
break;
|
|
case X86ISD::SETCC:
|
|
KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
|
|
break;
|
|
}
|
|
}
|
|
|
|
std::vector<unsigned> X86TargetLowering::
|
|
getRegClassForInlineAsmConstraint(const std::string &Constraint,
|
|
MVT::ValueType VT) const {
|
|
if (Constraint.size() == 1) {
|
|
// FIXME: not handling fp-stack yet!
|
|
// FIXME: not handling MMX registers yet ('y' constraint).
|
|
switch (Constraint[0]) { // GCC X86 Constraint Letters
|
|
default: break; // Unknown constriant letter
|
|
case 'r': // GENERAL_REGS
|
|
case 'R': // LEGACY_REGS
|
|
return make_vector<unsigned>(X86::EAX, X86::EBX, X86::ECX, X86::EDX,
|
|
X86::ESI, X86::EDI, X86::EBP, X86::ESP, 0);
|
|
case 'l': // INDEX_REGS
|
|
return make_vector<unsigned>(X86::EAX, X86::EBX, X86::ECX, X86::EDX,
|
|
X86::ESI, X86::EDI, X86::EBP, 0);
|
|
case 'q': // Q_REGS (GENERAL_REGS in 64-bit mode)
|
|
case 'Q': // Q_REGS
|
|
return make_vector<unsigned>(X86::EAX, X86::EBX, X86::ECX, X86::EDX, 0);
|
|
case 'x': // SSE_REGS if SSE1 allowed
|
|
if (Subtarget->hasSSE1())
|
|
return make_vector<unsigned>(X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
|
|
X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7,
|
|
0);
|
|
return std::vector<unsigned>();
|
|
case 'Y': // SSE_REGS if SSE2 allowed
|
|
if (Subtarget->hasSSE2())
|
|
return make_vector<unsigned>(X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
|
|
X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7,
|
|
0);
|
|
return std::vector<unsigned>();
|
|
}
|
|
}
|
|
|
|
return std::vector<unsigned>();
|
|
}
|