forked from OSchip/llvm-project
1030 lines
35 KiB
C++
1030 lines
35 KiB
C++
//===- HexagonMachineScheduler.cpp - MI Scheduler for Hexagon -------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// MachineScheduler schedules machine instructions after phi elimination. It
|
|
// preserves LiveIntervals so it can be invoked before register allocation.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "HexagonMachineScheduler.h"
|
|
#include "HexagonSubtarget.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/ScheduleDAGMutation.h"
|
|
#include "llvm/IR/Function.h"
|
|
|
|
#include <iomanip>
|
|
#include <sstream>
|
|
|
|
static cl::opt<bool> IgnoreBBRegPressure("ignore-bb-reg-pressure",
|
|
cl::Hidden, cl::ZeroOrMore, cl::init(false));
|
|
|
|
static cl::opt<bool> SchedPredsCloser("sched-preds-closer",
|
|
cl::Hidden, cl::ZeroOrMore, cl::init(true));
|
|
|
|
static cl::opt<unsigned> SchedDebugVerboseLevel("misched-verbose-level",
|
|
cl::Hidden, cl::ZeroOrMore, cl::init(1));
|
|
|
|
static cl::opt<bool> TopUseShorterTie("top-use-shorter-tie",
|
|
cl::Hidden, cl::ZeroOrMore, cl::init(false));
|
|
|
|
static cl::opt<bool> BotUseShorterTie("bot-use-shorter-tie",
|
|
cl::Hidden, cl::ZeroOrMore, cl::init(false));
|
|
|
|
static cl::opt<bool> DisableTCTie("disable-tc-tie",
|
|
cl::Hidden, cl::ZeroOrMore, cl::init(false));
|
|
|
|
static cl::opt<bool> SchedRetvalOptimization("sched-retval-optimization",
|
|
cl::Hidden, cl::ZeroOrMore, cl::init(true));
|
|
|
|
// Check if the scheduler should penalize instructions that are available to
|
|
// early due to a zero-latency dependence.
|
|
static cl::opt<bool> CheckEarlyAvail("check-early-avail", cl::Hidden,
|
|
cl::ZeroOrMore, cl::init(true));
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "misched"
|
|
|
|
class HexagonCallMutation : public ScheduleDAGMutation {
|
|
public:
|
|
void apply(ScheduleDAGInstrs *DAG) override;
|
|
private:
|
|
bool shouldTFRICallBind(const HexagonInstrInfo &HII,
|
|
const SUnit &Inst1, const SUnit &Inst2) const;
|
|
};
|
|
|
|
// Check if a call and subsequent A2_tfrpi instructions should maintain
|
|
// scheduling affinity. We are looking for the TFRI to be consumed in
|
|
// the next instruction. This should help reduce the instances of
|
|
// double register pairs being allocated and scheduled before a call
|
|
// when not used until after the call. This situation is exacerbated
|
|
// by the fact that we allocate the pair from the callee saves list,
|
|
// leading to excess spills and restores.
|
|
bool HexagonCallMutation::shouldTFRICallBind(const HexagonInstrInfo &HII,
|
|
const SUnit &Inst1, const SUnit &Inst2) const {
|
|
if (Inst1.getInstr()->getOpcode() != Hexagon::A2_tfrpi)
|
|
return false;
|
|
|
|
// TypeXTYPE are 64 bit operations.
|
|
if (HII.getType(Inst2.getInstr()) == HexagonII::TypeXTYPE)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
void HexagonCallMutation::apply(ScheduleDAGInstrs *DAG) {
|
|
SUnit* LastSequentialCall = nullptr;
|
|
unsigned VRegHoldingRet = 0;
|
|
unsigned RetRegister;
|
|
SUnit* LastUseOfRet = nullptr;
|
|
auto &TRI = *DAG->MF.getSubtarget().getRegisterInfo();
|
|
auto &HII = *DAG->MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
|
|
|
|
// Currently we only catch the situation when compare gets scheduled
|
|
// before preceding call.
|
|
for (unsigned su = 0, e = DAG->SUnits.size(); su != e; ++su) {
|
|
// Remember the call.
|
|
if (DAG->SUnits[su].getInstr()->isCall())
|
|
LastSequentialCall = &DAG->SUnits[su];
|
|
// Look for a compare that defines a predicate.
|
|
else if (DAG->SUnits[su].getInstr()->isCompare() && LastSequentialCall)
|
|
DAG->SUnits[su].addPred(SDep(LastSequentialCall, SDep::Barrier));
|
|
// Look for call and tfri* instructions.
|
|
else if (SchedPredsCloser && LastSequentialCall && su > 1 && su < e-1 &&
|
|
shouldTFRICallBind(HII, DAG->SUnits[su], DAG->SUnits[su+1]))
|
|
DAG->SUnits[su].addPred(SDep(&DAG->SUnits[su-1], SDep::Barrier));
|
|
// Prevent redundant register copies between two calls, which are caused by
|
|
// both the return value and the argument for the next call being in %R0.
|
|
// Example:
|
|
// 1: <call1>
|
|
// 2: %VregX = COPY %R0
|
|
// 3: <use of %VregX>
|
|
// 4: %R0 = ...
|
|
// 5: <call2>
|
|
// The scheduler would often swap 3 and 4, so an additional register is
|
|
// needed. This code inserts a Barrier dependence between 3 & 4 to prevent
|
|
// this. The same applies for %D0 and %V0/%W0, which are also handled.
|
|
else if (SchedRetvalOptimization) {
|
|
const MachineInstr *MI = DAG->SUnits[su].getInstr();
|
|
if (MI->isCopy() && (MI->readsRegister(Hexagon::R0, &TRI) ||
|
|
MI->readsRegister(Hexagon::V0, &TRI))) {
|
|
// %vregX = COPY %R0
|
|
VRegHoldingRet = MI->getOperand(0).getReg();
|
|
RetRegister = MI->getOperand(1).getReg();
|
|
LastUseOfRet = nullptr;
|
|
} else if (VRegHoldingRet && MI->readsVirtualRegister(VRegHoldingRet))
|
|
// <use of %vregX>
|
|
LastUseOfRet = &DAG->SUnits[su];
|
|
else if (LastUseOfRet && MI->definesRegister(RetRegister, &TRI))
|
|
// %R0 = ...
|
|
DAG->SUnits[su].addPred(SDep(LastUseOfRet, SDep::Barrier));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// Save the last formed packet
|
|
void VLIWResourceModel::savePacket() {
|
|
OldPacket = Packet;
|
|
}
|
|
|
|
/// Check if scheduling of this SU is possible
|
|
/// in the current packet.
|
|
/// It is _not_ precise (statefull), it is more like
|
|
/// another heuristic. Many corner cases are figured
|
|
/// empirically.
|
|
bool VLIWResourceModel::isResourceAvailable(SUnit *SU) {
|
|
if (!SU || !SU->getInstr())
|
|
return false;
|
|
|
|
// First see if the pipeline could receive this instruction
|
|
// in the current cycle.
|
|
switch (SU->getInstr()->getOpcode()) {
|
|
default:
|
|
if (!ResourcesModel->canReserveResources(*SU->getInstr()))
|
|
return false;
|
|
case TargetOpcode::EXTRACT_SUBREG:
|
|
case TargetOpcode::INSERT_SUBREG:
|
|
case TargetOpcode::SUBREG_TO_REG:
|
|
case TargetOpcode::REG_SEQUENCE:
|
|
case TargetOpcode::IMPLICIT_DEF:
|
|
case TargetOpcode::COPY:
|
|
case TargetOpcode::INLINEASM:
|
|
break;
|
|
}
|
|
|
|
MachineFunction &MF = *SU->getInstr()->getParent()->getParent();
|
|
auto &QII = *MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
|
|
|
|
// Now see if there are no other dependencies to instructions already
|
|
// in the packet.
|
|
for (unsigned i = 0, e = Packet.size(); i != e; ++i) {
|
|
if (Packet[i]->Succs.size() == 0)
|
|
continue;
|
|
|
|
// Enable .cur formation.
|
|
if (QII.mayBeCurLoad(Packet[i]->getInstr()))
|
|
continue;
|
|
|
|
for (SUnit::const_succ_iterator I = Packet[i]->Succs.begin(),
|
|
E = Packet[i]->Succs.end(); I != E; ++I) {
|
|
// Since we do not add pseudos to packets, might as well
|
|
// ignore order dependencies.
|
|
if (I->isCtrl())
|
|
continue;
|
|
|
|
if (I->getSUnit() == SU)
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Keep track of available resources.
|
|
bool VLIWResourceModel::reserveResources(SUnit *SU) {
|
|
bool startNewCycle = false;
|
|
// Artificially reset state.
|
|
if (!SU) {
|
|
ResourcesModel->clearResources();
|
|
savePacket();
|
|
Packet.clear();
|
|
TotalPackets++;
|
|
return false;
|
|
}
|
|
// If this SU does not fit in the packet
|
|
// start a new one.
|
|
if (!isResourceAvailable(SU)) {
|
|
ResourcesModel->clearResources();
|
|
savePacket();
|
|
Packet.clear();
|
|
TotalPackets++;
|
|
startNewCycle = true;
|
|
}
|
|
|
|
switch (SU->getInstr()->getOpcode()) {
|
|
default:
|
|
ResourcesModel->reserveResources(*SU->getInstr());
|
|
break;
|
|
case TargetOpcode::EXTRACT_SUBREG:
|
|
case TargetOpcode::INSERT_SUBREG:
|
|
case TargetOpcode::SUBREG_TO_REG:
|
|
case TargetOpcode::REG_SEQUENCE:
|
|
case TargetOpcode::IMPLICIT_DEF:
|
|
case TargetOpcode::KILL:
|
|
case TargetOpcode::CFI_INSTRUCTION:
|
|
case TargetOpcode::EH_LABEL:
|
|
case TargetOpcode::COPY:
|
|
case TargetOpcode::INLINEASM:
|
|
break;
|
|
}
|
|
Packet.push_back(SU);
|
|
|
|
#ifndef NDEBUG
|
|
DEBUG(dbgs() << "Packet[" << TotalPackets << "]:\n");
|
|
for (unsigned i = 0, e = Packet.size(); i != e; ++i) {
|
|
DEBUG(dbgs() << "\t[" << i << "] SU(");
|
|
DEBUG(dbgs() << Packet[i]->NodeNum << ")\t");
|
|
DEBUG(Packet[i]->getInstr()->dump());
|
|
}
|
|
#endif
|
|
|
|
// If packet is now full, reset the state so in the next cycle
|
|
// we start fresh.
|
|
if (Packet.size() >= SchedModel->getIssueWidth()) {
|
|
ResourcesModel->clearResources();
|
|
savePacket();
|
|
Packet.clear();
|
|
TotalPackets++;
|
|
startNewCycle = true;
|
|
}
|
|
|
|
return startNewCycle;
|
|
}
|
|
|
|
/// schedule - Called back from MachineScheduler::runOnMachineFunction
|
|
/// after setting up the current scheduling region. [RegionBegin, RegionEnd)
|
|
/// only includes instructions that have DAG nodes, not scheduling boundaries.
|
|
void VLIWMachineScheduler::schedule() {
|
|
DEBUG(dbgs()
|
|
<< "********** MI Converging Scheduling VLIW BB#" << BB->getNumber()
|
|
<< " " << BB->getName()
|
|
<< " in_func " << BB->getParent()->getFunction()->getName()
|
|
<< " at loop depth " << MLI->getLoopDepth(BB)
|
|
<< " \n");
|
|
|
|
buildDAGWithRegPressure();
|
|
|
|
SmallVector<SUnit*, 8> TopRoots, BotRoots;
|
|
findRootsAndBiasEdges(TopRoots, BotRoots);
|
|
|
|
// Initialize the strategy before modifying the DAG.
|
|
SchedImpl->initialize(this);
|
|
|
|
DEBUG(unsigned maxH = 0;
|
|
for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
|
|
if (SUnits[su].getHeight() > maxH)
|
|
maxH = SUnits[su].getHeight();
|
|
dbgs() << "Max Height " << maxH << "\n";);
|
|
DEBUG(unsigned maxD = 0;
|
|
for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
|
|
if (SUnits[su].getDepth() > maxD)
|
|
maxD = SUnits[su].getDepth();
|
|
dbgs() << "Max Depth " << maxD << "\n";);
|
|
DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
|
|
SUnits[su].dumpAll(this));
|
|
|
|
initQueues(TopRoots, BotRoots);
|
|
|
|
bool IsTopNode = false;
|
|
while (true) {
|
|
DEBUG(dbgs() << "** VLIWMachineScheduler::schedule picking next node\n");
|
|
SUnit *SU = SchedImpl->pickNode(IsTopNode);
|
|
if (!SU) break;
|
|
|
|
if (!checkSchedLimit())
|
|
break;
|
|
|
|
scheduleMI(SU, IsTopNode);
|
|
|
|
updateQueues(SU, IsTopNode);
|
|
|
|
// Notify the scheduling strategy after updating the DAG.
|
|
SchedImpl->schedNode(SU, IsTopNode);
|
|
}
|
|
assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
|
|
|
|
placeDebugValues();
|
|
|
|
DEBUG({
|
|
unsigned BBNum = begin()->getParent()->getNumber();
|
|
dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
|
|
dumpSchedule();
|
|
dbgs() << '\n';
|
|
});
|
|
}
|
|
|
|
void ConvergingVLIWScheduler::initialize(ScheduleDAGMI *dag) {
|
|
DAG = static_cast<VLIWMachineScheduler*>(dag);
|
|
SchedModel = DAG->getSchedModel();
|
|
|
|
Top.init(DAG, SchedModel);
|
|
Bot.init(DAG, SchedModel);
|
|
|
|
// Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
|
|
// are disabled, then these HazardRecs will be disabled.
|
|
const InstrItineraryData *Itin = DAG->getSchedModel()->getInstrItineraries();
|
|
const TargetSubtargetInfo &STI = DAG->MF.getSubtarget();
|
|
const TargetInstrInfo *TII = STI.getInstrInfo();
|
|
delete Top.HazardRec;
|
|
delete Bot.HazardRec;
|
|
Top.HazardRec = TII->CreateTargetMIHazardRecognizer(Itin, DAG);
|
|
Bot.HazardRec = TII->CreateTargetMIHazardRecognizer(Itin, DAG);
|
|
|
|
delete Top.ResourceModel;
|
|
delete Bot.ResourceModel;
|
|
Top.ResourceModel = new VLIWResourceModel(STI, DAG->getSchedModel());
|
|
Bot.ResourceModel = new VLIWResourceModel(STI, DAG->getSchedModel());
|
|
|
|
assert((!llvm::ForceTopDown || !llvm::ForceBottomUp) &&
|
|
"-misched-topdown incompatible with -misched-bottomup");
|
|
|
|
DAG->addMutation(make_unique<HexagonSubtarget::HexagonDAGMutation>());
|
|
DAG->addMutation(make_unique<HexagonCallMutation>());
|
|
}
|
|
|
|
void ConvergingVLIWScheduler::releaseTopNode(SUnit *SU) {
|
|
if (SU->isScheduled)
|
|
return;
|
|
|
|
for (const SDep &PI : SU->Preds) {
|
|
unsigned PredReadyCycle = PI.getSUnit()->TopReadyCycle;
|
|
unsigned MinLatency = PI.getLatency();
|
|
#ifndef NDEBUG
|
|
Top.MaxMinLatency = std::max(MinLatency, Top.MaxMinLatency);
|
|
#endif
|
|
if (SU->TopReadyCycle < PredReadyCycle + MinLatency)
|
|
SU->TopReadyCycle = PredReadyCycle + MinLatency;
|
|
}
|
|
Top.releaseNode(SU, SU->TopReadyCycle);
|
|
}
|
|
|
|
void ConvergingVLIWScheduler::releaseBottomNode(SUnit *SU) {
|
|
if (SU->isScheduled)
|
|
return;
|
|
|
|
assert(SU->getInstr() && "Scheduled SUnit must have instr");
|
|
|
|
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
|
I != E; ++I) {
|
|
unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle;
|
|
unsigned MinLatency = I->getLatency();
|
|
#ifndef NDEBUG
|
|
Bot.MaxMinLatency = std::max(MinLatency, Bot.MaxMinLatency);
|
|
#endif
|
|
if (SU->BotReadyCycle < SuccReadyCycle + MinLatency)
|
|
SU->BotReadyCycle = SuccReadyCycle + MinLatency;
|
|
}
|
|
Bot.releaseNode(SU, SU->BotReadyCycle);
|
|
}
|
|
|
|
/// Does this SU have a hazard within the current instruction group.
|
|
///
|
|
/// The scheduler supports two modes of hazard recognition. The first is the
|
|
/// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
|
|
/// supports highly complicated in-order reservation tables
|
|
/// (ScoreboardHazardRecognizer) and arbitrary target-specific logic.
|
|
///
|
|
/// The second is a streamlined mechanism that checks for hazards based on
|
|
/// simple counters that the scheduler itself maintains. It explicitly checks
|
|
/// for instruction dispatch limitations, including the number of micro-ops that
|
|
/// can dispatch per cycle.
|
|
///
|
|
/// TODO: Also check whether the SU must start a new group.
|
|
bool ConvergingVLIWScheduler::VLIWSchedBoundary::checkHazard(SUnit *SU) {
|
|
if (HazardRec->isEnabled())
|
|
return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard;
|
|
|
|
unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
|
|
if (IssueCount + uops > SchedModel->getIssueWidth())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
void ConvergingVLIWScheduler::VLIWSchedBoundary::releaseNode(SUnit *SU,
|
|
unsigned ReadyCycle) {
|
|
if (ReadyCycle < MinReadyCycle)
|
|
MinReadyCycle = ReadyCycle;
|
|
|
|
// Check for interlocks first. For the purpose of other heuristics, an
|
|
// instruction that cannot issue appears as if it's not in the ReadyQueue.
|
|
if (ReadyCycle > CurrCycle || checkHazard(SU))
|
|
|
|
Pending.push(SU);
|
|
else
|
|
Available.push(SU);
|
|
}
|
|
|
|
/// Move the boundary of scheduled code by one cycle.
|
|
void ConvergingVLIWScheduler::VLIWSchedBoundary::bumpCycle() {
|
|
unsigned Width = SchedModel->getIssueWidth();
|
|
IssueCount = (IssueCount <= Width) ? 0 : IssueCount - Width;
|
|
|
|
assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
|
|
unsigned NextCycle = std::max(CurrCycle + 1, MinReadyCycle);
|
|
|
|
if (!HazardRec->isEnabled()) {
|
|
// Bypass HazardRec virtual calls.
|
|
CurrCycle = NextCycle;
|
|
} else {
|
|
// Bypass getHazardType calls in case of long latency.
|
|
for (; CurrCycle != NextCycle; ++CurrCycle) {
|
|
if (isTop())
|
|
HazardRec->AdvanceCycle();
|
|
else
|
|
HazardRec->RecedeCycle();
|
|
}
|
|
}
|
|
CheckPending = true;
|
|
|
|
DEBUG(dbgs() << "*** Next cycle " << Available.getName() << " cycle "
|
|
<< CurrCycle << '\n');
|
|
}
|
|
|
|
/// Move the boundary of scheduled code by one SUnit.
|
|
void ConvergingVLIWScheduler::VLIWSchedBoundary::bumpNode(SUnit *SU) {
|
|
bool startNewCycle = false;
|
|
|
|
// Update the reservation table.
|
|
if (HazardRec->isEnabled()) {
|
|
if (!isTop() && SU->isCall) {
|
|
// Calls are scheduled with their preceding instructions. For bottom-up
|
|
// scheduling, clear the pipeline state before emitting.
|
|
HazardRec->Reset();
|
|
}
|
|
HazardRec->EmitInstruction(SU);
|
|
}
|
|
|
|
// Update DFA model.
|
|
startNewCycle = ResourceModel->reserveResources(SU);
|
|
|
|
// Check the instruction group dispatch limit.
|
|
// TODO: Check if this SU must end a dispatch group.
|
|
IssueCount += SchedModel->getNumMicroOps(SU->getInstr());
|
|
if (startNewCycle) {
|
|
DEBUG(dbgs() << "*** Max instrs at cycle " << CurrCycle << '\n');
|
|
bumpCycle();
|
|
}
|
|
else
|
|
DEBUG(dbgs() << "*** IssueCount " << IssueCount
|
|
<< " at cycle " << CurrCycle << '\n');
|
|
}
|
|
|
|
/// Release pending ready nodes in to the available queue. This makes them
|
|
/// visible to heuristics.
|
|
void ConvergingVLIWScheduler::VLIWSchedBoundary::releasePending() {
|
|
// If the available queue is empty, it is safe to reset MinReadyCycle.
|
|
if (Available.empty())
|
|
MinReadyCycle = UINT_MAX;
|
|
|
|
// Check to see if any of the pending instructions are ready to issue. If
|
|
// so, add them to the available queue.
|
|
for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
|
|
SUnit *SU = *(Pending.begin()+i);
|
|
unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
|
|
|
|
if (ReadyCycle < MinReadyCycle)
|
|
MinReadyCycle = ReadyCycle;
|
|
|
|
if (ReadyCycle > CurrCycle)
|
|
continue;
|
|
|
|
if (checkHazard(SU))
|
|
continue;
|
|
|
|
Available.push(SU);
|
|
Pending.remove(Pending.begin()+i);
|
|
--i; --e;
|
|
}
|
|
CheckPending = false;
|
|
}
|
|
|
|
/// Remove SU from the ready set for this boundary.
|
|
void ConvergingVLIWScheduler::VLIWSchedBoundary::removeReady(SUnit *SU) {
|
|
if (Available.isInQueue(SU))
|
|
Available.remove(Available.find(SU));
|
|
else {
|
|
assert(Pending.isInQueue(SU) && "bad ready count");
|
|
Pending.remove(Pending.find(SU));
|
|
}
|
|
}
|
|
|
|
/// If this queue only has one ready candidate, return it. As a side effect,
|
|
/// advance the cycle until at least one node is ready. If multiple instructions
|
|
/// are ready, return NULL.
|
|
SUnit *ConvergingVLIWScheduler::VLIWSchedBoundary::pickOnlyChoice() {
|
|
if (CheckPending)
|
|
releasePending();
|
|
|
|
for (unsigned i = 0; Available.empty(); ++i) {
|
|
assert(i <= (HazardRec->getMaxLookAhead() + MaxMinLatency) &&
|
|
"permanent hazard"); (void)i;
|
|
ResourceModel->reserveResources(nullptr);
|
|
bumpCycle();
|
|
releasePending();
|
|
}
|
|
if (Available.size() == 1)
|
|
return *Available.begin();
|
|
return nullptr;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
void ConvergingVLIWScheduler::traceCandidate(const char *Label,
|
|
const ReadyQueue &Q, SUnit *SU, int Cost, PressureChange P) {
|
|
dbgs() << Label << " " << Q.getName() << " ";
|
|
if (P.isValid())
|
|
dbgs() << DAG->TRI->getRegPressureSetName(P.getPSet()) << ":"
|
|
<< P.getUnitInc() << " ";
|
|
else
|
|
dbgs() << " ";
|
|
dbgs() << "cost(" << Cost << ")\t";
|
|
SU->dump(DAG);
|
|
}
|
|
|
|
// Very detailed queue dump, to be used with higher verbosity levels.
|
|
void ConvergingVLIWScheduler::readyQueueVerboseDump(
|
|
const RegPressureTracker &RPTracker, SchedCandidate &Candidate,
|
|
ReadyQueue &Q) {
|
|
RegPressureTracker &TempTracker = const_cast<RegPressureTracker &>(RPTracker);
|
|
|
|
dbgs() << ">>> " << Q.getName() << "\n";
|
|
for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
|
|
RegPressureDelta RPDelta;
|
|
TempTracker.getMaxPressureDelta((*I)->getInstr(), RPDelta,
|
|
DAG->getRegionCriticalPSets(),
|
|
DAG->getRegPressure().MaxSetPressure);
|
|
std::stringstream dbgstr;
|
|
dbgstr << "SU(" << std::setw(3) << (*I)->NodeNum << ")";
|
|
dbgs() << dbgstr.str();
|
|
SchedulingCost(Q, *I, Candidate, RPDelta, true);
|
|
dbgs() << "\t";
|
|
(*I)->getInstr()->dump();
|
|
}
|
|
dbgs() << "\n";
|
|
}
|
|
#endif
|
|
|
|
/// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
|
|
/// of SU, return it, otherwise return null.
|
|
static SUnit *getSingleUnscheduledPred(SUnit *SU) {
|
|
SUnit *OnlyAvailablePred = nullptr;
|
|
for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
|
I != E; ++I) {
|
|
SUnit &Pred = *I->getSUnit();
|
|
if (!Pred.isScheduled) {
|
|
// We found an available, but not scheduled, predecessor. If it's the
|
|
// only one we have found, keep track of it... otherwise give up.
|
|
if (OnlyAvailablePred && OnlyAvailablePred != &Pred)
|
|
return nullptr;
|
|
OnlyAvailablePred = &Pred;
|
|
}
|
|
}
|
|
return OnlyAvailablePred;
|
|
}
|
|
|
|
/// getSingleUnscheduledSucc - If there is exactly one unscheduled successor
|
|
/// of SU, return it, otherwise return null.
|
|
static SUnit *getSingleUnscheduledSucc(SUnit *SU) {
|
|
SUnit *OnlyAvailableSucc = nullptr;
|
|
for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
|
I != E; ++I) {
|
|
SUnit &Succ = *I->getSUnit();
|
|
if (!Succ.isScheduled) {
|
|
// We found an available, but not scheduled, successor. If it's the
|
|
// only one we have found, keep track of it... otherwise give up.
|
|
if (OnlyAvailableSucc && OnlyAvailableSucc != &Succ)
|
|
return nullptr;
|
|
OnlyAvailableSucc = &Succ;
|
|
}
|
|
}
|
|
return OnlyAvailableSucc;
|
|
}
|
|
|
|
// Constants used to denote relative importance of
|
|
// heuristic components for cost computation.
|
|
static const unsigned PriorityOne = 200;
|
|
static const unsigned PriorityTwo = 50;
|
|
static const unsigned PriorityThree = 75;
|
|
static const unsigned ScaleTwo = 10;
|
|
static const unsigned FactorOne = 2;
|
|
|
|
/// Single point to compute overall scheduling cost.
|
|
/// TODO: More heuristics will be used soon.
|
|
int ConvergingVLIWScheduler::SchedulingCost(ReadyQueue &Q, SUnit *SU,
|
|
SchedCandidate &Candidate,
|
|
RegPressureDelta &Delta,
|
|
bool verbose) {
|
|
// Initial trivial priority.
|
|
int ResCount = 1;
|
|
|
|
// Do not waste time on a node that is already scheduled.
|
|
if (!SU || SU->isScheduled)
|
|
return ResCount;
|
|
|
|
MachineInstr *Instr = SU->getInstr();
|
|
|
|
DEBUG(if (verbose) dbgs() << ((Q.getID() == TopQID) ? "(top|" : "(bot|"));
|
|
// Forced priority is high.
|
|
if (SU->isScheduleHigh) {
|
|
ResCount += PriorityOne;
|
|
DEBUG(dbgs() << "H|");
|
|
}
|
|
|
|
// Critical path first.
|
|
if (Q.getID() == TopQID) {
|
|
ResCount += (SU->getHeight() * ScaleTwo);
|
|
|
|
DEBUG(if (verbose) {
|
|
std::stringstream dbgstr;
|
|
dbgstr << "h" << std::setw(3) << SU->getHeight() << "|";
|
|
dbgs() << dbgstr.str();
|
|
});
|
|
|
|
// If resources are available for it, multiply the
|
|
// chance of scheduling.
|
|
if (Top.ResourceModel->isResourceAvailable(SU)) {
|
|
ResCount <<= FactorOne;
|
|
ResCount += PriorityThree;
|
|
DEBUG(if (verbose) dbgs() << "A|");
|
|
} else
|
|
DEBUG(if (verbose) dbgs() << " |");
|
|
} else {
|
|
ResCount += (SU->getDepth() * ScaleTwo);
|
|
|
|
DEBUG(if (verbose) {
|
|
std::stringstream dbgstr;
|
|
dbgstr << "d" << std::setw(3) << SU->getDepth() << "|";
|
|
dbgs() << dbgstr.str();
|
|
});
|
|
|
|
// If resources are available for it, multiply the
|
|
// chance of scheduling.
|
|
if (Bot.ResourceModel->isResourceAvailable(SU)) {
|
|
ResCount <<= FactorOne;
|
|
ResCount += PriorityThree;
|
|
DEBUG(if (verbose) dbgs() << "A|");
|
|
} else
|
|
DEBUG(if (verbose) dbgs() << " |");
|
|
}
|
|
|
|
unsigned NumNodesBlocking = 0;
|
|
if (Q.getID() == TopQID) {
|
|
// How many SUs does it block from scheduling?
|
|
// Look at all of the successors of this node.
|
|
// Count the number of nodes that
|
|
// this node is the sole unscheduled node for.
|
|
for (const SDep &SI : SU->Succs)
|
|
if (getSingleUnscheduledPred(SI.getSUnit()) == SU)
|
|
++NumNodesBlocking;
|
|
} else {
|
|
// How many unscheduled predecessors block this node?
|
|
for (const SDep &PI : SU->Preds)
|
|
if (getSingleUnscheduledSucc(PI.getSUnit()) == SU)
|
|
++NumNodesBlocking;
|
|
}
|
|
ResCount += (NumNodesBlocking * ScaleTwo);
|
|
|
|
DEBUG(if (verbose) {
|
|
std::stringstream dbgstr;
|
|
dbgstr << "blk " << std::setw(2) << NumNodesBlocking << ")|";
|
|
dbgs() << dbgstr.str();
|
|
});
|
|
|
|
// Factor in reg pressure as a heuristic.
|
|
if (!IgnoreBBRegPressure) {
|
|
// Decrease priority by the amount that register pressure exceeds the limit.
|
|
ResCount -= (Delta.Excess.getUnitInc()*PriorityOne);
|
|
// Decrease priority if register pressure exceeds the limit.
|
|
ResCount -= (Delta.CriticalMax.getUnitInc()*PriorityOne);
|
|
// Decrease priority slightly if register pressure would increase over the
|
|
// current maximum.
|
|
ResCount -= (Delta.CurrentMax.getUnitInc()*PriorityTwo);
|
|
DEBUG(if (verbose) {
|
|
dbgs() << "RP " << Delta.Excess.getUnitInc() << "/"
|
|
<< Delta.CriticalMax.getUnitInc() <<"/"
|
|
<< Delta.CurrentMax.getUnitInc() << ")|";
|
|
});
|
|
}
|
|
|
|
// Give a little extra priority to a .cur instruction if there is a resource
|
|
// available for it.
|
|
auto &QST = DAG->MF.getSubtarget<HexagonSubtarget>();
|
|
auto &QII = *QST.getInstrInfo();
|
|
if (SU->isInstr() && QII.mayBeCurLoad(SU->getInstr())) {
|
|
if (Q.getID() == TopQID && Top.ResourceModel->isResourceAvailable(SU)) {
|
|
ResCount += PriorityTwo;
|
|
DEBUG(if (verbose) dbgs() << "C|");
|
|
} else if (Q.getID() == BotQID &&
|
|
Bot.ResourceModel->isResourceAvailable(SU)) {
|
|
ResCount += PriorityTwo;
|
|
DEBUG(if (verbose) dbgs() << "C|");
|
|
}
|
|
}
|
|
|
|
// Give preference to a zero latency instruction if the dependent
|
|
// instruction is in the current packet.
|
|
if (Q.getID() == TopQID) {
|
|
for (const SDep &PI : SU->Preds) {
|
|
if (!PI.getSUnit()->getInstr()->isPseudo() && PI.isAssignedRegDep() &&
|
|
PI.getLatency() == 0 &&
|
|
Top.ResourceModel->isInPacket(PI.getSUnit())) {
|
|
ResCount += PriorityThree;
|
|
DEBUG(if (verbose) dbgs() << "Z|");
|
|
}
|
|
}
|
|
} else {
|
|
for (const SDep &SI : SU->Succs) {
|
|
if (!SI.getSUnit()->getInstr()->isPseudo() && SI.isAssignedRegDep() &&
|
|
SI.getLatency() == 0 &&
|
|
Bot.ResourceModel->isInPacket(SI.getSUnit())) {
|
|
ResCount += PriorityThree;
|
|
DEBUG(if (verbose) dbgs() << "Z|");
|
|
}
|
|
}
|
|
}
|
|
|
|
// Give less preference to an instruction that will cause a stall with
|
|
// an instruction in the previous packet.
|
|
if (QII.isV60VectorInstruction(Instr)) {
|
|
// Check for stalls in the previous packet.
|
|
if (Q.getID() == TopQID) {
|
|
for (auto J : Top.ResourceModel->OldPacket)
|
|
if (QII.producesStall(J->getInstr(), Instr))
|
|
ResCount -= PriorityOne;
|
|
} else {
|
|
for (auto J : Bot.ResourceModel->OldPacket)
|
|
if (QII.producesStall(Instr, J->getInstr()))
|
|
ResCount -= PriorityOne;
|
|
}
|
|
}
|
|
|
|
// If the instruction has a non-zero latency dependence with an instruction in
|
|
// the current packet, then it should not be scheduled yet. The case occurs
|
|
// when the dependent instruction is scheduled in a new packet, so the
|
|
// scheduler updates the current cycle and pending instructions become
|
|
// available.
|
|
if (CheckEarlyAvail) {
|
|
if (Q.getID() == TopQID) {
|
|
for (const auto &PI : SU->Preds) {
|
|
if (PI.getLatency() > 0 &&
|
|
Top.ResourceModel->isInPacket(PI.getSUnit())) {
|
|
ResCount -= PriorityOne;
|
|
DEBUG(if (verbose) dbgs() << "D|");
|
|
}
|
|
}
|
|
} else {
|
|
for (const auto &SI : SU->Succs) {
|
|
if (SI.getLatency() > 0 &&
|
|
Bot.ResourceModel->isInPacket(SI.getSUnit())) {
|
|
ResCount -= PriorityOne;
|
|
DEBUG(if (verbose) dbgs() << "D|");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
DEBUG(if (verbose) {
|
|
std::stringstream dbgstr;
|
|
dbgstr << "Total " << std::setw(4) << ResCount << ")";
|
|
dbgs() << dbgstr.str();
|
|
});
|
|
|
|
return ResCount;
|
|
}
|
|
|
|
/// Pick the best candidate from the top queue.
|
|
///
|
|
/// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
|
|
/// DAG building. To adjust for the current scheduling location we need to
|
|
/// maintain the number of vreg uses remaining to be top-scheduled.
|
|
ConvergingVLIWScheduler::CandResult ConvergingVLIWScheduler::
|
|
pickNodeFromQueue(ReadyQueue &Q, const RegPressureTracker &RPTracker,
|
|
SchedCandidate &Candidate) {
|
|
DEBUG(if (SchedDebugVerboseLevel > 1)
|
|
readyQueueVerboseDump(RPTracker, Candidate, Q);
|
|
else Q.dump(););
|
|
|
|
// getMaxPressureDelta temporarily modifies the tracker.
|
|
RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
|
|
|
|
// BestSU remains NULL if no top candidates beat the best existing candidate.
|
|
CandResult FoundCandidate = NoCand;
|
|
for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
|
|
RegPressureDelta RPDelta;
|
|
TempTracker.getMaxPressureDelta((*I)->getInstr(), RPDelta,
|
|
DAG->getRegionCriticalPSets(),
|
|
DAG->getRegPressure().MaxSetPressure);
|
|
|
|
int CurrentCost = SchedulingCost(Q, *I, Candidate, RPDelta, false);
|
|
|
|
// Initialize the candidate if needed.
|
|
if (!Candidate.SU) {
|
|
DEBUG(traceCandidate("DCAND", Q, *I, CurrentCost));
|
|
Candidate.SU = *I;
|
|
Candidate.RPDelta = RPDelta;
|
|
Candidate.SCost = CurrentCost;
|
|
FoundCandidate = NodeOrder;
|
|
continue;
|
|
}
|
|
|
|
// Best cost.
|
|
if (CurrentCost > Candidate.SCost) {
|
|
DEBUG(traceCandidate("CCAND", Q, *I, CurrentCost));
|
|
Candidate.SU = *I;
|
|
Candidate.RPDelta = RPDelta;
|
|
Candidate.SCost = CurrentCost;
|
|
FoundCandidate = BestCost;
|
|
continue;
|
|
}
|
|
|
|
// Tie breaker using Timing Class.
|
|
if (!DisableTCTie) {
|
|
auto &QST = DAG->MF.getSubtarget<HexagonSubtarget>();
|
|
auto &QII = *QST.getInstrInfo();
|
|
|
|
const MachineInstr *MI = (*I)->getInstr();
|
|
const MachineInstr *CandI = Candidate.SU->getInstr();
|
|
const InstrItineraryData *InstrItins = QST.getInstrItineraryData();
|
|
|
|
unsigned InstrLatency = QII.getInstrTimingClassLatency(InstrItins, MI);
|
|
unsigned CandLatency = QII.getInstrTimingClassLatency(InstrItins, CandI);
|
|
DEBUG(dbgs() << "TC Tie Breaker Cand: "
|
|
<< CandLatency << " Instr:" << InstrLatency << "\n"
|
|
<< *MI << *CandI << "\n");
|
|
if (Q.getID() == TopQID && CurrentCost == Candidate.SCost) {
|
|
if (InstrLatency < CandLatency && TopUseShorterTie) {
|
|
Candidate.SU = *I;
|
|
Candidate.RPDelta = RPDelta;
|
|
Candidate.SCost = CurrentCost;
|
|
FoundCandidate = BestCost;
|
|
DEBUG(dbgs() << "Used top shorter tie breaker\n");
|
|
continue;
|
|
} else if (InstrLatency > CandLatency && !TopUseShorterTie) {
|
|
Candidate.SU = *I;
|
|
Candidate.RPDelta = RPDelta;
|
|
Candidate.SCost = CurrentCost;
|
|
FoundCandidate = BestCost;
|
|
DEBUG(dbgs() << "Used top longer tie breaker\n");
|
|
continue;
|
|
}
|
|
} else if (Q.getID() == BotQID && CurrentCost == Candidate.SCost) {
|
|
if (InstrLatency < CandLatency && BotUseShorterTie) {
|
|
Candidate.SU = *I;
|
|
Candidate.RPDelta = RPDelta;
|
|
Candidate.SCost = CurrentCost;
|
|
FoundCandidate = BestCost;
|
|
DEBUG(dbgs() << "Used Bot shorter tie breaker\n");
|
|
continue;
|
|
} else if (InstrLatency > CandLatency && !BotUseShorterTie) {
|
|
Candidate.SU = *I;
|
|
Candidate.RPDelta = RPDelta;
|
|
Candidate.SCost = CurrentCost;
|
|
FoundCandidate = BestCost;
|
|
DEBUG(dbgs() << "Used Bot longer tie breaker\n");
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (CurrentCost == Candidate.SCost) {
|
|
if ((Q.getID() == TopQID &&
|
|
(*I)->Succs.size() > Candidate.SU->Succs.size()) ||
|
|
(Q.getID() == BotQID &&
|
|
(*I)->Preds.size() < Candidate.SU->Preds.size())) {
|
|
DEBUG(traceCandidate("SPCAND", Q, *I, CurrentCost));
|
|
Candidate.SU = *I;
|
|
Candidate.RPDelta = RPDelta;
|
|
Candidate.SCost = CurrentCost;
|
|
FoundCandidate = BestCost;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Fall through to original instruction order.
|
|
// Only consider node order if Candidate was chosen from this Q.
|
|
if (FoundCandidate == NoCand)
|
|
continue;
|
|
}
|
|
return FoundCandidate;
|
|
}
|
|
|
|
/// Pick the best candidate node from either the top or bottom queue.
|
|
SUnit *ConvergingVLIWScheduler::pickNodeBidrectional(bool &IsTopNode) {
|
|
// Schedule as far as possible in the direction of no choice. This is most
|
|
// efficient, but also provides the best heuristics for CriticalPSets.
|
|
if (SUnit *SU = Bot.pickOnlyChoice()) {
|
|
DEBUG(dbgs() << "Picked only Bottom\n");
|
|
IsTopNode = false;
|
|
return SU;
|
|
}
|
|
if (SUnit *SU = Top.pickOnlyChoice()) {
|
|
DEBUG(dbgs() << "Picked only Top\n");
|
|
IsTopNode = true;
|
|
return SU;
|
|
}
|
|
SchedCandidate BotCand;
|
|
// Prefer bottom scheduling when heuristics are silent.
|
|
CandResult BotResult = pickNodeFromQueue(Bot.Available,
|
|
DAG->getBotRPTracker(), BotCand);
|
|
assert(BotResult != NoCand && "failed to find the first candidate");
|
|
|
|
// If either Q has a single candidate that provides the least increase in
|
|
// Excess pressure, we can immediately schedule from that Q.
|
|
//
|
|
// RegionCriticalPSets summarizes the pressure within the scheduled region and
|
|
// affects picking from either Q. If scheduling in one direction must
|
|
// increase pressure for one of the excess PSets, then schedule in that
|
|
// direction first to provide more freedom in the other direction.
|
|
if (BotResult == SingleExcess || BotResult == SingleCritical) {
|
|
DEBUG(dbgs() << "Prefered Bottom Node\n");
|
|
IsTopNode = false;
|
|
return BotCand.SU;
|
|
}
|
|
// Check if the top Q has a better candidate.
|
|
SchedCandidate TopCand;
|
|
CandResult TopResult = pickNodeFromQueue(Top.Available,
|
|
DAG->getTopRPTracker(), TopCand);
|
|
assert(TopResult != NoCand && "failed to find the first candidate");
|
|
|
|
if (TopResult == SingleExcess || TopResult == SingleCritical) {
|
|
DEBUG(dbgs() << "Prefered Top Node\n");
|
|
IsTopNode = true;
|
|
return TopCand.SU;
|
|
}
|
|
// If either Q has a single candidate that minimizes pressure above the
|
|
// original region's pressure pick it.
|
|
if (BotResult == SingleMax) {
|
|
DEBUG(dbgs() << "Prefered Bottom Node SingleMax\n");
|
|
IsTopNode = false;
|
|
return BotCand.SU;
|
|
}
|
|
if (TopResult == SingleMax) {
|
|
DEBUG(dbgs() << "Prefered Top Node SingleMax\n");
|
|
IsTopNode = true;
|
|
return TopCand.SU;
|
|
}
|
|
if (TopCand.SCost > BotCand.SCost) {
|
|
DEBUG(dbgs() << "Prefered Top Node Cost\n");
|
|
IsTopNode = true;
|
|
return TopCand.SU;
|
|
}
|
|
// Otherwise prefer the bottom candidate in node order.
|
|
DEBUG(dbgs() << "Prefered Bottom in Node order\n");
|
|
IsTopNode = false;
|
|
return BotCand.SU;
|
|
}
|
|
|
|
/// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
|
|
SUnit *ConvergingVLIWScheduler::pickNode(bool &IsTopNode) {
|
|
if (DAG->top() == DAG->bottom()) {
|
|
assert(Top.Available.empty() && Top.Pending.empty() &&
|
|
Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
|
|
return nullptr;
|
|
}
|
|
SUnit *SU;
|
|
if (llvm::ForceTopDown) {
|
|
SU = Top.pickOnlyChoice();
|
|
if (!SU) {
|
|
SchedCandidate TopCand;
|
|
CandResult TopResult =
|
|
pickNodeFromQueue(Top.Available, DAG->getTopRPTracker(), TopCand);
|
|
assert(TopResult != NoCand && "failed to find the first candidate");
|
|
(void)TopResult;
|
|
SU = TopCand.SU;
|
|
}
|
|
IsTopNode = true;
|
|
} else if (llvm::ForceBottomUp) {
|
|
SU = Bot.pickOnlyChoice();
|
|
if (!SU) {
|
|
SchedCandidate BotCand;
|
|
CandResult BotResult =
|
|
pickNodeFromQueue(Bot.Available, DAG->getBotRPTracker(), BotCand);
|
|
assert(BotResult != NoCand && "failed to find the first candidate");
|
|
(void)BotResult;
|
|
SU = BotCand.SU;
|
|
}
|
|
IsTopNode = false;
|
|
} else {
|
|
SU = pickNodeBidrectional(IsTopNode);
|
|
}
|
|
if (SU->isTopReady())
|
|
Top.removeReady(SU);
|
|
if (SU->isBottomReady())
|
|
Bot.removeReady(SU);
|
|
|
|
DEBUG(dbgs() << "*** " << (IsTopNode ? "Top" : "Bottom")
|
|
<< " Scheduling Instruction in cycle "
|
|
<< (IsTopNode ? Top.CurrCycle : Bot.CurrCycle) << '\n';
|
|
SU->dump(DAG));
|
|
return SU;
|
|
}
|
|
|
|
/// Update the scheduler's state after scheduling a node. This is the same node
|
|
/// that was just returned by pickNode(). However, VLIWMachineScheduler needs
|
|
/// to update it's state based on the current cycle before MachineSchedStrategy
|
|
/// does.
|
|
void ConvergingVLIWScheduler::schedNode(SUnit *SU, bool IsTopNode) {
|
|
if (IsTopNode) {
|
|
SU->TopReadyCycle = Top.CurrCycle;
|
|
Top.bumpNode(SU);
|
|
} else {
|
|
SU->BotReadyCycle = Bot.CurrCycle;
|
|
Bot.bumpNode(SU);
|
|
}
|
|
}
|