forked from OSchip/llvm-project
780 lines
33 KiB
C++
780 lines
33 KiB
C++
//===- MaterializeVectors.cpp - MaterializeVectors Pass Impl --------------===//
|
|
//
|
|
// Copyright 2019 The MLIR Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
// =============================================================================
|
|
//
|
|
// This file implements target-dependent materialization of super-vectors to
|
|
// vectors of the proper size for the hardware.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/AffineOps/AffineOps.h"
|
|
#include "mlir/Analysis/AffineAnalysis.h"
|
|
#include "mlir/Analysis/Dominance.h"
|
|
#include "mlir/Analysis/LoopAnalysis.h"
|
|
#include "mlir/Analysis/NestedMatcher.h"
|
|
#include "mlir/Analysis/SliceAnalysis.h"
|
|
#include "mlir/Analysis/Utils.h"
|
|
#include "mlir/Analysis/VectorAnalysis.h"
|
|
#include "mlir/IR/AffineExpr.h"
|
|
#include "mlir/IR/AffineMap.h"
|
|
#include "mlir/IR/Attributes.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/Location.h"
|
|
#include "mlir/IR/OperationSupport.h"
|
|
#include "mlir/IR/Types.h"
|
|
#include "mlir/Pass/Pass.h"
|
|
#include "mlir/StandardOps/Ops.h"
|
|
#include "mlir/Support/Functional.h"
|
|
#include "mlir/Support/LLVM.h"
|
|
#include "mlir/Transforms/Passes.h"
|
|
#include "mlir/VectorOps/VectorOps.h"
|
|
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
///
|
|
/// Implements target-dependent materialization of virtual super-vectors to
|
|
/// vectors of the proper size for the hardware.
|
|
///
|
|
/// While the physical vector size is target-dependent, the pass is written in
|
|
/// a target-independent way: the target vector size is specified as a parameter
|
|
/// to the pass. This pass is thus a partial lowering that opens the "greybox"
|
|
/// that is the super-vector abstraction. In particular, this pass can turn the
|
|
/// vector.transfer_read and vector.transfer_write ops in either:
|
|
/// 1. a loop nest with either scalar and vector load/store operations; or
|
|
/// 2. a loop-nest with DmaStartOp / DmaWaitOp; or
|
|
/// 3. a pre-existing blackbox library call that can be written manually or
|
|
/// synthesized using search and superoptimization.
|
|
/// An important feature that either of these 3 target lowering abstractions
|
|
/// must handle is the handling of "non-effecting" padding with the proper
|
|
/// neutral element in order to guarantee that all "partial tiles" are actually
|
|
/// "full tiles" in practice.
|
|
///
|
|
/// In particular this pass is a MLIR-MLIR rewriting and does not concern itself
|
|
/// with target-specific instruction-selection and register allocation. These
|
|
/// will happen downstream in LLVM.
|
|
///
|
|
/// In this sense, despite performing lowering to a target-dependent size, this
|
|
/// pass is still target-agnostic.
|
|
///
|
|
/// Implementation details
|
|
/// ======================
|
|
/// The current decisions made by the super-vectorization pass guarantee that
|
|
/// use-def chains do not escape an enclosing vectorized AffineForOp. In other
|
|
/// words, this pass operates on a scoped program slice. Furthermore, since we
|
|
/// do not vectorize in the presence of conditionals for now, sliced chains are
|
|
/// guaranteed not to escape the innermost scope, which has to be either the top
|
|
/// Function scope or the innermost loop scope, by construction. As a
|
|
/// consequence, the implementation just starts from vector.transfer_write
|
|
/// operations and builds the slice scoped the innermost loop enclosing the
|
|
/// current vector.transfer_write. These assumptions and the implementation
|
|
/// details are subject to revision in the future.
|
|
///
|
|
/// Example
|
|
/// ========
|
|
/// In the following, the single vector.transfer_write op operates on a
|
|
/// vector<4x4x4xf32>. Let's assume the HW supports vector<4x4xf32>.
|
|
/// Materialization is achieved by instantiating each occurrence of the leading
|
|
/// dimension of vector<4x4x4xf32> into a vector<4x4xf32>.
|
|
/// The program transformation that implements this instantiation is a
|
|
/// multi-loop unroll-and-jam (it can be partial or full depending on the ratio
|
|
/// of super-vector shape to HW-vector shape).
|
|
///
|
|
/// As a simple case, the following:
|
|
///
|
|
/// ```mlir
|
|
/// mlfunc @materialize(%M : index, %N : index, %O : index, %P : index) {
|
|
/// %A = alloc (%M, %N, %O, %P) : memref<?x?x?x?xf32>
|
|
/// %f1 = constant splat<vector<4x4x4xf32>, 1.000000e+00> :
|
|
/// vector<4x4x4xf32> affine.for %i0 = 0 to %M step 4 {
|
|
/// affine.for %i1 = 0 to %N step 4 {
|
|
/// affine.for %i2 = 0 to %O {
|
|
/// affine.for %i3 = 0 to %P step 4 {
|
|
/// vector.transfer_write %f1, %A[%i0, %i1, %i2, %i3]
|
|
/// {permutation_map: (d0, d1, d2, d3) -> (d3, d1, d0)} :
|
|
/// vector<4x4x4xf32>, memref<?x?x?x?xf32>
|
|
/// }}}}
|
|
/// return
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// is instantiated by unroll-and-jam (just unroll in this case) into:
|
|
///
|
|
/// ```mlir
|
|
/// mlfunc @materialize(%M : index, %N : index, %O : index, %P : index) {
|
|
/// %A = alloc (%M, %N, %O, %P) : memref<?x?x?x?xf32, 0>
|
|
/// %f1 = constant splat<vector<4x4xf32>, 1.000000e+00> : vector<4x4x4xf32>
|
|
/// affine.for %i0 = 0 to %arg0 step 4 {
|
|
/// affine.for %i1 = 0 to %arg1 step 4 {
|
|
/// affine.for %i2 = 0 to %arg2 {
|
|
/// affine.for %i3 = 0 to %arg3 step 4 {
|
|
/// vector.transfer_write f1, %0[%i0, %i1, %i2, %i3]
|
|
/// {permutation_map: (d0, d1, d2, d3) -> (d1, d0)} :
|
|
/// vector<4x4xf32>, memref<?x?x?x?xf32>
|
|
/// %i3p1 = affine.apply (d0) -> (d0 + 1)(%i3)
|
|
/// vector.transfer_write {{.*}}, %0[%i0, %i1, %i2, %i3p1]
|
|
/// {permutation_map: (d0, d1, d2, d3) -> (d1, d0)} :
|
|
/// vector<4x4xf32>, memref<?x?x?x?xf32>
|
|
/// %i3p2 = affine.apply (d0) -> (d0 + 2)(%i3)
|
|
/// vector.transfer_write {{.*}}, %0[%i0, %i1, %i2, %i3p2]
|
|
/// {permutation_map: (d0, d1, d2, d3) -> (d1, d0)} :
|
|
/// vector<4x4xf32>, memref<?x?x?x?xf32>
|
|
/// %i3p3 = affine.apply (d0) -> (d0 + 3)(%i3)
|
|
/// vector.transfer_write {{.*}}, %0[%i0, %i1, %i2, %i3p3]
|
|
/// {permutation_map: (d0, d1, d2, d3) -> (d1, d0)} :
|
|
/// vector<4x4xf32>, memref<?x?x?x?xf32>
|
|
/// }}}}
|
|
/// return
|
|
/// }
|
|
/// ```
|
|
|
|
using llvm::dbgs;
|
|
using llvm::DenseSet;
|
|
using llvm::SetVector;
|
|
|
|
using namespace mlir;
|
|
|
|
using functional::makePtrDynCaster;
|
|
using functional::map;
|
|
|
|
static llvm::cl::list<int>
|
|
clVectorSize("vector-size",
|
|
llvm::cl::desc("Specify the HW vector size for vectorization"),
|
|
llvm::cl::ZeroOrMore);
|
|
|
|
#define DEBUG_TYPE "materialize-vect"
|
|
|
|
namespace {
|
|
struct MaterializationState {
|
|
/// In practice, the determination of the HW-specific vector type to use when
|
|
/// lowering a super-vector type must be based on the elemental type. The
|
|
/// elemental type must be retrieved from the super-vector type. In the future
|
|
/// information about hardware vector type for a particular elemental type
|
|
/// will be part of the contract between MLIR and the backend.
|
|
///
|
|
/// For example, 8xf32 has the same size as 16xf16 but the targeted HW itself
|
|
/// may exhibit the following property:
|
|
/// 1. have a special unit for a 128xf16 datapath;
|
|
/// 2. no F16 FPU support on the regular 8xf32/16xf16 vector datapath.
|
|
///
|
|
/// For now, we just assume hwVectorSize has the proper information regardless
|
|
/// of the type and we assert everything is f32.
|
|
/// TODO(ntv): relax the assumptions on admissible element type once a
|
|
/// contract exists.
|
|
MaterializationState(SmallVector<int64_t, 8> sizes) : hwVectorSize(sizes) {}
|
|
|
|
SmallVector<int64_t, 8> hwVectorSize;
|
|
VectorType superVectorType;
|
|
VectorType hwVectorType;
|
|
SmallVector<unsigned, 8> hwVectorInstance;
|
|
DenseMap<Value *, Value *> *substitutionsMap;
|
|
};
|
|
|
|
/// Base state for the vector materialization pass.
|
|
/// Command line arguments are preempted by non-empty pass arguments.
|
|
struct MaterializeVectorsPass : public FunctionPass<MaterializeVectorsPass> {
|
|
MaterializeVectorsPass()
|
|
: hwVectorSize(clVectorSize.begin(), clVectorSize.end()) {}
|
|
MaterializeVectorsPass(ArrayRef<int64_t> hwVectorSize)
|
|
: MaterializeVectorsPass() {
|
|
if (!hwVectorSize.empty())
|
|
this->hwVectorSize.assign(hwVectorSize.begin(), hwVectorSize.end());
|
|
}
|
|
|
|
SmallVector<int64_t, 8> hwVectorSize;
|
|
void runOnFunction() override;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// Given a shape with sizes greater than 0 along all dimensions,
|
|
/// returns the distance, in number of elements, between a slice in a dimension
|
|
/// and the next slice in the same dimension.
|
|
/// e.g. shape[3, 4, 5] -> strides[20, 5, 1]
|
|
static SmallVector<unsigned, 8> makeStrides(ArrayRef<unsigned> shape) {
|
|
SmallVector<unsigned, 8> tmp;
|
|
tmp.reserve(shape.size());
|
|
unsigned running = 1;
|
|
for (auto rit = shape.rbegin(), reit = shape.rend(); rit != reit; ++rit) {
|
|
assert(*rit > 0 && "size must be greater than 0 along all dimensions of "
|
|
"shape");
|
|
tmp.push_back(running);
|
|
running *= *rit;
|
|
}
|
|
return SmallVector<unsigned, 8>(tmp.rbegin(), tmp.rend());
|
|
}
|
|
|
|
/// Given a shape with sizes greater than 0 along all dimensions, returns the
|
|
/// delinearized components of linearIndex along shape.
|
|
static SmallVector<unsigned, 8> delinearize(unsigned linearIndex,
|
|
ArrayRef<unsigned> shape) {
|
|
SmallVector<unsigned, 8> res;
|
|
res.reserve(shape.size());
|
|
auto strides = makeStrides(shape);
|
|
for (unsigned idx = 0; idx < strides.size(); ++idx) {
|
|
assert(strides[idx] > 0);
|
|
auto val = linearIndex / strides[idx];
|
|
res.push_back(val);
|
|
assert(val < shape[idx] && "delinearization is out of bounds");
|
|
linearIndex %= strides[idx];
|
|
}
|
|
// Sanity check.
|
|
assert(linearIndex == 0 && "linear index constructed from shape must "
|
|
"have 0 remainder after delinearization");
|
|
return res;
|
|
}
|
|
|
|
static Operation *instantiate(FuncBuilder *b, Operation *opInst,
|
|
VectorType hwVectorType,
|
|
DenseMap<Value *, Value *> *substitutionsMap);
|
|
|
|
/// Not all Values belong to a program slice scoped within the immediately
|
|
/// enclosing loop.
|
|
/// One simple example is constants defined outside the innermost loop scope.
|
|
/// For such cases the substitutionsMap has no entry and we allow an additional
|
|
/// insertion.
|
|
/// For now, this is limited to ConstantOp because we do not vectorize loop
|
|
/// indices and will need to be extended in the future.
|
|
///
|
|
/// If substitution fails, returns nullptr.
|
|
static Value *substitute(Value *v, VectorType hwVectorType,
|
|
DenseMap<Value *, Value *> *substitutionsMap) {
|
|
auto it = substitutionsMap->find(v);
|
|
if (it == substitutionsMap->end()) {
|
|
auto *opInst = v->getDefiningOp();
|
|
if (isa<ConstantOp>(opInst)) {
|
|
FuncBuilder b(opInst);
|
|
auto *op = instantiate(&b, opInst, hwVectorType, substitutionsMap);
|
|
auto res = substitutionsMap->insert(std::make_pair(v, op->getResult(0)));
|
|
assert(res.second && "Insertion failed");
|
|
return res.first->second;
|
|
}
|
|
v->getDefiningOp()->emitError("Missing substitution");
|
|
return nullptr;
|
|
}
|
|
return it->second;
|
|
}
|
|
|
|
/// Returns a list of single result AffineApplyOps that reindex the
|
|
/// `memRefIndices` by the multi-dimensional `hwVectorInstance`. This is used by
|
|
/// the function that materializes a vector.transfer operation to use hardware
|
|
/// vector types instead of super-vector types.
|
|
///
|
|
/// The general problem this function solves is as follows:
|
|
/// Assume a vector.transfer operation at the super-vector granularity that has
|
|
/// `l` enclosing loops (AffineForOp). Assume the vector transfer operation
|
|
/// operates on a MemRef of rank `r`, a super-vector of rank `s` and a hardware
|
|
/// vector of rank `h`. For the purpose of illustration assume l==4, r==3, s==2,
|
|
/// h==1 and that the super-vector is vector<3x32xf32> and the hardware vector
|
|
/// is vector<8xf32>. Assume the following MLIR snippet after
|
|
/// super-vectorization has been applied:
|
|
///
|
|
/// ```mlir
|
|
/// affine.for %i0 = 0 to %M {
|
|
/// affine.for %i1 = 0 to %N step 3 {
|
|
/// affine.for %i2 = 0 to %O {
|
|
/// affine.for %i3 = 0 to %P step 32 {
|
|
/// %r = vector.transfer_read(%A, map0(%i..), map1(%i..), map2(%i..)) :
|
|
/// vector<3x32xf32>, memref<?x?x?xf32>
|
|
/// ...
|
|
/// }}}}
|
|
/// ```
|
|
///
|
|
/// where map denotes an AffineMap operating on enclosing loops with properties
|
|
/// compatible for vectorization (i.e. some contiguity left unspecified here).
|
|
/// Note that the vectorized loops are %i1 and %i3.
|
|
/// This function translates the vector.transfer_read operation to multiple
|
|
/// instances of vector.transfer_read that operate on vector<8x32>.
|
|
///
|
|
/// Without loss of generality, we assume hwVectorInstance is: {2, 1}.
|
|
/// The only constraints on hwVectorInstance is they belong to:
|
|
/// [0, 2] x [0, 3], which is the span of ratio of super-vector shape to
|
|
/// hardware vector shape in our example.
|
|
///
|
|
/// This function instantiates the iteration <2, 1> of vector.transfer_read
|
|
/// into the set of operations in pseudo-MLIR:
|
|
///
|
|
/// ```mlir
|
|
/// #map2 = (d0, d1, d2, d3) -> (d0, d1 + 2, d2, d3 + 1 * 8)
|
|
/// #map3 = #map o #map2 // where o denotes composition
|
|
/// aff0 = affine.apply #map3.0(%i..)
|
|
/// aff1 = affine.apply #map3.1(%i..)
|
|
/// aff2 = affine.apply #map3.2(%i..)
|
|
/// %r = vector.transfer_read(%A, %aff0, %aff1, %aff2):
|
|
// vector<3x32xf32>, memref<?x?x?xf32>
|
|
/// ```
|
|
///
|
|
/// Practical considerations
|
|
/// ========================
|
|
/// For now, `map` is assumed to be the identity map and the indices are
|
|
/// specified just as vector.transfer_read%A[%i0, %i1, %i2, %i3]. This will be
|
|
/// extended in the future once we have a proper Op for vector transfers.
|
|
/// Additionally, the example above is specified in pseudo-MLIR form; once we
|
|
/// have proper support for generic maps we can generate the code and show
|
|
/// actual MLIR.
|
|
///
|
|
/// TODO(ntv): support a concrete AffineMap and compose with it.
|
|
/// TODO(ntv): these implementation details should be captured in a
|
|
/// vectorization trait at the op level directly.
|
|
static SmallVector<mlir::Value *, 8>
|
|
reindexAffineIndices(FuncBuilder *b, VectorType hwVectorType,
|
|
ArrayRef<unsigned> hwVectorInstance,
|
|
ArrayRef<Value *> memrefIndices) {
|
|
auto vectorShape = hwVectorType.getShape();
|
|
assert(hwVectorInstance.size() >= vectorShape.size());
|
|
|
|
unsigned numIndices = memrefIndices.size();
|
|
auto numMemRefIndices = numIndices - hwVectorInstance.size();
|
|
auto numVectorIndices = hwVectorInstance.size() - vectorShape.size();
|
|
|
|
SmallVector<AffineExpr, 8> affineExprs;
|
|
// TODO(ntv): support a concrete map and composition.
|
|
unsigned i = 0;
|
|
// The first numMemRefIndices correspond to AffineForOp that have not been
|
|
// vectorized, the transformation is the identity on those.
|
|
for (i = 0; i < numMemRefIndices; ++i) {
|
|
auto d_i = b->getAffineDimExpr(i);
|
|
affineExprs.push_back(d_i);
|
|
}
|
|
// The next numVectorIndices correspond to super-vector dimensions that
|
|
// do not have a hardware vector dimension counterpart. For those we only
|
|
// need to increment the index by the corresponding hwVectorInstance.
|
|
for (i = numMemRefIndices; i < numMemRefIndices + numVectorIndices; ++i) {
|
|
auto d_i = b->getAffineDimExpr(i);
|
|
auto offset = hwVectorInstance[i - numMemRefIndices];
|
|
affineExprs.push_back(d_i + offset);
|
|
}
|
|
// The remaining indices correspond to super-vector dimensions that
|
|
// have a hardware vector dimension counterpart. For those we to increment the
|
|
// index by "hwVectorInstance" multiples of the corresponding hardware
|
|
// vector size.
|
|
for (; i < numIndices; ++i) {
|
|
auto d_i = b->getAffineDimExpr(i);
|
|
auto offset = hwVectorInstance[i - numMemRefIndices];
|
|
auto stride = vectorShape[i - numMemRefIndices - numVectorIndices];
|
|
affineExprs.push_back(d_i + offset * stride);
|
|
}
|
|
|
|
// Create a bunch of single result AffineApplyOp.
|
|
SmallVector<mlir::Value *, 8> res;
|
|
res.reserve(affineExprs.size());
|
|
for (auto expr : affineExprs) {
|
|
auto map = AffineMap::get(numIndices, 0, expr, {});
|
|
res.push_back(makeComposedAffineApply(b, b->getInsertionPoint()->getLoc(),
|
|
map, memrefIndices));
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/// Returns attributes with the following substitutions applied:
|
|
/// - constant splat is replaced by constant splat of `hwVectorType`.
|
|
/// TODO(ntv): add more substitutions on a per-need basis.
|
|
static SmallVector<NamedAttribute, 1>
|
|
materializeAttributes(Operation *opInst, VectorType hwVectorType) {
|
|
SmallVector<NamedAttribute, 1> res;
|
|
for (auto a : opInst->getAttrs()) {
|
|
if (auto splat = a.second.dyn_cast<SplatElementsAttr>()) {
|
|
auto attr = SplatElementsAttr::get(hwVectorType, splat.getValue());
|
|
res.push_back(NamedAttribute(a.first, attr));
|
|
} else {
|
|
res.push_back(a);
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/// Creates an instantiated version of `opInst`.
|
|
/// Ops other than VectorTransferReadOp/VectorTransferWriteOp require no
|
|
/// affine reindexing. Just substitute their Value operands and be done. For
|
|
/// this case the actual instance is irrelevant. Just use the values in
|
|
/// substitutionsMap.
|
|
///
|
|
/// If the underlying substitution fails, this fails too and returns nullptr.
|
|
static Operation *instantiate(FuncBuilder *b, Operation *opInst,
|
|
VectorType hwVectorType,
|
|
DenseMap<Value *, Value *> *substitutionsMap) {
|
|
assert(!isa<VectorTransferReadOp>(opInst) &&
|
|
"Should call the function specialized for VectorTransferReadOp");
|
|
assert(!isa<VectorTransferWriteOp>(opInst) &&
|
|
"Should call the function specialized for VectorTransferWriteOp");
|
|
if (opInst->getNumRegions() != 0)
|
|
return nullptr;
|
|
|
|
bool fail = false;
|
|
auto operands = map(
|
|
[hwVectorType, substitutionsMap, &fail](Value *v) -> Value * {
|
|
auto *res =
|
|
fail ? nullptr : substitute(v, hwVectorType, substitutionsMap);
|
|
fail |= !res;
|
|
return res;
|
|
},
|
|
opInst->getOperands());
|
|
if (fail)
|
|
return nullptr;
|
|
|
|
auto attrs = materializeAttributes(opInst, hwVectorType);
|
|
|
|
OperationState state(b->getContext(), opInst->getLoc(),
|
|
opInst->getName().getStringRef(), operands,
|
|
{hwVectorType}, attrs);
|
|
return b->createOperation(state);
|
|
}
|
|
|
|
/// Computes the permutationMap required for a VectorTransferOp from the memref
|
|
/// to the `hwVectorType`.
|
|
/// This is achieved by returning the projection of the permutationMap along the
|
|
/// dimensions of the super-vector type that remain in the hwVectorType.
|
|
/// In particular, if a dimension is fully instantiated (i.e. unrolled) then it
|
|
/// is projected out in the final result.
|
|
template <typename VectorTransferOpTy>
|
|
static AffineMap projectedPermutationMap(VectorTransferOpTy transfer,
|
|
VectorType hwVectorType) {
|
|
static_assert(
|
|
std::is_same<VectorTransferOpTy, VectorTransferReadOp>::value ||
|
|
std::is_same<VectorTransferOpTy, VectorTransferWriteOp>::value,
|
|
"Must be called on a VectorTransferOp");
|
|
auto superVectorType = transfer.getVectorType();
|
|
auto optionalRatio = shapeRatio(superVectorType, hwVectorType);
|
|
assert(optionalRatio &&
|
|
(optionalRatio->size() == superVectorType.getShape().size()) &&
|
|
"Shape and ratio not of the same size");
|
|
unsigned dim = 0;
|
|
SmallVector<AffineExpr, 4> keep;
|
|
MLIRContext *context = transfer.getContext();
|
|
functional::zipApply(
|
|
[&dim, &keep, context](int64_t shape, int64_t ratio) {
|
|
assert(shape >= ratio && "shape dim must be greater than ratio dim");
|
|
if (shape != ratio) {
|
|
// HW vector is not full instantiated along this dim, keep it.
|
|
keep.push_back(getAffineDimExpr(dim, context));
|
|
}
|
|
++dim;
|
|
},
|
|
superVectorType.getShape(), *optionalRatio);
|
|
auto permutationMap = transfer.getPermutationMap();
|
|
LLVM_DEBUG(permutationMap.print(dbgs() << "\npermutationMap: "));
|
|
if (keep.empty()) {
|
|
return permutationMap;
|
|
}
|
|
auto projectionMap = AffineMap::get(optionalRatio->size(), 0, keep, {});
|
|
LLVM_DEBUG(projectionMap.print(dbgs() << "\nprojectionMap: "));
|
|
return simplifyAffineMap(projectionMap.compose(permutationMap));
|
|
}
|
|
|
|
/// Creates an instantiated version of `read` for the instance of
|
|
/// `hwVectorInstance` when lowering from a super-vector type to
|
|
/// `hwVectorType`. `hwVectorInstance` represents one particular instance of
|
|
/// `hwVectorType` int the covering of the super-vector type. For a more
|
|
/// detailed description of the problem, see the description of
|
|
/// reindexAffineIndices.
|
|
static Operation *instantiate(FuncBuilder *b, VectorTransferReadOp read,
|
|
VectorType hwVectorType,
|
|
ArrayRef<unsigned> hwVectorInstance,
|
|
DenseMap<Value *, Value *> *substitutionsMap) {
|
|
SmallVector<Value *, 8> indices =
|
|
map(makePtrDynCaster<Value>(), read.getIndices());
|
|
auto affineIndices =
|
|
reindexAffineIndices(b, hwVectorType, hwVectorInstance, indices);
|
|
auto map = projectedPermutationMap(read, hwVectorType);
|
|
if (!map) {
|
|
return nullptr;
|
|
}
|
|
auto cloned = b->create<VectorTransferReadOp>(read.getLoc(), hwVectorType,
|
|
read.getMemRef(), affineIndices,
|
|
map, read.getPaddingValue());
|
|
return cloned.getOperation();
|
|
}
|
|
|
|
/// Creates an instantiated version of `write` for the instance of
|
|
/// `hwVectorInstance` when lowering from a super-vector type to
|
|
/// `hwVectorType`. `hwVectorInstance` represents one particular instance of
|
|
/// `hwVectorType` int the covering of th3e super-vector type. For a more
|
|
/// detailed description of the problem, see the description of
|
|
/// reindexAffineIndices.
|
|
static Operation *instantiate(FuncBuilder *b, VectorTransferWriteOp write,
|
|
VectorType hwVectorType,
|
|
ArrayRef<unsigned> hwVectorInstance,
|
|
DenseMap<Value *, Value *> *substitutionsMap) {
|
|
SmallVector<Value *, 8> indices =
|
|
map(makePtrDynCaster<Value>(), write.getIndices());
|
|
auto affineIndices =
|
|
reindexAffineIndices(b, hwVectorType, hwVectorInstance, indices);
|
|
auto cloned = b->create<VectorTransferWriteOp>(
|
|
write.getLoc(),
|
|
substitute(write.getVector(), hwVectorType, substitutionsMap),
|
|
write.getMemRef(), affineIndices,
|
|
projectedPermutationMap(write, hwVectorType));
|
|
return cloned.getOperation();
|
|
}
|
|
|
|
/// Returns `true` if op instance is properly cloned and inserted, false
|
|
/// otherwise.
|
|
/// The multi-dimensional `hwVectorInstance` belongs to the shapeRatio of
|
|
/// super-vector type to hw vector type.
|
|
/// A cloned instance of `op` is formed as follows:
|
|
/// 1. vector.transfer_read: the return `superVectorType` is replaced by
|
|
/// `hwVectorType`. Additionally, affine indices are reindexed with
|
|
/// `reindexAffineIndices` using `hwVectorInstance` and vector type
|
|
/// information;
|
|
/// 2. vector.transfer_write: the `valueToStore` type is simply substituted.
|
|
/// Since we operate on a topologically sorted slice, a substitution must
|
|
/// have been registered for non-constant ops. Additionally, affine indices
|
|
/// are reindexed in the same way as for vector.transfer_read;
|
|
/// 3. constant ops are splats of the super-vector type by construction.
|
|
/// They are cloned to a splat on the hw vector type with the same value;
|
|
/// 4. remaining ops are cloned to version of the op that returns a hw vector
|
|
/// type, all operands are substituted according to `substitutions`. Thanks
|
|
/// to the topological order of a slice, the substitution is always
|
|
/// possible.
|
|
///
|
|
/// Returns true on failure.
|
|
static bool instantiateMaterialization(Operation *op,
|
|
MaterializationState *state) {
|
|
LLVM_DEBUG(dbgs() << "\ninstantiate: " << *op);
|
|
|
|
// Create a builder here for unroll-and-jam effects.
|
|
FuncBuilder b(op);
|
|
// AffineApplyOp are ignored: instantiating the proper vector op will take
|
|
// care of AffineApplyOps by composing them properly.
|
|
if (isa<AffineApplyOp>(op)) {
|
|
return false;
|
|
}
|
|
if (op->getNumRegions() != 0)
|
|
return op->emitError("NYI path Op with region"), true;
|
|
|
|
if (auto write = dyn_cast<VectorTransferWriteOp>(op)) {
|
|
auto *clone = instantiate(&b, write, state->hwVectorType,
|
|
state->hwVectorInstance, state->substitutionsMap);
|
|
return clone == nullptr;
|
|
}
|
|
if (auto read = dyn_cast<VectorTransferReadOp>(op)) {
|
|
auto *clone = instantiate(&b, read, state->hwVectorType,
|
|
state->hwVectorInstance, state->substitutionsMap);
|
|
if (!clone) {
|
|
return true;
|
|
}
|
|
state->substitutionsMap->insert(
|
|
std::make_pair(read.getResult(), clone->getResult(0)));
|
|
return false;
|
|
}
|
|
// The only op with 0 results reaching this point must, by construction, be
|
|
// VectorTransferWriteOps and have been caught above. Ops with >= 2 results
|
|
// are not yet supported. So just support 1 result.
|
|
if (op->getNumResults() != 1) {
|
|
return op->emitError("NYI: ops with != 1 results"), true;
|
|
}
|
|
if (op->getResult(0)->getType() != state->superVectorType) {
|
|
return op->emitError("Op does not return a supervector."), true;
|
|
}
|
|
auto *clone =
|
|
instantiate(&b, op, state->hwVectorType, state->substitutionsMap);
|
|
if (!clone) {
|
|
return true;
|
|
}
|
|
state->substitutionsMap->insert(
|
|
std::make_pair(op->getResult(0), clone->getResult(0)));
|
|
return false;
|
|
}
|
|
|
|
/// Takes a slice and rewrites the operations in it so that occurrences
|
|
/// of `superVectorType` are replaced by `hwVectorType`.
|
|
///
|
|
/// Implementation
|
|
/// ==============
|
|
/// 1. computes the shape ratio of super-vector to HW vector shapes. This
|
|
/// gives for each op in the slice, how many instantiations are required
|
|
/// in each dimension;
|
|
/// 2. performs the concrete materialization. Note that in a first
|
|
/// implementation we use full unrolling because it pragmatically removes
|
|
/// the need to explicitly materialize an AllocOp. Thanks to the properties
|
|
/// of super-vectors, this unrolling is always possible and simple:
|
|
/// vectorizing to a super-vector abstraction already achieved the
|
|
/// equivalent of loop strip-mining + loop sinking and encoded this in the
|
|
/// vector type.
|
|
///
|
|
/// Returns true on failure.
|
|
///
|
|
/// TODO(ntv): materialized allocs.
|
|
/// TODO(ntv): full loops + materialized allocs.
|
|
/// TODO(ntv): partial unrolling + materialized allocs.
|
|
static bool emitSlice(MaterializationState *state,
|
|
SetVector<Operation *> *slice) {
|
|
auto ratio = shapeRatio(state->superVectorType, state->hwVectorType);
|
|
assert(ratio.hasValue() &&
|
|
"ratio of super-vector to HW-vector shape is not integral");
|
|
// The number of integer points in a hyperrectangular region is:
|
|
// shape[0] * strides[0].
|
|
auto numValueToUnroll = (*ratio)[0] * makeStrides(*ratio)[0];
|
|
// Full unrolling to hardware vectors in a first approximation.
|
|
for (unsigned idx = 0; idx < numValueToUnroll; ++idx) {
|
|
// Fresh RAII instanceIndices and substitutionsMap.
|
|
MaterializationState scopedState = *state;
|
|
scopedState.hwVectorInstance = delinearize(idx, *ratio);
|
|
DenseMap<Value *, Value *> substitutionMap;
|
|
scopedState.substitutionsMap = &substitutionMap;
|
|
// slice are topologically sorted, we can just clone them in order.
|
|
for (auto *op : *slice) {
|
|
auto fail = instantiateMaterialization(op, &scopedState);
|
|
if (fail) {
|
|
op->emitError("Unhandled super-vector materialization failure");
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "\nMLFunction is now\n");
|
|
LLVM_DEBUG((*slice)[0]->getFunction()->print(dbgs()));
|
|
|
|
// slice are topologically sorted, we can just erase them in reverse
|
|
// order. Reverse iterator does not just work simply with an operator*
|
|
// dereference.
|
|
for (int idx = slice->size() - 1; idx >= 0; --idx) {
|
|
LLVM_DEBUG(dbgs() << "\nErase: ");
|
|
LLVM_DEBUG((*slice)[idx]->print(dbgs()));
|
|
(*slice)[idx]->erase();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Materializes super-vector types into concrete hw vector types as follows:
|
|
/// 1. start from super-vector terminators (current vector.transfer_write
|
|
/// ops);
|
|
/// 2. collect all the operations that can be reached by transitive use-defs
|
|
/// chains;
|
|
/// 3. get the superVectorType for this particular terminator and the
|
|
/// corresponding hardware vector type (for now limited to F32)
|
|
/// TODO(ntv): be more general than F32.
|
|
/// 4. emit the transitive useDef set to operate on the finer-grain vector
|
|
/// types.
|
|
///
|
|
/// Notes
|
|
/// =====
|
|
/// The `slice` is sorted in topological order by construction.
|
|
/// Additionally, this set is limited to operations in the same lexical scope
|
|
/// because we currently disallow vectorization of defs that come from another
|
|
/// scope.
|
|
/// TODO(ntv): please document return value.
|
|
static bool materialize(Function *f, const SetVector<Operation *> &terminators,
|
|
MaterializationState *state) {
|
|
DenseSet<Operation *> seen;
|
|
DominanceInfo domInfo(f);
|
|
for (auto *term : terminators) {
|
|
// Short-circuit test, a given terminator may have been reached by some
|
|
// other previous transitive use-def chains.
|
|
if (seen.count(term) > 0) {
|
|
continue;
|
|
}
|
|
|
|
auto terminator = cast<VectorTransferWriteOp>(term);
|
|
LLVM_DEBUG(dbgs() << "\nFrom terminator:" << *term);
|
|
|
|
// Get the transitive use-defs starting from terminator, limited to the
|
|
// current enclosing scope of the terminator. See the top of the function
|
|
// Note for the justification of this restriction.
|
|
// TODO(ntv): relax scoping constraints.
|
|
auto *enclosingScope = term->getParentOp();
|
|
auto keepIfInSameScope = [enclosingScope, &domInfo](Operation *op) {
|
|
assert(op && "NULL op");
|
|
if (!enclosingScope) {
|
|
// by construction, everyone is always under the top scope (null scope).
|
|
return true;
|
|
}
|
|
return domInfo.properlyDominates(enclosingScope, op);
|
|
};
|
|
SetVector<Operation *> slice =
|
|
getSlice(term, keepIfInSameScope, keepIfInSameScope);
|
|
assert(!slice.empty());
|
|
|
|
// Sanity checks: transitive slice must be completely disjoint from
|
|
// what we have seen so far.
|
|
LLVM_DEBUG(dbgs() << "\nTransitive use-defs:");
|
|
for (auto *ud : slice) {
|
|
LLVM_DEBUG(dbgs() << "\nud:" << *ud);
|
|
assert(seen.count(ud) == 0 &&
|
|
"Transitive use-defs not disjoint from already seen");
|
|
seen.insert(ud);
|
|
}
|
|
|
|
// Emit the current slice.
|
|
// Set scoped super-vector and corresponding hw vector types.
|
|
state->superVectorType = terminator.getVectorType();
|
|
assert((state->superVectorType.getElementType() ==
|
|
FloatType::getF32(term->getContext())) &&
|
|
"Only f32 supported for now");
|
|
state->hwVectorType = VectorType::get(
|
|
state->hwVectorSize, state->superVectorType.getElementType());
|
|
auto fail = emitSlice(state, &slice);
|
|
if (fail) {
|
|
return true;
|
|
}
|
|
LLVM_DEBUG(dbgs() << "\nMLFunction is now\n");
|
|
LLVM_DEBUG(f->print(dbgs()));
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void MaterializeVectorsPass::runOnFunction() {
|
|
// Thread-safe RAII local context, BumpPtrAllocator freed on exit.
|
|
NestedPatternContext mlContext;
|
|
|
|
// TODO(ntv): Check to see if this supports arbitrary top-level code.
|
|
Function *f = &getFunction();
|
|
if (f->getBlocks().size() != 1)
|
|
return;
|
|
|
|
using matcher::Op;
|
|
LLVM_DEBUG(dbgs() << "\nMaterializeVectors on Function\n");
|
|
LLVM_DEBUG(f->print(dbgs()));
|
|
|
|
MaterializationState state(hwVectorSize);
|
|
// Get the hardware vector type.
|
|
// TODO(ntv): get elemental type from super-vector type rather than force f32.
|
|
auto subVectorType =
|
|
VectorType::get(hwVectorSize, FloatType::getF32(&getContext()));
|
|
|
|
// Capture terminators; i.e. vector.transfer_write ops involving a strict
|
|
// super-vector of subVectorType.
|
|
auto filter = [subVectorType](Operation &op) {
|
|
if (!isa<VectorTransferWriteOp>(op)) {
|
|
return false;
|
|
}
|
|
return matcher::operatesOnSuperVectorsOf(op, subVectorType);
|
|
};
|
|
auto pat = Op(filter);
|
|
SmallVector<NestedMatch, 8> matches;
|
|
pat.match(f, &matches);
|
|
SetVector<Operation *> terminators;
|
|
for (auto m : matches) {
|
|
terminators.insert(m.getMatchedOperation());
|
|
}
|
|
|
|
if (materialize(f, terminators, &state))
|
|
signalPassFailure();
|
|
}
|
|
|
|
FunctionPassBase *
|
|
mlir::createMaterializeVectorsPass(llvm::ArrayRef<int64_t> vectorSize) {
|
|
return new MaterializeVectorsPass(vectorSize);
|
|
}
|
|
|
|
static PassRegistration<MaterializeVectorsPass>
|
|
pass("affine-materialize-vectors",
|
|
"Materializes super-vectors to vectors of the "
|
|
"proper size for the hardware");
|
|
|
|
#undef DEBUG_TYPE
|